The Sirepo framework for X-ray optics, linac design, machine learning and controls

Presenter: David Bruhwiler bruhwiler@radiasoft.net RadiaSoft LLC 3380 Mitchell Ln Boulder, CO 80301

Collaborators -

Sirepo team: R. Nagler, P. Moeller, M. Keilman & E. Carlin (RadiaSoft)

X-ray optics: O. Chubar & M. Rakitin (NSLS-II), B. Nash & N. Goldring (RS)

USPAS: K. Ruisard et al. (ORNL)

ML: J. Edelen, N. Cook, C. Hall, S. Webb (RadiaSoft) K. Brown, P. Dyer (BNL), A. Edelen (SLAC)

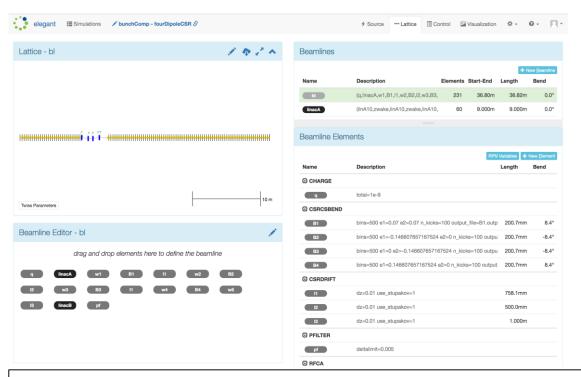
Seminar – SLAC National Accelerator Laboratory

19 September 2019 – Menlo Park, CA

This work is supported by the SBIR program of the US Department of Energy (DOE), Office of Science under Award Nos. DE-SC0011237 and DE-SC0019682 (BES);
DE-SC0011340, DE-SC0013855, DE-SC0015897 and DE-SC0018719 (HEP);
DE-SC0015212 and DE-SC0017181 (NP); DE-SC0017057 and DE-SC0017162 (ASCR).

Outline

- Brief overview of Sirepo
- Sirepo/SRW undulator SR brightness
- Sirepo/elegant use for education
- Sirepo initiatives for controls & machine learning
- Sirepo developments for submitting to NERSC



2

https://sirepo.com is a free Scientific Gateway

- Supported Codes
 - SRW
 - elegant
 - Warp VND
 - Warp PBA
 - Synergia
 - Zgoubi
 - JSPEC (e- cooling, IBS)

D.L. Bruhwiler *et al.*, "Knowledge Exchange Within the Particle Accelerator Community via Cloud Computing," in *IPAC* (2019).

- The power of Sirepo for users
 - Easy to use: nothing to install, build, or maintain
 - Instantaneous collaboration: share your work with a single link
 - Archive & save: resume work weeks or months later with zero start-up time
 - You're not locked in: export files for command-line execution

🙈 radiasoft

Sirepo is an open framework for cloud computing

https://github.com/radiasoft/sirepo

https://github.com/radiasoft/sirepo				110% *** 🛛 1					
Pull requests Issues Marketpla	ice Explore								
📮 radiasoft / sirepo			O Unwatch ▼ 20	★ Star 35 % Fork 20					
Code Issues 406 In P Sirepo is a framework for scienti Manage topics	Pull requests 3 III Project			Edit					
7 4,105 commits	پ 9 30 branches	So releases	41 contributors	শ্রু Apache-2.0					
Branch: master - New pull request	t		Create new file Upload files	Find File Clone or download -					
moellep fix #1885 redirect from log	gin URL is already logged in as a	non-guest	Late	est commit d0a2538 28 minutes ago					
container-conf	New landing pages: merge		4 months ago						
docs	docs/.gitignore and impro	ved README		3 years ago					
in etc	Fix #1820 NavController_test commented out			last month					
in misc	expunge.sh			2 years ago					
🖿 sirepo	fix #1885 redirect from log	jin URL is already logged in a	s a non-guest	28 minutes ago					
A radias	oft	19 Sept	ember 2019 – S	SLAC # 4					

The Sirepo vision – computational science in the cloud

radiasoft

- The browser is the Scientific UI
 - via AngularJS, Bootstrap and D3.js
 - 3D graphics via VTK.js
 - share your full simulation via web link
 - ...and many other ways
 - work from tablet, laptop or desktop
 - fast, interactive scientific plotting
- Server is built on Flask & other technologies

M.S. Rakitin, P. Moeller, R. Nagler, B. Nash, D.L. Bruhwiler, D. Smalyuk, M. Zhernenkov and O. Chubar, "Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations," *Journal of Synchrotron Radiation* **25**, 1877 (2018).

Application containers via

- executable, portable; all codes & dependencies
- a single Linux environment for RadiaSoft to maintain

Online calculations of X-ray photon brightness

- Overview of SRW (Synchrotron Radiation Workshop)
- Brightness formulas

radiasoft

- Calculating brightness with SRW
- Example calculation for simulated HBB parameters – Trojan Horse; Manahan et al., Nature Comm. (2017)
- Exercise for the audience

 repeat these simulations yourself –

https://sirepo.com/srw#/source/kH9BPjRb

Synchrotron Radiation Workshop (SRW) -

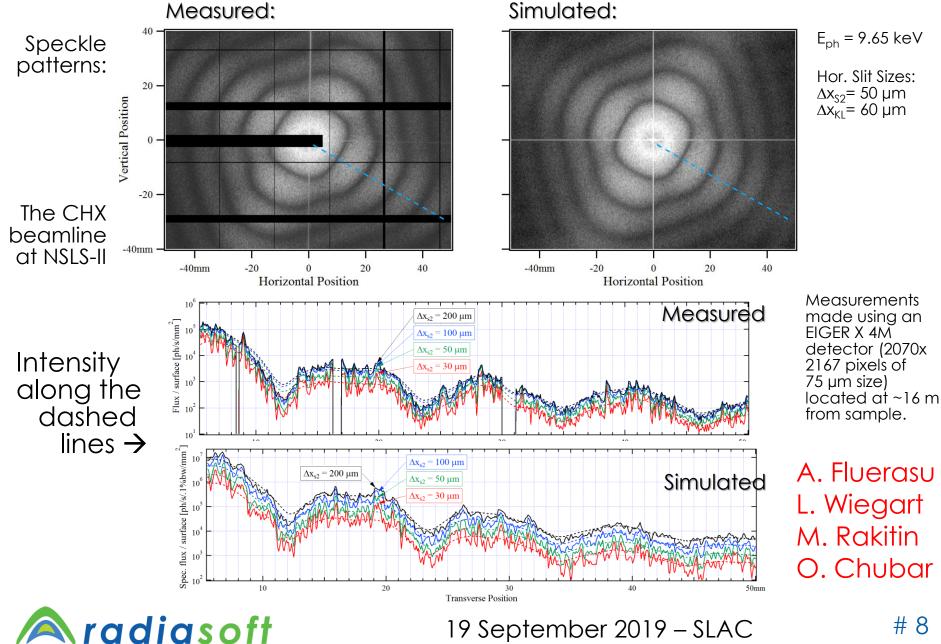
a physical optics code for SR emission and propagation

First work on Wavefront Propagation applied to SR beamlines (PHASE code): J. Bahrdt, Appl. Opt. 36 (19) 4367 (1997)

 First official version of SRW was developed at ESRF in 1997-98 (written in C++, interfaced to IGOR Pro); compiled versions are distributed from: http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/SRW

Many thanks to Pascal Elleaume.

