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SIM = Spatial Interaction Models

Model flows between nodes of 

different sizes embedded in space
i

j
Fij
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What did Simple Spatial Interaction Models

ever do for us?

Look at general properties

HOW DOES SPACE INFLUENCE THE SYSTEM? 

• Test Basic Principles
o e.g. is site attractiveness a non-linear

function of size? 
[Rihll & Wilson 1979, 81; Bettencourt at al. 2007]

o e.g. CO2 [Verbavatz & Barthelemy 2019]

o Error propagation

• Comparisons, Null Models
o e.g. Spatial Clustering  [Expert at al. 2011]

o “What if” studies

• General Predictions
o e.g. destruction of Thera only weakens 

Aegean networks

[Knappett, TSE, Rivers, Antiquity 2012]

Thera
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Simple Models of Spatial Interaction

Fij
i j

dij
Distance from site i

to site j 

Si
Size of site i Sj

Size of site j

Inputs From Data

• Site sizes Si

oPi Population

oOi Output

o Ii Input

• Distances dij

Results

• Flows between sites

Fij
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Simple Models of Spatial Interaction

Fij
i j

dij
Distance from site i

to site j 

Si
Size of site i Sj

Size of site j

Inputs From Data

• Site sizes Sij
o Pi Population

o Oi Output

o Ii Input

• Distances dij

Modelling Choices

• Site parameters

ti, mi, ni

• Global Parameters

a, b, … Results

• Flows between sites

Fij
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Site Parameters: Data and Model

Data Values Model Parameters

Pi Total Population si generic size parameter

Oi Output 
e.g. # commuters leaving

ti repulsive parameter 

 controls output

Ii Input
e.g. # commuters arriving

ni attractiveness parameter

 controls input

mi aspiration parameter

 controls range
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Production Constrained Gravity Model

𝐹𝑖𝑗 =
𝑂𝑖 𝑛𝑗 exp −𝛽𝑑𝑖𝑗

σ𝑘 𝑛𝑘 exp −𝛽𝑑𝑖𝑗

Fij
i j

Fij = Flow 

from site i

to site j

dij
Distance from site i

to site j 

Oi
Total flow 

out of site i

nj

Attractiveness 

of site j

Normalisation

Guarantees total flow out = Oi

Global 

Parameter

b
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Radiation Model

• Uses Intervening Opportunities measure of distance

[Stouffer, 1940]

[Simini et al, 2012]

3

2

6

5

10
𝒏𝒋 = 5

i

Distance from i and j

sij = total opportunities

lying between i and j
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Stouffer’ Intervening  Opportunities Model

For comparison with Radiation model, Stouffer suggested 

using the Intervening Opportunities measure of distance

as follows

[Stouffer, 1940]

𝐹𝑖𝑗 = 𝑡𝑖 𝑛𝑗
1

( 𝑠𝑖𝑗+ 𝑛𝑗)

i j

sij

“… the number of persons going a given distance is 

directly proportional to the number of opportunities at that 

distance and inversely proportional to the number of 

intervening opportunities.” [p.846 Stouffer, 1940]
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Radiation Model

Interpretation

• ti commuters leave site i to 

search for job 

• Salary aspiration for each site set 

by mi parameter
– largest of mi values from distribution p(z)

• Closest opportunities first

• Each of nj opportunities at site j

makes an offer
– Offer z with probability p(z)

• Accept first offer meeting 

aspiration

[Simini et al, 2012]

NOT equal to Ij
input of site j

BUT nj controls input

Oi Output of 

site i

?
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Radiation Model

Production Constrained

ti = total flow out of site i in model

𝐹𝑖𝑗 = 𝑡𝑖 𝑛𝑗
𝑚𝑗

( 𝑚𝑗+ 𝑠𝑖𝑗)( 𝑚𝑗+ 𝑠𝑖𝑗+ 𝑛𝑗)

Falls off on scale mi

“aspiration” of commuters

Fij = Flow 

from site i

to site j

ni controls input but not equal to input

Intervening Opportunities + Record Statistics =
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Radiation Model Parameters

