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Abstract

Today’s dynamic and scalable collaborative systems demand not only to deal
with functional but also some non-functional (e.g., security) requirements. For
a secure inter-organisational collaboration scenario, Federated Identity Manage-
ment systems (FIMs) provide a suitable mechanism to deal with access control.
FIMs enable users of an organisation to access resources (or services) of the other
trusted organisations in a secure and seamless way. More precisely, FIMs allow
cross-domain user authentication to enable access control across organisations
under the concept known as Circle of Trust (CoT). Patterns of FIMs emerged as
recurring CoT scenarios due to the fact that each of these patterns has different
security requirements. More importantly, organisations may join up or leave the
CoT during the development life-cycle. Such a change in a FIM system may
have an impact on its security requirements. Therefore, it is important to formally
describe architectural and reconfiguration aspects of FIMs by considering their
patterns.

To this purpose, we propose

• two UML models for FIMs where one model uses the standard UML no-
tations to describe architectural aspects of FIMs while the other uses the
UML profile in [33] to describe those aspects of FIMs together with their
reconfigurations

• a formal model for FIMs in ADR (Architectural Design Rewriting) to char-
acterise their patterns by describing an architectural style together with
style-preserving reconfigurations.

We also study the adequacy of UML to describe architectural aspects of sys-
tems and compare it with ADR. Our comparison develops through the modelling
of architectural and reconfiguration aspects of FIMs. In ADR, these aspects
of FIMs are suitably represented through style-consistent (graphical) designs in
terms of ADR productions. On the other hand, UML has limitations in expressing
constraints over complex associations; also, UML seems to provide unsatisfactory
support for presenting architectural styles in a general way. Overall, our investi-
gation shows that UML has some drawbacks due to the complexity of diagrams,
their proliferation, and the lack of a precise semantics that consistently relates
them. ADR gives precise and simpler specifications for architectural design.
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Chapter 1

Introduction

1.1 Context

Today’s dynamic and scalable collaborative systems (e.g., Cloud, Web 2.0, etc.) de-

mand not only to deal with functional but also with non-functional (e.g., security) re-

quirements. For instance, access to protected resources in an organisation is typically

governed by an access control system.

Organisations need some form of authentication by using usernames/passwords,

Kerberos [1] tokens or X.509 [62] certificates before allowing users to access secu-

rity enabled resources. The users provide verified identities in order to access these

resources shared by the trusted organisation in inter-organisation collaboration scenar-

ios. Federated Identity Management systems (FIMs) provide a suitable mechanism to

deal with access control for such scenarios. More precisely, a FIM system allows sub-

scribers from different organisations to use their internal identification information in

order to obtain access to the network of all enterprises in the group called the Circle

of Trust (CoT) [30, 79]. Consequently, FIMs are becoming more and more appealing

as they enable organisations to smoothly join up and share distributed resources (e.g.,

services, applications, etc.) in a secure way.
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Figure 1.1: A circle of trust in a FIM system

The notion of CoT in FIMs allows a group of organisations to be federated by es-

tablishing a trusted relation and agreeing on certain rules of the cooperation. There are

two distinguished kinds of organisations in a FIM system, one called identity provider

(IDP) and the other called service provider (SP). Where an IDP and SP are parts of the

same CoT, the user registered with the IDP can access the resources/services offered

by the SP. For instance, a university may federate with a digital library to grant stu-

dents access to some electronic publications. Figure 1.1 shows such a FIM scenario

where the university (i.e., IDP) may provide students’ authentication related informa-

tion (i.e., security token) to the library (i.e., SP) on request to access the publications.

In this case, the IDP is responsible to ensure the security of the tokens issued to the

SP through the requester by digitally signing them to provide token authentication and

integrity [42].

Today, various FIM protocols (e.g., in [82]) and standard specifications (e.g., in

[5, 43, 6]) exist and we discuss a few of them which are widely referred in the lit-

erature relevant to FIM [66, 76, 82, 42, 79, 87, 44]. For instance, the Security As-

sertion Markup Language (SAML) [5] is a de-facto standard for exchanging security

related information between the collaborating organisations. SAML is an XML-based

framework developed by the OASIS (Organization for the Advancement of Structured

2



Information Standards) Security Services Technical Committee1. SAML is an open

FIM standard [82]. It allows organisations to communicate security related informa-

tion for the purpose of enabling cross-domain user authentication. To this purpose,

SAML conveys such an information about the users in the from of assertions [87],

which are the statements issued by the IDP while the users make requests to access the

resources. Further, SAML can be considered as a flexible and extensible protocol spec-

ification which can be used and (if necessary) customized by the other FIM standards

[20]. In this connection, various standards bodies and organisations have developed

specific SAML-based FIM protocols, software packages, and standards. For instance,

the Liberty Alliance [22], the Internet2 Shibboleth project2, and the OASIS Web Ser-

vices Security (WS-Security) Technical Committee3 have respectively adopted SAML

to develop a FIM protocol, software product, and standard-based specification.

The Liberty Alliance is an industrial consortium of more than 150 companies. It

has developed specifications and guidelines for governments, businesses, and individ-

uals to establish legally binding CoTs [29]. Such specifications and guidelines have

been adopted in various domains (e.g., eGovernment, Finance, Healthcare, Education,

Telecom, etc.)4. One of the Liberty Alliance’s specifications called the Liberty Identity

Federation Framework (ID-FF) [43] provides an approach to implement a FIM sys-

tem. In particular, ID-FF describes a federation protocol which can be used to enable

Single Sign-on (SSO) namely, allowing users to authenticate only at their IDP without

re-authenticating themselves to access services offered by the SPs [44].

Internet2 is an advanced networking consortium comprising a large research and

education community. It has developed a standard-based open-source software pack-

age known as Shibboleth, which provides an effective FIM solution [76]. Specifi-

1http://www.oasis-open.org/committees/security/
2http://shibboleth.internet2.edu/
3http://www.oasis-open.org/committees/wss/
4The relevant case studies can be found at http://www.projectliberty.org/liberty/adoption
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cally, Shibboleth offers multi-protocol support to implement FIM systems. For in-

stance, currently Shibboleth supports standard SAML-based protocols. In addition to

this, Shibboleth supports a FIM protocol which is based on an other open standard

called OpenID [16]. Such an approach allows a common internet user to federate their

OpenID account (e.g., at VeriSign’s Personal Identity Provider) across several OpenID-

enabled web-sites (e.g., Google, Yahoo, Flickr, PayPal, MySpace, VeriSign, etc). Also,

support for an additional identity management system (Microsoft’s InfoCard [45]) is

also being considered in Shibboleth’s future release [21].

OASIS is an international consortium which produces open standards for Service-

oriented architectures (SOA), Web services, security, Cloud computing, eGovernment,

and several other areas. The WS-Federation [6] specification was initially proposed by

IBM and Microsoft to support the development of secure web-services in a larger con-

text [82]. WS-Federation was adopted by the OASIS Web Services Security Technical

Committee for its standardisation efforts. The main goal of such a specification is to

provide a mechanism to simplify the development of security related services (e.g.,

authentication and authorisation) to enable cross-domain communication and manage-

ment of web-services within the federation [59].

Recently, a few FIM patterns have been proposed in [66]. Note that term ”FIM

pattern” is used in this dissertation to represent a particular constellation of trust re-

lationships between IDP and SP organisations in a FIM system (cf. Section 2.2 for

details). More precisely, the FIM patterns in [66] can be differentiated according to

the configuration of IDPs and SPs participating in a FIM system. We remark that this

may have an impact on the security requirements for the FIMs. In particular, FIM pat-

terns can be differentiated according to the security threats they are exposed to. These

threats (cf. Section 2.2 for details) include

• unauthorised access,
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• compromise of users’ privacy,

• disclosure of users’ credentials,

• consolidate usage statistics,

• unauthorised delegated authentication, and

• accumulating data on individual users.

Typically, an IDP in a FIM system uses certain procedures to register its users (i.e.,

by creating their credentials) and map them to their designated roles in the organisation.

For instance, consider an IDP that uses inadequate procedures to accomplish these

tasks; a possible threat is that the IDP may grant unauthorised access to users.

In a FIM system, a provider (i.e., an IDP and an SP) can typically acquire and

keep information of users’ activities. For instance, an IDP knows how often a user

communicates with an SP. This is regarded as a threat to users’ privacy; in fact, such

kind of information is exploited by the provider in order to acquire knowledge on

users’ behaviour. For instance, an IDP may be interested in monitoring usage data of

users and/or the history of their interactions with SPs (sometimes providers are offered

incentives, like financial benefits, for sharing the usage data of the users with third

parties). Similarly, an SP in a FIM system might disclose user credentials or a portion

of those credentials (e.g., selected user attributes) received from the IDP.

In FIMs, a user can be registered with multiple IDPs. In this case, the user may

(frequently) change his/her IDP and, as a result, a threat may happen when some or all

of the IDPs may collude and consolidate his/her usage statistics (i.e., accesses to the

SPs) that are distributed across the providers. In FIMs, multiple SPs can be federated

and they might allow direct access to each other via delegated user authentication. For

instance, an SP may provide a complex service that combines (or orchestrates) other

services of the federated SPs. While allowing users to access such services, a threat

5



may happen when the SPs allow delegation of authentication information without ob-

taining consent of the user and his/her IDP.

In FIMs, IDPs typically provide the necessary information on users’ credentials

to the SPs for authentication purposes. For instance, in the FIM system shown in

Figure 1.1 the university (i.e., IDP) may provide selected attributes of student (i.e.,

StudentID, TypeOfStudent, etc.) to the library (i.e., SP) so as to allow access to the

articles. In a FIM scenario where multiple SPs are federated, another threat may hap-

pen when they may collude and gather such information into a comprehensive user file

(e.g., a centralised database/file containing details about the user credentials). As a re-

sult, those SPs may correlate their respective portions of the authentication information

in order to accumulate data on individual users.

Nowadays, FIM implementations may be found in various domains (e.g., finance,

education, healthcare, eGovernment, etc.) and such systems are considered relatively

static. However, a dynamic approach may be realised that enables organisations leav-

ing or joining the CoTs to take some economic benefits in today’s emerging dynamic

and scalable systems (e.g., Clouds). In this way, one can also take advantage of service-

oriented computing. For instance, a FIM system can be used to deal with access control

in a cloud (e.g., in [50]). Architectural modelling of these systems becomes necessary,

because, in current distributed systems, the possibility to tackle (dynamic) changes is

paramount. We remark that this reflects at the architectural level and requires what

is known as architectural reconfiguration. Architectural styles may provide a suitable

mechanism for guiding the reconfigurations in a way that any change in the architecture

does not violate the style. Therefore, it is important to formally represent architectural

aspects of FIMs by characterising their configurations (and reconfigurations) according

to the FIM patterns.

During design time, such an architectural description of FIMs can potentially be

exploited to deal with the risks associated with their configurations. For instance, de-
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Figure 1.2: Architecture of a software system

signers (e.g., architects, developers, etc.) may enforce the required security mechanism

beforehand while they generate such configurations (or possibly reconfigure them).

The architecture of a software system basically consists of the structure of compo-

nents and the way they are interconnected. For instance, Figure 1.2 shows the architec-

ture of a software system that describes how components are connected to each other

by attaching their respective interaction elements (i.e., ports). Often, the notion of ar-

chitectural style [86] of a system is used to specify how its elements should be “legally”

interconnected in a given configuration. An important aspect to consider when mod-

elling architectural aspects is that, typically, the architectural style of a system should

be preserved. For instance, the essential architectural property of FIMs specifies that

at least one IDP and one SP should be federated in order to form a legal CoT. In this

way, each of the FIM patterns may have distinct architectural properties (e.g., in terms

of the number and kind of providers involved in a given configuration). Due to the

security critical nature of FIMs, therefore, it is desirable that the modelling approach

should provide a suitable mechanism to generate FIM configurations with respect to

their underlying FIM patterns.

Architectural Description Languages (ADLs) formally represent architectures of

software systems. Unlike programming languages that target machine executables,

architectural descriptions in an ADL target a kind of analysis so as to reason about a
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given configuration with respect to certain architectural properties (i.e., conformance,

performance, deadlock, etc..). Specifically, ADLs allow designers to consider the high-

level structure of the overall software systems rather than implementation details of a

specific element (e.g., a component or a source module) [72]. In this way, ADLs

promote architectural development at the desired level of abstraction where irrelevant

details are not considered. For instance, one may abstract away the implementation

level details of an IDP in a FIM system that may be considered later.

1.2 Problem Statement

In this dissertation, the research question we address is:

How can architectural description of FIM systems be exploited to model

and analyse threats associated with structural configurations?

Recently, a few structural patterns [66] of FIMs have been informally considered

in relation to security and trust requirements of FIM systems. Such patterns will be

detailed in Section 2.2 and are summarised below:

• The Bilateral Federation (BF) consisting a single IDP and a single SP.

• The Multiple IDPs Federation (MIF) consisting multiple IDPs and a single SP.

• The Multiple SPs Federation (MSF) consisting a single IDP and multiple SPs.

• The Arbitrary Federation (AF) consisting multiple IDPs and multiple SPs.

Those patterns are based on direct trust relations, that is relationships between the or-

ganisations participating in a CoT that do not involve third parties. Moreover, they

can be differentiated in terms of the security threats that they are exposed to. In Ta-

ble 1.1 we summarise the relationships between the threats and FIM patterns. In this
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FIM patterns
Threats BF MIF MSF AF

Unauthorized access X X X X
Compromise users’ privacy X X X X
Disclosure of credentials X X X X
Consolidate usage statistics - X - X
Unauthorised delegation - - X X
Accumulate identity information - - X X

Table 1.1: Threats to FIM patterns

table, a tick (symbol X) represents that the pattern is exposed to the threat while a dash

(symbol -) represents that the pattern is not exposed to the threat. Notably, it is crucial

to characterise configurations of these patterns which may allow designers to consider

the known threats to the configurations and the mechanism (e.g., executing the required

security and trust policies) to deal with them.

ADLs formally describe architectures of software systems. Instead of considering

just general aspects of ADLs, we focus on particular architectural issues arising in

the context of FIMs. Architectural aspects of FIMs impact on the security threats

they are exposed to; therefore, it is crucial to precisely describe architectural views of

FIMs. We contend that the architectural modelling of FIMs offers a relatively complete

range of challenging issues (described below) that are common to many other realistic

scenarios.

• Architectural styles: For FIMs, styles are paramount as they allow the de-

signer to precisely characterise their configurations so as to control their security

threats.

• Style checking: To fully exploit the feature of architectural styles, the designer

should be supported with features allowing him/her to validate a FIM configura-

tion against its style. This corresponds to being able to classify FIM configura-

tions as well as decide which productions (or reconfigurations) to apply.

9



• Refinement: Architectural refinement is a convenient way to handle complex

systems. The intuition is that the designer considers high-level descriptions of

architectural elements and refines abstract architectures into actual configura-

tions in several steps. In FIM, refinement allows concepts like CoT, Federation,

etc., to be clearly separated and related with each other.

• Reconfigurations: Architectures of software systems may change during the de-

velopment life-cycle. Typically, dynamic software systems allow such changes

to be described by different kinds of reconfigurations. For FIM, style preserving

reconfigurations are particularly relevant.

• Generating FIM patterns: For FIMs, it is paramount to have a precise mech-

anism for generating configurations when specific FIM patterns are chosen. In

fact, one may need to enforce specific security measures for FIM configura-

tions according to the underlying pattern. When such mechanisms are available,

specific guidelines about the composition of architectural configurations can be

given in order to respect a given style. This allows designers to consider the

required security mechanism beforehand for FIM configurations.

• Identifying FIM patterns: A crucial aspect of FIMs is their high degree of dy-

namicity. More precisely, CoTs can add/remove new IDPs or SPs at run time

and this would require a reconfiguration of the system, but also at design time

it might be necessary to reconfigure architectural views of a FIM system. In the

latter case, one needs to identify the actual pattern of the system of interest in

order to (a) assess its security threats and (b) decide when a given reconfigura-

tion could be applied. For instance, adding an SP to a system of one FIM pattern

may reconfigure it into another FIM pattern. Notice that such a change in the

configuration has a direct effect on the security requirements. Hence, pattern
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identification techniques are paramount for FIM and calls for suitable mecha-

nisms to support designers.

1.3 Our Approach

We mainly focus on structural and reconfiguration aspects of FIMs as those aspects

impact on the security requirements. We use

• UML [80] (and the profile introduced in [33]) as an ADL and

• ADR (after Architectural Design Rewriting) [37, 38] as an ad-hoc ADL

to describe those aspects of FIMs.

Notice that we do not model behavioural aspects of FIM systems. For instance,

to support the execution of FIM systems in ADR we may consider the FIM protocol

in [89] to formally represent the interactions between providers. Such aspects of FIM

systems can be considered in future work. In fact, a particular FIM implementation

model (e.g., SAML [5], Liberty Alliance [22], WS-Federation [6], etc.) influences the

possible reconfigurations to be represented.

Using UML as an ADL to Model FIMs UML is considered a de-facto standard

to model software systems. UML has been promoted as an ADL with the introduction

of structured classifiers (e.g., classes, components) and ports concepts. We use standard

UML notations to describe architectural aspects of FIMs. The main advantage of using

such an approach is that UML designers can conveniently manipulate the diagrams.

In UML, we use classes to represent types of architectural elements (i.e., compo-

nents and ports). To represent configurations, we use two different kinds of instance

level diagrams, namely object diagrams and composite structure diagrams (instance

level). Object diagrams model a flat view of the system and they suitably represent
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(a) A class diagram (b) An object diagram

Figure 1.3: The structural diagrams in UML

configurations of simple scenarios. Instead, composite structure diagrams impose a

hierarchy over complex configurations. Also, these diagrams simplify architectural

configurations by attaching ports of the components via UML connectors.

To model a style, class diagrams are used to represent types of components and

their possible relationships. Complex relations among components can be modelled by

using multiplicities and OCL constraints. For instance, Figure 1.3(b) shows an object

diagram which describes such a configuration with respect to its class diagram given

in Figure 1.3(a). Consider the multiplicities over the associations among the classes

in Figure 1.3(a); a Federation can be connected to one IDP and one or more SPs, an

IDP is connected to one or more SPs, and an SP is connected to zero or more SPs. In

addition to these multiplicities, the class diagram in Figure 1.3 may require a few OCL

constraints, for instance, a constraint which specifies that an IDP should be attached to

all SPs attached to a Federation. The OCL constraint

context IDP
inv: self.sps.size()>=1 and self.sps.size()=self.fed.sps.size()

describes such condition and a similar constraint is also needed for SPs.

Since standard UML does not support abstract architectural components, we do not

address refinement for such components in FIMs. Similarly, UML does not provide

any mechanism which can be used to describe reconfigurations. Therefore, we apply

changes directly in the configurations.

12



To generate configurations in UML, one has to use rules of thumb to create object

diagrams and composite structure diagrams (instance level). Notice that UML lacks

certain desired features (i.e., architectural refinement, reconfiguration, and pattern gen-

eration) that may be required by designers during the design of software systems.

To overcome the limitation of standard UML, we use a profile. The profile is based

on the recent proposal in [33] inspired by the formal framework introduced in [38, 37]

and specifically designed to support architectural modelling. To support architectural

refinement, the profile allows one to describe abstract architectural components whose

associated productions describe their configurations via composite structure diagrams.

Also, such productions may enable one to effectively generate configurations of simple

scenarios. However, this approach also suffers from some limitations for generating

complex configurations. In order to describe the changes in software architectures, the

profile uses a graph transformation approach in UML to model reconfigurations.

Using ADR as an ad-hoc ADL to Model FIMs ADR [37, 38] is a graphical and

formal approach to describe style-preserving reconfigurable architectures. It allows

us to appropriately address the complete range of issues related to the modelling of

architectural and reconfiguration aspects of FIMs.

In ADR, hyperedges model types of components, non-terminals hyperedges model

abstract (or refineable) components, and terminal hyperedges model basic (or non-

refineable) components. A node models interaction between the components and ten-

tacles leaving hyperedges and joining a common node represents how the components

may interact. A typed hypergraph (i.e., a graph typed over a type graph) represents

a configuration where components are composed together via their associated ports.

For instance, Figure 1.4(b) shows a graph typed over the type graph in Figure 1.4(a).

Type hypergraphs suitably represent architectural styles, i.e., the type of architectural

elements (components and ports) and a set of productions (or design rules) define legal
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IDP // � SPoo

• Useroo ◦
(a) A typed graph (T)

university:IDP // � library:SPoo

• std1:Useroo ◦

std2:User

hhPPPPPPPPP
oooooooo

(b) A graph typed over T

Figure 1.4: A type graph and a typed graph

connection between those elements.

To generate valid configurations of interest (e.g., FIM patterns), ADR’s style-based

refinement approach is used that allows abstract components to be refined by applying

the corresponding productions. As a result, configurations in ADR have an associated

term-like representation that describes how such configurations are built. Also, those

algebraic formulations provide witnesses of their construction. In this way, productions

can be given an algebraic formulation where a term describes a particular style-proof.

In ADR, rewrite rules define style-preserving reconfigurations. Such reconfigura-

tions are operated at the level of style-proofs by exploiting term rewriting over style-

proof terms. We define the basic reconfiguration rules (without variables) in ADR that

add a single component of each type (e.g., IDP or SP). Also, we define the complex

reconfiguration rules (with variables) that add a collection of components of each such

type in a given configuration.

To identify a pattern in a configuration, the term representation of the configura-

tion can effectively be parsed by considering the occurrences of the productions that

generate a particular type of components (i.e., IDP and SP).

1.4 Main Contributions

In this thesis, we address the issues of modelling styles and reconfigurations for FIMs.

The main contributions of this thesis are:
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• Two UML models for FIMs where one of the models uses the standard UML

notations to describe structural aspects while the other uses a UML profile in [33]

to describe both the structural and reconfiguration aspects.

• A formal model of FIMs in ADR that captures both the structural and reconfig-

uration aspects of FIM architectures.

• A comparison of the modelling approaches; the comparison considers criteria

relevant to the modelling of FIMs.

Modelling FIMs in UML The first approach adopts UML ”as-is”, namely it exploits

only the basic linguistic features of UML to express architectural aspects of systems.

Class diagrams together with the constraints (i.e., related multiplicities and OCL)

describe FIM architectural styles in UML. Classes model types of FIM components

and associations model possible relationships among those components. In UML, one

may require the use of tools and techniques to validate a configuration against its style.

Typically, object diagrams suitably model simple scenarios. To represent such scenar-

ios of FIMs, we consider a few configurations.

As anticipated in Section 1.2, UML ”as-is” approach does not support abstract

architectural components, therefore we do not address refinement of abstract FIM ar-

chitectures. Also, there is no support for reconfigurations, therefore, we demonstrate

how to introduce changes (e.g., to add FIM components in a CoT) directly in a FIM

configuration.

Due to the limitations of the standard UML, the above UML model does not address

specific architectural issues, namely refinement and reconfigurations. In addition to

capture the details necessary to address these issues, we use the profile in [33] to model

the same FIM details as specified by the above UML model.