• SRW was released as Open Source in 2012, thanks to several institutions:

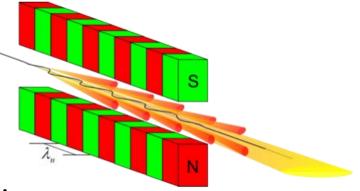


The main Open Source repository, containing all C/C++ sources, C API, all interfaces and project development files, is on GitHub: <u>https://github.com/ochubar/SRW</u>

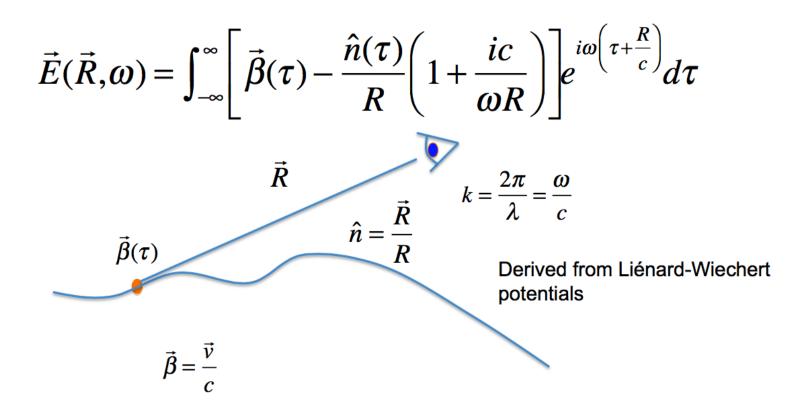
- SRW for Python (2.7.x and 3.x, 32- and 64-bit) was released in 2012
- Sirepo/SRW brings physical optics to the cloud, via support from the US SBIR program of DOE; available from a free Scientific Gateway, hosted by RadiaSoft Sirepo.com

🙈 radiasoft

SRW validation: coherent scattering exp'ts at NSLS-II



#8


Brightness formulas

Undulator radiation

Radiation from a single electron trajectory:

Aradiasoft

From radiation wavefronts to "brightness"

Brightness is defined as the phase space density of photon flux:

$$B = W_{me}(0,0) \approx \frac{\Phi}{4\epsilon_x \epsilon_y}$$

$$W_{me}(\vec{x},\vec{p}) = \int W_{se}(\vec{x}-\vec{x}_0,\vec{p}-\vec{p}_0)f_e(\vec{x}_0,\vec{p}_0)d\vec{x}_0d\vec{p}_0 \quad \longleftarrow \text{Multi-electron Wigner func}$$

radiasoft 19 Septer

Analytic formulae for undulator SR flux

K.-J. Kim, "Brightness, coherence and propagation characteristics of synchrotron radiation". NIM A **246**, p. 71 (1986).

$$\Phi = \pi C_0 N I_b Q_n(K) \quad \text{photons / s / 0.1\% \delta E/E}_0$$

$$C_0 = \frac{\alpha d\omega/\omega}{q_e} = 4.5546497 \times 10^{13} \text{Coulombs}^{-1} \qquad F_n(K) = \frac{4nq}{1 + \frac{K^2}{2}} J J^2$$

$$Q_n(K) = (1 + \frac{K^2}{2}) \frac{F_n(K)}{n} \qquad JJ = \left[J_{\frac{1}{2}(n-1)} \left(\frac{nK^2}{4 + 2K^2} \right) - J_{\frac{1}{2}(n+1)} \left(\frac{nK^2}{4 + 2K^2} \right) \right]$$

- We have generalized Kim's result in 3 ways:
 - allow elliptical undulators

radiasoft

- include effects of e- beam dp/p (also done by Tanaka et al.)
- include off-resonance effects

Calculating brightness with SRW

Generalization of the total flux calculation (1)

This is previous, unpublished work by O. Chubar (BNL), which has been implemented in the "Igor Pro" interface to SRW, <u>https://github.com/ochubar/SRW</u>

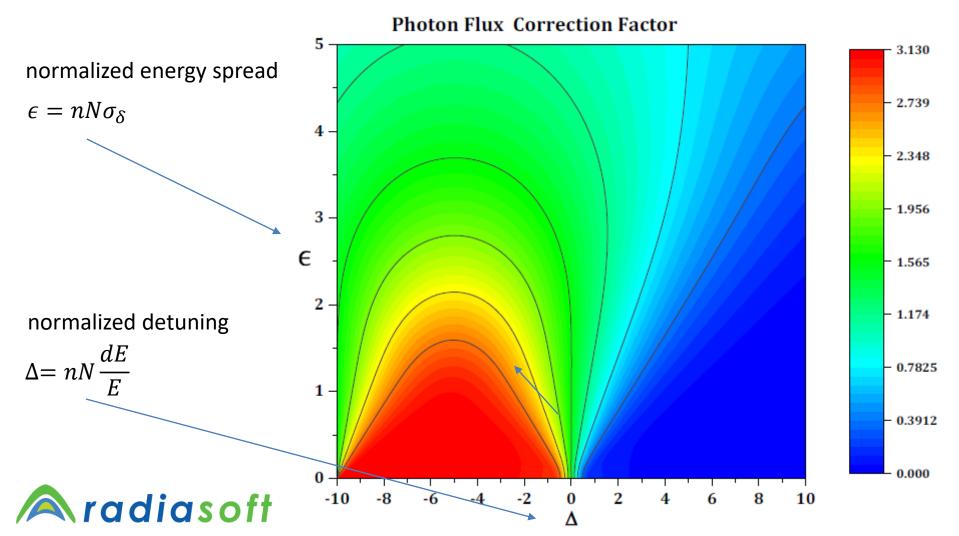
Recently ported to the SRW Python API, and to the Sirepo/SRW web app.

