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S1. Justification of the EEC

The following discussion is based on references [1] and [2]. An ideally polarizable electrode
can be described by a capacitance, Cql, in series to the resistance of the electrolyte, Rs. However,
the response of the double layer at an electrode is typically not perfectly capacitive and,
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therefore, it is often represented by a constant phase element Z; = , Where
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n (0 < n < 1) is the phasor and w is the angular frequency. Faradaic reactions are accounted

by a Faradaic impedance, Zs, which is in parallel to Z;.

For a reaction during which in the first step the reactant is adsorbed and in a second step

desorbed:
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the rates of both reactions in steady-state can be described (under the assumption of Langmuir

adsorption isotherm) by:

vy = kT Ca(0)(1 — 65) exp[—B1f (E — E7)] — k21,05 exp[(1 — B)f(E — ED)]  (S2)
v, = k3 To0p exp—Bof (E — E3)] — k2,1, Cc(0) exp[(1 — B2) f (E — E3)] (S3)
Here k9, are the rate constants, I is the total surface concentration of active sites, C, -(0) are
the concentration of species A and C at the surface, 8zis the fractional coverage of the active
centers with species B, B, , are the transfer coefficients, E is the applied potential, and E7, are
the standard potentials for both reactions. Further, f = F/RT, where F, R and T are the Faraday

constant, the gas constant and the temperature, respectively.
At the equilibrium potential, E,,, both reaction rates are zero resulting in:
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expf (Eeq — E3)] =

Here C, ¢ are the bulk and 65 the surface concentrations at the equilibrium potential. One can
rewrite equations (S2) and (S3) several times by introducing an over potential E — E) = E —
Eeq + Ecqg — E)=n+ Eeq — E?, assuming that the surface and bulk concentrations are almost
identical, which holds for low currents and relatively high electrolyte concentrations. For the
detailed calculations, we want to refer to A. Lasia'. Summing up the two reactions, the total

current can be expressed as:

i = —F(vl + 172) == —FTO (86)

and the change of the coverage of surface by species B can be shown as:

dly  dby oyd6s 0 (S7)
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Here, o; = FT, is the charge of a totally covered electrode surface.
Linearization of the equations for the total current and changes in the surface coverage results

in differential equations with the solution being the Faradaic admittance. The inverse is the

Faradaic impedance which can be written as:
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With adsorption capacitance and resistance in parallel and a charge transfer resistance in series.

By combining it with the impedance of the double layer and the uncompensated solution

resistance, one can see that the total impedance is:
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and can be represented as the equivalent circuit shown in Fig. 2B.



Noteworthy, this Faradaic impedance (S8) was originally found for the Volmer-Heyrovsky
pathway of the hydrogen evolution reaction, as it involves one adsorbed intermediate. In general
for a reaction with three binding intermediates, all of them need to be taken into account,
resulting in a much more complex system of differential equations and an equivalent circuit
with more branches. However, assuming that at small overpotential only one OER intermediate
step is quasi-reversible (most likely involving the *OH intermediate), the surface concentration
of mainly one specifically adsorbed species varies with the applied potential justifies the choice
of this rather simplified circuit. Moreover, the good fitting quality of the impedance data
(Figure S1) combined with the fact that just one set of parameters can fully fit the experimental

findings speaks for the choice of this EEC.
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Figure S1. (A-G) Nyquist plots (obtained at the potentials indicated in Table 1) of the
different oxide materials together with their fits (red lines) obtained using the EEC shown in

Fig. 2B.
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S2. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectra of the as prepared catalyst films are shown in Figure S2. The NiOx
named film consists of Ni(OH). and NiOOH phase and the, as CoOx denoted film consists of
Co(OH), and CoOOH. The NiFeOx film right after the deposition contains additionally to the
Ni", Ni"", Fe"", and the Fe'"' a small amount of metallic Ni° and Fe® phase. The Ni / Fe ratio was
calculated to be 7 / 3 which is close to the optimum of 3/ 1. The spectra taken from the CoNiOx
film is well comparable to those taken from the NiOx and CoOx films; however, the binding
energies are slightly shifted, indicating an alloyed phase. The Ni / Co ratio is approximately
1/ 1. The film denoted as CoFeOyx shows mainly Co'", Co'!, Fe'!, and the Fe'"' oxy-hydroxide
phase but also a small fraction of metallic (~5 %) phase. These observed metallic phases are
due to the cathodic deposition method. Notably, in the alkaline electrolyte, the metallic fraction
of the surface quickly oxidizes during cycling. The 4fs;» and 4f7/2, observed from the spectra of

the IrOx named film, confirm the presence of a thin IrOx layer covering the Ir-crystal[3],[4].
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Figure S2. XPS of (A) NiOy, (B) CoOy, (C) NiFeOy, (D) CoNiOx, (E) CoFeOx, (F) IrOx.
Figures (A-C) are adapted with permission from ref. [5].
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Figure S3. Anodic voltammetric scans (2 mV s?) recorded in 0.1 M HCIO;4 for the Pt/C
electrodes and for the carbon support, denoted as C, only. Obviously, C is much less active than
the sample with additional Pt. This confirms the negligible contribution of the support, despite
its higher surface area.

S3. Description of electrochemical cell and measurement procedure

A schematic of the cell utilized for the EIS measurements is shown in Figure S4. Noteworthy,
a shunt capacitor, C = 4.2 pF, was connected between the reference electrode and counter

electrode to compensate potentiostat-caused artifacts at high frequencies.

EIS measurements were conducted after activating the catalysts. For the catalyst thin films, the
activation was performed by potential cycling between 0.93 V and 1.73 V for three times (50
mV s1). In the case of nanoparticles, the potential was cycled between 0.06 V and 1.20 V until
a stable CV was achieved. After the last cycle, the potential was swept (1 mV s) to the starting
potential of the first impedance measurement. We suggest to start the EIS measurements at least
30 mV below the potential shown in Table 2 and increase it stepwise (10 mV steps). Further,
we suggest a frequency range between 30 kHz and 10 Hz (at least 60 points should be recorded)

and a probing signal amplitude of ~ 10 mV.



WE

(RDE)
Argon CE
\&H@,

Electrolyte

T

Figure S4. Schematic of the glass cell utilized for the electrochemical measurements. The
double-walled cell allows temperature control of the electrolyte. A typical three-electrode
configuration was utilized: reference electrode RE (MMS: Schott, Germany / RHE: Gaskatel,
Germany), and counter electrode CE (Platinum mesh: Goodfellow, Germany) and an RDE tip
as working electrode mounted on a rotator (Pine, USA). A shunt capacitor of 4.2 pF was
connected between counter and reference electrode for EIS measurements. Ar saturated 0.1M
KOH and 0.1M HCIO4 were utilized as electrolytes.
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