While using the profile, composite structure diagrams (instance level) are used to
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represent configurations where UML connectors attach ports of the components. To

represent a FIM style, a class diagram represents an abstract (or refineable) CoT com-

ponent and two production components whose internal structures are described by their

corresponding composite structure diagrams (type level). These production compo-

nents model different architectural views of FIMs. For instance, a production describes

how CoTs can be legally connected in a chain. Similarly, another production describes

federations of providers. Since UML has limited support for representing complex re-

lationships in terms of classes and associations, global constraints are provided for the

later production and they can be defined in OCL.

In this model, we describe different reconfiguration rules to support the changes

within and across the FIM patterns. More precisely, reconfigurations that change the

FIM patterns are suitably described. On the other hand, the reconfiguration rules that

preserve the patterns may raise consistency problems. For instance, designers have to

consistently update the UML diagrams after each application of these rules.

To generate FIM configurations, an abstract FIM component can be refined using

the productions that respectively describe a federation of providers and a complex chain

of CoTs (recursively). Also, the production which describes the federation can suitably

be used to generate configurations of simple FIM scenarios.

To identify patterns in FIM configurations, corresponding composite structure di-

agrams (instance level) may effectively be analysed as they impose structure over a

complex system (e.g., chain of CoTs).

A Formal Model of FIMs in ADR An architectural style of FIMs is formally de-

scribed in ADR. A type hypergraph represents a set of architectural elements (i.e., FIM

components and their ports). ADR productions define the legal connections between

the FIM components.

Non-terminal hyperedges model abstract (or refineable) components and terminal
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hyperedges model basic components. Nodes model interactions between the compo-

nents. Typed hypegraphs represent FIM configurations whose associated ADR terms

describe the way those configurations were actually generated. Also, these terms give

proofs of construction of the corresponding configurations.

Abstract FIM components (e.g., CoT) are refined using corresponding productions

in order to generate their configurations. A few basic reconfiguration rules are defined

to add the FIM components into the configurations. Similarly, complex reconfiguration

rules are defined to add the collection of the FIM components to the configurations.

ADR’s refinement mechanism is exploited to generate specific configurations of

FIM patterns. A term in ADR which describes an existing FIM configuration can

effectively be used to generate the same configuration again. Also, an extended (or up-

dated) FIM configuration can be generated by applying the reconfiguration rules. Since

ADR terms formalise configurations, they can be parsed to identify the underlying FIM

patterns of the configurations.

A Comparison of the Modelling Approaches Since various other approaches (such

as other ADLs or graph-based formalisms) could possibly be used to model FIMs,

setting up the criteria for comparing ADR with UML and the other approaches be-

came necessary so as to assess them with regard to describing architectures of software

systems. Among the other approaches, we considered a few graph-based formalisms

including Baresi et al. [27], Hirsch et al. [61], and Le Métayer [73, 74] and, two ADLs

including C2SADEL [69] and Acme [56]. Consequently, a comparison between the

architectural modelling approaches is developed against those criteria.

More precisely, we analyse ADR, UML, and other ADLs for describing architec-

tural aspects of FIMs according to the criteria by distinguishing them between “gen-

eral” and “pattern-specific” criteria , which will be detailed in Section 6.1. The former

pertain to aspects of software architectures common to all sufficiently complex sys-
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tems. The latter can be considered as relevant to FIMs. However, they could also be

germane to other classes of systems as they mainly concern generation and identifica-

tion of actual systems’ configurations required to satisfy an architectural scheme. We

assess the support provided by the modelling approaches against those criteria. This

enables us to develop a comparison of ADR with UML and the other approaches.

The summary of the comparison against the general criteria is given below:

• Core architectural concepts. For components, C2SADEL supports only a par-

ticular kind of components (i.e., C2 style) having a fixed number and kind of

ports. For connectors, UML provides unsatisfactory support and it lacks connec-

tor semantics (i.e., connector types). However, one may choose from other UML

notations (e.g., classes, component, etc.) to describe connectors. The rest of

approaches suitably describe core architectural concepts including components,

connectors, and configurations.

• Architectural styles. All of the approaches suitably describe vocabulary (i.e.,

type of architectural elements) of the style. However, the approaches including

UML, the profile in [33], and Baresi et al. [27] may require OCL constraints to

model complex associations. Such constraints are often not easy to express.

• Style checking. For style checking configurations in UML, the profile in [33]

and Baresi et al. [27] require the use of validation tools and techniques. How-

ever, style checking of a configuration whose style uses OCL constraints is still

problematic. In ADLs (Acme and C2SADEL), their run-time systems perform

type-checking of configurations. In addition to this, one may further require

the use of certain analysis tools in order to validate configurations against their

styles. On the other hand, the graph grammar based approaches including ADR,

Hirsch et al. [61], and Le Métayer [73, 74] use a formal mechanism that ensures

construction of valid configurations.
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• Reconfigurations. UML does not provide any mechanism to describe reconfig-

urations. Also, the profile in [33] provides unsatisfactory support to describe re-

configurations in general way as they may raise consistency problems. C2SADEL

supports basic reconfiguration operations where a single component/connector

can be added/removed at a time. On the other hand, the rest of the approaches

suitably describe reconfigurations and, except in the approach of Hirsch et al. [61],

also provide the means to check whether the changes preserve the style or not.

• Refinement. UML supports refinement through its generalisation concept which

is not sufficient for architectural refinement. More precisely, UML does not sup-

port the notion of abstract architectural components. Baresi et al. [27] describe

one-to-one structural mapping between the elements of two styles. They mainly

focus on behavioural refinement. As observed in [70], C2SADEL provides lim-

ited support to deal with architectural refinement. On the other hand, the profile

in [33], the graph grammar based approaches including ADR, Hirsch et al. [61],

Le Métayer’s [73, 74], and Acme suitably describe architectural refinement.

Now we give a summary of the comparison developed against pattern specific cri-

teria:

• Generating patterns. To instantiate configurations (i.e., the FIM patterns as

instances of the style), developers use rules of thumb in UML. Also, the pro-

file in [33] and the approach of Baresi et al. [27] have the same limitations

while creating initial configurations. On the other hand, the refinement rules in

graph grammar based approaches including ADR, Hirsch et al. [61], and Le Mé-

tayer [73, 74] can be used to generate such configurations in a precise way by

applying the rules in a specific order. The ADLs (Acme and C2SADEL) lack

such a formal mechanism that can be used to precisely guide the developer to

instantiate configurations.
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• Identifying patterns. For identifying FIM patterns in configurations, object di-

agrams and instance level composite structure diagrams in UML can be analysed

in an automated way (i.e., parsing the XMI representations) by enumerating in-

stances of particular type. However, such an approach can be problematic while

analysing the UML diagrams which represent complex configurations. Also,

the profile in [33] and Baresi et al. [27] have the same limitations as UML. In

graph grammar based approaches including ADR, Hirsch et al. [61], and Le Mé-

tayer [73, 74], the formal description of the configurations can effectively be

parsed to identify patterns. In ADLs (Acme and C2SADEL), one may need to

incorporate specific techniques in the executables in order to identify the under-

lying patterns of FIM configurations. To the best of our knowledge, these ADLs

lack a mechanism for realising such techniques.

1.5 Related Work

A crucial work for our research is presented in [66], where various federation patterns

are described in terms of security and trust requirements. We formalise the patterns

that are based on direct trust relationships, namely relationships not relying on third

parties (cf. [66]).

Delessy et al. [48] informally describe CoT in terms of a structural pattern. This

pattern models a federation consisting a single IDP and multiple SPs. They use UML

class diagram (with an OCL constraint) to model the structure of the pattern. More-

over, their focus is on how to centralise users’ authentication related information within

a single IDP by considering lower level (i.e., implementation) details in order to realise

a given security mechanism. We give a formal representation and UML models that

capture various patterns of FIMs in terms of their structural and reconfiguration as-

pects. We model FIM components (e.g, IDP) at a higher level of abstraction and we do
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not consider implementation details of such components.

In [91] two new types of representation models are introduced; such models are

called dimension graph (DG) and pattern graph (PG). The former shows the relation-

ship (pattern-to-dimension) of a pattern with respect to various “dimensions” (i.e., life

cycle stage, architectural level, security concern, business domain, type of pattern, and

regulations/policies) of classification of security patterns. Instead, PG shows the re-

lationship (pattern-to-pattern) of a pattern to other patterns. In [91], the focus is on

representing properties (e.g., what pattern can be used for certain purposes) of the se-

curity patterns and relationships (e.g., what kind of patterns can be used at the next

stage to realise a given pattern) between the security patterns using a metamodel in

UML class diagram. The metamodel is then used to create DG and PG as its instances

represented in UML object diagrams so as to introduce an improved classification of

security patterns that helps the designers in analysing, finding, and understanding se-

curity patterns at each level of the development process. We propose a few generic

architectural models that represent a class of FIM patterns in UML and ADR, which

is a formal and a graphical approach. Our goal is the modelling of (direct security

and trust) relationships between the collaborating organisations at an abstract architec-

tural level. While using the formal approach, we represent FIM patterns as instances

(i.e., typed hypergraphs) of the model whose corresponding terms precisely show their

construction. Similarly, we use object diagrams and composite structure diagrams to

instantiate FIM patterns in UML. Moreover, reconfiguration rules and their relation-

ships have been defined in terms of their effects on the architectures of given FIM

patterns.

An informal pattern system for authentication and authorisation infrastructures

(AAI) has been described in [49] by showing the possible interactions between the

patterns given in [48, 78]. In [49], the focus is on security aspects at implementation

level and can be used directly in the software development process such as to deal
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with security in web services. The purpose of our work is twofold. On the one hand,

we aim to formally model FIMs as an architectural style and, on the other hand, to

deal with changes in their architectures while respecting the FIM style. We provide

a mechanism to formally model FIMs at an abstract level that may be used for con-

crete implementation for detailed analysis of the FIM properties (i.e., privacy) while

allowing reconfiguration in the FIMs.

Finally, in [37] ADR has been promoted to model some aspects of SOA by propos-

ing an architectural style for a modelling language featuring module composition. FIM

patterns could be modelled following the approach described in [33] where ADR has

been used as a formal support of style-based designs and reconfiguration of a UML

profile for SOA. However, such approach would require OCL constraints to represent

FIMs which are complex to deal with in the FIM context.

1.6 Structure of the Thesis

Chapter 2 briefly describes FIMs, FIM patterns, basics of software architectures, ADR,

and UML. In this chapter, an overview of FIMs is given together with their security as-

pects and also existing FIM patterns are described. The basics of software architectures

are briefly described by considering core architectural concepts and design vocabulary

of an architectural style. This chapter also gives basic definitions of ADR and describes

UML’s concepts that are used to represent architectural aspects of software systems.

Chapter 3 describes a style using UML ”as-is” to model architectural aspects of

FIM systems. These aspects of FIM systems are modelled in Chapter 4 which uses the

UML profile in [33] to describe a FIMs style.

Architectural aspects of FIMs are formalised in ADR in Chapter 5. In this chapter,

a formal model of FIMs is given which characterises FIM configurations together with

reconfigurations rules.
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Chapter 6 gives a comparison of the modelling approaches used in this dissertation

to model FIM systems. A few other modelling approaches are also considered for the

comparison which could possibly be used to model such systems. The comparison

is developed by fixing the criteria related to general and pattern specific architectural

aspects. Further, we also evaluate the approaches used in Chapter 3, Chapter 4, and

Chapter 5 by applying them to a case study. The available tool support for the mod-

elling approaches is discussed also in this chapter.

Finally, concluding remarks and future work are given in Chapter 7.

Published work The formal model of FIM systems in ADR was first presented

in [26]. The paper also presents a few reconfiguration rules to add identity providers in

a FIM configuration. The main goal of the paper was to represent the style-preserving

reconfigurations of FIM systems.
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Chapter 2

Background

In this chapter, an overview of FIMs is given together with their security aspects. Also,

the basic concepts of software architectures and the basic definitions of ADR are given.

Finally, we describe the concepts in UML to model the structural aspects of software

systems.

2.1 Federated Identity Management

FIMs are becoming ubiquitous and can be found in many different application contexts,

including finance, education, eHealth, eGovernment. FIMs form an interesting class

of distributed systems that allow group of organisations to “federate” in order to share

services (or resources). FIMs allow cross-organisation authentication [79]. Typically,

access to resources is governed by an access control system that requires user authen-

tication. FIMs make users’ authentication information available in a global context so

that an organisation can have more business relationships with different organisations

and it can be part of different federations.

We present the roles of FIMs by considering the UML use case diagram in Fig-

ure 2.1. The roles involved in FIMs are users (whose identity is to be federated),
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Figure 2.1: Roles in a FIM system

identity providers which vouch authentication statements for users (e.g., by issuing

certificate), and service providers dispensing actual services. Hereafter, we abbreviate

identity provider with IDP and service provider with SP. In Figure 2.1, a university

(the IDP) where students (the users) access on line articles at one of the partner digital

libraries (SP) form a FIM system.

The notion of Circle of Trust (CoT) is key to FIMs and permits to establish complex

policies and obligations. In [30], a CoT is defined as a framework that specifies a com-

mon set of cooperation policies together with collaboration interfaces within a certain

group of organisations having trusted relationships. Users provide verified identities in

order to access resources shared by member organisations of the CoT. In FIMs, a CoT

can be described as a federation of identity and service provider organisations.

Example 2.1 (cf. [60]) A financial institution needs its users (employees, customers,

etc.) to access services offered by a third party provider. The financial institution is the

IDP managing the authentication information of its users to the third party SP. �

In FIMs, an SP relies on the authentication information sent by the IDP when users

request access to services so as to support Single Sign-on (SSO), namely allowing
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users to authenticate only at their IDP without re-authenticating themselves to access

services offered by SPs in the CoT.

2.2 The FIM Patterns

For FIMs, several recurring CoT scenarios exist which specify how IDPs and SPs are

associated into federations. Kylau et al. [66] have examined such scenarios in terms

of their trust requirements. Furthermore, they referred those scenarios as patterns by

using term pattern in its literal meaning (i.e., a repeating theme). Specifically, their def-

inition of a pattern1 indicates a particular constellation of trust relationships between

IDP and SP organisations to enable FIM. Furthermore, they differentiate their defini-

tion of a pattern from the usual notion of a design pattern which describes a solution

to a recurring problem in a particular context.

In [48], structural (and behavioural) aspects of FIMs are informally represented as

a pattern for a CoT where a single IDP is federated to multiple SPs. We consider some

patterns based on direct trust relationships, namely relationships not relying on third

parties. More precisely, following [66], we focus on (i) Bilateral Federation (BF), (ii)

Multiple IDPs Federation (MIF), (iii) Multiple SPs Federation (MSF), and (iv) Arbi-

trary Federation (AF); also we introduce and model an additional pattern called Chain

of CoTs.

The differences among those patterns mainly lie on how they manage trust and

what security threats they are exposed to (e.g., privacy of user identities, business data,

access control, authentication). More precisely, patterns BF, MIF, MSF, and AF are

ordered according to the security threats they are subject to, pattern BF being the “most

robust”. We now briefly comment on the security threats hindering each pattern; the

reader is referred to [66] for details.
1We use this term for FIM patterns in this dissertation.
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Bilateral Federation (BF) In BF, a single IDP is federated to a single SP. The IDP

is supposed to follow adequate procedure to register the users (e.g., by creating their

credentials). Also, the IDP is required to adapt suitable identity mapping (i.e., mapping

individual users to designated roles in the organisation) and authentication procedures

so as to avoid unauthorised access to the SP. In addition to these requirements, the IDP

and the SP agree to deal with the private data according to common policies. Since

the access to services is mediated by the IDP, the latter is aware of users’ activities

(e.g., how often users communicate with the SP). The IDP may exploit this kind of

information to acquire knowledge on users’ behaviour and this is regarded as a threat

to users’ privacy. Also, SP receives information related to users’ identity from the IDP

hence the SP might disclose (i.e., to other SPs) such information without the consent

of the IDP or the user.

Example 2.2 An airline is federated to a hotel to allow a traveller to book a room

after booking a flight. The airline acts as an IDP while the hotel is the SP. According

to FIM pattern BF, a traveller can book a room after booking a flight.

Example 2.2 describes a scenario where an airline is federated to a hotel.

Multiple IDPs Federation (MIF) In MIF, a single SP is federated to multiple IDPs;

users may be registered at several IDPs and they notify the SP about which IDPs will

be used for authentication. The additional threat with respect to pattern BF is that some

or all IDPs might decide to cross-check the information about the accesses to the SP

for accumulating data on individual users. Example 2.3 describes a scenario where

multiple IDPs are federated to a single SP.

Example 2.3 Suppose that the scenario described by Example 2.2 has to be modified

so that travellers are authenticated either by the airline company or via another ac-

count on a train company. In other words the airline and the train companies act as

27



IDPs while the hotel is the SP. According to FIM pattern MIF, a traveller can book a

room after booking a flight or a train.

Multiple SPs Federation (MSF) In MSF, a single IDP is federated to multiple SPs;

a typical situation in this case is that delegation of user authentication is necessary. For

instance, a service in the federation may be delegated (by an IDP or by another SP)

to provide users’ credentials if it needs to invoke other services in the federation. The

additional threats with respect to pattern MIF include (i) unauthorised delegation of

authentication and (ii) “collusion” of SPs to accumulate identity information. The first

threat may happen when users invoke a complex service making further invocations to

other SPs in the federation. The second threat allows SPs to correlate their information

and accumulate data on users. Example 2.4 describes a scenario where a single IDP is

federated to multiple SPs.

Example 2.4 While extending the scenario described by Example 2.2 to allow trav-

ellers to be authenticated by the airline company to access the hotel and a car rental

company. The airline acts as an IDP while the hotel and the car rental company are

SPs. According to FIM pattern MSF, a traveller can book a room and a car after

booking a flight.

Arbitrary Federation (AF) Pattern AF is the most vulnerable as it allows the free

combination of patterns BF, MIF, and MSF and is exposed to all their threats. Exam-

ple 2.5 describes a scenario where multiple IDPs are federated to multiple SPs.

Example 2.5 While combining the scenarios described by Example 2.3 and Exam-

ple 2.4, travellers can either be authenticated by the airline company or the train

company to access the hotel and the car rental company. The airline and the train

companies act as IDPs while the hotel and the car rental company are SPs. According
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to FIM pattern AF, a traveller can book a room and a car after either booking a flight

or a train.

Chain of CoTs In this pattern, two or more CoTs are connected in a chain to enable

FIM where users from an IDP of one CoT may access services in the other CoTs that

are participating in the chain. This pattern is exposed to the same threats as with the

pattern AF. Example 2.6 describes a scenario where two CoTs can be connected in a

chain.

Example 2.6 In a chain of CoTs pattern, a CoT described by Example 2.3 is attached

to another CoT described by Example 2.4. In this chain, travellers are authenticated

by either the airline or the train companies (i.e., IDPs) in order to access the hotel

and the car rental companies (i.e. SPs). Consequently, this pattern enable travellers to

book a room and a car after either booking a flight or a train.

2.3 A Few Real Examples of FIM Systems

In this section, we describe a few real examples of the FIM systems taken from [11]

where several FIM implementations can be found in various application contexts (e.g.,

education, eGovernment, Healthcare, eCommerce, eEducation, etc.). The main crite-

rion we fix to choose such examples is to find the FIM implementations that establish

legally binding CoTs [29] based on the existing FIM specifications (e.g., the Liberty

Alliance [22]).

Example 2.7 (cf. [2]) In New York State (NYS), 12 Regional Information Centres (RICs)

are responsible to provide technology services to its 697 school districts associated to

the Boards of Cooperative Educational Services (BOCES). One of these RICs called

EduTech directly supports 47 schools districts. Another RIC called SCT provides tech-

nology services to 9 school districts. DataMentor application run by EduTech shows
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district-wide performance that enables teachers and administrators to create their own

assessments for evaluating progress and identifying topics that need to be focused.

SCT runs an application called QuizMaker to help teachers in targeting and build-

ing strength in their weak areas. After deploying a FIM system, teachers in all of the

districts associated to the RICs are able to seamlessly access these applications.

Example 2.7 describes a complex scenario of an existing large scale FIM system

which will be modelled in Section 6.5.3. Also, we describe a few more FIM examples

for the sake of demonstrating the adoption of FIM systems by organisations in the real

world. For instance, Example 2.8 is to illustrate how FIMs can undergo reconfigura-

tions and Example 2.9 is to show that FIMs are used in industrial scenarios. The FIM

scenarios described by those examples could be modelled in the same way as the FIM

scenario described by Example 2.7.

Example 2.8 (cf. [3]) The government of Denmark deploys a FIM system to enable its

citizens to conveniently access various public digital services (e.g., TAX self Service,

Student Loans, State Education Grant, etc.) operated by the designated agencies/de-

partments. In 2008, the Danish government introduced a portal called MyPage (or

www.borger.dk) which acts as an IDP and 12 SPs which provide access to 30 applica-

tions in the first wave of realising the FIM system. To further extend the FIM system

later in the same year, the government introduced 3 portals and 25 SPs which provide

access to 75 applications.

Example 2.9 (cf. [4]) A FIM system has been in production at General Motors (GM)

which is one of the world’s largest automaker. In the FIM system, the IDP called

MySocrates provides authentication information on request to services offered by a

third party SP. This allows GM’s employees to access many of the outsourced HR ser-

vices (i.e., health benefits, expense reporting, 401(k), etc.) provided by the SP. Further,
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Figure 2.2: Architecture of a FIM system

GM has also been exploring the ways to extend the federation via adding two more SPs

namely, DealerWeb and OnStar. DealerWeb would enable GM’s dealers worldwide to

access variety of services (e.g., online auctions). OnStar provides variety of services

including in-vehicle safety, communication, and security services.

2.4 Basics of Software Architectures

Software architectures (SAs) are considered as the high-level descriptions that specify

core architectural concepts including components, connectors, and configurations. In

an architectural description, components are central computational elements of a sys-

tem and connectors model a kind of interaction between them. Example 2.2 describes a

scenario where airline and hotel entities are the FIM components and their interactions

(i.e., service calls) can be modelled as connectors.

A configuration describes an architecture where components and connectors are

composed together. For instance, in Example 2.2 an airline (i.e., IDP) is connected to a

hotel (i.e., SP) in a FIM system that may allow travellers to book a room after booking a

flight. This configuration represents FIM pattern BF where a single IDP is federated to
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a single SP and Figure 2.2 shows such a configuration. Moreover, a configuration may

be used for architectural analysis (i.e., conformance) and its primary role is to provide

means of communication among the different stakeholders to understand the system at

the desired level of abstraction. For instance, a valid configuration of the CoT adheres

to the essential architectural properties specified in the FIM patterns. In this case, one

has to check conformance of the FIM configurations against these patterns.