$$\Phi = C_0 N_u I_b \frac{nk_1^2}{1 + \frac{K^2}{2}} \overline{JJ}^2(qq) F_f(\Delta, \epsilon) G(\Delta, k_1, k_2)$$
allows for elliptical undulators
$$\overline{JJ}^2(n, k_1^2, k_2^2) = \left[J_{\frac{n-1}{2}}(qq) - J_{\frac{n+1}{2}}(qq)\right]^2 + \frac{k_2^2}{k_1^2} \left[J_{\frac{n-1}{2}}(qq) + J_{\frac{n+1}{2}}(qq)\right]^2$$

$$k_1^2 = k_y^2 \cos^2(\phi_x - \phi_0) + k_x^2 \cos^2(\phi_y - \phi_0)$$

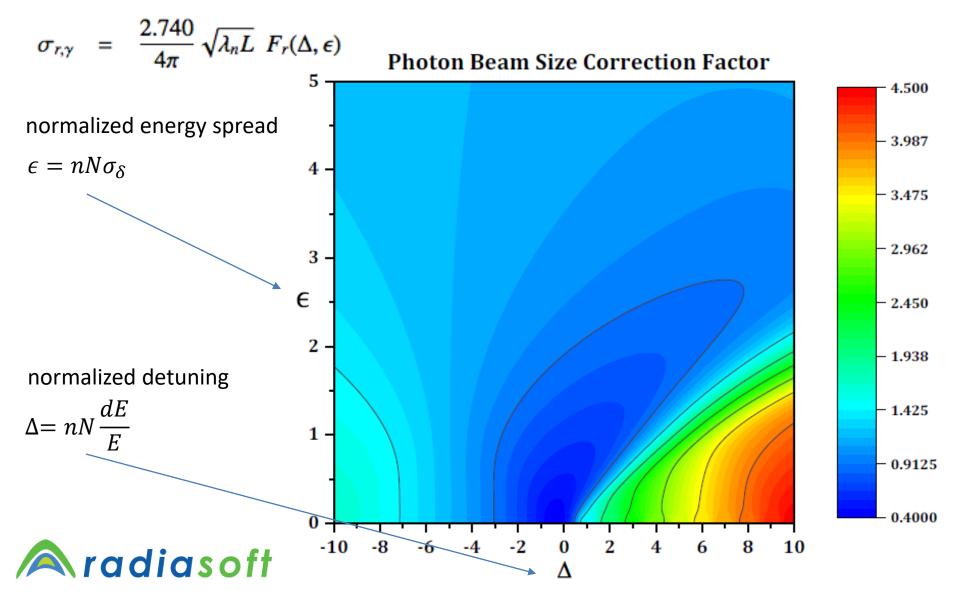
$$k_2^2 = k_y^2 \sin^2(\phi_x - \phi_0) + k_x^2 \sin^2(\phi_y - \phi_0)$$

$$qq = \frac{n}{4} \frac{k_1^2 - k_2^2}{1 + \frac{1}{2}(k_1^2 + k_2^2)}$$

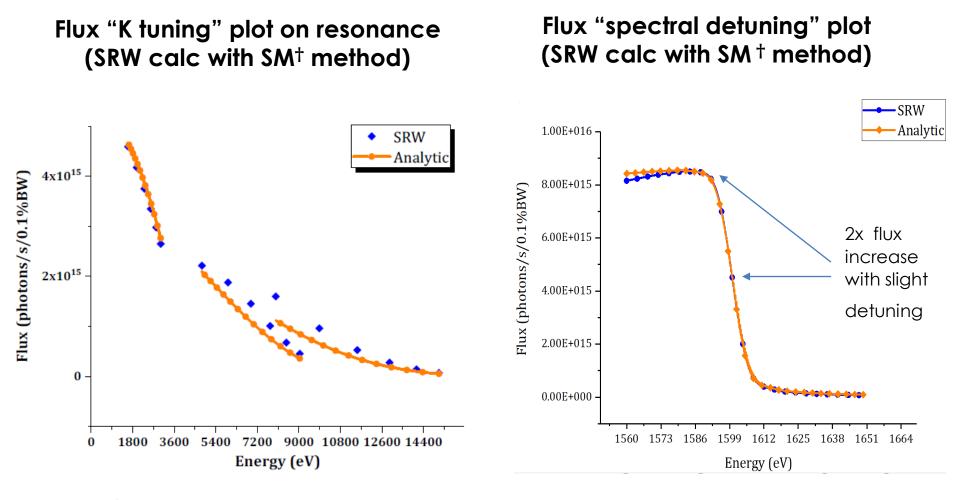

 $F_f(\Delta, \epsilon) \rightarrow$ tabulated "universal function" $G(\Delta, k_1, k_2) \rightarrow$ analytic function

radiasoft

B. Nash *et al*, "Detailed X-ray Brightness Calculations in the Sirepo GUI for SRW," AIP Conf. Proc. **2054**, 060080 (2019), <u>https://aip.scitation.org/doi/10.1063/1.5084711</u>


Generalization of the total flux calculation (2)

- A pre-calculated "universal function" is used to:
 - include effects of e- beam dE/E
 - include detuning from resonance



Generalization of the photon beam source size

This is previous, unpublished work by O. Chubar (BNL), which has been implemented in the "Igor Pro" interface to SRW, <u>https://github.com/ochubar/SRW</u>

SRW benchmarking results

[†]SM method includes e- beam emittance and energy spread using a finite collection aperture. These calculations executed with an 8 mm x 8 mm aperture.

