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Outline

• Introduction to Safe and 
Sustainable Water Resources 
(SSWR) Cyanobacteria Project

• Ecological Modelling of 
Cyanobacteria
– Machine Learning Approaches 
– Bayesian Approaches

• The Role of Open Science in our 
Research

• Recent news – N.E. Monitoring 
(Thanks Hilary Snook!)
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Introduction

flickr.com/photos/giovanni_novara1/6079864660



Cyanobacteria

• “Bluegreen Algae”

• Photosynthetic bacteria 

• Found in fresh and salt water

• Amazing diversity

• Many can fix nitrogen

• Resting spores

• Mobile – can harvest nutrients 
from sediments

• Produce over 80 known toxins flickr.com/photos/jurvetson/30399340



Cyanobacteria Blooms

• Human and Animal Health Risks

• Hypoxia and Fish Kills

• Water Treatment Costs

• Lake Aesthetics –Clarity & Smell

• Quality of Life
– Recreational Opportunities
– Property Values
– Tax Revenues
– Employment



Cyanobacteria, nutrients, and land use - a 
nexus for sustainable water resources and 

human health protection

• Ecology: Develop predictive models to relate nutrient loads, land use/land cover, 
socioeconomic factors, and climate to the frequency, location, and severity of 
cyanobacterial blooms in lakes of the United States
Contact: Jeff Hollister and Betty Kreakie

• Toxicology: Clarify cyanotoxin effects on mammalian endpoints and exposure 
biomarker identification for human health risk assessment
Contact: Neil Chernoff

• Epidemiology: Characterize cyanotoxin occurrence and nutrient concentrations in 
US surface waters. Analyses includes assessing risk to human health via multiple 
exposure scenarios to recreational and drinking waters
Contact: Betsy Hilborn

• Remote Sensing: Describe the retrieval of chlorophyll a concentrations, and water 
clarity from airborne hyperspectral data and predictions of changes in trophic status 
in Northeastern Lakes and Reservoirs
Contact: Darryl Keith
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Ecological Modelling



“We are trying to combine what we know from 
field data, what we know from modeled data, 
and what we (think) we know about 
cyanobacteria and create predictive models of 
the probability of bloom events.”



National Lake Assessment 
(NLA) 

• Spatially balanced, probabilistic sample of 1000+ 
lakes

• Developed to provide inference on the condition of 
the lakes in the contiguous United States at the 
national and ecoregional level

• Includes freshwater lakes greater than 4 hectares 
(excluding Great Lakes and Great Salt Lake) and 
deeper than 1 meter

• First Survey in 2007; Second in 2012, Third planned 
for 2017.



Map of 2007 NLA Samples



Biovolumes from Lester Yuan (EPA OW) and Beaulieu et al. 2013. Nutrients and water 
temperature are significant predictors of cyanobacterial biomass in a 1147 lakes dataset. L&O 
58:1736-1746.



Assumption:  We can use Chl a as a proxy for 
cyanobacteria biomass & ...



Map of 2007 NLA Samples

How Can We Predict 
Chl a Class?



Random Forest:

Definition 1.1. A random forest is a classifier 
consisting of a collection of tree-structured 
classifiers {h(x, Θk), k = 1,...} where the {Θk} are 
independent identically distributed random 
vectors and each tree casts a unit vote for the 
most popular class at input x.

Breiman, L. 2001. Random forests. Machine learning 45:5-32.