The vocabulary of an SA describes a set of architectural elements (e.g., component

and port) types. These element types are instantiated in order to create architectural

configurations. For example, a component of type IDP in the FIMs encapsulates the

functionality of an identity provider. One may need to create multiple instances of

component of type IDP while generating configurations of FIM patterns MIF and AF.

2.5 Architectural Design Rewriting

The Architectural Design Rewriting (ADR) approach [37, 38] permits to design hierar-

chical, style conformant and reconfigurable software architectures. The main features

of ADR include a rule-based approach, hierarchical design (or structured graph), and

an algebraic presentation. Bruni and Lluch-Lafuente in [34] raised some drawbacks re-

lated to using flat, unstructured graph for the design and analysis of software systems.

Based on their experience of using ADR to model such systems, they argue that such

drawbacks can be alleviated by using hierarchical, structured graphs. In order to tackle

the complexity of software systems, they propose the use of structured graph instead of

unstructured graphs to provide efficient formal reasoning on the architectures of such

systems by superimposing some structure on the graphs describing these architectures.

We borrow the technical definitions in this section from [37] (where more details

can be found).
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} n : Noo }

•
(a) An abstract architecture

} s : Soo }

• c3 : Coo

c1 : C

99ttttt
c2 : C
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(b) A configuration of a client-server architecture

Figure 2.3: A client-server architecture

Example 2.10 We illustrate the approach through a simple scenario of a client-server

application where ”clients” can connect to a ”server” within a ”network” and Fig-

ure 2.3 represents such a scenario. Figure 2.3(a) shows an abstract architecture which

represents the black-box view of a system. The abstract architecture is replaced with

a configuration given in Figure 2.3(b) where several clients are connected to a server.

In such a configuration, each client of type C communicate with the server of type S

via a ”client port” (node •) that models interconnection between the clients and the

server. Similarly, a ”chaining port” (node }) connects two servers to extend the chain

of servers. Since clients can connect to the server, we model reconfigurations that de-

scribe such kind of change into the configurations. To demonstrate the changes in the

client-server architecture, we also show how such reconfigurations can be applied.

Software architectures are modelled in ADR as hypergraphs whose edges represent

components and nodes (vertices) represent interconnections between components.

Definition 1 An ADR (hyper)graph is a tuple G = 〈V,E, t〉 where V is the set of

nodes, E is the set of edges, and t : E→V ∗ is the tentacle function.

The vocabulary of an architecture is given by a distinguished graph, the type graph,

over which graphs are typed. Moreover, ADR edges are partitioned in terminal (not

refinable) and non-terminal (refinable) edges.

Example 2.11 An ADR graph on the sets of nodes {},•} and edges {N,S,Cs,C} can

be graphically represented by a graph (H) in Figure 2.4. The tentacle function is

represented by the lines connecting edges ordered clockwise starting from the arrow-
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headed tentacle; the tentacle function of the type graph (H) maps edges N and S to

[},},•] and edges Cs and C to [•]. The doubly-lined boxes N and Cs represent non-

terminal edges while single-lined boxes S and C are terminal edges. �

} Noo • Csoo

S

NNNNNNN
ppppppp

^^

C

ggNNNNNNN

Figure 2.4: A type graph (H) for the client-server architectural style

In ADR, a type graph on which the graphs are typed describes vocabulary of an

architectural style. The type graph in Figure 2.4 can be formally defined as

VH = {},•}

EH = {N,S,Cs,C}
tH :

 N,S 7−→ [},},•]

Cs,C 7−→ [•]

In a type graph, an edge models the type of components and a node models an

interaction point between the components. In the type graph (H) given in Figure 2.4,

the non-terminal edges N and Cs represent a network and a collection of clients, re-

spectively. The terminal edges S and C represent a server and a client, respectively.

More precisely, non-terminal edges model abstract (refinable) components which can

be replaced by a complex graph. For instance, the non-terminal N models a network at

an abstract level. In this case, the non-terminal N could be replaced with a graph where

several clients can be attached to a server. On the other hand, terminal edges model

basic components which do not require further refinement.

Definition 2 A graph G is typed over a graph H when G is homomorphic to H,

namely when there are the functions fV : VG→ VH and fE : EG→ EH preserving the

tentacle functions such that f ∗V ◦ tG = tH ◦ fE , where f ∗V is the homomorphic extension

of fV to V ∗G.

In ADR, typed graphs are defined as graphs equipped with typing morphism. Ar-
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chitectures are modelled using designs in ADR which represent architectural compo-

nents with their interconnections.

Definition 3 A design is a graph with interface, i.e. a triple d = 〈Ld,Rd, id〉, where

• Ld is a (typed) graph consisting only of a non-terminal and distinct nodes at-

tached to its tentacles,

• Rd is a (typed) graph without non-terminal edges,

• and id : VLd →VRd is a total function.

In ADR, architectures are built using a set of composition operations known as

design productions.

Definition 4 A (design) production p is a tuple 〈Lp, Rp, ip, l〉 where Lp is a (typed)

graph consisting only of a non-terminal edge and by distinct nodes attached to its

tentacles; Rp is a (typed) graph containing both terminal and non-terminal edges;

ip : VLp → VRp is a type preserving function; and l is a bijection mapping the non-

terminal edges of Rp on an initial segment [1,2, . . . ,np] of positive numbers.

Example 2.12 [Like graphs, ADR productions have a convenient graphical represen-

tation which we illustrate with an example.] Given

graph G1

}
c1

n0:Noo }
c2

•
p1

graph G2

}
d

n1:Noo
KKKK
}
c n2:Noo

ssss
}
b

•
a

which can be typed over the graph (H) from Figure 2.4 in the obvious way, and l :

ni−→ i ∈ {1,2} the trivial function, the production having G1 as left-hand-side (LHS)

and G2 as right-hand-side (RHS) (together with the homomorphisms (cf. Definition 2))

can be drawn as

nets : N×N→ N
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n0:N

c1
}

d
}

n1:Noo c
} n2:Noo b

}
c2
}

a•
p1•

(2.1)

where the outermost dotted box corresponds to G1, the inner graph is G2 (with the

explicit typing given by the homomorphism (cf. Definition 2)), and the dotted lines

represent the mapping from the nodes of G1 to those of G2. �

Productions allow top-down design by refinement, bottom-up typing of the actual ar-

chitecture and well-formed composition of the architectures. The set of design produc-

tions together with the type graph represent the architectural style.

If non-terminal edges are considered as ’types’ (of architectures), ADR produc-

tions have a convenient “functional” reading. For instance, the production of Exam-

ple 2.12 can be abstractly thought of as a function that takes two architectures of ’type’

N (namely obtained by refining N) and returns a new architecture of type N. This al-

lows one to consider productions as constructors of a sorted algebra of architectures

where the terms of such an algebra yield architectural configurations. For instance, if

x, y, and z are architectures of type N, the term

nets(nets(x,y),z)

is an architecture of type N.

The formal definition of the production nets in (2.1) can be given as under:

The morphism between the LHS typed graph G1 of the production nets and the

type graph H (Figure 2.4) is given below

fVLnets
:


c1 7−→}

c2 7−→}

p1 7−→ •

fELnets
: n0 7−→ N
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Similarly, the morphism between the RHS typed graph G2 of the production nets and

the type graph H (Figure 2.4) is given below

fVRnets
:



b 7−→}

c 7−→}

d 7−→}

a 7−→ •

fERnet
:

 n1 7−→ N

n2 7−→ N

In production nets, function inets maps the interface nodes of Lnets with the interface

nodes of Rnets and function lnets is the bijective mapping of the non-terminals in the

Rnets on an initial segment [1,2, ...,nnets]

inets :


p1 7−→ a

c1 7−→ d

c2 7−→ b

lnets :

 n1 7−→ 1

n2 7−→ 2

Figure 2.5 describes a few productions which can be used to generate configu-

rations of architectures of type N. The production server will be used to generate

architectural configuration of N consisting of a S and a Cs. The RHS of the produc-

tion server takes a non-terminal edge Cs attached to a node of type • which is then

exported in the interface of the production. Further, the non-terminal edge of type Cs

in production server will be refined using the corresponding productions (i.e., clients,

client, and noclient).

The production clients generates an architectural configuration of the Cs consisting

of two Cs. The RHS of the production clients combines two non-terminal edges of type

Cs to the same • which is then exported in the interface of the production. In this way,

the Cs will all share the • node with the same S edge.

The production client is meant to generate architectural configuration of the Cs
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server : Cs→ N clients : Cs×Cs→Cs client :→Cs noclient :→Cs
n:

N

c 1 }
c }

h:
S

oo
b }

c 2 }

c 0
:C

s
//a •

p 1 •

c 0
:C

s

c 1
:C

s
//a •

p 1 •

c 2
:C

s

:: u u u

c 0
:C

s

c 3
:C

//a •
p 1 •

c 0
:C

s

a •
p 1 •

Figure 2.5: The productions for the network

consisting of a single C. The RHS of the production client takes nothing and attaches

the C to a • which is then exported in the interface of the production. In this way, the

Cs shares a node • with the the same S edge.

The production noclient is meant to generate an architectural configuration of a Cs

for empty design. The RHS of the production noclient takes nothing and uses node •

to share with the server and then this node is exported in the interface of the production.

The formal definitions of the productions described in Figure 2.5 are given below:

}
c1 n:Noo }

c2

•
p1

(a) The typed graph Lnet

c
} h:Soo b

}

c0:Cs // a•
(b) The typed graph Rnet

Figure 2.6: LHS and RHS graphs of production server typed over the graph H

The morphism between the LHS typed graph of the production server in Fig-

ure 2.6(a) and the type graph H (Figure 2.4) is given below

fVLserver :


c1 7−→}

c2 7−→}

p1 7−→ •

fELserver : n 7−→ N

Similarly, the morphism between the RHS typed graph of the production server
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and the type graph H (Figure 2.4) is given below

fVRserver :


c 7−→}

b 7−→}

a 7−→ •

fERserver :

 h 7−→ S

c0 7−→Cs

In production server, function iserver maps the interface nodes of Lserver with the inter-

face nodes of Rserver and function lserver is the bijective mapping of the non-terminals

in the Rserver on an initial segment [1,2, ..,nserver]

iserver :


c1 7−→ c

c2 7−→ b

p1 7−→ a

lserver : c0 7−→ 1

c0:Cs // p1•
(a) The typed graph Lclients

c1:Cs // a•

c2:Cs

::uuu

(b) The typed graph Rclients

Figure 2.7: LHS and RHS graphs of production clients typed over the graph H

The morphism between the LHS typed graph of the production clients in Fig-

ure 2.7(a) and the type graph H (Figure 2.4) is given below

fVLclients
: p1 7−→ • fELclients

: c0 7−→Cs

Similarly, the morphism between the RHS typed graph of the production clients and

the type graph H (Figure 2.4) is given below

fVRclients
: a 7−→ • fERclients

:

 c1 7−→Cs

c2 7−→Cs
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In production clients, function iclients maps the interface nodes of Lclients with the inter-

face nodes of Rclients and function lclients is the bijective mapping of the non-terminals

in the Rclients on an initial segment [1,2, ..,nclients]

iclients : p1 7−→ a lclients :

 c1 7−→ 1

c2 7−→ 2

c0:Cs // p1•
(a) The typed graph Lclient

c3:C // a•
(b) The typed graph Rclient

Figure 2.8: LHS and RHS graphs of production client typed over the graph H

The morphism between the LHS typed graph of the production client in Fig-

ure 2.8(a) and the type graph H (Figure 2.4) is given below

fVLclient
: p1 7−→ • fELclient

: c0 7−→Cs

Similarly, the morphism between the RHS typed graph of the production client and the

type graph H (Figure 2.4) is given below

fVRclient
: a 7−→ • fERclient

: c3 7−→C

In production client, function iclient maps the interface nodes of Lclient with the inter-

face nodes of Rclient. Since there is no non-terminal in the production client, function

lclient does not represent the mapping.

iclient : p1 7−→ a
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c0:Cs // p1•
(a) The typed graph Lclient

a•
(b) The typed graph Rclient

Figure 2.9: LHS and RHS graphs of production noclient typed over the graph H

The morphism between the LHS typed graph of the production noclient in Fig-

ure 2.9(a) and the type graph H (Figure 2.4) is given below

fVLnoclient
: p1 7−→ • fELnoclient

: c0 7−→Cs

Similarly, the morphism between the RHS typed graph of the production noclient and

the type graph H (Figure 2.4) is given below

fVRnoclient
: a 7−→ •

In production noclient, function inoclient maps the interface nodes of Lnoclient with the

interface nodes of Rnoclient. Since there is no non-terminal in the Rnoclient, function

lnoclient does not represent the mapping.

inoclient : p1 7−→ a

Generating configurations To illustrate how legal configurations can be generated

using the productions given in Figure 2.5 we consider the graphs2 G1 and G2 in (2.2)

G1 =
} n:Noo }

•
G2 =

} s:Soo }

•

c1:C

;;xxxx
c2:C

ccFFFF
(2.2)

and show how G1 can be refined into the configuration G2.

2Graphs G1 and G2 are typed over the graph depicted in Figure 2.4 in the obvious way.
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The initial sequence of reductions is

G1
server→

} s:Soo }

•

c0:Cs

OO
clients→

} s:Soo }

•

c1:Cs

;;vvvv
c2:Cs

ccHHHH
client→

} s:Soo }

•

c1:C

;;xxxx
c2:Cs

ccHHHH
client→ G2

In the first step, server is applied to generate the server s; then the edge c0 is refined

by applying clients yielding two clients of type Cs. In the next step, the edge c1 is

refined by applying client yielding a client of type C. Finally, the edge c2 is refined

by applying client yielding another client of type C. As a result, configuration G2 is

obtained which represents the two clients of type C that are attached to the server of

type S. The term-like representation of G2 is

server(clients(client,client)) (2.3)

which highlights the hierarchical structure of the configuration G2. In this way, config-

urations of the client-server architecture can be generated.

Describing reconfigurations In ADR, the design productions can be given an alge-

braic formulation where a term describes a particular style-proof. For instance, term of

(2.3) describes how a legal configuration of a client-server architecture is built by using

the productions given in Figure 2.5. Style-preserving reconfigurations are operated at

the level of style-proofs by exploiting term rewriting over style-proof terms. A graph

transformation rule can be represented as a rewrite rule L −→ R where L and R are

terms of the same type (interface graph). This condition enforces style preservation by

constraining both the L and the R of each reconfiguration rule to have the same type of

the interface graph [38].

For instance, let us define a reconfiguration rule to add components (at abstract

level) to the architectures of type N in Example 2.12 and let net : N→ N be a produc-
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tion that takes a configuration of type N and returns another configuration of type N.

To illustrate this, assume x and y are architectures of type N and consider the reconfig-

uration rule

add(y) : net(x)−→ nets(net(x),y) (2.4)

where a sub-term net(x) of type N on the LHS of the rule is replaced by term nets(net(x),y)

of the same type on the RHS. For instance, the reconfiguration

nets(net(x1),y1)−→ nets(nets(net(x1),y2),y1)

is obtained by applying the rule add(y2) in (2.4) to the subterm net(x1) on the LHS so

as to yield the term on the RHS where y2 is attached in the new configuration by means

of the constructor nets.

To further illustrate how ADR reconfiguration rules can describe changes in the

client-server architecture (cf. Example 2.10) we consider the following rules

addClient1 : client−→ clients(client,client) (2.5)

addClient2 : noclient−→ clients(client,noclient) (2.6)

addClients(X) : client−→ clients(X,noclient) (2.7)

These rules allow one to add a single client and a collection of clients into a config-

uration of the client-server system. More precisely, the rule addClient1 in (2.5) and

the rule addClient2 in (2.6) add a single client of type C while the rule addClients(X)

in (2.7) adds a collection of clients via an edge of type Cs. Notice that in these rules

the LHSs and the RHSs terms have the same type. In this way, ADR guarantees by

construction that if all reconfiguration rules preserve the types then any derivation will

not change the style.

Figure 2.10 illustrates the reconfiguration of a client-server architecture by applying
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Figure 2.10: Rule to add a client (from left to right)

the rule (2.5). The LHS graph shows configuration consisting two clients of type C and

a server of type S. This architecture is reconfigured by connecting an additional client

to the server. To illustrate such a change in the configuration obtained by applying the

rule (2.5), transition

server(clients(client,client))−→ server(clients(clients(client,client),client))

describes the reconfiguration where the LHS term defines configuration having two

clients c1 and c2 attached to the server s while the RHS term defines the new configu-

ration that attaches an additional client c3. In this reconfiguration, the subterm client

of type Cs on the LHS is replaced with a new term clients(client,client) of same type

on the RHS and such a transition preserves the style.

2.6 UML for Structural Modelling

This section describes UML diagrams used in the thesis to model FIMs. Specifically,

we discuss

• class diagram

• object digram

• composite structure diagram

• package diagram
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Figure 2.11: A class diagram showing a FIM system

Also, we give a brief description of OCL constraints and UML profiles.

2.6.1 Class diagram

A class diagram represents classes (or domain concepts) and their relationships. Figure 2.11

shows a UML class diagram that represents relationships between these classes of the

FIMs (attributes/properties and methods are immaterial).

The relationships between two classes A and B of interest are association, compo-

sition, and inheritance.

• An association establishes that objects in A contains a reference to objects in

B. Multiplicity value shown on each end of the association describes how many

objects of the class will participate in the association. The default multiplicity is

1. An association can have an optional name and is graphically represented by

lines. For instance, Figure 2.11 shows an association named chains that relates

objects of type Federation.

• An association which represents that objects in A own or contain objects in B

is called composition. A link with filled diamond arrow-head represents com-

position. For instance, in Figure 2.11 an object of type CirclesOfTrust may

consist of two or more Federations.

• An association which represents that a class (i.e., subclass) is sub-type of an-

other class (i.e., superclass) is called inheritance. The generalisation arrow (with
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Figure 2.12: A class diagram showing inheritance relationship

filled diamond) describes such a relationship. For instance, in Figure 2.12 the

classes IdentityProvider and ServiceProvider are specialisations of the

class Organisation.

2.6.2 Object diagram

Typically, object diagrams are used to represent snapshots of the objects in systems

during their execution. Since connections among objects are complicated, object dia-

gram usually consider simple scenarios [52].

Figure 2.13: An object diagram showing a FIM configuration

Object diagrams use a simple notation; an object is drawn as a rectangle tagged with

the (optional) object name followed by its class; a link between two objects represents

a possible interaction between them (a link can only connect objects corresponding to

the association between their classes). Figure 2.13 shows an object diagram of a FIM

system corresponding to the class diagram in Figure 2.11 where federations f1, f2,

and f3 are associated to each other in a circle of trust c.
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Figure 2.14: A composite structure diagram (type level)

2.6.3 Composite structure diagram

In UML, composite structure diagrams (hereafter referred as structure diagrams) may

represent the internal structure of a classifier (e.g., class or components) in terms of

interconnected instances collaborating over communication links. In these diagrams,

collections of instances are called parts. For instance, the internal structure of the CoT

in Figure 2.14 consists of three different parts represented by their respective classes,

namely a Federation, one or more IDPs, and one or more SPs.

Parts in structure diagram can be associated to other parts; an association may have

multiplicity defined on its each end. If multiplicity of an association end is not explic-

itly defined then multiplicity of the part it attaches will be used. Links relate parts with

each other or with their enclosing classifier (e.g., class). UML links are graphically

represented by connectors, namely lines ending into ports. A port represents a dis-

tinct interaction point of the instances of a classifier and its behaviour can be defined

in terms of provided interfaces and required interfaces. Note that we do not model

behaviour of FIMs. Therefore, ports are used in this dissertation without interfaces.

There are two types of connectors in UML called assembly and delegation con-

nectors, respectively. Assembly connectors are represented by solid lines and specify
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Figure 2.15: A package diagram

connections between the ports of two or more instances. Delegation connectors are

represented by dashed lines and connect instances to their enclosing class.

A structure diagram yields a context specific view of a classifier. For instance, Fig-

ure 2.14 yields the context of a CoT having a federation of IDPs and SPs; the outermost

ports permit to chain CoTs. Similarly, another context specific view of a CoT in FIMs

may be described as a chain of CoTs.

2.6.4 Package diagram

In UML, a package is used to organise the model elements (e.g., classes, packages,

etc.) into logically related groups. For example, a credential package may contain

classes related to different types of security tokens (e.g., Kerberos, X.509, Smartcard,

etc.) that can be used in a FIM system.

As shown in Figure 2.15 a package is graphically represented as a folder (The name

of a package can be shown either inside the body of the folder or on its tab).

A package may contain other (sub-)packages and package diagrams suitably model

the dependencies among the packages. A link (i.e., a dashed line with an arrow-

head) between two packages represents the dependency relationship. Figure 2.15

shows a package diagram where package Security contains (sub-)packages FIM and

Credentials. In this case, a change in package Credentials may affect the de-
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pendent package FIM. Also, links connecting packages in a package diagram can be

decorated with additional information specifying the kinds of relationships that may

exist between the involved packages (i.e., import, merge, use, etc.). In Figure 2.15,

the link between packages FIM and Credentials specifies a usage dependency that is

decorated with the stereotype «use» (described later).

2.6.5 Constraints

Often the essential aspects of the system are restricted using constraints. In UML,

constraints are defined using Object Constraint Language (OCL) [7]. Typically, OCL

constraints describe invariant conditions. Every OCL expression relies on the types

(e.g., classes) that are defined in the UML diagrams to precisely specify systems [90].

In OCL, an invariant is a constraint that must be true for an object during its whole life

time. For example, the invariant ”a valid CoT in the FIMs must have at least one IDP

and SP” can be expressed in OCL as

context Federation
inv: self.idps.size()>=1 and self.sps.size()>=1

where identifiers idps and sps are the variables (or attributes) in the class Federation.

Note that we do not represent attribute of the classes in UML class diagrams. For

instance, consider the class diagram of Figure 1.3 (page 12) where a single IDP and

multiple SPs are associated with the Federation. In this case, the identifiers (e.g., idp

and sps) followed by key word self in the OCL constraints will represent the attributes

which are derived from such associations.

2.6.6 UML profiles

The notion of profiles describes the lightweight extension mechanism that allows one

to adapt UML to a particular domain (e.g., finance, healthcare, etc.) or a platform (e.g.,
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SOA) without changing the UML metamodel. A UML profile is a kind of package

which may consist of stereotypes, tagged values, and a set of constraints.

In a UML profile, stereotypes give specific meanings to the use of UML model

elements. Also, stereotypes may have one or more associated (optional) tagged values

that provide extra information. Constraints may typically define well-formedness rules

that are specific to the profile. For instance, one may restrict the way the metamodel

and its constructs need to be used while using the profile.

The UML4SOA Reconfigurations Profile In Chapter 4, we will use the UML pro-

file in [33] to model architectural and reconfigurations aspects of FIMs. The pro-

file aims to provide the support for describing such aspects under style. It extends

UML4SOA profile in [51, 92] to allow the modelling of inherent dynamic topologies

of service oriented applications where components may join or leave the systems and

connections between the components are rearranged. In order to avoid ill-formed con-

figurations, a suitable mechanism is required in the modelling approaches to constraint

allowable configurations. To express such conditions, architectural style provides a

mechanism where a set of rules specify such configurations.

