Supporting Information

for

Nitrobenzoxadiazole Ether-Based Near-Infrared Fluorescent Probe with Unexpected High Selectivity for H₂S Imaging in Living Cells and Mice

Shengyi Gong, Enbo Zhou, Jiaxin Hong, and Guoqiang Feng*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Chemical Biology Center, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China. *Corresponding author. E-mail: <u>gf256@mail.ccnu.edu.cn</u> (G. Feng).

Table of contents:

1.	Table S1. Comparison of NIR fluorescent probes for H ₂ S	····Page S2-S3
2.	Table S2. Comparison of NBD ether-based fluorescent probes	·····Page S3-S5
3.	Structure characterizations for probe DC-NBD	····Page S5-S6
4.	Additional data and spectra	···Page S6-S11

	$\lambda_{abs}/\lambda_{em}$	Stokes shift	Response	Detection	Application	Application
Probe	nm		time	conditions	in living	in vivo
					cells	
	578/744	166 nm	3 min	Tris-HCl (10	Yes	Yes
				mM, pH 7.4,		
=8-1				20% THF, v/v)		
This work						
NO ₂ No	730/830	100 nm	60 min	aqueous	Yes	Yes
Q 6 B				solution (pH		
				7.4, 10 mM)		
50 ₃ - 5 <u>0</u> 3Na						
Talanta 2018, 184,						
109–114.						
	560/680	130 nm	30 min	PBS buffer (pH	Yes	No
o s ^s				7.4) with 50%		
				DMSO		
Dyes Pigm. 2018,						
153, 206–212.						
	518/655	137 nm	8 min	PBS buffer (10	Yes	No
				mM, pH 7.4,		
CHO NO2				with 50%		
Sens. Actuators B				DMSO)		
2018, 255, 2347–						
2355.						
	680/720	40 nm	30 min	PBS buffer (pH	Yes	Yes
				7.4) with 30%		
				CH ₃ CN		
Biosens.						
Bioelectron. 2017,						
89, 919–926.						
NO ₂	740/796	56 nm	30 min	PBS buffer (pH	Yes	Yes
				7.4)		
Chem. Sci. 2017, 8,						
2//0-2/81.	520/670	150	<i>(</i> 0 :		V	NT
	520/6/0	150 nm	60 min	PBS butter (pH	Yes	No
				7.4) with $50%$		
Cham Cammur				DIVISO		
2012 40 2000						
2013, 49, 3890-						
3892.						

1. Table S1. Comparison of NIR fluorescent probes for H₂S.

QH H C H	765/780 NIR	15 nm	35 min	HEPES buffer (pH 7.4, 0.5%	Yes	No
Cham Sai 2012 4	fluoresc			CH ₃ CN).		
2551-2556.	ence on					
When the second	755/809	54 nm	60 min	HEPES buffer, (pH 7.4).	Yes	No
Chem. Commun.						
2012, 48, 11757–						
11759.						
O ₂ N NO ₂	650/70	58 nm	8 min	PBS buffer (pH	Yes	No
	8			7.0) with 3 mM		
				CTAB and 10%		
C N				ethanol		
Chem. Commun.						
2012, 48, 10529–						
10531.						

2. Table S2. Comparison of NBD-ether based fluorescent probes.

Probe	Target	Detection	reference
	detected	condition	
	H_2S	Tris-HCl (10 mM, pH	This work
		7.4, 20% THF, v/v) at	
		37 °C	
	Cys, Hcy, GSH	PBS (10 mM, pH pH	Anal. Chim. Acta 2019,
N-0		7.4 50% DMSO, v/v) at	1074, 123–130.
		25 °C	
N Q O	Cys, H ₂ S, GSH	PBS (10 mM, pH 7.4,	Talanta 2019, 196, 145-
		40% CH ₃ CN, v/v).	152.
N-O NO ₂			
, CN	Cys, Hcy, GSH	PBS	Dyes Pigm. 2019, 168,
		(10 mM, pH 7.4, 10%	189–196.
N-0		DMF) at 37 °C	
	Cys, Hcy, GSH	PBS (10 mM, pH 7.4,	Dyes Pigm. 2019, 165,
	5, 5,	20% CH ₃ CN, v/v)	164–171.
···•			

