
Effects and side effects of plasmonic photothermal therapy in brain
tissue

Yue He, Kristoffer Laugesen, Dana Kamp, Salik A. Sultan, Lene B. Oddershede, and
Liselotte Jauffred
The Niels Bohr Institute, University of Copenhagen, Copenhagen, DK-2100, Denmark

Additional text

Derivation of heat transfer equations

Following the train of thought from Ref.1 we obtained the expressions from an investigation of the
energy balance of the system: ∑

i

miCp,i
dT

dt
=

∑
j

Qj (1)

where the left side is the sum of products of masses, mi, and the corresponding heat capacity,
Cp,i, of the different components, T is the temperature and t is time. The right hand side is the
sum of energy terms, Qj . Eq. (1) is valid when the time it takes for the system to reach thermal
equilibrium within the cuvette is less than the time needed to obtain thermal equilibrium with the
surroundings. The source termQ1 is the heat dissipated by electron-phonon relaxation of plasmons
on the nanoparticle surface at the laser wavelength, λ:

Q1 = P (1− 10−Aλ)η, (2)

where η is the photothermal transduction efficiency, i.e., the efficiency to convert the incident
absorbance, Aλ, of laser light to heat. Aλ is given by Beer-Lambert’s law and is often referred
to as the optical density. Q0 is the heat dissipated in the cuvette and the media containing the
nanoparticles. The terms Q1 and Q0 add heat to the system and are counteracted by energy terms
describing exchanges with the surroundings. The first term is energy conducted to air, sample
holder etc.:

Qcond ∝ ∆T, (3)

where ∆T = T − Tamb and Tamb is the ambient temperature. Furthermore, there is thermal
radiation, Qrad, given by Stefan-Boltzmann’s law:

Qrad ∝ T 4 − T 4
amb (4)

For large T , i.e., T > Tamb, Qrad/∆T varies little respect to ∆T . For ∆T less than 10◦ K we can
approximate Qrad/∆T with a constant value as the variation is less than 5%.1 As a result,

Qext = Qcond +Qrad ∝ ∆T (5)

and, thus, is written as:
Qext = hA(T − Tamb), (6)
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where h is a heat-transfer coefficient and A is the surface area for radiative heat transfer. Thus, eq.
(1) is simplified to: ∑

i

miCp,i
dT

dt
= Q1 +Q0 −Qext (7)

We define the system’s characteristic time constant to be

τ :=

∑
imiCp,i
hA

(8)

To extract τ we focus on thermal equilibrium with the surroundings via conductive and radiative
heat transfer, i.e. after laser is turned off. In this case Q1 = Q0 = 0 and eq. (7) reduces to∑

i

miCp,i
dT

dt
= −Qext (9)

We define the dimensionless driving force to be

θ :=
Tamb − T
Tamb − Tss

, (10)

where Tss is the maximum temperature reached or the steady-state temperature. Then, we substi-
tute τ and θ into eq. (9) and get

dθ

dt
= −θ

τ
(11)

and integrate ∫
1

θ
dθ = −1

τ

∫
dt (12)

Using the initial condition that θ = 1 when t = 0, i.e., when irradiation ceases, we get

log θ = − t
τ

(13)

such that
θ = et/τ (14)

By substituting θ we find the expression given in Eq. (2) in the main article:

∆T = ∆Tsse
−t/τ . (15)

When the laser is irradiating the system, heat is added (Q0 + Q1 > 0) and we use the initial
condition that θ = 0 when t = 0 we find

θ = 1− et/τ (16)

By substituting θ we get Eq. (1) in the main article:

∆T = ∆Tss(1− e−t/τ ) (17)

References
1 D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale Heat Transfer Transduced by Surface

Plasmon Resonant Gold Nanoparticles,” Journal of Physical Chemistry C 111, 3636–3641
(2007).

2


