Summary
O Functional magnetic resonance imaging (fMRI) enables
measuring human brain activity, in vivo [1]. Yet, the fMRI

(.

response unfolds over very slow timescales (<0.1-1 Hz)

compared to neural spiking [2].
Are slow fMRI dynamics relevant for cognitive function?

We investigated this by applying Gaussian Process Factor
Analysis (GPFA) [3] and machine learning to human fMRI data
from 1000 healthy participants (Human Connectome Project
database) and 95 patients with mild cognitive impairment (MCI,;
ADNI database).

GPFA reduced dimensionality and extracted smooth latent
dynamics with slow (<1 Hz) and infra-slow (<0.1 Hz)
timescales.

These dimensions sufficed to accurately classify task-specific
cognitive states and to predict cognitive scores in healthy
subjects as well as clinical dementia rating (CDR) scores in MCI
patients.

Slow and infra-slow brain dynamics are relevant for
understanding the neural basis of cognitive function, in health
and disease.

Gaussian Process Factor Analysis (GPFA)

Results

INFRA-SLOW BRAIN DYNAMICS AS A MARKER FOR COGNITIVE FUNCTION AND DECLINE
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Slow latent dynamics characterize cognitive states

| GPFA latent dynamics yielded superlative accuracies for
classifying task-specific cognitive states.
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Infra-slow dynamics characterize cognitive decline
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| An SVM-RFE [4] classifier, trained with functional
connectivity among GPFA latents (lagged covariance, LC
and partial correlation, PC), distinguished MCIc from MCIs
with a high cross-validation accuracy (73.6%).

Infra-slow (<0.1 Hz) spectral features (IRASA) [5] of GPFA
latents also yielded above-chance accuracy (67.2%).
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Glossary

[ Gaussian Process Factor Analysis (GPFA):

y.: € R¥! high-dimensional fMRI data

low-dimensional GPFA
components (p < q)

latent
x.; € Rexl

Y.t | Xt NN(Cx:,t + d, R)

where C € R9*p,
d € R¥1
and R € R4

linear-Gaussian model

weight matrix
mean of each fMRI series
independent noise variances
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GPFA latent dimensions, with
temporal covariance being
a squared exponential function

GPFA parameters learnt via

60 ={C,d R,14, ---»Tp} Expectation Maximization [3]

J Task abbreviations: rs: resting state, W: working memory,
[ : language processing, M: motor, S: social cognition,
G : gambling, R: relational processing, £: emotion
processing

 MCI: Mild Cognitive Impairment, a state of cognitive
decline, which could be a precursor to dementia.
Diagnosed using a battery of cognitive tests, and
physician’s evaluation.

J IRASA: Irregular Resampling Auto-Spectral Analysis, a
procedure for extracting oscillatory components from the
power spectrum after removing the 1/f component [5]

d SVM-RFE: Support Vector Machine classification, with
Recursive Feature Elimination [4]
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