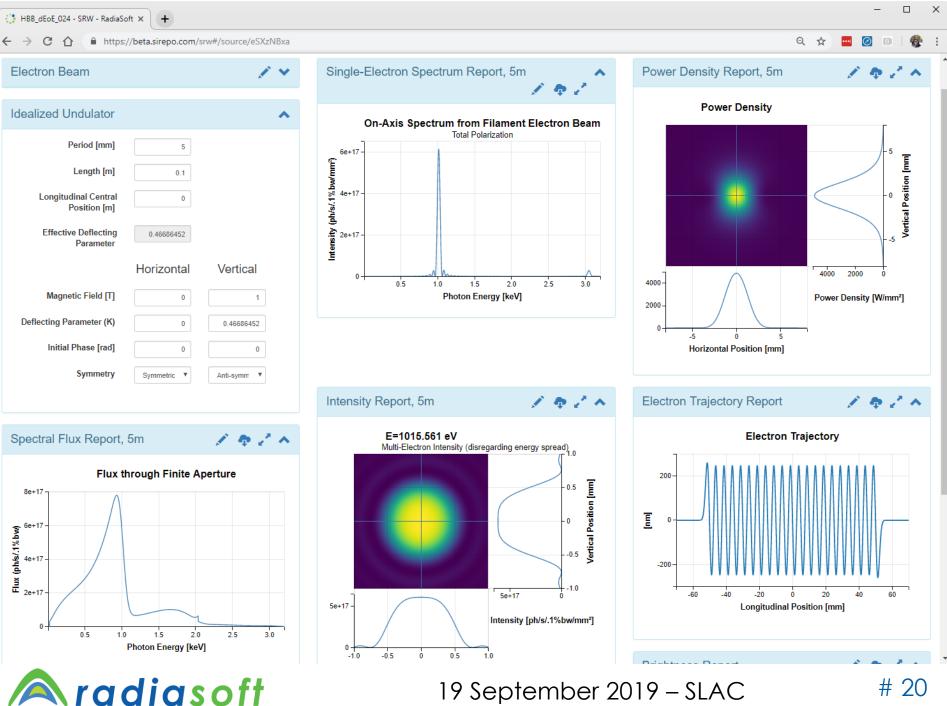
🙈 radiasoft

Consideration of Trojan Horse e- beam param's

E = 770 MeV τ = 2.5 fs Q = 5 pC $x_{rms} \sim 5 \mu m$ dE/E $\sim 5\%$ (uncorrected) dE/E $\sim 0.3\%$ (via Manahan *et al.*) Article | OPEN | Published: 05 June 2017

Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

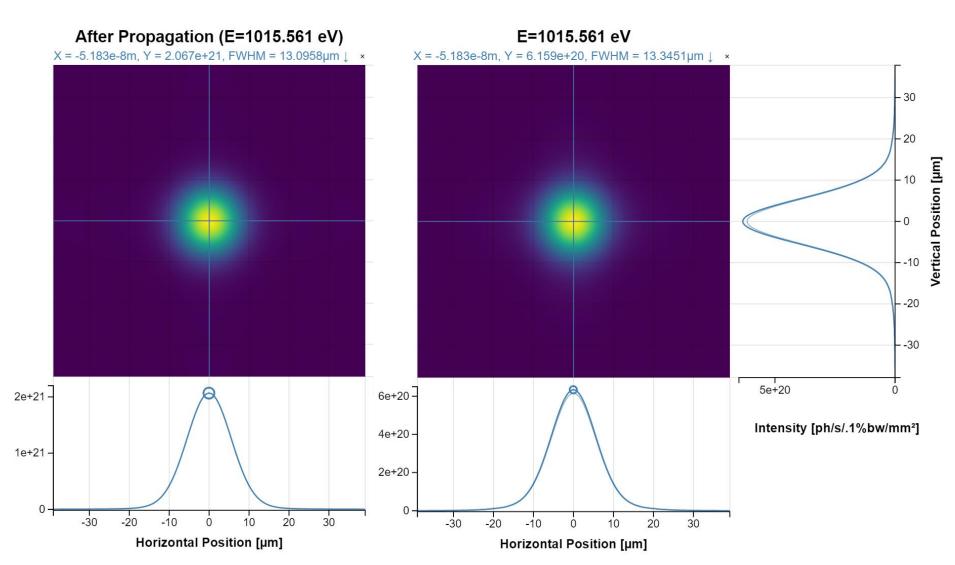
G. G. Manahan ⊠, A. F. Habib, P. Scherkl, P. Delinikolas, A. Beaton, A. Knetsch, O. Karger, G. Wittig, T. Heinemann, Z. M. Sheng, J. R. Cary, D. L. Bruhwiler, J. B. Rosenzweig & B. Hidding ⊠


Nature Communications 8, Article number: 15705 (2017) 🔰 Download Citation 🛓

1 KeV can be achieved: requires a micro-undulator, $\lambda_u = 5$ mm requires strong quadrupole focusing L_u is kept short here: 10 cm = 20 periods

Aradiasoft

Browser-based simulations of X-ray brightness



Energy spread reduces flux

• e-beam energy spread of 0.3% to 4.8%

- photon flux decreases by 3x

X-ray optics & brightness – conclusions

Classic formula for brightness by K.-J. Kim is a starting point.

This formula needs to be generalized to include energy spread, detuning effects, and to allow for elliptical undulators.

Partially coherent Sirepo/SRW wavefront simulations agree with the generalized brightness formulae

Sirepo provides a convenient GUI for SRW calculations.

Analytic formulae in Sirepo provide rapid feedback for source parameters allowing a starting point for more detailed coherent and partially coherent calculations for realistic x-ray beamlines.

Repeat our calculations yourself:

radiasoft

https://sirepo.com/srw#/source/kH9BPjRb

US Particle Accelerator School – <u>http://uspas.fnal.gov</u>

Home

The 2019 USPAS Achievement

 The 2019 International Accelerator School on "Ion Colliders" will be held

Nov 7. Information is available

Find us on **f**

here

in Dubna, Russia from October 28 to

Prize winners have been announced. Read more here.

- intensive 1 & 2 week courses
 - Sirepo has been used 4 times
 - used elegant
- other examples of Sirepo use:
 - Korea particle accelerator school
 - Used Synergia
 - La Trobe University
 - X-ray optics
 - used SRW

🔍 radiasoft

Accelerator Tutorials

LHC Superconducting Magnets

Watch this first video, in a sequence of three, explain the role of superconducting magnets in the Large Hadron Collider and also explain how they work and are constructed. Used with permission: CERN

23

See more Accelerator Tutorials.

@ 1981-2019 U.S. Particle Accelerator School, a national training program managed by Fermilab | About | Contact | Site Map | Privacy

Simulation of Beam and Plasma Systems

https://people.nscl.msu.edu/~lund/uspas/sbp_2018

- S. Lund, J.-L. Vay, R. Lehe, D. Winklehner
 - expanded 1 week course to 2 weeks
 - invited me to contribute
- Sirepo/elegant used to discuss CSR
 - principles of bunch compression
 - CSR models and the physical effects
- RadiaSoft now routinely supports schools and workshops with a 400 core cluster
 - JupyterHub and/or Sirepo
 - rapid reconfiguration as needed to support specified number of students
 - other nodes reserved for internal computing
 - nodes are routinely made available to customers or collaborators

US Particle Accelerator School Winter Session, 2018 15-26 January Sponsored by Old Dominion University Hampton, VA 2 Week Course (3 units)

Lecturers:

Prof. Steven M. Lund Michigan State University Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) 510-459-4045 (mobile) Lund@frib.msu.edu

Dr. David Bruhwiler Radiasoft, LLC Boulder, CO 720-502-3928 (Office) Bruhwiler@Radiasoft.net

Dr. Rémi Lehe Lawrence Berkeley National Laboratory (LBNL) 510-486-6785 (LBNL Office) RLehe@lbl.gov