	Cys, Hcy, GSH	PBS (10 mM, pH 7.4) at 25 °C	Sens. Actuators B 2018, 273, 1170–1178.
$\left(\begin{array}{c} N^{O_2}\\ 0\\ N^{O_2}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	Cys, Hcy, GSH,	PBS (10 mM, pH 7.4, 30% CH ₃ CN)	ACS Sens. 2018, 3, 1863–1869.
O ₂ N O ₂ N HeO MeO	Cys, Hcy, GSH, H2S	PBS (10 mM, pH 7.4, 50% DMSO, v/v).	Sens. Actuators B 2018, 257, 1076–1082.
	Cys, Hey, GSH	PBS (20 mM, pH 7.4, 40% DMF, v/v).	J. Mater. Chem. B 2018, 6, 8221—8227.
	Cys, Hcy, GSH, H2S	PBS (25 mM, pH 7.4, 20% DMSO, v/v)	Chem. Commun. 2017, 53, 13168–13171.
HOOC NON CHOC CHOC NON CHOC CHOC NON CHOC CHOC NON CHOC CHOC CHOC CHOC CHOC CHOC CHOC C	GSH, H2S	PBS (25 mM, pH 7.4, 1% EtOH)	Anal. Chim. Acta 2017, 981, 86–93.
	Cys, Hcy, GSH, H2S	PBS (25 mM, pH 7.4, 20% CH ₃ CN, v/v).	Chem. Sci. 2017, 8, 6257–6265.
	Cys, Hcy, GSH,	HEPES (10 mM, pH 7.4, 60% EtOH, v/v).	Dyes Pigm. 2017, 140, 212–221.
NG_CN OCCO NO2 NO2	Cys, Hcy, GSH	PBS (50% DMSO v/v).	Sens. Actuators B 2017, 245, 297–304.
NO2 N+ O N-O	Cys, Hcy, GSH	PBS (10mM, pH 7.4, 5% DMSO) at 37 °C	Biosens. Bioelectron. 2016, 81, 341–348.
$ \begin{array}{c} & & \\ & & $	Cys, Hcy, GSH, H ₂ S	PBS (10 mM, pH 7.4, 20% DMSO) at 25 °C	Sens. Actuators B 2016, 235, 691–697.

o V	Cys, Hcy, GSH	PBS (10 mM, pH 7.4,	Anal. Chem. 2016, 88,
		30% CH ₃ CN, v/v)	3638-3646.
NO ₂	Cys, Hcy, GSH	PBS (10 mM, pH 7.4) at	Chem. Commun. 2015,
N O		25 °C.	51, 9388–9390.
	Cys, Hcy,	PIPES (50 mM, 100 mM	Anal. Chem. 2014, 86,
S ENO	H_2S	KCl, pH 7.4).	7135-7140.

3. Structure characterizations for probe DC-NBD.

EI-MS spectrum of DC-NBD

HR-MS spectrum of DC-NBD

3. Additional data and spectra.

Scheme S1 The proposed sensing mechanism of DC-NBD for the detection of H₂S.

Figure S1. The LC-MS analysis of the mixture of probe DC-NBD (5 μ M) and NaHS (50 μ M) in Tris-HCl (10 mM, pH 7.4, with 20% THF).

Figure S2. High resolution mass spectrometry (HRMS) analysis of the mixture of probe **DC-NBD** (5 μ M) and NaHS (50 μ M) in Tris-HCl (10 mM, pH 7.4, with 20% THF). The peak at m/z = 417.12990 can be assigned to the produced **DC-OH** (Calcd. for [M – H]⁻: 417.12447). The peak at m/z = 195.98224 can be assigned to the produced NBD-SH (Calcd. for [M – H]⁻: 195.98224).

