Supplementary Information

A Novel Metal- and Mineral-acid free Synthesis of Organic Ammonium Tribromides and Application of Ethylenephenanthrolium Bistribromide for Bromination of Active Methylene Group of 1, 3-Diketones and β -Ketoesters

Rupa Rani Dey, Bappi Paul and Siddhartha Sankar Dhar*

Department of Chemistry, National Institute of Technology Silchar, Assam, India-788010

E-mail: ssd iitg@hotmail.com (S. S. Dhar)

<u>Contents</u>	Page Numbers
General Information	2
Representative Procedures	2-8
Spectral Data of Products.	9-11
Selected Copies of UV-Vis, FT-IR, ¹ H and ¹³ CNMR Spectra	12-17
UV-Vis (S1), FT-IR (S2), ¹ H NMR (S3) & ¹³ C NMR (S4) spectra of EPDBT	
2b, 5b, 7b, 13b, 14b ¹ H NMR and ¹³ C NMR spectra	
(S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18)	

General Information All the reagents (chemicals and solvents) were purchased commercially and used without further purification. The synthesized tribromides and other monobrominated products were characterized with UV-Vis, FT-IR and NMR (¹H & ¹³C) spectroscopy. Elemental analysis was done by FLASH EA 1112 series. Bromine from QATBs and EPDBT was estimated by chemical method. ¹ UV-Vis spectra were taken in MeCN medium with Carry Varian-450 UV-Vis spectrophotometer. FT-IR spectra were recorded in KBr or neat with MAGNA 550 FT-IR spectrometer. ¹H and ¹³C Nuclear Magnetic Resonance spectra of pure compounds were acquired at 500 MHz with CDCl₃ as the internal standards.

Representative Procedures

1. Synthesis of EPDBT: Firstly, 1,10-(ethane-1,2-diyl)phenanthrolinediium dibromide was prepared by refluxing phenanthroline (10 mmol, 1.96 g) and 1,2-dibromoethane (10 mmol, 1 mL) in acetone (6 mL) in a RB for 0.5 h at temperature of 90°C. The solid product of dibromide precipitated was filtered, followed by washing with Et₂O (2 X 10 mL), dried in vacuum and then recrystallized from EtOH-water (2:5) mixture.

Now 1 equiv of dibromide (1 mmol, 0.354 g), thus prepared, 4 equiv of KBr (4 mmol, 0.476 g) and 4 eq. of MCPBA (4 mmol, 0.692 g) were mixed in 10 mL of water and stirred for *ca*. 5 min. The orange coloured product formed was washed with NaHCO₃ solution (10 %) for several times to remove unreacted MCPBA. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc. Yield: 0.610 g; 90 %.

2. Synthesis of tetramethyl ammonium tribromide, TMATB: 1 equiv of tetramethyl ammonium bromide (1 mmol, 0.154 g), 2 equiv of KBr (2 mmol, 0.238 g) and 2 equiv of MCPBA (2 mmol, 0.346 g) were mixed together in 10 mL of water and stirred for *ca.* 2 min. The orange coloured product formed was washed with NaHCO₃ solution (10 % solution) for several times to remove unreacted substrate. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc; mp: 117°C. Yield: 0.284 g; 93 %.