Dr. Jean-Luc Vay Lawrence Berkeley National Laboratory (LBNL) 510-486-4934 (LBNL Office) JLVay@lbl.gov

Dr. Daniel Winklehner Massachusetts Institute of Technology (MIT) 510-479-6501 (mobile) winklehn@mit.edu

Sample from the final exam –

Problem 4 - Sirepo/elegant

- a) Create a copy of an existing Sirepo/elegant simulation, by pasting this URL into your browser: https://uspas-sirepo.radiasoft.org/elegant#/source/o7oYeBDe
 - 1 Modify the 4th dipole of your chicane by enabling the OUTPUT FILE parameter, on page 5 of the parameter input window.
 - Make sure that N Kicks = 16 for the dipole.
 - Make sure you have steady-state CSR turned on by setting value = 1 for the alter_elements command with item = STEADY_STATE, name = BEND?.
 - 2 Go to the Visualization tab and click "Start new simulation".
 - You may see an error message: "elegant Errors: warning: 7 elements had no matrix", but you can ignore it.
 - In the window for BEND4, plot DeltaGamma vs. s.
 - This is a plot of the CSR wakefield along the bunch with the field plotted in units of $\Delta \gamma/m$.
 - Each plot is at one of the 16 steps through the dipole.
 - Rewind the movie to the beginning, then step through the images one by one.
 - Observe how the wake evolves as the beam enters the dipole.
 - Go back to the beginning again, then step one by one through the first 5 images, saving each of them to a file.
 - The first image should look like Figure 1.

🙈 radiasoft

Sirepo/Elegant classroom example: USPAS fundamentals of accelerator physics

Kiersten Ruisard

Sirepo User Workshop, Sept. 3, 2019

On behalf of Jan 2019 teaching team: Jeff Holmes, Sarah Cousineau, Nick Evans, Martin Kay

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Sirepo/elegant used for a lab in the January & June 2019 "Fundamentals" course

Jan 2019 teaching team:

Jeff Holmes, Sarah Cousineau, Nick Evans, Kiersten Ruisard & Martin Kay

June 2019 teaching team:

Linda Spentzouris, Pavel Snopok, Nicole Neveu, Josiah Kunz, Tanaz Mohayai, Elvin Harms and Bob Zwaska Jan 2019 Fundamentals Course

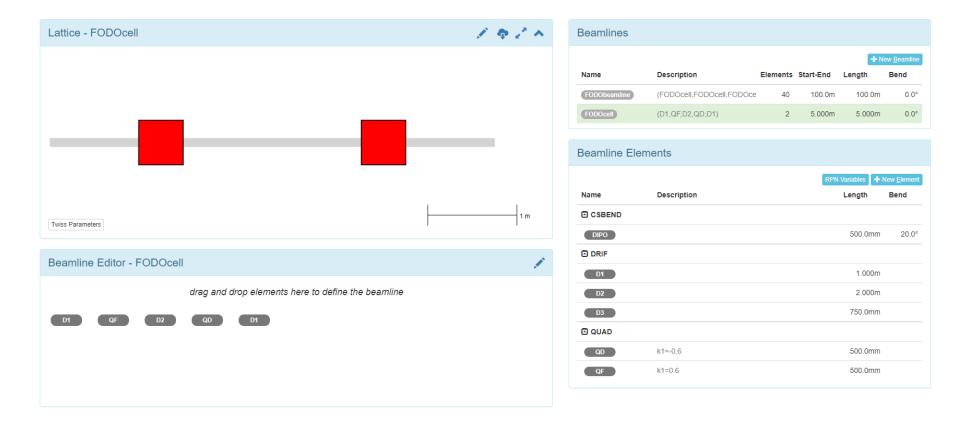
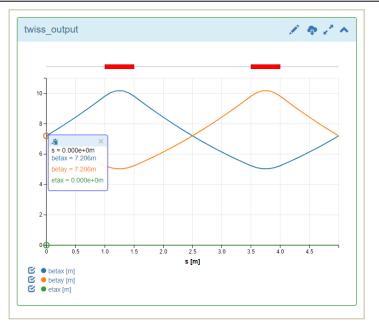


Photo by Irina

The Sirepo lab is comprised of 3 exercises:

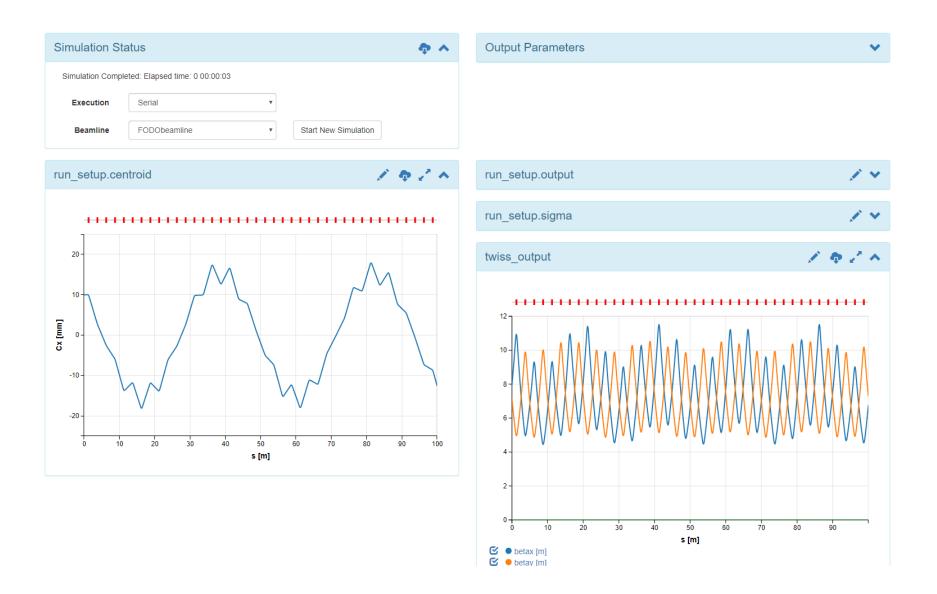
- 1. Matched/mis-matched beam in FODO line
- 2. Dispersion and chromaticity
- 3. Build your own beamline (offered as optional/extra credit)

Exercise 1: Matched/mismatched beam propagation in FODO line

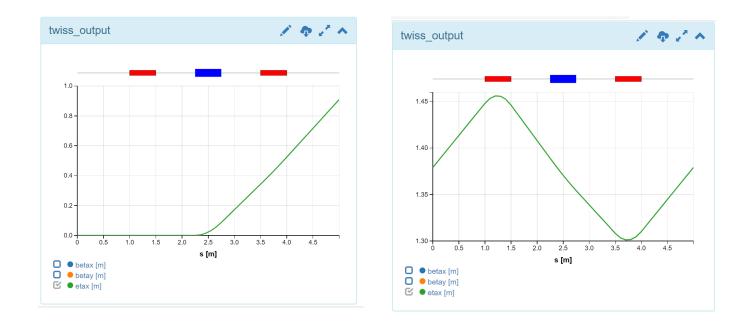


D. Propagation of mismatched beam

We will initialize our beam with a 10% mismatch and examine the effect this has on transport. In the periodic solution, $\beta_x = \beta_y = 7.206$ meters and $\alpha_x = -\alpha_y = 1.122$. (You can verify this by interacting with the twiss_output plot or downloading the data in CSV format).