Figure S3. Fluorescence response of probe DC-NBD (2 μ M) in the absence and presence of NaHS (100 μ M) under different pH values. All data were collected at 744 nm in Tris-HCl (10 mM, with 20% THF, v/v) at 37 °C. Each data was obtained 3 min after mixing. $\lambda_{ex} = 613$ nm, slit width: $d_{ex} = d_{em} = 10$ nm.

Figure S4. Fluorescence kinetics of probe DC-NBD (2 μ M) upon addition of NaHS and biothiols. All data were collected at 744 nm in Tris-HCl buffer (10 mM, with 20% THF, v/v) at 37 °C. $\lambda_{ex} = 613$ nm, slit width: $d_{ex} = d_{em} = 10$ nm.

Figure S5. Fluorescent intensity responses of probe DC-NBD (2 μ M) at 744 nm to H₂S (100 μ M) in the presence of various analytes (100 μ M unless otherwise stated) including:(1) K⁺, (2) Na⁺, (3) F⁻, (4) Cl⁻, (5) Br⁻, (6) I⁻, (7) N₃⁻, (8) NO₂⁻, (9) HSO₃⁻, (10) SO₃²⁻, (11) HSO₄⁻, (12) SCN⁻, (13) S₂O₇²⁻, (14) S₂O₃²⁻, (15) OCN⁻, (16) AcO⁻, (17) HCO₃⁻, (18) C₂O₄²⁻, (19) NO₃⁻, (20) ClO⁻, (21) Gln, (22) Ile, (23) Pyr, (24) Thr, (25) Trp, (26) Ala, (27) Asp, (28) Ser, (29) Phe, (30) Lys, (31) His, (32) Val, (33) Met, (34) Glu, (35) Leu, (36) NAC, (37) Tyr, (38) Gly, (39) Arg, (40) Hcy, (41) Cys, (42) 1 mM GSH, (43) H₂S. Black bars represent the addition of a single analyte. Red bars represent the subsequent addition of NaHS (100 μ M) to the mixture.

Figure S6. The percentage of viable MCF-7 and HeLa cells after treatment with different concentrations of DC-NBD after 12 hours. The cell viability was obtained via MTT assay.

Figure S7. Confocal imaging of exogenous H₂S in HeLa cells with probe DC-NBD (5 μ M). Cells were incubated respectively with 0, 10, and 20 μ M of NaHS for 30 min, and then incubated with DC-NBD for 15 min. For fluorescent images, $\lambda_{ex} = 633$ nm, $\lambda_{em} = 700-780$ nm.

Figure S8. Probe DC-NBD for imaging of H₂S in living mice with injection of less amount of DMSO. (A) Mouse blank. (B) The mouse was given an intraperitoneal injection of only DC-NBD (100 μ L, 100 μ M in PBS buffer with 15% DMSO, v/v) and imaged after 15 min. (C) The mouse was given an intraperitoneal injection of H₂S (100 μ L, 500 μ M in PBS buffer) and followed by injection with DC-NBD (100 μ L, 100 μ M in PBS buffer with 15% DMSO, v/v) and then imaged after 3 min. (D) The mouse was given an intraperitoneal injection of H₂S (100 μ L, 1 mM in PBS buffer) and followed by injection with DC-NBD (100 μ L, 100 μ M in PBS buffer with 15% DMSO, v/v) and then imaged after 3 min. (E) Relative fluorescence intensity the mice A-D. Excitation was set at 610 nm and emission was collected around 750 nm.

Figure S9. Imaging of H₂S in living mouse with probe DC-NBD over time. The mouse was given an intraperitoneal injection of NaHS (100 μ L, 1 mM in PBS buffer) followed by injection with DC-NBD (100 μ L, 100 μ M in DMSO). The mouse was imaged at (a) 0 min, (b) 3 min, (c) 6 min, respectively. (d) Relative fluorescence intensity from the abdominal area of the mice at different times. Excitation was set at 610 nm and emission was collected around 750 nm.