- **3. Synthesis of tetraethyl ammonium tribromide, TEATB**: 1 equiv of tetraethyl ammonium bromide (1 mmol, 0.210 g), 2 equiv of KBr (2 mmol, 0.238 g) and 2 equiv of MCPBA (2 mmol, 0.346 g) were mixed together in 10 mL of water and stirred for *ca.* 3 min. The orange coloured product formed was washed with NaHCO₃ solution (10 % solution) for several times to remove unreacted substrate. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc; mp: 87°C. Yield: 0.340 g; 92 %.
- **4. Synthesis of tetrabutyl ammonium tribromide, TBATB**: 1 equiv of tetrabutyl ammonium bromide (1 mmol, 0.322 g), 2 equiv of KBr (2 mmol, 0.238 g) and 2 equiv of MCPBA (2 mmol, 0.346 g) were mixed together in 10 mL of water and stirred for *ca*. 5 min. The orange coloured product formed was washed with NaHCO₃ solution (10 % solution) for several times to remove unreacted substrate. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc; mp: 75°C. Yield: 0.462 g; 96 %.
- **5. Synthesis of cetyltrimethyl ammonium tribromide, CTMTB**: 1 equiv of cetyltrimethyl ammonium bromide (1 mmol, 0.364 g), 2 equiv of KBr (2 mmol, 0.238 g) and 2 equiv of MCPBA (2 mmol, 0.346 g) were mixed together in 10 mL of water and stirred for *ca*. 6 min. The orange coloured product formed was washed with NaHCO₃ solution (10 % solution) for several times to remove unreacted substrate. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc; mp: 90°C. Yield: 0.439 g; 90 %.
- **6. Synthesis of Benzyltrimethylammonium tribromides, BTMATB**: 1 equiv of benzyltrimethyl ammonium bromide (1 mmol, 0.120 g), 2 equiv of KBr (2 mmol, 0.238 g) and 2 equiv of MCPBA (2 mmol, 0.346 g) were mixed together in 10 mL of water and stirred for *ca.* 6 min. The orange coloured product formed was washed with NaHCO₃ solution (10 % solution) for several times to remove unreacted substrate. After that the crude product was again washed with water to remove by-products. The compound was dried *in vacuo* and recrystallized with EtOAc; mp: 99°C. Yield: 0.346 g; 89 %.

Procedure for monobromination at active methylene group of 1, 3-diketones and β-ketoesters

- 1. Preparation of methy-2-bromol-3-oxobutanoate (1b): 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of methyl-3-oxobutanoate (~ 0.1 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 25 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.
- 2. Preparation of ethyl-2-bromo-3-oxobutanoate (2b): 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of ethyl-3-oxobutanoate (~ 0.1 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 24 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude brominated product.
- **3. Preparation of 3-bromo-2, 4-penatanedione (3b)**: 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of pentane-2,4-dione (0.1 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca.* 17 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.
- **4. Preparation of 2-methyl-2-propanyl-2-bromo-3-oxobutanoate (4b)**: 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of t-butyl-3-oxobutanoate (0.16 mL)

to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca.* 27 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.

- **5. Preparation of 2-bromo-1-phenylbutane-1, 3-dione (5b)**: 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 1-phenylbutane-1,3-dione (0.162 g) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 14 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.
- **6. Preparation of 2-bromoethyl-3-oxo-3-phenylpropanoate (6b)**: 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of ethyl-3-oxo-3-phenylpropanoate (0.17 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 29 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.
- **7. Preparation of 2-bromo-1, 3-diphenylpropane-1, 3-dione (7b)**: 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 1, 3-diphenylpropane-1,3-dione (0.224 g) were dissolved in 8 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca.* 15 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The

organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.

- **8.** Preparation of 2-bromo-2-methylcyclohexane-1, 3-dione (8b): 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of methylcyclohexane-1, 3-dione (~ 0.1 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 19 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.
- **9. Preparation of 2-bromobenzyl-3-oxobutanoate (9b)**: 0.6 mmol of EPDTB (0.818 g) was dissolved in 5 mL of EtOAc followed by the addition of 1 mmol of benzyl-3-oxobutanoate (0.2 mL) to the solution. The reaction mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca.* 26 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude product.
- 10. Preparation of 2-bromo-5, 5-dimethylcyclohexane-1, 3-dione (10b): 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 5,5-dimethylcyclohexane-1,3-dione (0.140 g) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 20 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.