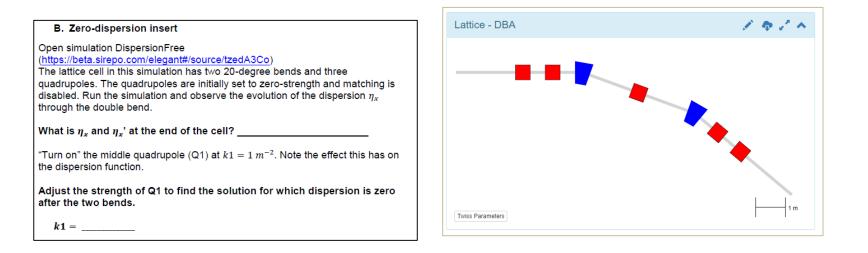

To initialize a mismatched beam, under the "Control" Tab and "twiss_output" module, set the following fields:

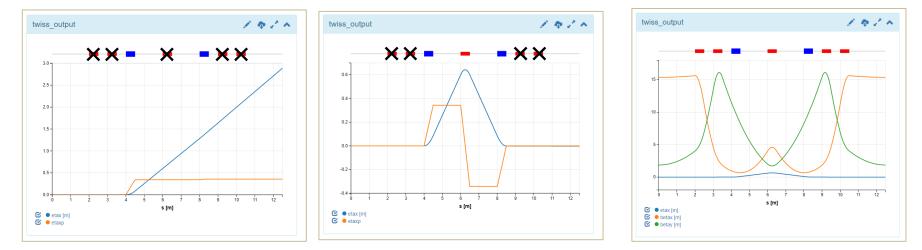
Parameter	Value
Matched	No
Beta X (pg 2)	7.206 * 1.1
Alpha X (pg 2)	-1.178
Beta Y (pg 3)	7.206 * 1.1
Alpha Y (pg 3)	1.178


twiss_output		() ×
compute and output uncoupled Twiss parameters, or set up to	do so.	
Page 1 Page 2 Page 3 Page 4		
Filename 🕄	twiss_output_tangme.sdds	
Matched 🕄	No VS	
Output At Each Step 🕄	No Yes	
Output Before Tune Correction 😫	No v	
Final Values Only 🕄	No v	
Statistics	No v	
Radiation Integrals	No	
Concat Order 🕄	3	
twiss_output		? ×
compute and output uncoupled Twiss parameters, or set up to	do so.	
Page 1 Page 2 Page 3 Page 4		
Higher Order Chromaticity 🕄	No	
Higher Order Chromaticity Points	5	
Higher Order Chromaticity Range	4e-4	
Chromatic Tune Spread Half Range 🚯	0.0	
Quick Higher Order Chromaticity	No	
Beta X 🤂	7.206*1.1	7.9266
Alpha X	-1.178	
Eta X	0.0	
(ORNL)	ave Changes Cancel	

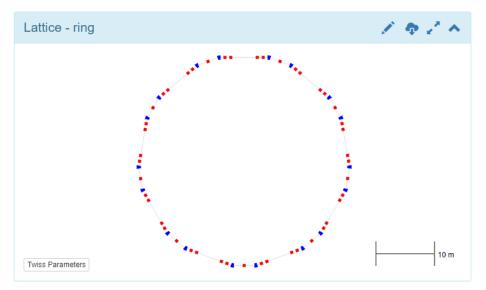
Exercise 2: Dispersion and Chromaticity

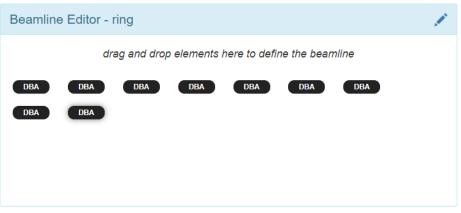
elegant 🔚 Simulations 🖍 FODObeamline 🔗			✤ Source	••• Lattice	Contro	ol 🍱	Visualization	¢ -	0 · []
Lattice - FODOcell	1. 4. 2. 4	Beamlines							
		Name	Description					Length	New <u>B</u> eamline Bend
		FODObeamline FODOcell	(FODOcell,FODC		II,FODO	40 2	100.0m 5.000m	100.0m	
		Beamline Elen	nents						
		Name	Description				RPN	Variables + Length	- New <u>E</u> lement Bend
Twiss Parameters	1 m							500.0mm	n 20.0°
Beamline Editor - FODOcell	1	DRIF						1.000m	1
drag and drop elements here to define	the beamline	D2 D3						2.000m 750.0mm	
D1 QF D2 QD D1	Saved to this PC		k1=-0.2					500.0mm	1
		QF	k1=0.2					500.0mm	1
		(DAD) A							0.000-114
	ANGLE	[RAD] 🖯							20*pi/1


https://beta.sirepo.com/elegant#/source/tzedA3Co



Assuming a 0.1% energy spread in the beam, what is the horizontal beam size we expect in the focusing quadrupole QF? How does this compare to our beam size without energy spread? $\frac{\Delta p}{p_0}$


$$\sigma_x^2 = \epsilon_x \beta_x + \eta^2 \frac{\Delta}{\mu}$$


 $\sigma_x =$

C. Tune in a ring
Repeat your cell 9 times to create a ring; propagate particles; Record x and y tunes (to 3 significant figures):
$v_x = $ $v_y = $
Note that this lattice still has chromaticity; that is, although off-momentum particles will not increase the beam size in the dispersion-free drifts, they will still feel different focusing strength and have a tune different from the on-momentum particles. For a 0.1% energy spread in the beam, what is the spread of tunes due to chromaticity? $\Delta v_x = C_x \frac{\Delta p}{p_0}$ hint: in Elegant Twiss output, look for dnux/dp and dnuy/dp for chromaticity values
$\Delta v_x = _$ $\Delta v_y = _$