CART  Model: Classification and 
Regression Trees

https://www.otexts.org/1512



Random Forest
– Can throw any kind of data at it

• Included highly correlated variables and NAs

– Can not over fit

• No weird pruning rules

– Measures of variable importance

– Model verification build directly into the 
algorithm

– Computationally fast and easy to code

• Even with very large data sets



Summary of Random Forest

• Select training data (~2/3) with replacement for each 
tree

• Randomly select subset of variables
– Actually done for each split

• Make a tree
• Record Out-Of-Bag (OOB) errors 
• Permute variables
• Record altered OOB 
• Repeat 10,000 times

**Each tree votes for a classification



Random Forest Analysis
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Response Variable

• Chlorophyll a Category

Predictor Variables (WQ)

• Geographic (5)

• Morphometry (14)

• NLCD 3km (17)

• Water Quality (34)

• Other (2)
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Random Forest Analysis
Selected WQ Predictors

Out of Bag Error Rate: 21%
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Random Forest Analysis

• Water quality data 
difficult/expensive to obtain

• What if we just use the GIS 
ready predictors to assign Chl a 
category?
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Random Forest Analysis
Selected GIS Predictors

Out of Bag Error Rate: 32%
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Random Forest Modelling

OOB Error Rate: 32%

GIS PredictorsWQ Predictors

OOB Error Rate: 21%



Future Modelling Efforts

• Explore temporal dynamics and phytoplankton 
community turnover using a long-term regional 
data set

• Bayesian forecasting of predicted cyanobacteria 
bloom risk for lakes in the continental United 
States

• Develop regional models based on citizen science 
data (e.g. URI Watershed Watch Data)
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Water Quality Modeling Approaches

• Process-based models, 
Deductive reasoning

 Conceptually dividing a 
system into subsystems 

 Equations are derived based 
on existing knowledge and 
general laws of physics

 Solving equations for all 
subsystems together

 Box-and-arrow charts plus 
differential equations

• Statistical models, Inductive 
reasoning

 Statistical models are mostly 
driven by data

 Data – often limited to a 
specific region (local or 
subregion)

 We usually don’t combine 
subsystem models

 Statistical modeling often 
does not incorporate existing 
knowledge – we reinvent the 
wheel every time we have a 
new data set.



Model Updating

Adaptive Management

• Continuous observation of the ecosystem to 
gauge the impact of policies and management 
actions

• Communicating the ecosystem's status with 
policy makers and managers

• Updating the management actions and 
recommendation

Walters, 1997, Challenges in adaptive management of riparian and coastal ecosystems



High Prediction Uncertainty
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Quantifying Uncertainty

Sources of Uncertainty

• Natural ecosystem variability

• Current knowledge of environmental processes

• Model structure uncertainty

• Data and observation (e.g., observation error, missing data)

• Computational restrictions



Other Considerations

• Small/incomplete data set accommodation

• Visual interface – Communication

28



Network-based Bayesian Model

Model Formulation

• Establishing cause-effect diagram using 
biological/ecological knowledge (box-and-
arrow charts)

• Quantifying the links

• Model updating



Proposed Network-based Bayesian Model



Model Evaluation & Updating

• Prior: 2007 NLA data set

• Likelihood: 2012 NLA data set

Bloom Probability

Prior



Model Evaluation & Updating

Prior ⊗ Likelihood

• Prior: 2007 NLA data set

• Likelihood: 2012 NLA data set

Bloom Probability

Sample

Prior



Model Evaluation & Updating

Posterior ∝ Prior ⊗ Likelihood

• Prior: 2007 NLA data set

• Likelihood: 2012 NLA data set

Bloom Probability

Sample Posterior

Prior



Benefit of Network-based 
Modeling

• Comprehensive – summarizing all available 
information

• Flexibility – both empirical models and 
mechanistic models can be part of a network 
model

• Updating – over space and time

• A starting point – no need to wait for all 
necessary information



Previous Applications (1)

Johnson et al., 2010, An Integrated Bayesian Network approach to Lyngbya majuscula bloom initiation



Previous Applications (2)

Using the observational data sampled during the 
growing season in 2007–2011, a Bayesian hurdle 
Poisson model was developed to predict 
cyanobacteria abundance in lake Paldang, South 
Korea. 