As observed in [33], UML provides limited support for describing architectural

styles. The profile in [33] provides the additional support in UML to model styles.

In addition to this, it also provides a methodology that can be used to model dynamic

changes in configurations under style. To this purpose, the profile uses UML diagrams

which may conveniently be manipulated by UML designers to represent style and re-

configurations. In this profile, SA components (e.g., a service provider) are represented

via UML components3 with ports attached. UML connectors model interactions (e.g.,

service references) between the components by attaching ports.

Modelling Architectural Style The profile in [33] uses two different kinds of struc-

3For simplicity we do not decorate UML components with the stereotype «component»
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Figure 2.16: Describing an architectural style using the profile

tural diagrams (see Figure 2.16) namely, class diagrams and type level composite struc-

ture diagrams to represent style. More precisely, the profile allows one to describe ab-

stract architectural components which are stereotyped as «refineable». Such compo-

nents can be replaced with a given configuration by applying one of the productions (or

design rules) defined within the style. The components stereotyped as «production»

represent such design rules. The internal structure of these components is described in

their corresponding composite structure diagrams. In this way, «production» com-

ponents define the composeable patterns in the style. As a result, styles are defined in

an inductive manner with composeable patterns.

In this profile, a class diagram is used to represent «refineable» components and

their associated «production» components whose corresponding structure diagrams

(type level) model their internal structure. Figure 2.16 describes an architectural style

which will be described later in the corresponding chapter. We use this diagram to

51



Figure 2.17: Describing a reconfiguration rule using the profile

briefly highlight the concepts in the profile. For instance, consider the class diagram

(on the top-left) in Figure 2.16 where component CoT is stereotyped as «refineable»

and it models an abstract architectural component. Such a component is amenable to

be replaced using one of the components stereotyped as «production» whose cor-

responding structure diagrams (on the top-right and the bottom) in Figure 2.16 de-

scribe the internal structures of the CoT. In this way, the legal connections between

the components are defined using the «production» components. Moreover, the

«production» components can be considered as basic building blocks of the style

where a set of these components actually determine the style.

While using the profile in [33], a valid configuration can be produced by replacing

«refineable» components with the composeable patterns given by the «production»

components. Such a process of refining abstract components can be achieved by ap-

plying the desired production patterns of the style. Furthermore, configurations created

using such a mechanism can be analysed with the help of composeable patterns. Also,

one may determine whether they adhere to the style described by the applied produc-

tions.
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Modelling reconfigurations The profile uses package diagrams to model reconfig-

urations. In a style, each such diagram represents a reconfiguration rule and consists

of two (the left hand side and the right hand side) components. The package diagram

is stereotyped as «transformation» and the two packaged components are stereo-

typed as «pattern». These components in the package diagram are linked via an edge

stereotyped as «transforms» and the corresponding structure diagrams describe their

internal structure. Figure 2.17 describes a simple reconfigurations rule BFtoMIF which

adds one or more components of type IDP in the configuration of the left hand side

«pattern» BF. We will describe similar rules in Chapter 4 to deal with style-preserving

changes in FIM systems.

To preserve the style while allowing reconfigurations, the profile requires both the

left hand side and right side components should be having the same type. However,

the profile does not explicitly specify typing of these components in the rule. Observe

that both of these components in rule BFtoMIF represent configuration described by

the production Federation given in Figure 2.16. In other words, these components in

the rule share the same number and type of properties which are common to the pro-

duction Federation with the change introduced in the cardinality of the properties of

the right hand side «pattern» MIF. Moreover, a rule may have an associated precon-

dition attached to the transformation edge, which points to a package containing such

a condition. Note that we do not model preconditions of the rules in this dissertation.
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Chapter 3

Modelling FIMs in UML

This chapter describes a semi-formal model in UML to represent structural and recon-

figuration aspects of FIMs. Specifically, we model the FIM patterns namely, BF, MIF,

MSF, AF, and chain of CoTs that are described in Section 2.2. In this chapter, we

use UML in a way that allows us to represent FIMs at the desired level of detail. For

instance, we discard attributes of classes that represent the FIM components. Since it

is out of scope of this thesis to model behaviour of the FIMs, we also do not consider

interfaces of the ports attached to the FIM components.

3.1 Identifying Constraints of FIM Systems

In this section, we revisit the main concepts in FIM systems and their relationships

for the purpose of identifying the constraints for valid configurations of interest (cf.

Section 2.1 and Section 2.2). We identify the constraints over those relationships in

order to restrict the valid models of FIM systems, that is those that conform to the FIM

patterns. Table 3.1 shows multiplicities of the FIM components in those patterns. In

this table, a dash (symbol -) shows that the multiplicity of the component is irrelevant

to the pattern. In addition to these multiplicity constraints, the structural constraints
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Multiplicities of FIM components
FIM pattern IDP SP CoT

BF 1 1 -
MIF 2..* 1 -
MSF 1 2..* -
AF 2..* 2..* -
Chain of CoTs - - 2..*

Table 3.1: Multiplicities of the components in the FIM patterns.

listed below further describe architectural composition of a CoT in UML:

GC0: a unique instance of a port is attached to a single component.

GC1: a CoT may consist of either a Federation together with its asso-

ciated IDPs and SPs, or CoTs attached to each other in a chain.

GC2: each instance of type IDP and SP associated to a Federation

should be within the CoT.

GC3: each instance of type IDP and SP should be associated to the rest

of instances of type IDP and SP associated to the Federation.

GC4: all instances of type Dynamic Trust Management System (DTMS)

attached to IDPs and SPs should be within the CoT. The purpose of a

DTMS is to manage the dynamic security and trust requirements of an IDP

and an SP in a CoT where IDPs and SPs can potentially join or leave the

CoT at run time.

GC5: a unique instance of type DTMS is attached to a single IDP (and

SP).

GC6: each instance of type IDP and SP should be associated to a Federation.
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Constraints GC3 and GC6 are obtained from the FIM patterns described in Sec-

tion 2.2. Also, constraint GC2 is a variation of constraint GC6. On the other hand,

constraints GC0, GC1, GC4, and GC5 are introduced in this dissertation. Further-

more, constraints GC0, GC1, GC2, GC3, GC4, and GC5 will be defined over the

UML model described in Section 3.2 while constraints GC3 and GC6 will be defined

over the UML model described in Section 4.1. Notice that constraint GC3 is common

to both those UML models. Now, we provide the comments on those constraints:

To restrict the use of ports in UML model described in Section 3.2, we describe a

general condition which specifies that a unique instance of a port should be referenced

by a single component. This will enable designers to avoid mess up (or visual clutter) in

the UML diagrams. Constraint GC0 describes such a condition which will be applied

to every port type described in the UML model. Note that the multiplicity constraints

over the associations between the components and their ports further restrict the valid

models.

In this dissertation, we intend to model two architectural views of a CoT where one

describes the CoT as a federation of providers (i.e., FIM patterns BF, MIF, MSF, and

AF) while the other describes the CoT as a chain of CoTs. To this purpose, constraint

GC1 describes a mutually exclusive condition which specifies that the CoT can either

consist of a federation of providers or a chain of CoTs.

Since a CoT may consist of a federation together with its associated IDPs and

SPs, constraint GC2 describes such a condition which specifies that the IDPs and SPs

attached to a federation should also be attached to the enclosing CoT.

In a FIM system, the providers (i.e., IDPs and SPs) associated to a federation may

interact with each other. In this case, constraints GC3 describes a condition which

specifies that all providers associated to a common federation should be connected to

each other. More precisely, the condition specifies that each IDP and SP should be

attached to the rest of IDPs and SPs attached to the common federation.
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In this dissertation, we introduce a component which models a dynamic trust man-

agement system (DTMS). In the FIM system, each IDP and SP may have a separate

DTMS attached in order to manage its security and trust requirements. Note that it

is out of scope of this dissertation to give details of this component. Constraint GC4

describes a condition which specifies that all DTMSs associated to the providers in the

federation should also be associated to the enclosing CoT.

Constraint GC5 describes a condition which is similar to the one described by

constraint GC0. Since each IDP and SP in a federation has a separate DTMS attached,

constraint GC5 describes such a condition which specifies that a unique instance of

DTMS should be attached to a single provider of type IDP or SP.

The UML model described in Section 4.1 does not require the use of constraints to

restrict the associations between the FIM components and their enclosing CoT. There-

fore, constraints GC1, GC2, GC4, and GC5 are irrelevant to this model. However,

this model still requires the use of constraints GC3 and GC6 which restrict the associ-

ations that relate components enclosed in the CoT. Notice that constraint GC6 is quite

similar to constraint GC2 with the difference that the former eliminates CoT.

3.2 Architectural Style of FIMs

We model structural aspects of FIM patterns described in Section 2.2 by describing

their style. We consider the UML ”as-is” approach where the standard UML notations

are used to model such aspects.

3.2.1 Vocabulary of the style

The class diagram in Figure 3.1(a) models FIM components, their ports, and their

associations. The components of FIM (cf. Section 2.2) are captured by the classes

CoT, Federation, SP, IDP, and DTMS. (The latter class deals with dynamic secu-
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(a) FIM architectural elements (b) Metamodel of FIM systems

Figure 3.1: A logical model of the FIMs

rity and trust management and it is not relevant in this dissertation.) The stereo-

type «port» singles out classes representing ports, namely Chaining, Fed_Access,

DTMS_Access, and Provider_Access. For instance, an IDP may interact with SPs us-

ing a Provider_Access port. Likewise, IDPs and SPs communicate with a Federation

through Fed_Access ports. Also, a Federation and a CoT may respectively interact

with other Federations and CoTs using Chaining ports.

3.2.2 Constraints of the style

We remark that SA components have a composition association with the attached ports

and the constraint (constraints are repeated for the readers convenience)

GC0: a unique instance of a port is attached to a single component.

is needed on Figure 3.1(a). Notice that this constraint is defined over the ports in

a general way. However, it can be applied to any of the ports including Chaining,

Fed_Access, DTMS_Access, and Provider_Access. For instance, to restrict the port

of type Chaining OCL constraint

context Chainning
inv: self.cot->size()=1 xor self.federation->size()=1

defines a condition which describes that an instance of port type Chaining can have

a reference to either a components of type CoT or a component of type Federation.

58



In other words, a Chaining port can be attached to either a CoT or a Federation.

Similarly, we define below a separate OCL constraint for ports of types Fed_Access,

DTMS_Access, and Provider_Access:

context Federation_Access
inv: self.idp->size()=1 xor self.sp->size()=1 xor self.federation->size()=1

context DTMS_Access
inv: self.idp->size()=1 xor self.sp->size()=1 xor self.dtms->size()=1

context Provider_Access
inv: self.idp->size()=1 xor self.sp->size()=1 xor self.cot->size()=1

Also, associations may partially define constraints of FIM styles like in Figure 3.1(b)

which describes1 two different architectural views of a CoT. More precisely, a view

represents a CoT that models a federation of providers by considering FIM patterns

BF, MIF, MSF, and AF while the other describes a CoT as a chain of CoTs. Note

that, it is difficult to clearly describe the constraint between two mutually exclusive

sets of associations for modelling such a CoT in Figure 3.1(b). This can be accommo-

dated by the constraint

GC1: a CoT may consist of either a Federation together with its asso-

ciated IDPs and SPs, or CoTs attached to each other in a chain.

whose OCL representation is given below:

context CoT
inv: self.cots->size()>=2 xor (self.federation->size()=1 and

self.dtmss->size() = self.idps->size() + self.sps->size() and
self.idps->size()>=1 and self.sps->size()>=1)

In Figure 3.1(b), a Federation is associated with at least one IDP and SP, and

several DTMSs. An IDP is associated to one DTMS, zero or more other IDPs (and at
1For simplicity, ports are not represented in Figure 3.1(b).
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Table 3.2: OCL constraints
Constraint OCL representation

GC2 context CoT
inv: self.idps->includesAll(self.federation.idps->asSet()) and

self.sps->includesAll(self.federation.sps->asSet())

GC3

context IDP
inv: self.idps->includesAll(self.federation.idps->asSet(excludes(self )))

and self.sps->includesAll(self.federation.sps->asSet())
context SP
inv: self.idps->includesAll(self.federation.idps->asSet()) and

self.sps->includesAll(self.federation.sps->asSet(excludes(self )))

GC4 context CoT
inv: self.dtms->includesAll(self.idps.dtms->asSet()) and

self.dtms->includesAll(self.sps.dtms->asSet())

GC5 context DTMS
inv: self.idp->size()=1 xor self.sp->size()=1

least one SP). Similarly, an SP is associated to one DTMS, zero or more other SPs (and at

least one IDP). Besides those multiplicity constraints common to FIMs, one may need

to specify the constraints given below to restrict valid models of interest:

GC2: each instance of type IDP and SP associated to a Federation

should be within the CoT.

GC3: each instance of type IDP and SP should be associated to the rest

of instances of type IDP and SP associated to the Federation.

GC4: all instances of type DTMS attached to IDPs and SPs should be

within the CoT.

GC5: a unique instance of type DTMS is attached to a single IDP (and

SP).

In Table 3.2, OCL constraints are defined corresponding to the constraints which

are given above.

Finally, observe that Figure 3.1(b) uses two different kinds of associations over a

CoT. In fact, a composition association is used to describe that a CoT may consist of
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two or more CoTs while a (self-)association chains is used to describe that CoTs are

attached to each other within the CoT to form a chain. (A similar association is defined

over a Federation.) As a result, Figure 3.1(b) yields a model that enables one to

create a complex CoT.

3.3 Generating Configurations of FIMs

In this section, we discuss how FIM configurations can be obtained using UML ”as-is”

approach. We create a few FIM configurations using object diagrams where objects

model components and links between objects specify potential communication capa-

bilities of components. For simplicity, ports of components are not considered in these

diagrams. Figure 3.2 represents a few FIM configurations of the model given in Sec-

(a) BF configuration (b) MIF configuration

Figure 3.2: Object diagrams showing a few FIM configurations

tion 3.2. Specifically, Figure 3.2(a) shows a configuration of pattern BF where a CoT

consists of a Federation having a single IDP and a single SP attached together with

their DTMSs. Similarly, Figure 3.2(b) describes a configuration of pattern MIF.
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3.4 Modelling Reconfigurations of FIMs

The UML ”as-is” approach does not provide any mechanism to describe architectural

changes. Consequently, one has to operate changes in actual configurations.

Example 3.1 The diagram in Figure 3.2(a) of pattern BF can be reconfigured into the

one in Figure 3.2(b) of pattern MIF introducing an IDP i2 and its associated DTMS

di2.

We remark that this may raise consistency problems. Also, the configuration produced

by such reconfigurations may violate the style.

3.5 Evaluating the FIMs model

We evaluate the FIMs model given in this chapter with respect to describing architec-

tural and reconfiguration aspects. Note that these aspects and their relevance to FIMs

will be detailed in Section 6.1 (page 94).

Figure 3.1 (page 58) represents two different but related class diagrams and they

model the same type of FIM components. Class diagram in Figure 3.1(a) models FIM

components and their associated ports. This diagram provides typing of the ports when

we use structure diagrams (instance level) to describe configurations. Class diagram in

Figure 3.1(b) models FIM components and their possible relationships. This diagram

allows us to generate FIM configurations (e.g., via object diagrams) without explic-

itly considering the interaction elements (i.e., ports). For instance, consider object

diagrams to represent FIM configurations. Indeed, objects may potentially represent

component and port instances (respectively typed over the classes in Figure 3.1(a) and

in Figure 3.1(b)) in the configurations. But it would be very difficult to make visual

distinction between components and ports in a given configuration while using the

same notation to represent both those kinds of elements. Therefore, for simplicity, we
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use object diagrams (cf. Figure 3.2 on page 61) to describe FIM configurations where

components are represented without ports. Notice that we do not distinguish FIM

components of the same type in the class diagrams shown in Figure 3.1 (page 58). For

instance, a CoT in Figure 3.1(a) and Figure 3.1(b) describes the same FIM component.

Consequently, we generate FIM configurations (i.e., via structure diagrams) according

to these class diagrams where components may have ports attached.

In Figure 3.1(b), we use composition associations between the CoT and its associ-

ated FIM components. This is due to the fact that, from a security point of view, if a

CoT is destroyed (or made non-functional) then the involved providers need to stop is-

suing (or consuming) the authentication related information of the users. In UML, such

an architectural composition may require the use of global OCL constraints which typ-

ically makes the UML models cumbersome to use. In this way, we define a few global

constraints for the architectural composition of the CoT. To some extent, such con-

straints could be avoided by using the simple UML association between the CoT and

its associated components. However, this would result into having a flat view of the

CoT and loosing hierarchical structure over a complex FIMs.

Moreover, the two architectural views (i.e., a federation of providers and a chain

of CoTs) of the CoT in Figure 3.1(b) (page 58) are loosely defined with the help of

an OCL constraint whose textual description is given by GC1 (page 59). Since it

is difficult to clearly specify such a condition (i.e., via the two mutually exclusive

sets of associations) within the diagram, we specify the constraint in such a way that

allows us to conveniently represent the two architectural views of the CoT. In UML,

one may use inheritance to simplify these architectural views of the CoT. For instance,

two sub-classes of the CoT can be created where each sub-class models one of these

views. However, such an approach not only introduces two additional (or artificial)

FIM components but still it requires the complex association ”chains” over Federation

Figure 3.1(b) together with the OCL constraint need to be described so as to allow
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federations can be connected in a chain of CoTs.

This model is developed by following a simple strategy where existing UML nota-

tions are used to represent structural aspects of FIMs. As a result, a UML designer can

immediately understand the models and can use existing tools to manipulate them. In

this way, one may conveniently apply changes to the simple configurations described

by either object diagrams or structured diagrams (at instance level) while respecting

the underlying style. However, we argue that manipulating a complex configuration in

UML can be problematic.

To illustrate this, consider Example 2.7 (page 29) which describes a rather complex

scenario involving many IDPs (i.e., school districts) and SPs (i.e., regional information

centres). While applying this UML model to such a scenario, designers use rules of

thumb to generate the required FIM configurations for the scenario.

Due to security critical nature of FIMs and its patterns, designers will heavily rely

on OCL compliant UML tools to perform style checking of FIM configurations. How-

ever, we argue that such an approach does not apply well to the situations where de-

signer may find it very difficult to deal with subsequent changes in a large complex

FIM configuration. For instance, a large school district in Example 2.7 is divided into

multiple school districts (i.e., IDPs). Similarly, such a change may apply to the regional

information centres (i.e., SPs) in Example 2.7. In this case, the designated constraints

need to be checked against every single IDP and SP instance to validate the updated

FIM configuration.

We consider a simple topology (i.e., chain) for a CoT in Figure 3.1(b) (page 58).

In order to make changes in this diagram to support more complex topologies (e.g.,

tree, star, mesh, etc.) for the CoT, one may conveniently introduce new classes and

their associations together with the OCL constraints. However, the obvious limitation

of such an approach is that it may make the FIMs model cumbersome to use.
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Chapter 4

Modelling FIMs in UML Profile

Chapter 3 describes structural aspects of FIMs. However, it lacks in modelling certain

desired aspects (i.e., refinement and reconfigurations) of such systems. Therefore, we

use the UML profile in [33] in this chapter to model those aspects of FIMs. In addition

to this, we capture the same details of the FIM patterns as described by Chapter 3.

4.1 Architectural Style of FIMs

We model structural aspects of FIM patterns described in Section 2.2 by describing

their style. We use the profile in [33] to model FIMs. In particular, the profile allows

us to describe the architectural style for FIMs. To support the architectural refinement,

an abstract (or refineable) architectural component is modelled which can be replaced

with the complex configurations using the corresponding productions. Also, the profile

is used to describe reconfigurations for FIMs.

Figure 4.1 describes the architectural style for FIMs. Notice that this figure is

similar to Figure 2.16 (page 51) with the difference that it represents an additional

component (i.e., DTMS) and a self-association over the providers (i.e., components of

type IDP and SP) in production Fed (bottom class diagram). Such a production will be
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Figure 4.1: Architectural style productions for FIMs

described later in this section. Consider Figure 4.1 where the top-left class diagram has

two «production» components Chain and Fed associated to a «refineable» com-

ponent CoT. A CoT can be replaced by configurations corresponding to the productions

Chain and Fed. A production in the profile represents a composeable pattern in the

corresponding structure diagram (which gives the internal structure of the CoT). More

precisely, a structure diagram (at type level) describes the legal connections between

the components of a «refineable» component.

In our case, the configurations of a CoT can be generated using the productions

Chain and Fed given in Figure 4.1. To replace a CoT in production Chain with the

configuration, one may freely use

• production Chain to generate a complex chain of CoTs or

• production Fed to generate the other configurations.

The former production is the top-right structure diagram in Figure 4.1; it states that

each CoT component has two Chaining ports and a Provider_Access one. The
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Chaining ports enable CoTs to chain up while the latter ports connect providers. The

production Fed is the bottom diagram in Figure 4.1; it describes a CoT as a federation

of providers in a general way capturing FIM patterns BF, MIF, MSF, and AF.

As described earlier, a legal FIMs configuration is subject to some constraints.

This is rendered by decorating (parts of) structure diagrams with multiplicities. For

instance, in production Fed of Figure 4.1, a Federation is attached to at least one IDP

and one SP through a Fed_Access port and each provider uses a different DTMS via

a DTMS_Access port. Each IDP connects to a (possibly empty) set of IDPs through a

Provider_Access port by a connector rendering a (self-)association on IDP. Similarly,

each SP is attached to zero or more SPs. Each IDP is attached to at least one SP and

each SP is attached to at least one IDP through Provider_Access ports.

We remark that, for FIM architectures, it is not always convenient to infer the mul-

tiplicity of connectors from the multiplicity of the types of instances (as typical in

UML designs). The reason being that the same structure diagram is used to specify

constraints pertaining to different architectural levels. In fact, the multiplicities on

connectors refer to instances of actual configurations while those in classes pertain to

architectural constraints of enclosing classes.

Example 4.1 Production Fed in Figure 4.1 imposes a 1-to-1 association between

DTMSs and IDPs components. Accordingly, CoTs may be composed by many DTMSs

and many IDPs.

In Example 4.1 the constraints of DTMS and IDP refer to the architectural aspects of the

enclosing class CoT, while the connector between the two classes specifies that there is

a 1-to-1 association among DTMS and IDP components in a legal configuration. Notice

that this implies that UML forces the designer to explicitly consider the multiplicities

of connectors as they may ’conflict’ with those of the classes when the associations

need special conditions (e.g., injectivity).
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An advantage of structure diagrams to describe the style is that they may reduce

the use of OCL constraints. In fact, it may not be required to give OCL constraints

over composition associations (e.g., GC4 on page 60) and the associations between a

structured classifier (e.g., CoT) and its parts (e.g., DTMS, SP, Federation, and IDP) may

be implicitly represented. OCL constraints may still be required on other associations;

for instance, the structure diagram Fed in Figure 4.1 requires GC3 (page 60) and the

additional constraint

GC6: each instance of type IDP and SP should be associated to a Federation.

that is very similar to GC2 (page 60) but eliminates CoT and its OCL representation is

given below:

context IDP
inv: self.federation->size()=1

context SP
inv: self.federation->size()=1

4.2 Generating Configurations of FIMs

We discuss, the profile-based approach, how FIM configurations can be obtained.