- 11. Preparation of 2-acetyl-2-bromocyclohexanone (11b): 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 2-acetylcyclohexanone (0.130 mL) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 19 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.
- 12. Preparation of 1-bromo-2-oxocyclohexanecarboxylic acid ethyl ester (12b): 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 2-oxocyclohexanecarboxylic acid ethyl ester (0.160 mL) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca.* 27 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.
- 13. Preparation of 2-bromo-4, 4-dimethyl-1-phenylpentane-1, 3-dione (13b): 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 4, 4-dimethyl-1-phenylpentane-1, 3-dione (0.237 mL) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 16 min until the solution becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na₂SO₄ after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.
- **14.** Preparation of 2-bromo-(1-*p*-tolyl) butane-1, 3-dione (14b): 0.6 mmol of EPDTB (0.818 g) and 1 mmol of 1-*p*-tolylbutane-1, 3-dione (0.164 mL) were dissolved in 5 mL of EtOAc. The resultant mixture was stirred maintaining cool condition (5-10°C) in a magnetic stirrer for *ca*. 15 min until the solution

becomes colourless. The progress of the reaction was monitored by doing TLC (10 % EtOAc/hexane). After the completion of reaction, the mixture was washed with water (2 X 5 mL). The organic layer was dried over anhyd Na_2SO_4 after separating from aq layer. The excess solvent was removed by evaporation in a rotary evaporator to get the crude liquid product.

Spectral Data of OATBs

TMATB²: Orange compd; mp 117°C; Yield: 93% (0.284 g); UV-Vis: 271 nm; Anal., C₄H₁₂NBr₃ (Mol Wt 313.81): Calcd C 15.30, H 3.85, N 4.46, Br 76.37; Found C 15.32, H 3.57, N 4.54, Br 76.02.

TEATB²: Orange compd; mp 87°C; Yield: 92% (0.340 g); UV-Vis: 270 nm; Anal., C₈H₂₀NBr₃ (Mol Wt 369.918): Calcd C 25.97, H 5.44, N 3.78 Br 76.37; Found C 26.02, H 5.58, N 3.64, Br 76.17.

TBATB³: Orange compd; mp 75°C; Yield: 96% (0.462 g); UV-Vis: 267 nm; Anal., C₁₆H₃₆NBr₃ (Mol Wt 482.134): Calcd C 39.86, H 7.51, N 2.90, Br 76.37; Found C 39.72, H 7.58, N 2.54, Br 76.40.

CTMATB^{2,3}: Orange compd; mp 90°C; Yield: 90% (0.439 g); UV-Vis: 268 nm; Anal., C₁₉H₄₂NBr₃ (Mol Wt 524.215): Calcd C 43.53, H 8.08, N 2.67, Br 76.37; Found C 43.59, H 8.28, N 2.64, Br 76.22.

BTMATB⁴: Orange compd; mp 99°C; Yield: 89% (0.346 g); UV-Vis: 279 nm; Anal., C₁₀H₁₆NBr₃ (Mol Wt 390.60): Calcd C 30.80, H 4.13, N 3.59, Br 76.37; Found C 30.89, H 4.28, N 3.64, Br 76.15.

Spectral Data of Brominated Products:

Methyl 2-bromo-3-oxobutanoate⁵ **(1b)**: Oily liquid; bp 215°C; Yield: 96 %; FT-IR: 3493, 2986, 1792, 1718, 869 cm⁻¹; ¹H NMR δ: 4.19 (s, 1H), 3.07 (s, 3H), 2.18 (s, 3H); ¹³C NMR δ: 27, 51, 67, 164, 201; Anal., $C_5H_7O_3Br$ (Mol Wt 195.01): Calcd C 30.79, H 3.62; Found C 30.73, H 3.58.

Ethyl 2-bromo-3-oxobutanoate⁶ (2b): Liquid; bp 230-232°C; Yield: 89 %; FT-IR: 1745, 1718 cm⁻¹; ¹H NMR δ: 4.70 (s, 1H), 3.38 (q, J = 7.1 Hz, 2H), 2.45 (t, J = 7.1 Hz, 3H), 1.27 (s, 3H); ¹³C NMR δ: 15, 26.3, 55, 67, 163, 198; Anal., $C_6H_9O_3Br$ (Mol Wt 209.03): Calcd C 34.47, H 4.34; Found C 34.50, H 4.37.