Three model site parameters:

ti = total flow out of site i in model

ni = controls input

mi = controls range

𝐹𝑖𝑗 = 𝑡𝑖 𝑛𝑗
𝑚𝑗

( 𝑚𝑗+ 𝑠𝑖𝑗)( 𝑚𝑗+ 𝑠𝑖𝑗+ 𝑛𝑗)

Fixed form,

no global model parameters

Fij = Flow 

from site i

to site j

Intervening Opportunities + Record Statistics =

Site 

Data 

Values

Parameter-data map 

can introduce 

global 

parameters
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Matching Data and Spatial Interaction Models

Hilton, Sood, TSE, http://arXiv.org/abs/1909.07194 

“Predictive limitations of spatial interaction models: 

a non-Gaussian analysis”

Figure

Alasdair Rae

"under the raedar"

http://arxiv.org/abs/1909.07194
http://www.undertheraedar.com/2014/10/flow-mapping-with-qgis.html
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How to test Spatial Interaction Models

Hilton, Sood & TSE, http://arXiv.org/abs/1909.07194 

DATA
Here US Census 2000

MODEL
Fij = Flow 

from site i

to site j

How do we compare data and model?

• What are appropriate statistics?

• What is a fair comparison?

• What are the best models?

http://arxiv.org/abs/1909.07194
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• Sørensen-Dice coefficient 
[Gargiulo et al ’12; Lenormand et al ’12, ‘16;

Masucci et al ‘13, Yang et al ‘14]

Lacks a rigorous statistical basis. 

• The Kolmogorov-Smirnov test 
[Kang et al ‘15] 

Requires the two input functions to be independent, so 

invalid when estimate model parameters from data 

[Steinskog et al ‘07]

Statistics
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Statistics assuming the variation in the flow between any one 

pair follows a Gaussian distribution

• Mean Squared Errors [Curiel et al. ‘18], 

• The Coefficient of Determination R2

[Masucci et al. ‘13, Curiel et al. ‘18]

• Pearson correlation coefficients [Liu et al. ‘15].

Problem: 

• real data sets have no negative flows 

• Data has a high proportion of very small flows

 flows between each pair of sites 

cannot be assumed to be Gaussian

Gaussian Statistics
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Poisson Regression

• Assume models give average flow 

• Assume fluctuations around mean are Poisson 

distributed

– e.g. Radiation model has Binomial fluctuations, a

good approximation to Poisson for large flows ti

• Look at log-likelihood L
– Measure of probability that data produced by model

Suggested Protocol

ln 𝐿 𝐹min = 

(𝑖,𝑗)

− 𝐹𝑖𝑗 + 𝐹𝑖𝑗 ln 𝐹𝑖𝑗 − ln 𝐹𝑖𝑗! Θ(𝐹𝑖𝑗 − 𝐹min)

Model value Data value
Analysis 

Cutoff
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• LOG LIKELIHOOD L
– Measure of probability that data produced by model

– Does not compensate for number of parameters 

• BAYESIAN INFORMATION CRITERION (BIC)
– Harsh penalty for increasing number of parameters

• DEVIANCE 𝐷 = −2 ln ൗ𝐿𝑠 𝐿 where Ls is the saturated log 

likelihood, value of L if predictions matched data. 

Statistical Measures

BIC 𝐹min = k ln(n 𝐹min )  - 2 ln 𝐿 𝐹min
k = # parameters

n= # data points

D 𝐹min = 2

(𝑖,𝑗)

𝐹𝑖𝑗 − 𝐹𝑖𝑗 + 𝐹𝑖𝑗 ln Τ𝐹𝑖𝑗 𝐹𝑖𝑗 Θ(𝐹𝑖𝑗 − 𝐹min)
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• US Census 2000 asked

“at what location did this person 

work last week?” 

• 3109 counties within the 48 

contiguous States

• 98.3% of county pairs have no

flow

Modern Commuting

Data

Flow Number

All 9,665,881

>0 164,764

>10 77,432

>100 21,237

>1,000 7,058

>10,000 1,814

>100,000 212

https://www.census.gov/data/tables/2000/dec/county-to-county-worker-flow-files.html

https://www.census.gov/data/tables/2000/dec/county-to-county-worker-flow-files.html
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Deviance Results: US Census 2000
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Gravity 

Model

Prod.
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Rad.