Summary of USPAS experience

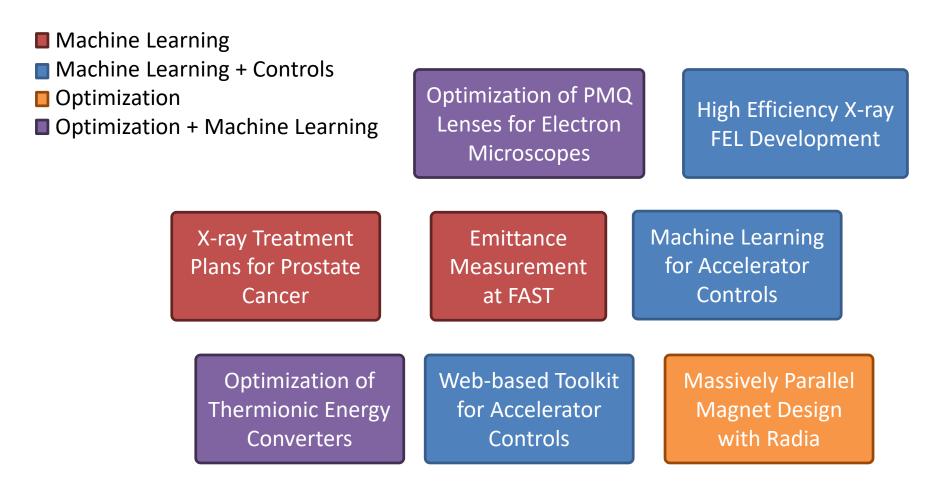
- One of the established "Fundamentals" labs has recently been replaced with a Sirepo/elegant lab
- Sirepo/elegant lab focuses on beamline design, lattice functions
- Generally positive student feedback

radiasoft

- Portability and GUI are great for instructional use
- Recent interest at USPAS in "modernizing" computer labs → continued use of Sirepo

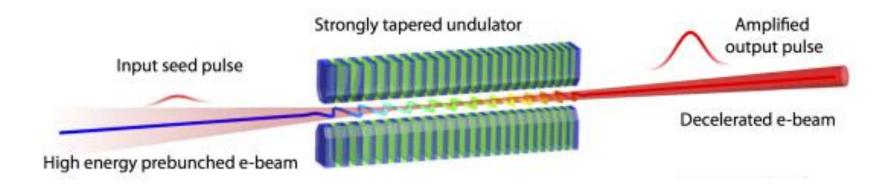
Machine Learning @ RadiaSoft: An overview of recent developments and projects

Jonathan Edelen, Nathan Cook, Christopher Hall and S. Webb with the Sirepo team Kevin Brown, Philip Dyer Auralee Edelen

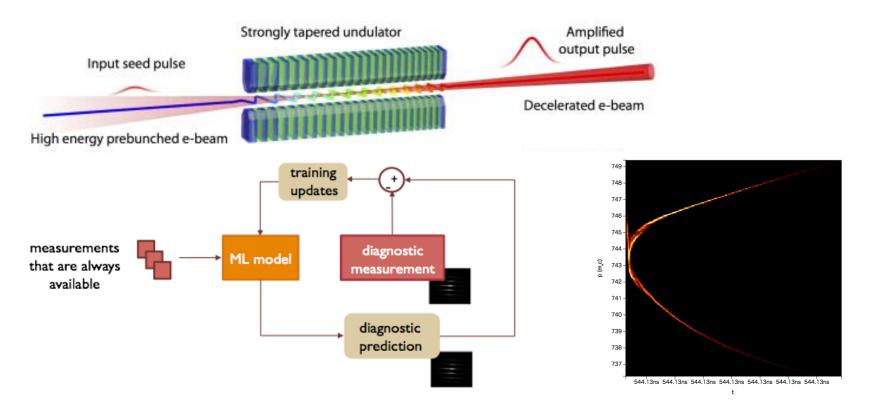


Adapted from a recent presentation for:

Advanced Control Methods for Particle Accelerators Santa Fe, New Mexico – 21 Aug 2019


RadiaSoft projects involving ML/Controls/Optimization

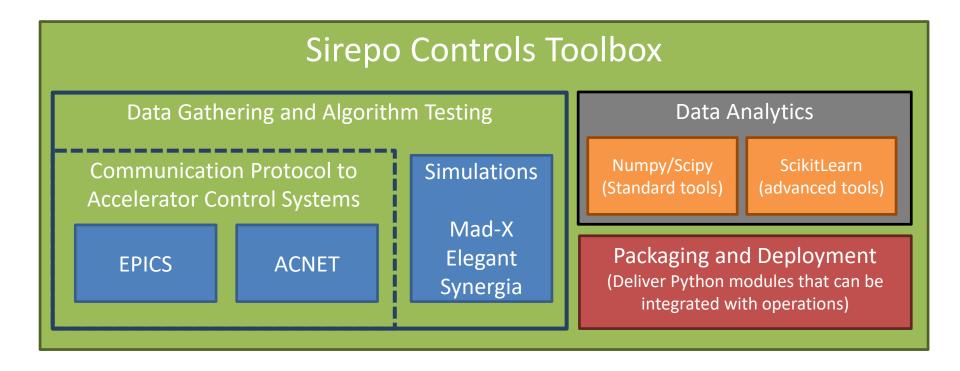
The TESSA-266 proof-of-principle experiment a high-efficiency FEL


A collaboration between ANL, UCLA, RadiaBeam and RadiaSoft

radiasoft

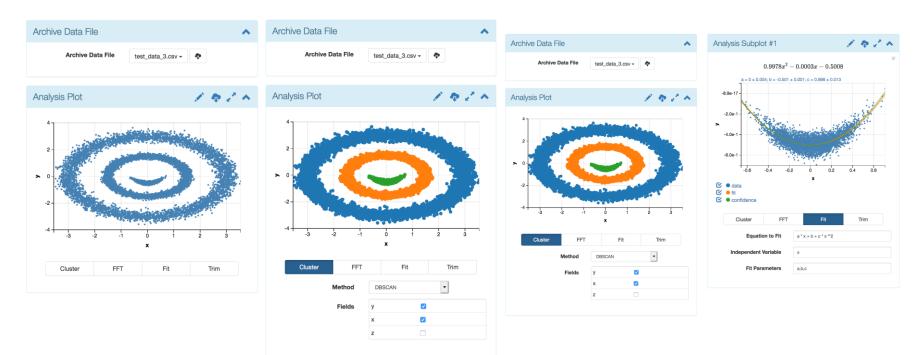
J. Duris et al. "Tapering enhanced stimulated superradiant amplification", New J. Phys. (2015).