3-Bromopentane-2,4-dione⁷ **(3b)**: Liquid; Yield: 88 %; FT-IR: 1743, 1721 cm⁻¹; ¹H NMR δ: 4.17 (s, 6H), 2.07 (s, 1H); ¹³C NMR δ: 27, 67, 195; Anal., C₅H₇O₂Br (Mol Wt 179.01): Calcd C 33.52, H 3.94; Found C 33.47, H 3.90.

t-Butyl 2-Bromo-3-oxobutanoate⁸ (4b): Liquid; bp 240°C; Yield: 92 %; FT-IR: 1732, 1718 cm⁻¹; 1 H NMR δ : 4.10 (s, 1H), 2.02 (s, 3H), 1.23 (s, 9H); 13 C NMR δ : 27, 31, 67, 84, 164, 206; Anal., C₈H₁₃O₃Br (Mol Wt 237.09): Calcd C 40.53, H 5.53; Found C 40.41, H 5.57.

2-Bromo-1-phenylbutane-1,3-dione⁹ **(5b)**: Solid; mp 30-31°C (lit. mp 31-32°C); Yield: 80 %; FT-IR (KBr): 2964, 1710, 1622, 1418, 966, 780 cm⁻¹; 1 H NMR δ : 7.99, 7.42-7.70 (m, 4H), 5.60 (s, 1H), 2.52 (s, 3H); 13 C NMR δ : 30, 70, 128, 130, 133, 140, 196, 210; Anal., $C_{10}H_{9}O_{2}Br$ (Mol Wt 241.076): Calcd C 49.82, H 3.76; Found C 49.73, H 3.70.

Ethyl 2-bromo-3-oxo-3-phenylpropanoate¹⁰ (6b): Colourless oil; Yield: 82 %; FT-IR: 2990, 1759, 1687, 1344, 1025, 678 cm⁻¹; ¹H NMR δ: 7.98 (d, J = 8.1 Hz, 2H), 7.60 (t, J = 8.1 Hz, 1H), 7.48 (t, J = 8.1 Hz, 2H), 5.56 (s, 1H), 4.28 (q, J = 8.1 Hz, 2H), 1.27 (t, J = 8.1, 3H); ¹³C NMR δ: 14, 46, 64, 129, 131, 134, 167, 190; Anal., $C_{11}H_{11}O_3Br$ (Mol Wt 271.102): Calcd C 48.73, H 4.09; Found C 48.67, H 3.99.

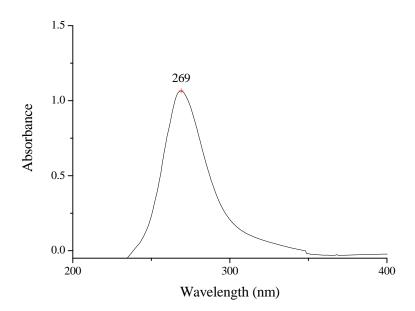
2-Bromo-1,3-diphenylpropane-1,3-dione¹¹ **(7b)**: Colourless crystals; mp 90-91°C (lit. mp 89-92°C); Yield: 85 %; FT-IR (KBr): 1690, 1598, 1447, 995, 686 cm⁻¹; ¹H NMR δ : 7.87 (d, J = 7.2 Hz, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.42 (t, J = 7.2 Hz, 4H), 6.60 (s, 1H); ¹³C NMR δ : 93, 127, 129, 136, 186; Anal., $C_{15}H_{11}O_{2}Br$ (Mol Wt 303.142): Calcd C 59.43, H 3.66; Found C 59.50, H 3.68.

2-Bromo-2-methylcyclohexane-1,3-dione¹⁰ **(8b)**: Liquid; bp 64-65°C (lit. bp 65-66°C); Yield: 86 %; ¹H NMR δ : 1.65-1.88 (m, 1H), 1.80 (s, 3H), 2.20-2.35 (m, 1H), 2.58 (dt, J = 18.1 Hz, 7.5, 2H), 3.35 (ddd, J = 18.1 Hz, 11.7 Hz, 7.5 Hz, 2H); ¹³C NMR δ : 16.5, 19.2, 36, 79, 203; Anal., $C_7H_9O_2Br$ (Mol Wt 189.046): Calcd C 44.47, H 4.80; Found C 44.32, H 4.71.

