

INFRA-SLOW BRAIN DYNAMICS AS A MARKER FOR COGNITIVE FUNCTION AND DECLINE

Shagun Ajmera¹, Shreya Rajagopal¹, Razi Ur Rehman², Devarajan Sridharan ^{∞1,2}

Summary

- □ Functional magnetic resonance imaging (fMRI) enables measuring human brain activity, in vivo [1]. Yet, the fMRI response unfolds over very slow timescales (<0.1-1 Hz) compared to neural spiking [2].
- □ Are slow fMRI dynamics relevant for cognitive function?
- □ We investigated this by applying Gaussian Process Factor Analysis (GPFA) [3] and machine learning to human fMRI data from 1000 healthy participants (Human Connectome Project database) and 95 patients with mild cognitive impairment (MCI; ADNI database).
- GPFA reduced dimensionality and extracted smooth latent dynamics with slow (<1 Hz) and infra-slow (<0.1 Hz) timescales.
- □ These dimensions sufficed to accurately classify task-specific cognitive states and to predict cognitive scores in healthy subjects as well as clinical dementia rating (CDR) scores in MCI patients.
- □ Slow and infra-slow brain dynamics are relevant for understanding the neural basis of cognitive function, in health and disease.

Gaussian Process Factor Analysis (GPFA)

Results

Slow latent dynamics characterize cognitive states

33rd Conference on Neural Information Processing Systems (NeurIPS). Vancouver, Canada. 08-14 Dec, 2019

GPFA latent dynamics yielded superlative accuracies for

Infra-slow dynamics characterize cognitiv

- An SVM-RFE [4] classifier, trained with functional connectivity among GPFA latents (lagged covariance, LC and partial correlation, PC), distinguished MCIc from MCIs with a high cross-validation accuracy (73.6%).
- Infra-slow (<0.1 Hz) spectral features (IRASA) [5] of GPFA latents also yielded above-chance accuracy (67.2%).

Regression analysis with either connectivity or spectral features of GPFA latents accurately predicted individual MCI patients' CDR scores.

Glossary

'e	d	ec	line	

Gaussian Process Factor Analysis (GPFA):

$m{y}_{:,t} \in \mathbb{R}^{q \ge 1}$ $m{x}_{:,t} \in \mathbb{R}^{p \ge 1}$	high-dimensional fMRI data low-dimensional GPFA latent components ($p < q$)
$y_{:,t} \mid x_{:,t} \sim \mathcal{N}(Cx_{:,t} + d, R)$ where $C \in \mathbb{R}^{qxp}$, $d \in \mathbb{R}^{qx1}$, and $R \in \mathbb{R}^{qxq}$	linear-Gaussian model weight matrix mean of each fMRI series independent noise variances
$\begin{aligned} \boldsymbol{x_{i,:}} \sim \mathcal{N}(0, \boldsymbol{K_i}) \\ \boldsymbol{K_i} \in \mathbb{R}^{\mathrm{TxT}} \\ \boldsymbol{K_i}(t_1, t_2) \propto \exp(-\frac{(t_1 - t_2)^2}{2\tau_i^2}) \end{aligned}$	GPFA latent dimensions, with temporal covariance being a squared exponential function
$\theta = \{\boldsymbol{C}, \boldsymbol{d}, \boldsymbol{R}, \tau_1, \dots, \tau_p\}$	GPFA parameters learnt via Expectation Maximization [3]

- \Box Task abbreviations: *rs* : resting state, W : working memory, L: language processing, M: motor, S: social cognition, G: gambling, R: relational processing, E: emotion processing
- □ MCI: Mild Cognitive Impairment, a state of cognitive decline, which could be a precursor to dementia. Diagnosed using a battery of cognitive tests, and physician's evaluation.
- **IRASA:** Irregular Resampling Auto-Spectral Analysis, a procedure for extracting oscillatory components from the power spectrum after removing the 1/f component [5]
- SVM-RFE: Support Vector Machine classification, with Recursive Feature Elimination [4]

References

[1] Glover, G. H., 2011 [2] Mitra, A. et. al, 2018 [3] Yu et. al, 2009

[4] Sundaresan, M et. al, 2017 [5] Wen, H., Liu, Z., 2016

Acknowledgments: Wellcome Trust DBT-India Alliance, SERB Early Career Research Award, Pratiksha Trust Young Investigator Award, DBT-IISc Partnership Program Grant, Sonata Software Grant, Human Connectome Project, Alzheimers Disease Neuroimaging Initiative.