Object diagrams are typically used to model simple scenarios (e.g., pattern BF)

and are less suitable for complex configurations (e.g., chain of CoTs). To model such

a configuration, we use a structure diagram (at instance level) that may impose a hier-

archy over a complex system. These diagrams are essentially object diagrams for the

classes (e.g., CoT) with internal structure [75].

The structure diagram in Figure 4.2 (names are omitted for readability) represents a

configuration of a chain of two CoTs of pattern BF generated by using the correspond-

ing productions in Figure 4.1 (page 66). In fact, a «refineable» component CoT is
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Figure 4.2: Structure diagram (instance level) showing a configuration

replaced with two CoTs attached to each other in a chain. Each CoT in this chain is fur-

ther refined with configuration of pattern BF by applying the production Fed. Observe

that this refinement allows us to deal with the design (at type level) of a complex sys-

tem (e.g., chain of CoTs). However, designers have to use rules of thumb to generate

UML configurations (at instance level) of the FIM patterns.

4.3 Modelling Reconfigurations of FIMs

The profile-based approach allows one to describe architectural changes at the level of

design by using structure diagrams (at type-level). The profile uses a package stereo-

typed as «transformation» linked with a «transforms» edge. The scope of the

named properties in «pattern» components spans over the whole package.

Example 4.2 The package in Figure 4.3, consists of two «pattern» components1;

the properties of the left component are of type Federation, IDP, SP, and DTMS.

Such properties are common to all the components of the rules.

Each component has an associated structure diagram modelling its internal structure.

To model reconfiguration rules, the «pattern» components represent architectural

1The stereotype «pattern» does not represent FIM pattern.
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configurations according to the production Fed in Figure 4.1 (page 66). Also, structure

diagrams associated to these components are created according to this production. In

this way, the «pattern» components in the rules can be considered as valid architec-

tural instances (i.e., configurations of patterns BF, MIF, MSF, and AF) of production

Fed.

Figure 4.3: Reconfiguring pattern BF to pattern MIF

Figure 4.3 describes the reconfiguration rule BFtoMIF that reconfigures FIM pattern

BF (left) into FIM pattern MIF (right). There, the component BF represents federation

with one IDP, one SP, and two DTMSs. The component MIF represents federation ob-

tained by adding one or more IDPs and their associated DTMSs to the BF federation.

Note that the internal structures of BF and MIF differ only for the associations on IDPs

and DTMSs. Indeed, the reconfiguration introduces a new (self-)associations relating

IDPs and updates the multiplicity of the association between IDPs and their DTMSs.

Correspondingly, the rule updates the ranges of the properties IDP and DTMS. Other

reconfiguration rules of FIM patterns can be defined in a simple way; we illustrate a

few more reconfiguration rules in the profile-based approach.
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Figure 4.4: Reconfiguring pattern BF to pattern MSF

Figure 4.5: Reconfiguring pattern MIF to pattern AF

A rule can be defined for reconfiguring FIM pattern BF into FIM pattern MSF by

introducing one or more SPs and their associated DTMSs in the new configuration. Rule

BFtoMSF in Figure 4.4 describes such a change in FIM pattern BF.

Rule MIFtoAF in Figure 4.5 reconfigures FIM pattern MIF into FIM pattern AF by

introducing one or more SPs and their associated DTMS into the new configuration.
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Figure 4.6: Reconfiguring pattern MSF to pattern AF

Figure 4.7: Reconfiguring pattern BF to pattern AF

Figure 4.6 describes the reconfiguration rule MSFtoAF that adds one or more IDPs

and their associated DTMS in FIM pattern MSF to reconfigure it into FIM pattern AF.

Figure 4.7 describes the rule BFtoAF that adds; one or more IDPs and SPs, and two

or more DTMSs attached to the providers. In this way, the rule BFtoAF changes FIM

pattern BF into FIM pattern AF.

72



Figure 4.8: Reconfiguring pattern MIF

The advantage of this approach is that style preserving reconfiguration can be sim-

ply obtained by imposing that the components in the rules are of the same type. In [33]

it is not clearly specified how to provide typing of those components; if we interpret

the «refineable» component CoT as a common type for the «pattern» components,

then we have a style-preserving reconfigurations for FIMs.

We remark that the profile-based approach does not satisfactorily supports recon-

figurations within a same pattern like the ones that add IDP into configurations of FIM

pattern MIF. To illustrate this, we discuss the rule MIFtoMIF_1 in Figure 4.8. Such

rule adds one or more IDPs in FIM pattern MIF to obtain a configuration MIF_1 (right).

Technically, the reconfiguration is obtained by increasing the lower bounds of mul-

tiplicities of the corresponding properties. Since UML uses OCL to specify constraints,

lower and upper bounds for the multiplicities may be specified by (side-effect free

constant) expressions (see [80, page 112]). In Figure 4.8, OCL expressions specify the

lower bounds of the properties IDP and DTMS belonging to the «pattern» components.

These expressions may potentially be evaluated by UML tools. In a parametrised con-

text, before evaluating these expressions the tools assign actual integer values to the
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Figure 4.9: Reconfiguring pattern MSF

parameters (i.e., initially m = 2 and n = 3 for MIFtoMIF_1). While relying on such a

mechanism, designers have to consistently update the actual values of the parameters

whenever configurations of the FIM patterns are changed. Otherwise, the rule cannot

be applied if the multiplicities may become inconsistent.

Similarly, rule MSFtoMSF_1 in Figure 4.9 adds one or more SPs in FIM pattern

MSF. The left-hand-side MSF «pattern» component represents MSF configurations

that are transformed into the ones on the right-hand-side (MSF_1) by introducing one

or more SPs (and corresponding DTMSs).

4.4 Evaluating the FIMs model

Due to the limitations of UML ”as-is” approach, the FIM model developed using this

approach does not address specific architectural issues, namely refinement and recon-

figurations. Consequently, we use the UML profile in [33] to address these issues in

particular. Apart from addressing these issues, the purpose of this model is to capture

the same structural aspects of FIMs as described by the FIMs model developed using
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UML ”as-is” approach.

Consider Figure 4.1 (page 66). The productions Chain and Fed via their corre-

sponding structured diagrams clearly represent the two separate architectural views

of an abstract CoT. As a result, designers may conveniently use these diagrams to

generate FIM configurations. For instance, the production Chain supports successive

refinement of an abstract CoT. This production can recursively be applied to generate

complex FIM configurations. Similarly, the production Fed can effectively be used to

generate simple FIM configurations (e.g., FIM pattern BF). However, the designer may

face the challenges (e.g., style checking) that are very similar to the UML ”as-is” FIM

model while generating a complex FIM configuration (e.g., FIM pattern AF).

To support the changes in the style, the model in Figure 4.1 (page 66) is flexible to

adopt more productions. For instance, a production can be described to support a tree

like structure of CoTs in a FIM system. In this case, one need to introduce a production

and its corresponding structured diagram where one may use the existing classes and/or

introduce new classes together with their associations. However, the limitation of this

approach is that the vocabulary of the style be loosely defined and scattered across

different diagrams. As a result, the productions that use common types of components

may become invalid if the required changes in the updated components are not applied

consistently.

In Section 4.3, we characterise FIM reconfigurations in UML according to their ef-

fects (i.e., pattern changing or pattern preserving) on the FIM patterns. In this way, five

different rules are defined to support pattern changing configurations. Recall that each

FIM pattern has different security needs. The benefit of such an approach to the recon-

figurations is that it may allow designers to enforce the required security mechanism

while applying the rules. On the other hand, reconfigurations that preserve the FIM

patterns do not affect their security requirements. A rule is also defined for each of the

FIM patterns (i.e., MIF, MSF, and AF) to deal with such a reconfiguration. While ap-
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plying such a rule, designers need to consistently update both the actual configuration

and the rule. Therefore, such an approach to reconfigurations may face consistency

problems in the UML model.

Moreover, the UML profile in [33] allows us to describe reconfigurations for FIMs

(cf. Section 4.3) at the level of design. More precisely, type level structure diagrams

are used to describe FIM reconfigurations. As a result, the problem of making changes

in the actual configurations (i.e., instance level structured diagrams) still needs to be

addressed. Also, the run-time FIM reconfigurations (e.g., system initiated reconfigu-

rations in a Cloud [50]) need to be modelled by considering a dynamic security and

trust management system. This requires modelling of the behavioural aspects of FIMs

that may have direct effect on the application of the reconfigurations (e.g., providers

joining or leaving the CoT).
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Chapter 5

Modelling FIMs in ADR

Since UML is considered a de facto standard for modelling various aspects of software

systems, we used UML in Chapter 3 and 4 to model architectural (and reconfigura-

tion) aspects of FIMs. However, the UML models suffer a few draw-backs that are

highlighted later in Chapter 6. In this chapter, a formal model of FIMs is designed

using ADR, which is an ad-hoc ADL that features a mathematically rigorous style pre-

serving modelling approach. Such a model captures architectural and reconfiguration

aspects of FIMs. Specifically, we model FIM patterns including BF, MIF, MSF, AF,

and chain of CoTs, which are described in Section 2.2. More precisely, an architectural

style for FIMs is given in terms of ADR productions while the architectural changes

(i.e., style-preserving) in FIMs are described using rewrite rules.

5.1 Architectural Style of FIMs

5.1.1 The type graph

The type graph yielding the vocabulary for the architectural elements of FIMs is de-

picted in Figure (5.1); edges yield the types of components and nodes } (federation

chain), ◦ (federation access), and • (provider access) represent the kind of ports used
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to connect them.

CoT

��

•

} P0

//

P1

//

IPs

��

SPs

oo

IDP

oo

SP

ooF

OO

◦

Figure 5.1: Type graph (H)

More precisely, federation chain nodes } are used to form chains of edges of type

F or CoT; federation access nodes ◦ connect IDP and SP providers with a federation

F; provider access nodes • connect providers. The vocabulary of terminal and non-

terminal edges for architectural style of FIMs is given by the type graph Figure 5.1 and

formally defined as

VH = {},◦,•}

EH = {CoT,F,P0,P1, IPs,SPs, IDP,SP}
tH :


CoT 7−→ [},},•]

F 7−→ [},},◦]

P0,P1, IPs,SPs, IDP,SP 7−→ [◦,•]

The non-terminal edges shown in Figure 5.1 can be refined into complex graphs

using the corresponding design productions (described later) that define legal configu-

rations of FIMs. The non-terminal edge CoT will be refined into providers (i.e., IDP

and SP) connected to each other and to their federation in FIMs. These providers can be

obtained by refining non-terminal edges; for example, by refining non-terminal edges

of type P0 and IPs configurations with identity providers can be obtained, while con-

figurations with service providers are obtained by refining non-terminal edges of type

P1 and SPs. Notice that, in this case, the role of non-terminal edges of type P0 and P1

is to represent a non empty set of identity providers and service providers, respectively.

The terminal edges F, IDP and SP are the types for a federation, an identity provider,

and a service provider respectively.
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chain : CoT×CoT→ CoT
ct0:CoT

}
c1

}
a C1:CoToo b

} C2:CoToo d
}

c2
}

c•
p1•

(a) CoT Chain

fed : P1×P0→ CoT
ct0:CoT

c1
}

a
} f :Foo b

}
c2
}

c◦ pi:P0oo d•
p1•

ps:P1

ggOOOOO ttt

(b) CoT in a federation

Figure 5.2: A chain of CoTs and a federation of providers

5.1.2 The productions

Productions for CoT Figure 5.2 shows productions chain and fed that respectively

refine non-terminal edge CoT into a federation of providers and chain of CoTs. Notice

that LHS and RHS of productions are typed over the graph depicted in Figure 5.1.

The productions for CoT (See Appendix A.1 for the formal definitions) are further

described as follows :

Production chain catenates CoTs C1 and C2 by connecting them on node b as il-

lustrated in Figure 5.2(a). Also, node c is used to connect C1 and C2 to providers and

exported together with a and d to possibly extend the chain.

Production fed generates configurations of CoT by connecting several providers

(obtained by refining pi and ps) to each other and to a federation f as illustrated in

Figure 5.2(b). Providers pi and ps interact with federation f through node c of type

◦; nodes c1 and c2 allow f to connect to other CoT and node p1 to connect to other

providers. Observe that nodes c1, c2, and p1 are the nodes of the LHS of fed corre-

sponding to the nodes of the RHS as specified by the dotted lines and ’exported’ in

the interface of fed; also, p1 allows providers generated by ps and pi to connect to

providers in other CoTs.

Productions for Identity Providers Figure 5.3 shows the productions to generate

configurations of identity providers for P0 in production fed. Production pips generates
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pips : IPs→ P0 ips : IPs× IPs→ IPs ip :→ IPs noip :→ IPs
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Figure 5.3: The productions for identity providers

a configuration consisting of an IPs and an IDP. Production ips generates configuration

with many IPs (obtained by refining ip1 and ip2). Finally, productions ip and noip

yield non refineable configurations; ip generates a single identity provider i while noip

generates an empty configuration. These productions (See Appendix A.2 for the formal

definitions) are further described as follows:

The production pips given in Figure 5.3 will be used to generate architectural con-

figuration of P0 consists of an IDP and an IPs. The RHS of the production pips takes a

non-terminal edge IPs attached to a node of type ◦ and one of type • which are shared

with the IDP and then both nodes are exported in the interface of the production. In

this way, the IPs and the IDP share the ◦ node with the same federation edge and share

the node • with rest of the providers within or outside the CoT.

The production ips given in Figure 5.3 generates an architectural configuration of

the IPs consisting of two IPs. The RHS of the production ips combines two non-

terminal edges of type IPs to a ◦ and a • nodes which are then both exported in the

interface of the production. In this way, the IPs will all share the ◦ node with the same

federation edge and use the same node • with rest of the providers within or outside

the CoT.

The production ip given in Figure 5.3 is meant to generate architectural configura-

tion of the IPs consisting of a single IDP. The RHS of the production ip takes nothing
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psps : SPs→ P1 sps : SPs×SPs→ SPs sp :→ SPs nosp :→ SPs
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Figure 5.4: The productions for service providers

and attaches the IDP to a ◦ and a • nodes which are then both exported in the interface

of the production. In this way, the IPs shares a node ◦ with the federation and use a

node • to connect with rest of the providers within or outside the CoT.

The production noip given in Figure 5.3 is meant to generate an architectural con-

figuration of an IPs for empty design. The RHS of the production noip takes nothing

and uses nodes ◦ and • to share with the federation and providers within or outside the

CoT are then exported in the interface of the production.

Productions for Service Providers The productions for generating service providers

are very similar to those in Figure 5.3. The productions psps, sps, sp, and nosp in

Figure 5.4 generate the configurations for service providers by refining non-terminal

ps in the production fed (Figure 5.2). More detailed descriptions of these productions

(See Appendix A.3 for the formal definitions) are given as follows:

The production psps will be used to generate architectural configuration of P1 con-

sists of an SP and an SPs. The RHS of the production psps takes a non-terminal edge

SPs attached to a node of type ◦ and one of type • which are shared with the SP and

then both nodes are exported in the interface of the production. In this way, the SPs

and the SP share the ◦ node with the same federation edge and share the node • with

rest of the providers within or outside the CoT.
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The production sps generates an architectural configuration of the SPs consisting

of two SPs. The RHS of the production sps combines two non-terminal edges of type

SPs to a ◦ and a • nodes which are then both exported in the interface of the production.

In this way, the SPs will all share the ◦ node with the same federation edge and use the

same node • with rest of the providers within or outside the CoT.

The production sp is meant to generate architectural configuration of the SPs con-

sisting of a single SP. The RHS of the production sp takes nothing and attaches the SP

to a ◦ and a • nodes which are then both exported in the interface of the production. In

this way, the SPs shares a node ◦ with the federation and use a node • to connect with

rest of the providers within or outside the CoT.

The production nosp is meant to generate an architectural configuration of an SPs

for empty design. The RHS of the production nosp takes nothing and uses nodes ◦

and • to share with the federation and providers within or outside the CoT are then

exported in the interface of the production.

Matching constraints with the productions Since ADR productions represent con-

straints of the style, we discuss how the constraints described in Section 3.1 are matched

with the productions described above. To this purpose, we consider the constraints

GC1, GC3 and GC6 (page 55) that restrict FIM configurations with respect to the

FIM patterns. In particular, we do not consider the constraints that specify conditions

which were required to represent architectural composition of the FIM components in

UML.

For matching the constraint GC1, consider the non-terminal of type CoT in Fig-

ure 5.1 which can be replaced with the configurations generated using the correspond-

ing productions in Figure 5.2 namely, production chain and production fed. The pro-

duction chain generates a configuration of a chain of CoTs while the production fed

generates a federation of providers attached to each other. In this way, a CoT can be
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replaced with the configuration describing either a chain of CoTs or a federation of

providers.

For matching the constraints GC3 and GC6, consider the non-terminals in pro-

duction fed in Figure 5.2 which can be used to generate configurations of a federation

of providers. In production fed, the non-terminal of type P0 represents a set of IDPs

while the non-terminal of type P1 represents a set of SPs in a federation. The produc-

tions in Figure 5.3 and Figure 5.4 generate configurations of P0 and P1, respectively.

Notice that the these non-terminals in the production fed are connected to a federation

F through node ◦ and to each other through node •. Observe that the IDPs and SPs

are connected to the federation and to each other in the configurations generated by

refining the non-terminals in fed using their corresponding productions. In this way,

constraints GC3 and GC6 are satisfied as both the terminal hyperedges of type IDP

and SP are connected to the terminal hyperedge of type F through node ◦ and to each

other by sharing a node •.

5.2 Generating Configurations of FIMs

To illustrate how legal configurations of FIMs can be derived using the productions

given in Section 5.1.2 we consider the graphs1 G1 and G2 in (5.1)

G1 =
} C1:CoToo }

•
G2 =

} f :Foo
EEE

E } ps:P1

��
i:IDP // ◦ •

(5.1)

and show how G1 can be refined into the configuration G2.

1Graphs G1 and G2 are typed over the graph depicted in Figure 5.1 in the obvious way.
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The initial sequence of reductions is

G1
fed→

} f :Foo }

◦ pi:P0oo •

ps:P1

ccFFFF {{{{

pips→

} f :Foo }

◦ i:IDPoo •

pi:IPs

cc

ps:P1

]] JJJJJ

noip→
} f :Foo

EEE
E } ps:P1

��
i:IDP // ◦ •

Namely, in the first step, fed (cf. Figure 5.2) is applied to generate the federation

f ; then the edge pi is refined by applying pips (cf. Figure 5.3) yielding a provider

pi of type IPs and a provider i of type IDP. Finally, configuration G2 is obtained

by applying noip which cancels the non-terminal pi. Any configuration x refining

P1 yields a term-like representation of G2 as fed(pips(noip),x) which highlights the

hierarchical structure of the FIMs configuration G2. In this way, configurations of the

FIM patterns can be generated and are illustrated in the next section.

With the help of some simple examples, we show how to generate the architectural

configurations of FIM patterns BF, MIF, MSF, AF, and Chain of CoTs. Notice that

graph G1 in (5.1) represents an initial (abstract) architecture that can be further refined

into these configurations. To illustrate this, we use the productions for FIMs and the

approach given in Section 5.1.

Generating configuration of FIM pattern BF The configuration with a single IDP

and a single SP is generated by applying production fed (cf. Figure 5.2) first then

followed by a refinement of the non-terminal edges P0 and P1 (introduced by fed).

In the second step, production pips (cf. Figure 5.3) generates the configuration for

P0 consisting of a terminal IDP and a non-terminal IPs. Similarly, productions psps

(cf. Figure 5.4) generates the configuration for P1 that consists of a terminal SP and a

non-terminal SPs.

Observe that the obtained graph contains non-terminal edges of type IPs and SPs

(introduced by applying pips and psps, respectively); these (spurious) non-terminal
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(b) A config. of MIF

Figure 5.5: A few configurations of the CoT in FIMs

edges are cancelled using the productions noip and nosp. As a result, we obtain the

configuration of pattern BF which is graphically represented in Figure 5.5(a) (where

edge names are omitted as immaterial). In ADR, such configurations can be given an

algebraic formulation; for instance, the configuration in Figure 5.5(a) is given by term

fed(pips(noip),psps(nosp)). Example 2.2 (on page 27) describes such a scenario

where a single IDP (i.e., an airline) is federated to a single SP (i.e., a hotel).

Generating configuration of FIM pattern MIF A configuration of pattern MIF can

be generated in a similar way as done for the configuration of pattern BF. For instance,

consider the case where two IDPs are federated to a single SP.

Initially, the same sequence of productions can be followed that is used above for

generating configuration of pattern BF where a single IDP is federated to a single

SP, with the difference that before applying the noip production, the non-terminal pi

in the production pips is further refined using the production ips. This introduces

an additional IDP where either ip1 or ip2 in the production ips is on turn refined by

applying production ip, while the other non-terminal is cancelled using productions

noip. Notice that the production ips can recursively be applied to generate a complex

configuration of IDPs. In this way, a configuration of pattern MIF is obtained; its term

representation is

fed(pips(ips(ip,noip)),psps(nosp))

and graphical representation is shown by Figure 5.5(b). Example 2.3 (on page 27)
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(b) A config. of AF

Figure 5.6: A few more configurations of the CoT in FIMs

illustrate a scenario where this pattern may be useful.

Generating configuration of FIM pattern MSF Now, let us consider the case where

two SPs are federated to a single IDP. Initially, the same sequence of productions can

be followed that is used above for generating configuration of pattern BF but with the

difference that before applying the nosp production the non-terminal ps in the produc-

tion psps is further refined using the production sps. This introduces an additional SP

where either sp1 or sp2 in the production sps is on turn refined by applying production

sp, while the other non-terminal is cancelled using productions nosp. Notice that the

production sps can be applied recursively to generate a complex configuration of SPs.

Consequently, a configuration of pattern MSF shown by Figure 5.6(a) is generated and

its associated term representation is

fed(pips(noip),psps(sps(sp,nosp)))

Example 2.4 (on page 28) illustrates a scenario where this pattern may be useful.

Generating configuration of FIM pattern AF Figure 5.6(b) shows a configuration

of pattern AF where two IDPs and two SPs are federated to each other. In order to

generate such a configuration, one may follow the same sequence of productions used
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Figure 5.7: A chain of CoTs configuration in FIMs

to generate configurations of FIM patterns MIF and MSF. Term

fed(pips(ips(ip,noip)),psps(sps(sp,nosp)))

represents this configuration while Example 2.5 (on page 28) describes such a scenario

where this pattern may be useful.