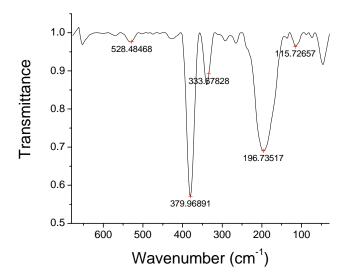
Benzyl 2-bromo-3-oxobutanoate⁸ **(9b)**: Oily liquid; Yield: 92 %; ¹H NMR δ: 7.29-7.42 (m, 5H), 5.30 (s, 1H), 4.81 (s, 3H), 2.40 (s, 3H); ¹³C NMR δ: 28, 50, 69, 127.9, 128.3, 128.5, 140.1, 180, 196; Anal., C₁₁H₁₁O₃Br (Mol Wt 271.102): Calcd C 48.73, H 4.09; Found C 48.80, H 4.01.

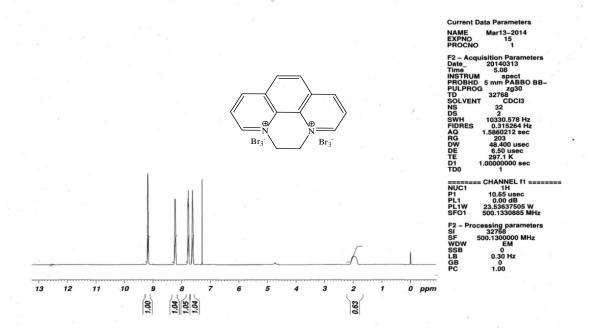
2-Bromodimedone⁸ **(10b)**: Solid; mp 157-159°C (lit. mp 156°C); Yield: 80 %; FT-IR (KBr): 1678, 1440, 1327 cm⁻¹; ¹H NMR δ : 6.40 (s, 1H), 2.52 (s, 2H), 2.43 (s, 2H), 1.12 (s, 6H); ¹³C NMR δ : 24.5, 40.8, 42.5, 51.1, 98.7, 191.1, 193; Anal., C₈H₁₁O₂Br (Mol Wt 219.072): Calcd C 43.83, H 5.06; Found C 43.90, H 5.19.

2-Acetyl-2-bromocyclohexanone¹⁰ **(11b)**: Oily product; Yield: 81 %; FT-IR: 2940, 2880, 1712, 1212, 1120, 1073, 913 cm⁻¹. ¹H NMR δ : 3.10-3.20 (m, 1H), 2.50-2.68 (m, 1H), 2.30 (s, 3H), 2.29-2.45 (m, 1H), 2.16-2.29 (m, 1H), 1.91-2.07 (m, 2H), 1.70-1.85 (m, 2H); ¹³C NMR δ : 20, 23.8, 24.6, 35.3, 36.7, 207.1, 208.2; Anal., $C_8H_{11}O_2Br$ (Mol Wt 219.072): Calcd C 43.86, H 5.06; Found C 43.09, H 4.98.

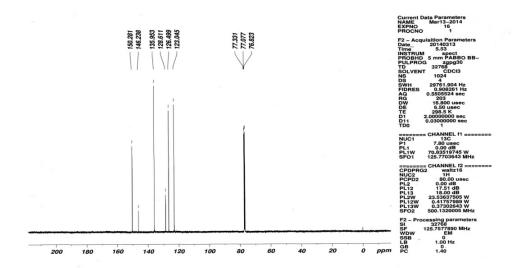

1-Bromo-2-oxo-cyclohexanecarboxylic Acid Ethyl Ester¹² **(12b)**: Oily product; Yield: 85 %; FT-IR: 2981, 1755, 1725, 1625, 1252, 1022, 858, 784, 735 cm⁻¹; ¹H NMR δ : 1.30 (t, J = 7.0 Hz, 3H), 1.75-1.82 (m, 2H), 1.87-1.92 (m, 2H), 2.17-2.21 (m, 1H), 2.37-2.50 (m, 2H), 2.72-2.82 (m, 1H), 4.28 (q, J = 7.0, 2H); Anal., $C_9H_{13}O_3Br$ (Mol Wt 249.098): Calcd C 43.40, H 5.26; Found C 43.56, H 5.38.