Cha et al, 2014, Probabilistic Prediction of Cyanobacteria Abundance in a Korean Reservoir using a Bayesian Poisson Model



Open Science

flickr.com/photos/demonsub/8960428408



What is Open Science?
• Many Flavors

• But many agree on:
– Openness and transparency

– free access to code, data, 
publications

– repeatable

– reusable

– web enabled

– degrees of openness
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*See details of definition from a question I posed to twitter at: 
https://storify.com/jhollist/what-is-the-definition-of-open-science

https://storify.com/jhollist/what-is-the-definition-of-open-science


Why Open Science?

• Expected and/or required

– Increasing Access to the Results 
of Federally Funded Scientific 
Research 

• John Holdren, Director, White 
House OSTP

• Feb 2013

– NSF

– Publishers

• #PLOSfail/#PLOSwin

• Carly Strasser at DATA PUB
39

http://datapub.cdlib.org/2014/03/13/lit-review-plosfail-and-data-sharing-drama/


Why Open Science?
• Benefits

– Open Data = More citations (Piwowar et al. 2007)

– Up-to-date statistics on readership (e.g PLOS ALM)

– Accelerates research and discoveries (e.g. Woelfle et al. 
2011)
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Piwowar et al. 2007 ImpactStory Metrics

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000308
http://article-level-metrics.plos.org/
http://www.nature.com/nchem/journal/v3/n10/full/nchem.1149.html
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000308
https://impactstory.org/JeffreyHollister/product/oiaf96qu7o20qlxb0i2s7i2h


Why Open Science?

• It keeps us honest

• Prevents this:

41



Why Open Science?

• Hot off the press:

– Weecology Blog: “Sharing in Science: my full reply 
to Eli Kintisch”

– Living in an Ivory Basement: ”Thoughts on open 
science – my response to Eli Kintisch”

– Science Careers Article by Eli Kintisch: Give, and It 
Will Be Given to You
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http://jabberwocky.weecology.org/2014/06/23/sharing-in-science-my-full-reply-to-eli-kintisch/
http://ivory.idyll.org/blog/2014-eli-conversation.html
http://sciencecareers.sciencemag.org/career_magazine/previous_issues/articles/2014_06_10/caredit.a1400146


Open Science and Our research

• Open Access

• Open Source

• Open Data

43



Open Access: What we’ve done

• Hollister et al, 2011

• Hilborn et al, 2013

• Milstead et al, 2013

44

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0025764
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0069518
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0081457


Open Access: What’s next?

• Goal: All publications open access

– Journal choice (e.g. PeerJ, F1000Research, eLife, 
Frontiers In, etc.)

– Funds to pay for OA charges in traditional journals

45

http://www.plosone.org/
http://www.plosone.org/
http://elifesciences.org/
http://elifesciences.org/
http://f1000research.com/
http://f1000research.com/
https://peerj.com/
https://peerj.com/


Open Source: What we’ve done?

• Use Open Source

– R, Python

• Supplemental 
Information

• Github

46

https://github.com/USEPA
https://github.com/USEPA
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1287364/Text_S1.txt
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1287364/Text_S1.txt


Open Source: What Next 

• Continued use of Github

– R packages

– manuscripts (e.g., Ram, 2013)

– posters/presentations (e.g., 
@kbroman)

• Working with the 
community

– Software Carpentry

– Other groups
47

https://github.com/karthik/smb_git
https://github.com/kbroman/Talks_GivingTalks
https://github.com/
https://github.com/


Open Data: What we’ve done

• Supplemental Info

• Portals

– EPA Environmental Dataset 
Gateway

– APEX/Oracle

48



Open Data: What’s Next

• Linked Open Data

• Web APIs

– Use HTTP

• GET, POST, PUT, etc.

• Access data 
– Programmatically

– Machine-to-machine

– rOpenSci: great example 

49



New England 
Monitoring
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Thank you!

Questions?

Jeff Hollister - hollister.jeff@epa.gov
Betty Kreakie - kreakie.betty@epa.gov
Farnaz Nojavan - nojavan.farnaz@epa.gov

mailto:hollister.jeff@epa.gov
mailto:kreakie.betty@epa.gov
mailto:nojavan.farnaz@epa.gov