Generating configuration of FIM pattern Chain of CoTs Figure 5.7 shows a con-

figuration of a Chain of CoTs where two federations and their providers are attached

to each other. In this chain; a CoT is created according to pattern MIF where multiple

IDPs are federated to a single SP, and the other CoT is created according to pattern

MSF where a single IDP is federated to multiple SPs.

Initially, the production chain is applied that generates two CoTs c1 and c2. Since

CoT c1 represents pattern MIF, one may follow the same sequence of productions used

above for this pattern. Similarly, CoT c2 can be refined according to pattern MSF. Term

chain(fed(pips(ips(ip,noip)),psps(nosp)), fed(pips(noip),psps(sps(sp,nosp))))

describes how such a configuration is built and Example 2.6 (on page 29) describes the

scenario where the pattern Chain of CoTs may be useful.
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5.3 Modelling Reconfigurations of FIMs

In this section, we show how reconfigurations can be described for FIMs.

Architectural styles may offer a suitable modelling mechanism to guide the changes

at the architectural level; in fact, patterns for FIMs can be given in terms of ADR

architectural style as illustrated in Section 5.2.

At run time, systems may need to be reconfigured; for instance, adding one or more

components. Noticeably, such changes may need to be reflected at the architectural

level, namely they may induce architectural reconfiguration. FIMs are no exception.

The architectures of FIM patterns may evolve during the development life-cycle where

IDPs and SPs can be added to the federations. For instance, the configuration of pattern

BF consists of an airline (i.e., the IDP) and a hotel (i.e., the SP) can be reconfigured (cf.

Example 2.3 on page 27) by introducing a train service (i.e., a new IDP). Such a change

(adding an additional IDP) in the architecture reshapes the systems from pattern BF to

pattern MIF so as to allow users to book a room after booking a flight or a train.

This change of pattern can be defined at basic level (namely, one IDP, or one SP, or

one instance of both is added) as well as at abstract level (namely, arbitrary collections

of IDPs or SPs are added at once).

ADR offers a graphical support and a formal mechanism to deal with style-preserving

architectural reconfigurations, namely architectural reconfigurations that do not mod-

ify the style. We remark that it is crucial for FIMs as style preserving reconfigurations

correspond to modifying configurations by changing their pattern while preserving a

valid (legal) architecture. ADR can also express reconfigurations that violate styles.

For instance, it is easy to define reconfiguration rules that cancel components so as to

obtain configurations without e.g., IDPs that are not considered valid FIMs. It is also

worth remarking that the condition to preserve style is very simple; it is just necessary

to ensure that LHS and RHS of the reconfiguration rule have the same type.
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As we have seen in Section 5.2, the design rules can be given an algebraic formu-

lation where a term in ADR describes a particular style-proof.

In order to illustrate how ADR reconfiguration rules can describe variations of

FIMs we consider the following rules.

addIDP : noip−→ ips(ip,noip) (5.2)

addIDPs(X) : noip−→ ips(X,noip) (5.3)

Intuitively, such rules allow us to add components; more precisely, they respectively

introduce a new IDP and a set of many IDPs. Rule (5.2) is defined at basic level

(terms without variables) to add a single IDP and rule (5.3) is defined at abstract level

(terms with variables) to add a collection of IDPs to the configurations of FIM patterns.

Notice that in both rules the LHSs and the RHSs terms have the same type; this is

central to preserve the style. In other words, ADR guarantees, by construction that

when all reconfiguration rules preserve the types, then any derivation will not change

the architectural style. Similarly, the rules for service providers can be defined

addSP : nosp−→ sps(sp,nosp) (5.4)

addSPs(Y ) : nosp−→ sps(Y,nosp) (5.5)

that add one or more service provider components respectively to the configurations of

FIM patterns.

Table 5.1: Effects of basic reconfiguration rules on FIM patterns
Reconfig. rules BF to MIF BF to MSF MIF to AF MSF to AF BF to AF
Rule (5.2) X X X
Rule (5.4) X X X

Table 5.1 shows the effects of basic reconfiguration rules that add a single IDP and a
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Figure 5.8: Rule to add an identity provider (from left to right)

single SP into FIM patterns BF, MIF, MSF, and AF. Figure 5.8 (for simplicity, names

of the edges are omitted) illustrates the reconfiguration of pattern BF into pattern MIF

architecture (cf. Example 2.3 on page 27) by applying the rule (5.2). The LHS graph

shows configuration of pattern BF consisting of an IDP (i.e., an airline) and an SP

(i.e., a hotel). This architecture, is reconfigured by introducing an additional IDP (i.e.,

a train service) that yields a new configuration (RHS graph) that confirms to pattern

MIF with multiple IDPs federation. To illustrate such a change in the configuration

obtained by applying the rule (5.2), transition

fed(pips(noip),psps(nosp))−→ fed(pips(ips(ip,noip)),psps(nosp))

describes the reconfiguration where the LHS term defines configuration of pattern BF

while the RHS term defines the new configuration that represents pattern MIF. In

this reconfiguration, subterm noip of type IPs on the LHS replaced with a new term

ips(ip,noip) of same type on the RHS. Such a transition preserve FIM style. Simi-

larly, the effects of applying the rule (5.4) that adds an SP reconfigures the architecture

of pattern BF to pattern MSF (cf. Example 2.4 on page 28). Moreover, rule (5.2)

and rule (5.4) can be applied together to reconfigure the architecture of pattern BF to

pattern AF. Furthermore, these rules can be applied separately while moving from pat-

terns MIF and MSF to pattern AF, for instance; rule (5.4) can be used to move from

pattern MIF to pattern AF and rule (5.2) to move from pattern MSF to pattern AF.

Recall that the non-terminal hyperedge of type CoT can be refined using either the
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production fed that generates a federation of providers or the production chain that

generates a chain of CoTs (cf. Figure 5.2 on page 79). In this way, we define the

reconfiguration rule

addCoT (c3) : chain(c1,c2)−→ chain(chain(c1,c2),c3) (5.6)

that adds a CoT component in a chain of CoTs where the variable c3 can either be

instantiated as a federation using the production fed or a chain of CoTs using the

production chain.

5.4 Evaluating the FIMs model

In this model, a few ADR productions are defined to generate valid configurations of

FIMs. Recall that the fundamental property of FIMs specifies that at least one IDP

and one SP should participate to form a legal CoT. While generating providers in the

production fed in Figure 5.2(b) (page 79), this property is implicitly preserved via the

productions (cf. Figure 5.3 on page 80 and Figure 5.4 on page 81) which can be applied

immediately after the production fed. The other designated productions allow one to

generate the desired configurations of providers.

Moreover, the productions in the model enable designers to systematically gener-

ate valid configurations, ranged from the simplest FIM scenarios to the large complex

ones, in a precisely controlled way. For instance, Example 2.7 describes a large com-

plex FIMs where 697 IDPs are federated to 12 SPs. To generate such a configuration,

initially the production fed in Figure 5.2(b) (page 79) will be applied. To further refine

abstract components in this production, the productions pips in Figure 5.3 (page 80)

and psps in Figure 5.4 (page 81) will be used. As a result, a FIM configuration will be

generated where a single IDP is federated to a single SP. To generate the rest of IDPs
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and SPs, the abstract components of the productions pips and psps will be replaced

with the desired configurations using the corresponding productions.

Observe that the the productions for IDPs in Figure 5.3 (page 80) are very similar

to the productions for SPs in Figure 5.4 (page 81). Therefore, it is desirable to have

a facility in ADR that allows one to define a kind of generic (or meta-)productions

so that they can operate on various types of components. For instance, a compile

time facility in programming languages such as ”Generics” in Java allows a type or

method to operate on various object types. In this way, a generic (or meta-)production

that generates a provider may instantiate either an IDP or an SP. Similarly, a single

production can be developed for the empty designs in this model. As a result, the

number of productions can be reduced significantly that enables one to maintain the

designs productions in an efficient way.

To support changes in the FIM style, the architectural elements (e.g., CoT) in the

existing type graph in Figure 5.1 (page 78) can potentially be used to define new pro-

ductions. For instance, to define a production that allows CoTs to be connected in star

topology. For generating such a structure, one may attach the first two tentacles of hy-

peredge(s) of type CoT to a common node of type Channing (node }) in the proposed

new set of productions. In this way, one may conveniently define new productions to

support more complex topologies (i.e., tree) for the CoT. In this connection, an addi-

tional production that generate a federation of providers (i.e., similar to the production

fed in Figure 5.2(b) on page 79) need to be defined in order to support the new topol-

ogy of the enclosing CoT. Interestingly, such a change in the topologies of the CoT

does not affect the use of existing productions that generate actual providers.

In this model, the required reconfiguration rules have been defined that add compo-

nents into the FIM configurations. However, the model lacks in reconfiguration rules

for removing the FIM components. But one may take advantage of the nature of design

productions that generate a collection of IDPs and SPs. Indeed, these productions are
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used to formulate the reconfiguration rules in Section 5.3 (page 88) to add one or more

IDPs and SPs. Interestingly, these rules can potentially be applied in reverse order (i.e.,

RHS to LHS) to remove one or more IDPs and SPs.
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Chapter 6

Comparing the Modelling Approaches

This chapter compares the approaches for modelling architectural aspects of the FIMs.

Specifically, we consider UML, some graph-based approaches, and two ADLs (Acme

and C2SADEL).

We first fix the criteria for the comparison and then we discuss the support provided

by each of the considered approaches for the criteria. Finally, a comparison between

ADR and the other approaches is given and the available tool support for each approach

is discussed.

6.1 Criteria for the Comparison

The criteria for our comparison are classified in general criteria and pattern specific

criteria.

6.1.1 General criteria

The general criteria of interest consider the linguistic aspects related to

• core architectural concepts,
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• architectural styles,

• style checking,

• reconfiguration, and

• refinement.

For each criterion, we give a brief description and the main motivations that make

it relevant for the FIMs.

Core architectural concepts We consider core architectural concepts that include

components, connectors, and configurations (cf. Section 2.4 for details).

Architectural styles Architectural styles are one of the pillars of modern software

architecture. Architectural styles offer a few benefits [65] including:

• styles enable the reuse of architectural designs;

• styles abstract away platform specific details;

• styles constrain the design space to permit specialised analysis.

More precisely, a style defines a family of related systems (e.g., the FIM patterns BF,

MIF, MSF, and AF) by providing a common design vocabulary together with suitable

constraints. Notice that we consider the modelling approaches that support this notion

of architectural style for the comparison.

The vocabulary of a style defines a set of architectural element types (cf. Section 2.4

for details). Constraints specify allowable configurations of elements from the vocab-

ulary. The vocabulary together with the constraints describe an architectural style.
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Style checking The notion of style checking refers to the fact that a configuration can

only be valid if it does not violate its style. Style checking can be considered as one of

the important properties for architectural analysis [65]. A configuration can only con-

form to a style if it is a member of the family of configurations determined by that style.

For example, the proposed architectural style of FIMs given in Section 5.1 formalises a

family of systems by considering each of the FIM patterns as its instance. In this case,

there should be a mechanism to check whether a given configuration matches with one

of the legal configurations (i.e., the FIM patterns) defined by its style. Therefore, to

model FIMs, it is desirable that the modelling approach provides a suitable mechanism

to support style checking.

Reconfigurations Since SAs may change during the development life-cycle to sat-

isfy new requirements, it is desirable to have a suitable mechanism in the modelling

approaches to deal with the architectural changes. Typically, approaches to model dy-

namic SAs allow these changes to be formally defined by different kinds (i.e., basic

rules and complex rules) of reconfiguration operations. A basic reconfiguration rule

may add one or more concrete components to the configuration. On the other hand, a

complex reconfiguration rule adds a collection of components to the configuration in

an abstract way. Such a collection of components can suitably be represented by an

abstract component which will be replaced by a complex configuration.

Moreover, reconfigurations can be made in SAs either before execution or at run-

time. Hence, we distinguished between two types of reconfigurations where one re-

quires changes to be introduced by designers and the other requires changes to be

triggered at run-time. We remark that both types of these reconfigurations are indeed

possible in FIMs. However, modelling reconfigurations that deal with the changes at

run-time heavily depends on implementation details (e.g., realising a dynamic secu-

rity and trust management systems for managing the CoT) and we abstract away these
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details.

Moreover, reconfiguration can be style-preserving where any application of the re-

configuration does not violate the style. For instance, one or more providers may join a

federation during the development life-cycle. Example 2.3 (page 27) describes a recon-

figuration scenario that requires an additional IDP to be added to a FIM configuration

where an IDP is connected to an SP.

Also, reconfiguration operations may change the configuration by introducing new

types of architectural elements or replacing existing ones. It is out of scope of this dis-

sertation to deal with such reconfigurations. We deal with describing style-preserving

reconfigurations for the FIMs. Therefore, we focus on those modelling approaches that

support style-preserving reconfigurations.

Refinement Architectures of large systems are often described by a hierarchy of re-

lated architectures. Each architectural design in the next lower level of such a hierarchy

can be considered as a refinement of the previous level. In an architectural description,

an abstract component can suitably represent a system (or part of the system) at the

desired level of abstraction. For instance, an abstract CoT may represent a complex

configuration of a FIM system or possibly a chain of CoTs. Each CoT in a given

configuration may correspond to a different FIM pattern.

According to Garlan [55], despite the fact that no single definition of refinement

exists, but its rules must be explicit about what kind of properties must be preserved

in the refined design. One of the properties we are interested in is the preservation

of interface (potentially realised by ports) of an abstract component when replacing it

with the next level detailed architectural design.

For instance, consider the chain of CoTs scenario descried in Example 2.6 (page 29)

where two federations are connected. While replacing each abstract CoT in the chain

with an actual FIM configuration (e.g., a FIM pattern), one should preserve the inter-
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face that allow providers in one CoT to interact with each other and with providers of

the other CoTs in the chain.

The stepwise refinement of an abstract (or higher level) architecture into a relatively

correct lower level architectures requires predefined refinement patterns (or refinement

rules). Such a refinement mechanism provides routine solution to a standard architec-

tural design problem. Once a refinement pattern is proven correct, its instances can be

used to develop specific architectures [77].

The set of refinement rules can be defined in a style where each individual rule can

be proved as a valid refinement relation between the design of an abstract component

and the designs having an assembly of (abstract and) concrete components. This tech-

nique is known as style-based refinement which is naturally more powerful than the

techniques that rely on the rules that compare instances of the style [55]. The mod-

elling approaches should provide a suitable mechanism that permits the creation of the

refinement rules.

6.1.2 Pattern specific criteria

We describe the criteria related to creating and identifying FIM patterns in terms of

instances of architectural styles. The basic criteria we consider are related to pattern

generation and pattern identification.

Generating patterns An architectural style allows the precise description of a family

of related systems so as to specify systems that abide by a common style. Therefore,

a facility is desirable in the modelling approach that specify how the components can

suitably be composed in a given configuration. For instance, consider a configuration

of FIM pattern AF where multiple IDPs can be federated to multiple SPs. (Example 2.5

on page 28 describes such a scenario.) Observe that the number of IDPs and SPs in

this pattern may be known at the time when the actual configuration is being created.
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In this case, styles offer certain benefits where the refinement rules can effectively be

used to generate such a configuration.

Also, it is desirable to have a suitable mechanism to record the history about how

the refinement rules were applied in order to generate a given configuration. Conse-

quently, such information may serve the purpose of guiding the designers about how

to generate either the same configuration again or the extended ones.

Identifying patterns Since valid configurations of systems may represent specific

architectural patterns (e.g., the FIM patterns), applying changes to these systems may

result into either reconfiguring one pattern into the other or preserving the same pattern.

Recall that each FIM pattern configuration is considered as an instance of the FIM

style. In FIMs, adding one SP into FIM pattern BF (cf. Example 2.4 on page 28) will

reconfigure it into FIM pattern MSF. On the other hand, adding one or more SPs into

FIM pattern MSF configuration does not change the pattern. Similarly, adding one or

more IDPs into the FIM configurations may or may not change the patterns. Since each

of the FIM patterns is exposed to different security threats, reconfiguring one pattern to

the other has a direct effect on the security requirements. Therefore, use of the pattern

identification techniques have become more important while applying changes to these

systems.

6.2 UML as an ADL

Recently, UML has been promoted as an ADL with the introduction of structured clas-

sifier (i.e., class, component) and port concepts. In describing the support provided by

UML for the criteria given in Section 6.1, we mainly follow the approaches to UML-as-

ADL in the literature (notably [71, 63, 33]). Also, Table 6.1 and Table 6.2 summarise

the support provided by UML and the profile in [33], respectively.
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Table 6.1: The UML’s support for the criteria
Criteria The UML profile

G
en

er
al

C
O

R
E

COMPONENTS UML component extends UML’s class concept in the meta-
model. Both classes and UML components suitably describe
SA components.

CONNECTORS UML connector does not represent SA connector semantics
(e.g., connector types). Alternatively, UML associations, asso-
ciation classes,classes or components may be used where each
one has its own advantages and disadvantages to model SA con-
nectors.

CONFIGURATIONS Object diagrams model flat view of the system while structure
diagrams suitably describe SA configuration in a hierarchical
way.

ST
Y

L
E

S VOCABULARY Class diagrams suitably describe vocabulary while structure di-
agrams (type level) may loosely define vocabulary of style that
models various context specific views.

CONSTRAINTS Multiplicity constraints may partially represent style constraints
and OCL constraints are often needed to restrict the valid mod-
els (e.g., global OCL constraints to model complex association).

STYLE CHECKING Requires the use of validation tools and techniques. Validation
of models whose style uses OCL constraints is still problematic
and OCL lacks support in the widely available UML tools.

RECONFIGURATIONS UML does not specify any notation to describe reconfigura-
tions. Consequently, designers directly introduce changes in the
configurations.

REFINEMENT UML has limited support (e.g., inheritance) for architectural re-
finement and there is no concept of UML abstract component.

Pa
tt

er
n PATTERN GENERATION Developers use rules of thumb to create configurations.

PATTERN IDENTIFICATION Object diagrams that represent complex systems are difficult to
analyse while structure diagrams that represent such systems
can effectively be analysed.

We do not consider the approaches (such as [81] and [64]) that change the UML

metamodel to directly support the required modelling concepts by introducing new

kind of diagrams. As observed in [71], those approaches use the notations which will

not conform to the UML specification and could become incompatible with UML com-

pliant tools.

6.2.1 Support for general criteria

Core architectural concepts A UML component directly extends the class notation

in the UML metamodel. This extension enables UML components to be associated
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Table 6.2: The UML profile’s support for the criteria
Criteria The UML profile

G
en

er
al

C
O

R
E

COMPONENTS Uses UML components to represent SA components.
CONNECTORS Uses UML connectors to represent interactions be-

tween the components.
CONFIGURATIONS Uses structure diagrams to represent configurations.

ST
Y

L
E

S VOCABULARY Class diagram models abstract components and struc-
ture diagrams represent their internal structure.

CONSTRAINTS Multiplicity and global constraints OCL to model
complex association.

STYLE CHECKING Requires the use of validation tools and techniques in
UML/ADR.

RECONFIGURATIONS Changes one pattern configuration (or a specific con-
text) to the other and provides unsatisfactory support
to tackle reconfigurations in a general way.

REFINEMENT Components tagged as «refineable» that suitably
model abstract components.

Pa
tt

er
n PATTERN GENERATION It has the same limitations as UML but one may ef-

fectively use productions that create simple configura-
tions (e.g., FIM pattern BF).

PATTERN IDENTIFICATION It has the same limitations as UML.

with additional information (e.g., deployment descriptors, property files, etc..). How-

ever, such an additional information may not necessarily be required by SA compo-

nents which often can suitably be represented by UML components or classes.

On the other hand, UML provides unsatisfactory support for connectors. A UML

connector models the simplest form of interconnections (e.g., a service call) and it is

a simple link between architectural elements (e.g., the connector between an IDP and

an SP associates Provider_Access ports in Figure 4.2 on page 69). Also, UML’s

connectors do not yield any semantical information (e.g., connector types) and one

may choose from several mechanisms (see Table 6.1) to describe SA connectors in

UML. Each mechanism has its own advantages and disadvantages [63]. For instance,

associations are suitable when the interaction mechanisms (e.g., procedure or service

calls) are well understood and similar to the interactions of UML connectors. On

the other hand, classes (or components) allow one to describe connector semantics,

specific component ports, and connector roles. However, it is very difficult to single

101



out components and connectors in a configuration when the same notation is also used

to model components. As observed in [63], if SA components are modelled by classes

then UML components can suitably represent connectors.

In UML, configurations can either be represented by object diagrams or by struc-

ture diagrams (at instance level). An object diagram (cf. Figure 3.2 on page 61) models

a flat view of a running system by showing links between the objects. Conversely, a

UML structure diagram (cf. Figure 4.2 on page 69) suitably represent an architec-

tural configuration where connectors model interconnections by associating ports of

the components. Moreover, this diagram models a structured view of the system by

imposing a hierarchy over a complex system.

Architectural styles A class diagram suitably represents the vocabulary of a style.

Constraints over complex associations between components may be expressed using

multiplicity and OCL constraints (often not easy to express).

Example 6.1 It is difficult to clearly specify GC1 (page 59) for the model in Fig-

ure 3.1(b) (page 58). GC1 specifies a mutually exclusive condition on two different sets

of associations, one for chain of CoTs and the other for Federation of providers.

In order to constrain Figure 3.1(b) with GC1, all associations relating the associations

on chain of CoTs (resp. Federation of providers) must be linked together. Moreover,

the links associated with each set need to be related in order to specify the mutually

exclusive condition. Notice that this may render the resulting diagram complex. More-

over, UML classes and associations are not enough to define architectural composition.

In fact global (OCL) constraints are often required.

Example 6.2 The CoT in Figure 3.1(b) describes complex associations among various

providers (i.e., IDPs and SPs) and their associated components (i.e., DTMSs). In this

case, global constraints (e.g., GC2 on page 60) are required even for simple conditions.
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On the other hand, UML structure diagrams may reduce the use of the constraints

that are defined over the associations among the composed component and its associ-

ated components. For instance, GC2 is immaterial while using those diagrams. How-

ever, these diagrams may still require to constrain complex associations between the

involved (contained) components (e.g., GC3 on page 60).

We remark that UML does not support the notion of abstract components. In [33],

a UML profile has been introduced to support style-based (and reconfigurable) design

of service-oriented systems. This profile exploits UML generalisation concept to as-

sociate an abstract component to the productions. In this way, the profile precisely

describes the way abstract (or refineable) components can be refined using the cor-

responding productions. Such a refineable component can be replaced by one of the

productions whose configuration is described in the corresponding structure diagram.

Style checking The use of certain modelling tools (e.g., [68, 47, 58]) and techniques

(e.g., [41]) is required to validate a configuration. For example, validating an object

diagram as an instance model requires checking whether the object diagram fulfils the

constraints defined in its class diagram. However, the problem of well-formed instanti-

ation of UML models that use OCL constraints is still not satisfactorily addressed [40].