2-Bromo-1-*t*-butyl-3-phenylpropane-1,3-dione (13b): Oily product; Yield: 81%; FT-IR (Neat): 1736, 1742 cm⁻¹; ¹H NMR δ : 7.91-7.87 (m, 2H), 7.52 (tt, J = 7.5 Hz, 1.5 Hz, 1H), 7.47-7.44 (m, 2H), 6.31 (s, 1H), 1.26 (s, 9H); ¹³C NMR δ : 27.4, 40, 92.1, 127, 129, 132.1, 136, 185, 202.1; Anal., C₁₃H₁₅O₂Br (Mol Wt 283.15): Calcd C 55.14, H 5.34; Found C 55.02, H 5.19.

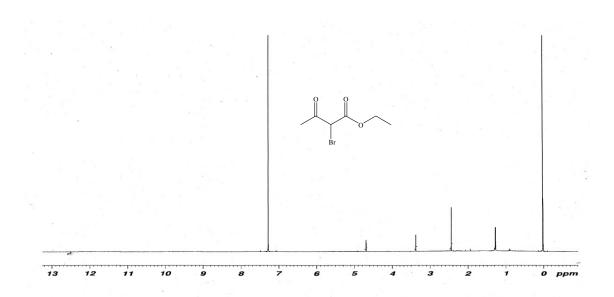

2-Bromo-1-methyl-3-(4-methoxy)phenylpropane-1,3-dione (14b): Yellow oil; Yield: 80 %; ¹H NMR δ : 7.80 (d, J = 8.5, 2H), 7.25 (d, J = 8.5, 2H), 6.18 (s, 1H), 2.42 (s, 3H), 2.20 (s, 3H); ¹³C NMR δ : 22, 55.4, 95.8, 113.9, 129.1, 131.1, 163.1, 184.1, 191.6; Anal., $C_{11}H_{11}O_2Br$ (Mol Wt 255.102): Calcd C 51.79, H 4.35; Found C 51.65, H 4.20.