TESSA-266: plans for virtual (non-intercepting) phase space diagnostics



- We want to know the shot-to-shot longitudinal phase space going into the tapered TESSA undulator, which is an intercepting diagnostic
- LEA beamline has CSR, wake fields, and longitudinal space charge, which can cause shot to shot variation in the LPS that we need to understand to analyze TESSA performance

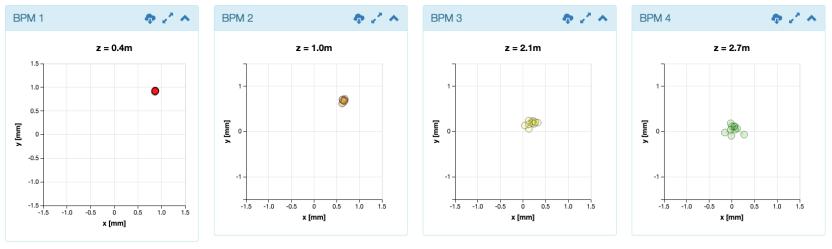
🙈 radiasoft


A web-based toolkit for accelerator controls

 Develop an easy to use framework using Sirepo for developing and testing control algorithms and improving operations

Prototype web interface for data analysis

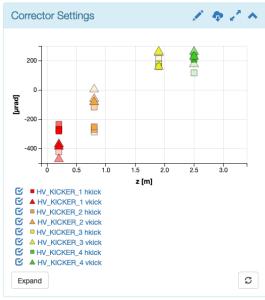
- Develop interface and connect with analytics toolboxes
- Currently implemented features:
 - Curve fitting, clustering, frequency analysis, plotting and datasplitting
- Features to be implemented in Ph-1
 - 2-D histograms , 2-D frequency analysis


Prototype web interface for control development


					E Analysis	Controls	\$~	0 -	1.
▲ Beam Steering									
Connect to EPICS Yes Use Steering Yes									
Running Nelder-Mead									
			-						
HV KICKER 2	•	HV KICKER 3		•	HV KICKER	4			^
H. Kick [rad]	-2.54501e-4	H. Kick [rad]		1.76276e-4	H. Kick [ra	d]		2.2933e	≽ -4
V. Kick [rad]	-7.96997e-5	V. Kick [rad]		2.62518e-4	V. Kick [ra	d]		2.303276	-4
D QUAD 1	*	F QUAD 2		~	D QUAD 2				~
Strength [1/m ²]	5	Strength [1/m ²]		-5	Strength [1/m	n²]			5
	HV KICKER 2 H. Kick [rad V. Kick [rad	Use Steering Yes Running Nelder-Mead HV KICKER 2 H. Kick [rad] -2.54501e-4 V. Kick [rad] -7.96997e-5 D QUAD 1	Use Steering Yes Running Nelder-Mead HV KICKER 2 HV KICKER 2 HV KICKER 3 H. Kick [rad] -2.54501e-4 V. Kick [rad] -2.54501e-4 V. Kick [rad] X. Kick [rad] V. Kick [rad] F QUAD 2	Use Steering Yes Running Nelder-Mead HV KICKER 2 HV KICKER 3 H. Kick [rad] -2.54501e-4 V. Kick [rad] -7.96997e-5 D QUAD 1 F QUAD 2	Use Steering Yes Running Nelder-Mead HV KICKER 2 H. Kick [rad] -2.54501e-4 V. Kick [rad] -7.96997e-5 H. Kick [rad] 2.62518e-4 V. Kick [rad] 2.62518e-4 Kick [rad] 2.62518e-4	Beam Steering Use Steering Running Neider-Mead HV KICKER 2 H. Kick (rad) -2.54501e-4 V. Kick (rad) -7.96997e-5 HV KICKER 3 H. Kick (rad) -2.54501e-4 V. Kick (rad) -2.62518e-4 D QUAD 1 F QUAD 2	Beam Steering Use Steering Yes Running Nelder-Mead HV KICKER 2 H. Kick (rad) -2.54501e4 V. Kick (rad) -2.5251e4 D QUAD 1 F QUAD 2	Beam Steering Use Steering Running Nelder-Mead HV KICKER 2 H. Kick (rad) -2.54501e4 V. Kick (rad) -7.96997e5 HV KICKER 3 H. Kick (rad) -2.54501e4 V. Kick (rad) -2.54501e4 D. QUAD 1 F. QUAD 2	Beam Steering Use Steering Running Neider-Mead HV KICKER 2 HV KICKER 3 HV KICKER 4 H. Kick (rad) -2.54501e4 V. Kick (rad) -2.54501e4 D QUAD 1 F QUAD 2

 Interface connects to EPICS database currently running an elegant simulation of a simple beam-line

radiasoft


Prototype web interface for control development

~

Aradiasoft

Present initiative: single-click supercomputing

- Sirepo web server does not require HPC resources
 - simulation requests are submitted to other nodes
 - available servers are configured when Sirepo server is started
 - typically a moderately sized cluster
 - MPI-based codes are typically executed on a single node
- How do you increase the resolution or particle number?
 it would be convenient and powerful to submit jobs at NERSC
- Present server-side technology is being refactored
 - Celery provides an asynchronous job queue for executing longrunning simulations and provides cluster management
 - It uses RabbitMQ as a message broker for communication between the web server and the execution nodes.

🙈 radiasoft

Present initiative: single-click supercomputing

- We need to support Torque, SLURM, PBS, etc.
 - Sirepo's job management system is being redesigned
 - implementing a Docker-based job execution environment
 - more efficient, robust and secure than Celery/RabbitMQ
- The new implementation will rely on Tornado
 - highly concurrent web server/framework
 - provides a microservice called the "Job Supervisor"
 - manages the Sirepo job queue
 - can start "Job Agents" on remote clusters and supercomputers
 - also for local use development & single-node deployments
 - Agents create a WebSocket to communicate with Supervisor
 - enables fast, asynchronous inter-process communication
 - will go through common firewalls
 - Agents will start jobs, cancel jobs, extract in situ visualizations, report job progress, etc.

🙈 radiasoft

Present initiative: single-click supercomputing

- Sirepo will be enhanced to support single-click execution on supercomputers and remote clusters
 - Users will be asked for a token or other credentials
 - The Sirepo NERSC interface will use multifactor authentication,
 - create a token that Supervisor uses to login via NERSC Web Toolkit (NEWT) interface
 - will invoke an Agent running inside NERSC's SHIFTER environment
 - departmental clusters may require users supply SSH keys
- implementation should be completed in 2019

Thanks!

This work is supported by the SBIR program of the US Department of Energy (DOE), Office of Science under Award Nos. DE-SC0011237 and DE-SC0019682 (BES); DE-SC0011340, DE-SC0013855, DE-SC0015897 and DE-SC0018719 (HEP); DE-SC0015212 and DE-SC0017181 (NP); DE-SC0017057 and DE-SC0017162 (ASCR).