Model

Original

Removing Small Flows Improves All Models Equally

All Flows above 100

[Hilton, Sood & TSE, http://arXiv.org/abs/1909.07194 ]

http://arxiv.org/abs/1909.07194
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Deviance Results: US Census 2000
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http://arxiv.org/abs/1909.07194
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Deviance Results: US Census 2000
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http://arxiv.org/abs/1909.07194
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Deviance Results: US Census 2000

0

1.4

D
e
v
ia

n
c
e
 /

 1
0

8

Gravity 

Model

Prod.

Constr.

Gravity Model Better Than All Radiation Models

D=108

Radiation Models with different site 

parameter model to data choices

BEST

Improving models, ALL PRODUCTION CONSTRAINED

[Hilton, Sood & TSE, http://arXiv.org/abs/1909.07194 ]
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Deviance Results: US Census 2000
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http://arxiv.org/abs/1909.07194
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• Removing small flows left results unchanged

• Found all three statistics give same results
– So many data points

• Using global fitted parameters improves results
– So many data points, no penalty to add more parameters to simple models

• Match model parameters to data to improve results
– Output parameters ti = Oi 

– Input parameters   ni = Ii 

– Aspiration Parameter mi = ni best (set by axioms)

• Gravity model is significantly better than Radiation model
– Important to compare models with similar constraints

• All simple models give poor fits to real data
– This is not why we use a simple spatial interaction model

Summary
[Hilton, Sood & TSE, http://arXiv.org/abs/1909.07194 ]

[Also draws on work of TSE with Bamis & Gastner; Bamis MSc thesis 2014]

http://arxiv.org/abs/1909.07194
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What properties should a Spatial Interaction Model have?

Understanding this can help

• Classify models

• Help us choose an appropriate model for a given problem

• Improve model parameter choices

Properties of Spatial Interaction Models
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FLOW SCALING AXIOM

If we double all the site size parameters, 

the flows should all double

𝑡𝑖 → 𝜆𝑡𝑖 , 𝑛𝑖 → 𝜆𝑛𝑖 ⇒ 𝐹𝑖𝑗 → 𝜆𝐹𝑖𝑗

Flow Scaling Axiom

• Ensures only relative sizes matter

• Useful in archaeological context

• Units don’t matter

• Simple (unconstrained) gravity model fails this

• Why enforce linearity? [Bettencourt et al 2007; Arcaute et al 2014]

Fij

Fij
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OUTPUT COARSE GRAINING AXIOM

If we combine two neighbouring sites into one, 

the flows remain unchanged

𝑡𝑇 = 𝑡𝐴+ 𝑡𝐵 ⇒ 𝐹𝑇= 𝐹𝐴 + 𝐹𝐵,

Coarse Graining Axioms

• Ensures spatial units don’t matter
• Should we use wards or boroughs in UK Census?

A
B

T

FA
FB

T

FT
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To ensure output flows are consistent in Radiation model 

when you coarse grain requires 
aspiration=opportunities 𝑚𝑖 = 𝑛𝑖

Radiation Model & Output Coarse Graining

𝐹𝑖𝑗 = 𝑡𝑖 𝑛𝑗
𝑛𝑗

( 𝑛𝑗+ 𝑠𝑖𝑗)(𝑛𝑗 + 𝑠𝑖𝑗+ 𝑛𝑗)

• One less parameter per site
– Just output ti and opportunities ni

• More consistent narrative

• Produced better results for US Census 2000 [Hilton, Sood, TSE 2019]
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• Theoretical analysis of 

coarse graining hard 
only produced simple results

• Need to test effects of 

coarse graining on 

more realistic 

examples

Coarse Graining in Practice [TSE with Louf 2019]
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• PPP= 

Poisson Point Process
Here 20 points thrown down 

uniformly at random in box

• Clustered
Each random site has 5 subsites 

placed within radius r

Clustered PPP Model

[Louf 2019]
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Clustered PPP & Gravity Model
• Output constrained

• exponential 

deterrence function, 

• g=3
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Clustered PPP & Radiation Model
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• Analytic estimates of effects of coarse graining on 

predicted flows are possible

• Simple unclustered PPP show larger differences than 

analytic results

• Adding clustered sites increases differences 

• Intervening Opportunities measure more sensitive to 

coarse graining variations 

Coarse Graining and Robustness of 

Simple Models [TSE with Louf 2019]
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• Use simple properties to test and classify models

• Imposing property can constrain models

– e.g. mi=ni in radiation model

• Models suggest coarse graining, the scale used for 

settlement units, is important

Summary: Basic Properties

[Louf, MSc Thesis 2019]

[Also draws on work of TSE with Rivers; Bamis & Gastner; Bamis MSc thesis 2014]
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What can we learn if we use flows to drive dynamics?