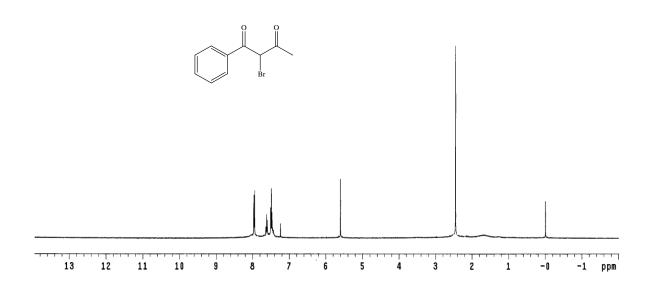

List of Spectra

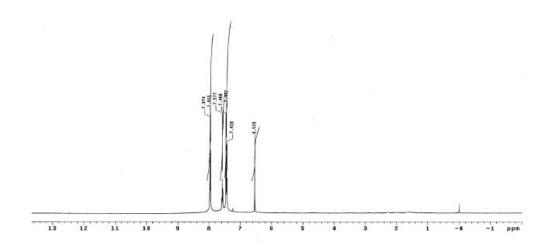
S1

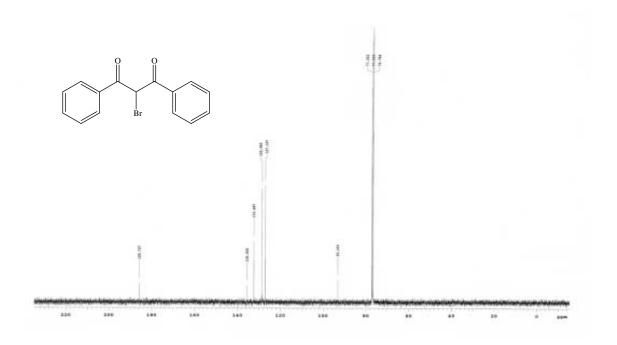


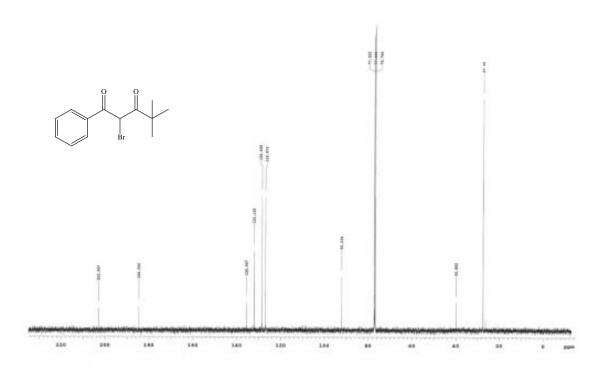
S2 (in far IR region)

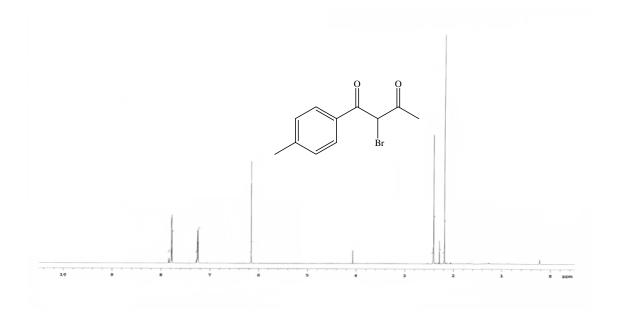


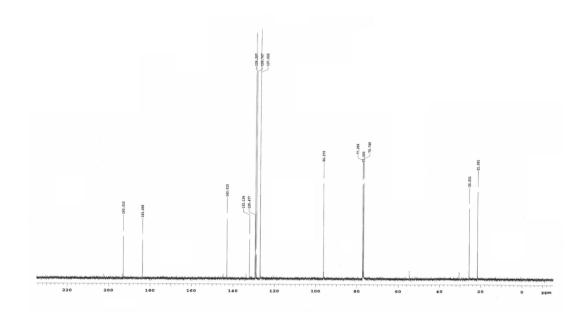

S4


¹H NMR Spectrum of Compd 2b (**S5**)


¹H NMR Spectrum of Compd 5b (**S6**)


¹H spectrum of 7b (S7)


¹³C NMR spectrum of 7b (S8)


¹³C NMR Spectrum of 13b (**S9**)

¹H Spectrum of 14b (**S10**)

¹³C NMR spectrum of 14b (**S11**)

Reference

- 1. Skoog, D. A. et al. Fundamentals of Analytical Chemistry. Thomson Books Co., 8th Edition, 565.
- 2. Chaudhuri, M. K. et al. U. S. Patent, No. US 7005548 B2, 2006.
- 3. Bora, U. et al. Pure Appl. Chem. 2001, 73, 93.
- 4. Dey, M.; Dhar, S. S. Green Chem. Lett. Rev. 2012, 5, 639.
- 5. Das, B. et al. J. Mol. Catal. A: Chem. **2006**, 253, 107.
- 6. Das, B.; et al. Tetrahedron Lett. 2005, 46, 3041.
- 7. Hosseinzadeh, R.; et al. Monatsh. Chem. 2009, 140, 57.
- 8. Kavala, V.; et al. J. Org. Chem. 2005, 70, 4267.
- 9. Choi, H. Y.; et al. Org. Lett. 2003, 5, 411.
- 10. Prayst, J.; et al. Green Chem. 2006, 8, 1001.
- 11. Podgorsek, A.; et al. *Green Chem.* **2007**, *9*, 1212.
- 12. Meshram, H. M.; et al. *Tetrahedron Lett.* **2005**, *46*, 623.