We argue that OCL is not well supported in the UML practice. Since the profile in [33]

is developed to capture variety of stylistic issues which are addressed by an ADL,

style-checking support in UML needs to be studied and investigated in terms of that

profile.

Reconfigurations In UML, there is no mechanism to describe SA reconfigurations.

Consequently, designers have to introduce the changes directly in the configurations

as requirements emerge. Such an approach may create consistency problems in UML

models.
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In Section 3.4 (page 62) we considered reconfigurations of FIM patterns defined

according to the recent approach proposed in [33]. Such approach provides unsatis-

factory support to tackle reconfigurations that allow components to be independently

added or removed. In [33], the use of structure diagrams to define reconfiguration rules

allows a reconfiguration rule to change a specific FIM pattern into another. However,

the support for style-preserving reconfigurations is not ideal (cf. Section 3.4). Another

disadvantage is that the profile in [33] makes difficult to figure out which part of a

configuration changes in a reconfiguration.

Refinement UML promotes object-orientation as a general modelling paradigm. As

noticed in [83], this is not sufficient to describe architectural refinement. Instead,

the UML profile in [33] proves to be suitable for architectural refinement. Such an

approach exploits the use of UML class diagrams to describe an abstract component

and to associate it with a set of refinement rules. In this way, a structure diagram is

used to represent the internal structure of an abstract component amenable to be refined

with productions. Such profiles provide limited support to create general refinement

rules which need to be tailored to specific configurations.

6.2.2 Support for pattern specific criteria

Generating patterns Typically UML designers use rules of thumb to generate con-

figurations (e.g., in object diagrams or the structure diagrams) according to given spec-

ifications. This requires a careful understanding of the relationships between the archi-

tectural elements and the constraints described by the style. For configuration of FIM

patterns, besides topological information, designers have to consider the complexity of

the pattern (i.e., number and kinds of components). For instance, generating configu-

ration for BF is easier than for AF because the former pattern has a fixed number of

components.
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As argued, object diagrams can suitably describe simple scenarios (e.g., pattern

BF) but, for complex ones (e.g., chain of CoTs), structure diagrams are more appro-

priate. The profile in [33] uses the structure diagrams at the “type level” to describe

architectural configurations; such profile yields design productions.

Identifying patterns To identify a pattern, one has to analyse the UML diagram

representing its configuration. This requires to consider instances and their associa-

tions. For instance, FIM patterns differ on the number of their IDPs and SPs and/or

how they are attached to a common Federation. Hence, to identify such patterns

one may need to enumerate the instances of type IDP and SP in a given configuration.

Typically, object diagrams (cf. Figure 3.2 on page 61) are difficult to be analysed1

when they describe complex configurations. On the other hand, the structure diagrams

(cf. Figure 4.2 on page 69) may effectively be used to identify such configurations

(e.g., belonging to FIM patterns chain of CoTs).

6.3 ADR as an ad-hoc ADL

In this section, we briefly describe the support provided by ADR [38] for the criteria

given in Section 6.1 and Table 6.3 summarises this support. The assessment is mainly

based on our experience of using ADR to model architectural aspects of the FIMs

described in Chapter 5.

6.3.1 Support for general criteria

Core architectural concepts In ADR, hyperedges model components and nodes

model interconnections between the components. A tentacle leaving a hyperedge and

1Automated analysis is possible (e.g., by parsing XMI representation in UML tools) but it requires
customised solutions that could be impractical.
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Table 6.3: ADR’s support for the criteria
Criteria ADR

G
en

er
al

C
O

R
E

C
O

N
C

E
P

T
S COMPONENTS Hyperedges model SA components where non-terminal hyperedges repre-

sent abstract (or refineable) components and terminal hyperedges represent
basic (or non-refineable) components.

CONNECTORS Nodes of the hypergraph model interactions between the components. Ten-
tacles leaving hyperedges and joining a common node model roles of the
components in a given interaction.

CONFIGURATIONS Typed hypergraphs describes architectural configurations.

ST
Y

L
E

S VOCABULARY A type hypergraph suitably describe vocabulary of a style.
CONSTRAINTS A set of productions that formally define legal connections between the com-

ponents in a configuration.
STYLE CHECKING ADR uses a general algebraic approach where a term provides an admissible

justification for the well-typedness of SAs.
RECONFIGURATIONS ADR uses rewrite rules to define style-preserving SA reconfigurations.

REFINEMENT Abstract components are refined in a step-wise hierarchical way using the
corresponding productions.

Pa
tt

er
n

sp
ec

ifi
c

PATTERN GENERATION The productions can be applied in a specific order to generate configurations
of the patterns. Also, terms that describe valid configurations (e.g., the FIM
patterns) can be reused to precisely generate the same configuration again or
the updated one by applying the reconfiguration operations.

PATTERN IDENTIFICATION A configuration has an associated term like representation which may effec-
tively be parsed to identify a pattern by enumerating instances of particular
types.

joining a node describes the role of the component in the interaction. More precisely,

tentacles represent the assignment of the roles of the components to their respective

ports. Tentacles of two or more hyperedges joining a common node represents an

interconnection between the components. Figure 6.5 (page 128) shows a few FIM

configurations where components of types IDP and SP are associated through particu-

lar type of port (node •). A terminal hyperedge (single line box) represents a basic (or

non-refinable) component and a non-terminal hyperedge (double line box) represents

an abstract (or refinable) component.

The concept of typed design featured by ADR describes components and their in-

terconnections in a configuration. Such a design is defined by a hierarchical (non-

terminal) hyperedge whose internal structure ranges from an empty graph to an ar-

bitrary complex graph [36]. Figure 6.5(a) (page 128) shows a configuration where a

single IDP and a single SP are connected through port p1 (node •) which are then con-

nected to a federation through port f1 (node ◦). This configuration describes the FIM
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pattern BF and whose interface is defined by a non-terminal hyperedge of type CoT.

Architectural styles In approaches based on graph grammars to describe SAs, a type

graph suitably represents architectural elements and it has one edge and one node for

each different type of component and port respectively. In ADR, the vocabulary of a

style is given by the type graph while productions define the legal connections between

the components. Figure 5.1 (page 78) shows the type graph that represents architectural

elements to model the FIMs. In this type graph, non-terminal hyperedges (e.g., CoT)

represent the types of abstract components and terminal hyperedges (i.e., F, IDP, and

SP) represent the types of the (basic) components. Also, the type graph has one node

for each type of port.

In ADR, the notion of design productions specify how components can legally be

connected in a configuration where non admissible configurations can be ruled out by

construction. ADR productions are very much like the designs that describe configura-

tions but their underlying graph can have non-terminal hyperedges. These hyperedges

will be refined using the corresponding productions to generate their configurations.

Figure 5.2 (page 79) shows the productions that can be used to generate configura-

tions of an abstract CoT in the FIMs. We remark that the constraint GC1 (page 55)

can be matched with these productions. The non-terminal hyperedges in these produc-

tions can further be refined using the corresponding productions given in Figure 5.3

(page 80) and Figure 5.4 (page 81). Constraints GC3 and GC6 can be matched with

these productions as they attach all providers (i.e., IDPs and SPs) in the configurations

of a CoT to a common federation of type F through federation access port (node ◦) and

to each other through provider access port (node •).

Moreover, the design productions in ADR can be considered as hyperedge replace-

ment rules that are fundamental to the graph grammar based approaches to architectural

style. In ADR, the set of design productions together with the type graph represent an
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architectural style.

Style checking The architectural configurations are represented in ADR through

typed graph having types associated in the corresponding type graph. The relation-

ship between the architectural elements given in a type graph and the actual elements

used in the typed graph is represented by graph morphism that maps each instance to

its type.

In ADR, style checking is done by using a general algebraic approach. ADR uses

a style-based refinement approach where a non-terminal is refined by applying the cor-

responding productions. Such a refinement process is given the algebraic formulation

used in Chapter 5. More precisely, a configuration in ADR has an associated term

representation that describes how such a configuration is built and provides a witness

of its construction. To check whether an architecture conforms to a style is reduced

in ADR to writing a term that encodes the structure of the architecture. Such a term

provides an admissible justification for the well-typedness of the actual architectures.

Reconfigurations ADR is a graph-based formal approach where rewrite rules de-

fine SA reconfigurations. The design rules (or productions) in ADR can be given an

algebraic formulation where a term describes a particular style-proof. In ADR, style-

preserving reconfigurations are operated at the level of style-proofs by exploiting term

rewriting over style-proof terms.

Reconfiguration operations in ADR take the flavour of graph transformation rules.

A graph transformation rule is defined as a rewrite rule L −→ R where L and R are

terms of the same type. For example, consider the FIM style given in Chapter 5, the

(basic) rule

addIDP : noip−→ ips(ip,noip) (6.1)

adds an IDP component to a CoT in the FIMs. The term on the LHS of (6.1) defines an
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empty design of type IPs that will be replaced by a single IDP described by the term

on the RHS of type IPS. Such a condition enforces style preservation by allowing both

the LHS and the RHS of the reconfiguration rule with the same type of the interface

graph [38].

In ADR, basic rule (without variables) can add a single component while a com-

plex rule (with variables) allows a collection of components to be added at once. For

example, the complex rule

addIDP(X) : noip−→ ips(X,noip) (6.2)

defines a reconfiguration operation which may add a collection of IDP components.

In this case, variable X of type IPs may be replaced with a subterm that describes a

complex configuration generated using the corresponding productions (cf. Figure 5.3

on page 80). Consequently, ADR allows reconfigurations that can be applied in any

larger context by instantiating the parameters according to the required types.

Refinement The process of refining an abstract component is achieved by apply-

ing the corresponding productions in a step-wise hierarchical way. Such a refinement

process allows designers to consider productions that captures the relevant details in

terms of the components required by the configuration. Furthermore, ADR supports

style-based refinement that precisely models the relationship between an abstract com-

ponent and a set of design productions. For example, productions ips, ip, and noip

(cf. Figure 5.3 on page 80) generate configurations of an abstract component of type

IPs. These productions can be used freely to refine IPs (such as in the production pips

given in Figure 5.3 on page 80) that may represent a collection of IDP components.

Also, a production in ADR describes the way components are composed in an inter-

nal structure of an abstract component. For instance, production chain in Figure 5.2(a)
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(page 79) takes two designs of type CoT and returns a CoT. The composition pattern

of the two CoTs connected in a chain can be seen in the underlying design of the pro-

duction. Such a composition mechanism describes the complex relationships between

the components. Consequently, ADR does not require explicit knowledge about the

constraints where non admissible configurations (e.g., connecting clients) can be ruled

out by construction.

6.3.2 Support for pattern specific criteria

Generating patterns Since an architectural style describes a family of systems, each

instance of the style is to be considered as a valid configuration of a system. In an ar-

chitectural description, an abstract component (e.g., a CoT in the FIMs) may represent

such a system at the desired level of abstraction. The refinement mechanism of ADR

can be used to generate configuration of an abstract component. ADR precisely defines

the relationship between an abstract component and the corresponding design produc-

tions. When a set of design productions are defined within a style to refine an abstract

component, ADR allows designers to freely choose the productions in order to gen-

erate the required configuration (e.g., a FIM pattern). For instance, non-terminals in

productions pips (Figure 5.3 on page 80) and psps (Figure 5.4 on page 81) should be

cancelled by applying the corresponding productions so as to generate configuration of

FIM pattern BF. In this way, one may need to apply the productions in a specific order

so as to generate configurations of the patterns.

Furthermore, one may exploit the expressive power of simple algebraic approach

of ADR where a term suitably describes the composition of the components in a given

architecture. In ADR, a term formalises a configuration that is described in the graph

corresponding to it. Also, a term in ADR represents the way in which the configuration

is built. Therefore, terms in ADR can effectively be used to guide the construction of
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the same configuration again or the extended ones by applying the reconfiguration rules

defined by the style. For example, consider the FIMs style given in Chapter 5, term

fed(pips(noip),psps(sps(sp,nosp)))

describes a valid architectural configuration of FIM pattern MSF. In this way, terms

in ADR describe instances of styles and they can be used to guide the well-formed

instantiation of the same configurations again.

Identifying patterns In ADR, (typed) designs describe configurations of the sys-

tems (e.g., the FIM patterns). A configuration in ADR is generated by applying the

corresponding productions and it has an associated term like representation. One may

exploit such a term associated with the configuration to identify the pattern. In order to

do so, one has to parse the corresponding term representation of the configuration and

consider the occurrences of the productions that have terminal hyperedges of particular

types in their underlying designs.

Configuration of the FIM patterns are differentiated by the number and the kinds

of providers (i.e., IDP and SP) participate in the CoT. The productions given in Fig-

ure 5.2(b) (page 79), Figure 5.3 (page 80), and Figure 5.4(page 81) generate con-

figurations of a CoT, IDPs, and SPs respectively. Whenever productions ips and ip

are applied each of them generates a single IDP. Similarly, productions sps and sp

generate an SP. In order to identify a FIM pattern, one has to take into account the

occurrences of these productions in the terms to enumerate components of type IDP

and SP respectively. For example, consider the FIMs style, when term

fed(pips(noip),psps(nosp))

is parsed following such an approach, one may recognise its associated configuration
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as the FIM pattern BF where a single IDP is federated to a single SP.

6.4 Other Possible Approaches

We considered a few alternative graph-based architectural modelling approaches and

ADLs that may support the criteria given in Section 6.1. More precisely, we considered

the graph-based approaches in [73, 74, 61, 27] and two ADLs (C2SADEL [69] and

Acme [56]). Notice that none of these approaches have explicitly been applied to FIMs.

But those approaches are selected for the comparison due to the fact that they provide

the support for most of the criteria given in Section 6.1 and particularly they describe

• core architectural concepts and

• architectural styles

to promote style-based architectural development.

6.4.1 Support for general criteria

Core architectural concepts Graph-based approaches give visual representation of

the core concepts typically equipped with formal descriptions. Le Métayer [73, 74]

represents nodes as components and edges as connectors. In this approach, a graph is

formally defined as a multiset that describes a configuration.

Hirsch et al. [61] describe configurations by graphs. Edges of the graph model

components and connectors. Nodes model communication ports and roles.

Baresi et al. [27] follow a general approach to describe components and connec-

tors as nodes of the graph while edges describe the possible relationships between the

architectural elements. They use UML object diagrams to describe configurations.

ADLs typically uses textual notations together with the means (e.g., a configuration

language) to describe SAs. ADLs fully support description of the core architectural
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concepts by explicitly modelling connectors (cf. [72]). Such a support for the core

architectural concepts is also provided by C2SADEL and Acme.

Architectural styles Le Métayer [73, 74] uses context-free graph grammars to de-

scribe architectural styles and defines the constraints that specify the actual connections

between the entities. To describe the constraints GC3 and GC6 (page 55) in Le Mé-

tayer’s approach, one may consider the unary relations which characterise the roles of

the FIM components (i.e., CoT, Federation, IDP, and SP) where the binary relations

of such roles describe the directed links between these components. Further, a set of

terms on the RHS of the productions can precisely produce such links with respect

to the conditions described in the FIM constraints. Similarly, Hirsch et al. [61] de-

scribe architectural styles by hyperedge context-free grammars. In this approach, the

productions of the grammars are grouped in three sets including static productions,

dynamic productions, and communication pattern productions. Static productions are

used to construct an initial configuration while the rest of the productions define recon-

figurations. While describing such productions to model the FIM systems, one has to

consider the constraints GC3 and GC6 over the relationships between the hyperedges

that represent the FIM components. Since the hyperedges in [61] model basic compo-

nents, one may consider the FIM components of type Federation, IDP, and SP. More

precisely, a static production can be given that describes an initial FIM configuration

where one or more IDPs and SPs are attached to each other and a common Federation

in order to match with the constraints GC3 and GC6, respectively. Furthermore, the

productions which describe reconfigurations should also respect these conditions while

introducing one or more IDPs and/or SPs in the FIM configurations.

Baresi et al. [27] formally define architectural style as graph transformation system

having type graphs, constraints, and transformation rules. They represent type graphs

as UML class diagrams where classes represent nodes and UML associations model
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edges of the graphs. Notice that in the graph-based approaches that use hypergraphs to

describe architectural styles, hyperedges suitably model components and nodes model

the interconnections between the components. In addition to multiplicity constraints,

they may need OCL constraints over associations to restrict valid configurations as in

UML. Therefore, it would be necessary to give the OCL representation of the con-

straints GC3 and GC6 while modelling the FIM system using the approach of Baresi

et al. [27]. Furthermore, they use an extended notion of architectural style to support

structural constraints together with platform-specific (e.g., SOA) communication and

reconfiguration mechanisms.

C2SADEL [69] allows one to define only a particular kind of style (i.e., C2 style [88]),

where connectors are explicitly modelled. In C2 style, components and connectors are

defined as types and they have top and bottom defined. The top of a component can be

attached to the bottom of a single connector. Similarly, the bottom of a component is

attached to the top of a single connector. Furthermore, a connector can have multiple

components attached to its top and bottom. Furthermore, in C2 components are only

aware of the components which are ”above” within the hierarchy. The components

are completely unaware of the components that reside ”beneath” them within the hi-

erarchy. In C2SADEL, any configuration created following such a style is restricted

by these simple conditions. However, C2SADEL requires the use of analysis tools in

order to further define the design constraints over the configurations. Therefore, one

may need to transform architectural representation from C2SADEL into an other ADL

(e.g., UML) that has such kind of tool support. To this purpose, Abi-Antoun and Med-

vidovic in [25] have defined a set of rules which can be used to transform C2SADEL

models into UML models. Furthermore, they also provide a tool support for automati-

cally generating UML models (i.e., class diagrams and object diagrams) corresponding

to the C2SADEL ones. In this case, the constraints (i.e., GC0-GC5) defined over the

UML models in Section 3.2 (page 57) are needed to further restrict such UML models.

114



In Acme [56] one can describe styles in a general way, in fact architectural style is

defined as a set of architectural element types and a set of constraints. These constrains

are defined using first order logic predicates with some additional information spec-

ifying architectural-relevant predicates. Acme has its first order predicates language

extension called Armani (cf. [85] for further details) which can be used to represent

structural constraints. To model the FIM systems in Acme, the constraints GC3 and

GC6 whose Armani representation (i.e., similar to OCL) will be needed. Moreover,

both Acme and C2SADEL support component sub-typing where a sub-type satisfies all

structural properties of its super-type together with their constraints.

Style checking Le Métayer [73, 74] uses static type checking (without tool) to ensure

that rewriting rules are consistent with the style. Similarly, Hirsch et al. [61] exploit

graph rewriting, which defines the construction of SA by applying the productions, to

represent valid SA configurations.

Baresi et al. [27] addressed style checking in a way that ensures that instance graph

(configuration) is consistent with the type graph by using graph transformation tools

(i.e., AGG, PROGRES, Fujaba, GTXL, etc.) or model checking (i.e., CheckVML,

GROOVE, etc..).

C2SADEL [69] treats components as types and it performs type checking at run-

time. The unwanted connections (e.g., interface mismatch) between the components

can be detected by the type checking. However, one may require the use of analysis

tools in order to ensure well-formedness of newly created architecture in C2SADEL.

The style editor of Acme allows rules to be defined for the correct composition of

the architecture. These rules can be checked by its development tools (i.e., AcmeStu-

dio [84]). In order to validate configurations, Acme requires the use of different analysis

tools (e.g., Armani constraint analysis tool in [85]) that can be integrated with its de-

velopment tool. Recently Kim and Garlan in [65] use Alloy to perform style checking
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of a configuration defined in Acme.

Reconfigurations Le Métayer [73, 74] uses a coordinator that is responsible to con-

trol the changes in the architectures. The coordinator is expressed in terms of con-

ditional graph rewriting and it reads public variables of components to control the

changes. These changes can be done by creating and removing entities and links. This

approach uses static type checking without tool support to prove that the rewriting rules

are consistent with the style. Also, the Le Métayer’s approach provides an algorithm

to verify that the changes done by the rewriting rules preserve the style [31].

Hirsch et al. [61] describe dynamic productions (rules) for creating and removing

architectural elements to define dynamic evolution of SAs. They use graph rewriting

over productions combined with constraint solving to specify how components will

evolve. As observed in [39], Hirsch et al. in [61] do not provide a specific verification

mechanism to ensure that the changes are consistent with the given style.

Baresi et al. [27] use graph transformation rules to define reconfiguration mecha-

nisms which allows architectural changes at run-time. The application of transforma-

tion rule to an instance graph requires rewriting a part of that graph while preserving

the style.

C2SADEL [69] supports basic kind of reconfiguration operations. It can add or

remove a single component at a time. In C2SADEL, components (and connectors) can

be added and removed by using Weld and Unweld operations respectively.

Batista et al. [28] proposed a meta-framework called Plastik that extends Acme to

support reconfigurations. They provide three extensions to Acme by introducing new

constructs for describing reconfigurations. The first extension is a conditional con-

struct describing run-time conditions for programmed reconfigurations. The second

extension provides a pair of constructs for removing an existing architectural elements

from the configuration. The third extension deals with describing run-time dependen-
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cies between the architectural elements so that architectural mismatches can be avoided

when new elements are added. Those ADLs require analysis tools to check that recon-

figurations are style preserving.

Refinement Le Métayer [73, 74] defines a set of rules for the refinement of an ab-

stract component in a given style. Similarly, Hirsch et al. [61] define all productions as

rewrite rules. However, they use an implicit notion of abstract components where the

relationships between abstract components and the corresponding rewriting rules are

not explicitly defined.

Baresi et al. [27] address structure preserving and behaviour preserving refinement

of an abstract platform-independent (PI) style into a platform-specific (PS) style. They

define one-to-one structural mapping between the elements of PI style and PS style.

However, their focus is more on behavioural refinement where the elements of PS style

are further refined using UML’s generalisation concept.

C2SADEL provides certain features to support refinement of components across

the levels of abstraction. It allows sub-typing of components and places additional

constraints on refinement maps to prove certain properties of the architecture [70].

Architectural level descriptions can be mapped to their implementations in C2SADEL.

In Acme, architectures can be described in a hierarchical way where a component

and a connector can be represented by one or more lower-level descriptions called

Acme representations. An Acme component can have multiple alternative implementa-

tions and it also supports multiple refinement levels. The concept of rep-map in Acme

defines the actual mapping between an architectural element and its associated multiple

alternative implementations.
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6.4.2 Support for pattern specific criteria

Generating patterns Le Métayer [73, 74] defines a style as a graph grammar whose

rules formally represent configurations. In order to generate configurations of pat-

terns, the rules defined by a given style should be applied in a particular order (cf. [74,

page 3]). The actual configuration of a pattern can formally be represented in the cor-

responding multisets of the underlying graph.

Hirsch et al. [61] describe static productions, which can be used to obtain an initial

graph that represents a configuration. These productions can effectively be used to

generate the simple patterns (e.g., FIM pattern BF). But the patterns (e.g., FIM pattern

AF) having arbitrary length of components cannot suitably be generated using such a

mechanism.