• Consider permanent movement of people between 

settlements as predicted by a Spatial Interaction Model

– not daily commuting, longer time scale

• Difference in flow gives net migration

Dynamical Spatial Interaction Models

Fij

Fji

Δ𝑃𝑗 = 𝐹𝑖𝑗 − 𝐹𝑗𝑖

Net migration

Flow in Flow out

ji
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1. At time t we have the population of each site Pi(t)

2. Your chosen SIM give the flows between each pair of 

sites Fij(t) given the site populations Pi(t)

3. Dynamical equation gives population at next time step 

Pi(t+1)

4. Repeat from 1.

Migration from Simple Model

𝑑𝑃𝑗

𝑑𝑡
= 𝜆(𝐹𝑖𝑗 − 𝐹𝑗𝑖)

[Wilkinson, Emms, TSE 2018]

Time scale for 

migration set by l
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Which Spatial Interaction Model can produce a reasonable 

city size distribution?

• Use modern US city distribution for comparison

• Sites uniformly scattered on square

• Stop simulation when have best fit to distribution

• Over 80 gravity and radiation models used

❖ Do large cities emerge?

❖ Do settlements cluster sensibly?

City Distribution
[Wilkinson, Emms, TSE 2018]
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• A few models get Zipf-like distributions

• No models produce the correct 

clustering

Suggests that the attractiveness of a site 

for long distance (long time) migrants is 

• not just a function of the site size 

• It is a function of the local 

neighbourhood, 

the local ecology surrounding a site 
– Croydon is not very attractive on its own, but many 

people live there as it is 30 min to the City of 

London, IKEA is based there 

Results
[Wilkinson, Emms, TSE 2018]

London

Boroughs

Croydon

Another victim of 1960’s
British urban planners?
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• Migrate 

from i

to j

• Commute 

from j

to k

• Attractiveness

of i depends

on neighbours 

of j

Best Solution: Two-Trip Model
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• Adapt existing Spatial Interaction Model 

(output constrained gravity model)

• Make site attractiveness a function of neighbours using a 

second simple gravity model with shorter (commuting) 

distance scale

Best Solution: Two-Trip Model

𝑛𝑗 =

𝑘

𝑃𝑘𝑒
−𝑑𝑗𝑘/𝐷𝑐

𝐹𝑖𝑗 =
𝑃𝑖 𝑛𝑗 exp −𝑑𝑖𝑗/𝐷𝑚

σ𝑘 𝑛𝑘 exp −𝑑𝑖𝑗/𝐷𝑚

Migration
• Output

Constrained

• Dm Long Distance Scale

Commuting
• Dc Long Distance 

Scale
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• Taking flows seriously leads to simle dynamic model of 

migration

• Only way to get a sensible settlement distribution 

emerging is if a short distance scale makes 

attractiveness of a site depend on the local region.

Summary
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Conclusions

Work with Benjamin HILTON and Abhijay SOOD

• Enforce all basic properties 

e.g. output and input constraints

• Use additional free parameters to 

improve fit

• All simple models are rubbish.

• Do test basic principles

• Do look for general features

• Don’t plan your next journey based 

on them

•
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Specific work reported here:-

• Theo Emms and James Wilkinson (2016-2017)

• Benjamin Hilton and Abhijay Sood (2018-2019) 
http://arXiv.org/abs/1909.07194

• Thomas Louf (2019)

Also drawing on earlier work and discussions with

• Michael Gastner (Yale-NUS College, Singapore) 

and Elias Bamis (2011-2012)

• Pierfrancesco Bosco (2016)

• M. Dolores Garcia Marti (2018)

and continuing collaboration with Ray Rivers (Imperial)

Thanks

http://arxiv.org/abs/1909.07194
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