Baresi et al. [27] do not provide any detail about how to construct an initial (in-

stance) graph. However, they assume that the designers may need to use heuris-

tics or the existing techniques to derive correct platform-specific configurations from

platform-independent ones.

In C2SADEL, the rules for composing architectural elements can effectively be

used to generate specific architectural patterns. Instead, Acme lacks similar support for

generating the specific patterns of configurations.

Identifying patterns Le Métayer [73, 74] formally represents configuration graphs

as multisets. In order to identify a pattern, one may exploit such a representation by

parsing the multiset and taking into account the occurrences of instances of a particular

type.

Hirsch et al. [61] represent configurations as graphs that are generated by applying

the corresponding productions. Baresi et al. [27] use UML object diagrams to describe

configurations as instance graphs. The approaches in [27] and [61] require one to anal-

yse the graphs that describe configurations in order to identify the patterns. Therefore,
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identifying a pattern in those approaches has the same limitations as with UML object

diagrams.

In C2SADEL and Acme, it may be difficult to identify a pattern in a configuration

because one may require the use of ad-hoc techniques. For example, a facility may

need to be incorporated in the executables so that the patterns they represent can be

identified at run-time. To the best of our knowledge, neither C2SADEL nor Acme

provides a mechanism that can be used to identify the patterns at run-time.

6.5 A Comparison

In this section, we give the comparison of ADR, UML, and the other approaches using

the criteria described in Section 6.1. We refer to the previous sections of this chapter

which respectively describe the support provided by these approaches for the criteria.

Also, Table 6.4 and Table 6.5 outline this comparison. Notice that we call the approach

of Baresi et al. [27] GT4SA (after graph transformation for SAs), Hirsch et al. [61]

HR4SA (after hyperedge replacement for SAs), and Le Métayer [73, 74] GG4SA (after

graph grammars for SAs).

6.5.1 Using general criteria

Core architectural concepts To model SA components, C2SADEL describes a par-

ticular type of components (i.e., C2 components) with fixed number and kinds of ports.

All the other approaches suitably describe SA components in a general way. UML’s

connector concept does not represent SA connector semantics (e.g., connector types).

Alternatively, one may choose from various other notations (i.e., classes, UML com-

ponents, etc.) to describe SA connectors in UML. All of the considered approaches

suitably describes configurations of the systems.
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Architectural styles All of the approaches suitably describe style vocabulary. How-

ever, a few of them lack a mechanism that may suitably describe constraints within a

style. For instance, UML, the profile in [33], and GT4SA may require OCL constraints

to restrict the valid models. Such constraints are often not easy to express. Also, OCL

lacks support in the UML tools which are widely available.

Style checking Style checking of configuration in UML (and the profile in [33]) and

GT4SA require the use of the validation tools and techniques. As observed in [40],

validation of the configuration whose style uses OCL constraints is still problematic.

In the ADLs, their run-time systems support type-checking of the configurations. As a

result, configurations in the ADLs may further require the use of certain analysis tools

(e.g., Alloy) so as to validate such configurations against their styles. On the other

hand, the graph grammar based approaches including ADR, HR4SA, and GG4SA use

a formal mechanism that ensures construction of valid configurations.

Reconfigurations In UML, designers directly introduce the changes in configura-

tions which may create consistency problems. Also, the UML profile in [33] provides

limited support to describes the changes by reconfiguring one FIM pattern to the other.

We remark that this profile provides unsatisfactory support to reconfigure a FIM pattern

while preserving the pattern (e.g., by adding one or more IDPs in FIM pattern MIF).

In the ADLs, C2SADEL allows a single component (or connector) can be added or

removed at a time. On the other hand, the rest of the approaches suitably describe

reconfigurations. Furthermore, these approaches (except HR4SA) also provide the

means to check whether the changes preserve the style or not.

Refinement As noticed in [83], UML supports the refinement through its general-

isation concept (i.e., inheritance) which is not sufficient to deal with the architectural

refinement. We remark that UML does not support the notion of abstract architec-
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tural components. GT4SA uses style-based refinement to define one-to-one structural

mapping between the elements of two styles and it mainly focuses on behavioural re-

finement. As observed in [70], C2SADEL also provides limited support to deal with ar-

chitectural refinement. On the other hand, the Profile in [33], ADR, GG4SA, HR4SA,

and Acme suitably describe architectural refinement.
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6.5.2 Using pattern specific criteria

Generating patterns In UML, developers use rules of thumb to instantiate configu-

rations of the patterns. Also, the profile in [33] and GT4SA have the same limitation as

with UML to generate configurations of the patterns. On the other hand, ADR, HR4SA

and GG4SA formally define the refinement rules to generate configurations. Such rules

may guide designers in a precise way to generate the configurations of the FIM patterns

by applying the rules in a specific order. The ADLs (Acme and C2SADEL) lack such

a formal mechanism that precisely guide the users about how to create configurations

of the patterns. However, the composition rules in C2SADEL may effectively be used

to generate specific patterns as instances of C2 style.

Identifying patterns In UML, the formal description (i.e., XMI representation) of

the diagrams can potentially be used to automate pattern identification. The disadvan-

tage of this approach is that one has to rely on specific UML tools that provides such

information. Alternatively, one has to read object diagrams or (instance level) struc-

ture diagrams to identify patterns. However, this approach is not feasible to analyse

the UML diagrams that represent complex configurations. Also, the profile in [33] and

GT4SA have these limitations.

In ADR, HR4SA and GG4SA, the formal description of the configurations can

effectively be parsed to identify patterns. To identify patterns at run-time (e.g., after

reconfigurations) in the ADLs (Acme and C2SADEL), they require specific techniques

to be incorporated in the executables. To the best of our knowledge, these ADLs lack

a mechanism (e.g., programming language features) that can be used to realise such

techniques. For instance, an architectural programming language called Java/A inte-

grates architectural representations into Java. As observed in [39], Java/A is in the

inception phase and its compiler is yet to be completed.

123



Figure 6.1: An object diagram for the educational FIM

6.5.3 Using a case study

In this section, we evaluate UML, the profile in [33], and ADR by applying these

approaches to the scenario described in Example 2.7 (page 29). First, we apply UML,

the profile in [33], and ADR and then we draw some conclusions.

Applying the Approaches to the Case Study

UML When using UML, we use object diagrams to represent FIM configurations.

Such diagrams model flat view of the system and they can suitably represent a snapshot

of a complex configuration of a large running system.

Example 6.3 In the scenario of Example 2.7 (page 29) the regional information center

(RIC) acts as an IDP and its is called EdutTech. EdutTech is responsible for providing

services to the teachers (and administrators) in 47 school districts (which play the role

of IDPs) associated with the Boards of Cooperative Educational Services (BOCES) in

New York State (NYS).

The scenario in Example 6.3 is rather complex. The underlying FIM pattern of

such a configuration is MIF where a single SP is federated to multiple IDPs.

Figure 6.1 represents an object diagram which describes a configuration of the FIM

scenario described by Example 6.3. In this diagram, the SP eduTech is attached to

the IDPs eduTech_SD1 and eduTech_SD2 while the IDP eduTech_SD47 followed by
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Figure 6.2: An object diagram for the reconfigured educational FIM

dashed line represents the last IDP within the list. In this way, we represent a few IDPs

to demonstrate the configuration with respect to FIM pattern MIF. In the diagram, the

SP and the IDPs are attached to each other and to their Federation fed_BOCES_NYS

and CoT cot_BOCES_NYS. Also, the Federation is attached to the CoT. As a result, the

configuration described via the object diagram in Figure 6.1 is created according to the

class diagram given in Figure 3.1(b) (page 58).

Example 6.4 The RIC known as SCT provides services to the teachers (and admin-

istrators) in 9 school districts. To deploy the extended FIM system, the scenario of

Example 6.3 has been reconfigured to allow the users in the school districts federated

to both RICs EduTech and SCT to access the services those RICs offer.

Example 6.4 describes a reconfiguration scenario where the existing configuration

of a FIM system has been reconfigured by introducing a RIC and several school dis-

tricts. In this scenario, the RIC SCT is the SP and the school districts associated with

the RIC can be considered as the IDPs. Notice that such a reconfiguration changes

the underlying FIM pattern of the existing configuration. More precisely, the recon-
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Figure 6.3: A composite structure diagram for the educational FIM

figuration changes the configuration of FIM pattern MIF described in Figure 6.1 to a

configuration of FIM pattern AF where multiple SPs are federated to multiple IDPs.

The object diagram in Figure 6.2 represents such an updated configuration where the

SP SCT and the IDP sct_SD1 are added to the configuration described by Figure 6.1.

In Figure 6.2, for simplicity we do not represent all IDPs and also it does not have

any impact on the underlying FIM pattern of the updated configuration. For instance,

according to the reconfiguration scenario in Example 6.4 the updated configuration

should conform to the FIM pattern AF where multiple SPs are federated to multiple

IDPs. Figure 6.2 represents such a configuration.

The UML profile When using the profile in [33], we use instance level compos-

ite structure diagrams to represent FIM configurations. The instance level compos-

ite structure diagram in Figure 6.3 represents the configuration of the scenario de-

scribed by Example 6.3. In this configuration, the component fed_BOCES_NYS of

type Federation is attached to a provider eduTech of type SP and two providers

eduTech_SD1 and eduTech_SD2 of type IDP via Fed_Access ports. (The component
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Figure 6.4: A composite structure for the reconfigured educational FIM

eduTech_SD47 of type IDP represents the last IDP in the list) These providers are at-

tached to each other via Provider_Access ports. The providers and the federation are

attached to the enclosing component cot_BOCES_NYS of type CoT via Provider_Access

and Chaning ports, respectively. The diagram in Figure 6.3 is created according to the

class diagram of the production Fed given in Figure 4.1 (page 66).

Since the reconfiguration scenario described by Example 6.4 changes the under-

lying FIM pattern of the configuration from FIM pattern MIF to AF, we apply the

reconfiguration rule MIFtoAF in Figure 4.5 (page 71) to such a scenario. Figure 6.4

shows the updated configuration where the SP SCT and the IDP sct_SD1 (together

with the rest of IDPs) are added to the configuration described by Figure 6.3. Recall

that for simplicity we represent a few IDPs in the configurations described in UML.

ADR When using ADR, we use the productions given in Section 5.1.2 (page 79) to

generate configuration of the scenario described by Example 6.3. To this purpose, the

abstract CoT cot_BOCES_NY S in Figure 6.5(a) will be replaced with the configuration

described in Figure 6.5(b). In Figure 6.5(b), the edge eduTech of Type SP and the edges

eduTech_SD1 and eduTech_SD2 of type IDP are attached to each other via node p.
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c1
} cot_BOCES_NY S:CoToo c2

}

•
p

(a) Graph (G1) describing the abstract ed-
ucational FIM

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD2:IDP

55jjjjjjjjjjj •
p

eduTech_id ps6:IPs

QQ

(b) Graph (G2) describing the educational FIM

Figure 6.5: The graphs describing the educational FIM

Also, these edges are attached to the edge f ed_BOCES_NY S of type F via node f .

To illustrate how the graph G1 in Figure 6.5(a) is refined into the graph G2 in

Figure 6.5(b) consider the sequence of reductions

G1
fed→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_id ps:P0 //

SSSSSSSSSS
◦
f

•
p

eduTech_sps:P1

QQ psps→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_id ps:P0 //

SSSSSSSSSS
◦
f eduTech:SPoo

llllllllll

•
p

eduTech_sps:SPs

QQ

nosp→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_id ps:P0 //

SSSSSSSSSS
◦
f eduTech:SPoo

llllllllll

•
p

pips→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

•
p

eduTech_id ps2:IPs

QQ

ips→

c1
} f ed_BOCES_NY S:Foo c2

}t

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_id ps3:IPs

55jjjjjjjjjjj
•
p

eduTech_id ps4:IPs

QQ ip→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD2:IDP

55jjjjjjjjjjj •
p

eduTech_id ps4:IPs

QQ
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ips→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

jjjjjjjjjjj

eduTech_SD2:IDP

55jjjjjjjjjjj •
p eduTech_id ps5:IPs

eduTech_id ps6:IPs

QQ noip→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD2:IDP

55jjjjjjjjjjj •
p

eduTech_id ps6:IPs

QQ

Namely, in the first step, fed (cf. Figure 5.2 on page 79) is applied to generate the

federation f ed_BOCES_NY S; then the edge eduTech_sps is refined by applying psps

(cf. Figure 5.4 on page 81) yielding a provider eduTech_sps of type SPs and a provider

eduTech of type SP. Since there is a single SP in the scenario of Example 6.3, the edge

eduTech_sps is cancelled by applying nosp.

To generate configuration of the IDPs, the edge eduTech_id ps of type P0 is refined

by applying pips (cf. Figure 5.3 on page 80) yielding a provider eduTech_SD1 of type

IDP and a provider eduTech_id ps2 of type IPs. The edge eduTech_id ps2 is refined

by applying ips yielding two provides eduTech_id ps3 and eduTech_id ps4 of type IPs.

The edge eduTech_id ps3 is refined by applying ip yielding a provider eduTech_SD2 of

type IDP. The edge eduTech_id ps4 is refined by applying ips yielding two providers

eduTech_id ps5 and eduTech_id ps6 of type P0. The edge eduTech_id ps5 is cancelled

by applying noip.

Observe that the existing configuration of the IDPs (i.e., edges eduTech_SD1 and

eduTech_SD2 of type IDP) serves our purpose to demonstrate the underlying FIM

pattern of the configuration described by the scenario in Example 6.3. However, the

configuration of the rest of IDPs can be obtained by refining edge eduTech_id ps6 by

applying the corresponding productions in (cf. Figure 5.3 on page 80). In this way,

any configuration x refining the edge eduTech_id ps6 for the IDPs yields a term-like

representation

fed(psps(nosp),pips(ips(ips(x,noip), ip)))

129



c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD1:IDP

55jjjjjjjjjjj •
p

eduTech_id ps6:IPs

QQ −→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD1:IDP

55jjjjjjjjjjj •
p sct:SP

hhRRRRRRRRRR

eduTech_id ps6:IPs

QQ

Figure 6.6: Rule to add the RIC SCT in the educational FIM (from left to right)

which precisely describes how configuration G2 in Figure 6.5(b) is built.

To apply the reconfiguration described by Example 6.4 over G2, we use two dif-

ferent reconfiguration rules of Section 5.3 (page 88) where one adds a single SP while

the other adds a collection of IDPs at abstract level. In this connection, we apply the

rule (5.4) (page 89) that adds a single SP. Figure 6.6 demonstrates such a reconfigu-

ration where the SP sct of type SP is added to the configuration on the LHS and the

transition

fed(psps(nosp),pips(ips(ips(x,noip), ip)))−→

fed(psps(sps(sp,nosp)),pips(ips(ips(x,noip), ip)))

describes the reconfiguration where subterm nosp of type SP on the LHS is replaced

with a new term sps(sp,nosp) of same type on the RHS.

Since the reconfiguration scenario of Example 6.4 requires several IDPs to be added

in the existing configuration, we use the rule (5.3) (page 89) to add the collection of

IDPs at abstract level. Figure 6.7 demonstrates such a reconfiguration and the transition

fed(psps(sps(sp,nosp)),pips(ips(ips(x,noip), ip)))−→

fed(psps(sps(sp,nosp)),pips(ips(ips(x, ips(y,noip)), ip)))

describes the reconfiguration where subterm noip of type IPs on the LHS is replaced

130



c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD1:IDP

55jjjjjjjjjjj •
p sct:SP

hhRRRRRRRRRR

eduTech_id ps6:IPs

QQ −→

c1
} f ed_BOCES_NY S:Foo c2

}

eduTech_SD1:IDP //

TTTTTTTTTTT
◦
f eduTech:SPoo

llllllllll

eduTech_SD1:IDP

55jjjjjjjjjjj •
p sct:SP

iiRRRRRRRRRR

eduTech_id ps6:IPs

QQ

sct_id ps:IPs

``

SSSSSSSSS

Figure 6.7: Rule to add all the school districts associated with the RIC SCT (from left
to right)

with a new term ips(y,noip) of same type on the RHS. To generate the actual configu-

ration of IDPs, the edge sct_id ps of type IPs in Figure 6.7 will be refined by applying

the corresponding productions (cf. Figure 5.3 on page 80).

Evaluation

In UML and the profile in [33], it was not feasible to represent the whole FIM con-

figuration described by the scenario in Example 6.3. Therefore, we represent a few

IDPs and the SP in the FIM configurations (cf. Figure 6.1 and Figure 6.4). We remark

that such an approach not only allow us to demonstrate the simplified view of the FIM

system but it also allow us to represent the underlying FIM pattern of the configuration

described by the scenario. Since the FIM systems involve complex associations, we

represent a few components in the FIM configuration represented by the object dia-

gram (cf. Figure 6.1). However, it was difficult to create such a diagram to represent

a FIM configuration. For instance, each provider in the FIM configuration has to be

linked with the CoT, the federation, and the rest of providers2. In this case, introducing

a few more components in the FIM configuration could hinder the design process. On

the other hand, the composite structure diagram (cf. Figure 6.4) could effectively be

manipulated while creating the FIM configuration. This is due to fact that such a dia-

gram imposes a structure over the CoT in FIM and it also simplifies interconnections

2For simplicity, we do not represent the DTMS components associated with the providers.
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between the FIM components via attaching their ports.

In ADR, productions allowed us to precisely generate the FIM configuration. To

highlight the underlying FIM pattern of the configuration, we represent a few IDPs and

the SP in ADR (cf. Figure 6.5(b)) in the same way as we described these components

in UML and the profile. Furthermore, ADR allowed us to abstract away the irrelevant

details in the FIM configuration. For instance, it was not necessary to represent all

IDPs where a few IDPs were sufficient to highlight the underlying FIM pattern of the

configuration. In this case, the notion of non-terminal edges (i.e., eduTech_id ps6 in

Figure 6.5(b)) in ADR allow to represent the rest of IDPs at abstract level where such

an edge could be replaced later with the actual configuration of IDPs by using the

corresponding productions.

Since UML does not provide any mechanism to describe the reconfigurations, we

directly introduce the changes in the configuration of Figure 6.1. Due to complex

association between the FIM components, it is difficult to add such components in the

configuration. For instance, consider the object diagram in Figure 6.2 where the SP sct

and the IDP sct_SD1 are added to the object diagram in Figure 6.1. In this case, we first

introduce the SP and then we introduce the IDP in the updated configuration. Observe

that, for our convenience (and readability), we do not represent the IDP eduTech_SD2

in the updated configuration in order to represent the additional IDP sct_SD1.

While using the UML profile in [33], we found the application of the rule MIFtoAF

described in Figure 4.5 (page 71) which transforms the underlying FIM pattern of the

configuration. We remark that the profile has the similar challenges as with the object

diagrams in UML while introducing components into the configurations described by

instance level composite structure diagrams. For instance, to apply the reconfiguration

scenario in Example 6.4 we updated the composite structure diagram in Figure 6.3 in

the same way as the object diagram in UML. However, we were able to effectively

manipulate such a diagram since it imposes a structure over the CoT cot_BOCES_NYS
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where UML connectors as compared to links connecting the FIM components in object

diagrams simplify the interconnections between such components.

While using ADR, we apply the two reconfigurations rules where one add a single

SP and the other adds a collection of IDPs. The reconfiguration described by Ex-

ample 6.4 changes one FIM pattern to the other by introducing an additional SP and

several IDPs. Such a change is actually triggered by merely introducing the SP in

the existing configuration. To this purpose, we initially apply the rule (5.4) (page 89)

which precisely guided us to realise such a change in the configuration. Finally, we

apply the complex rule (5.3) (page 5.3) in ADR that allowed us to add several IDPs in

one go at an abstract level.

6.6 Tool Support

In this section, we provide a description of the availability of tool support for UML,

the profile in [33], and ADR.

UML To describe the FIM style in UML, we use the structural diagrams (i.e., class

diagrams). In addition to multiplicity constraints, we also define a few constraints in

OCL to restrict the valid models of FIMs. In this connection, we discus the UML tools

that allow one to describe such a system. There are several free/open-source (or non-

commercial) and commercial tools that have been developed to support various kinds

of UML diagrams (cf. [13] and [14]). Also, there are at least 15 tools which support

OCL where each implementing distinct features (cf. [46] for survey). However, a few

UML tools provide the support for OCL.

Among the most widely used commercial UML tools, Together [23] provides sat-

isfactory support for OCL while MagicDraw [12], Rose [18], Tau [19], and Posei-

don [17] lack the similar support for OCL [46]. More precisely, Together provides
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OCL support both at metamodel level (e.g., class diagrams describing the style) and

model level (i.e., object diagrams describing the configurations).

In the non-commercial UML tools, ArgoUML [9], OCLE [15], and USE (UML

Specification Environment) [8] provide OCL support [46]. In these tools, ArgoUML

and OCLE are the visual modelling UML tools while USE supports textual description

of the UML models. Furthermore, ArgoUML integrates the Dresden OCL Toolkit [10].

Due to continues improvements in the Dresden OCL Toolkit, the toolkit has widely

been adopted by the modelling frameworks (e.g., Eclipse Modelling Framework) to

provide OCL support in their modelling languages (e.g., EMF/ECORE). However, Ar-

goUML supports the UML notations defined in the standard UML 1.4 version and it

also provides limited support for the profiles (i.e., it supports only the profile provided

with tool). Similarly, OCLE is compliant with UML version 1.5. As a result, the UML

models (i.e., composite structure diagrams) which use UML 2 features (e.g., ports) can

not be described while using such tools. To the best of our knowledge, among the

non-commercial tools OCLE is the only visual modelling UML tool which supports

modelling of the software systems both at metamodel level and model level. Accord-

ing to Gogolla et al. [57], USE [8] is one of the first CASE tool that supports OCL.

It allows validation of UML models with OCL constraints defined over them. Such

models are textually described via the USE specifications. Interestingly, USE allows

one to create object diagrams to represent snapshots showing system states. Typically,

such snapshots are created via an explicit sequence of commands. To avoid this, in

[57] a declarative language called A Snapshot Sequence Language (ASSL) is given to

enable the construction of snapshots (i.e., FIM configurations to highlight the patterns)

in an automated way.
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The UML profile While using the profile in [33], composite structure diagrams (with

ports attached)3 are used to describe the FIM style. Also, OCL constraints have been

defined over these diagrams within the style. Such a style requires the profile spe-

cific support to be provided in the UML tools. For instance, in Figure 4.1 (page 66)

the «refineable» components need to be replaced with the configurations described

via the «production» components. To the best of our knowledge, currently neither

any commercial UML tool nor any free/open-source UML tool is available that sup-

ports such a refinement process. However, a few commercial UML 2 compliant tools

(e.g., Together, Rose, Tau, etc.) can suitably be used to layout the composite structure

diagrams with OCL constraints defined over them.

Since the formal semantics of the UML profile in [33] has been defined in terms

of ADR, one may use the tool support introduced in [35] (described later) for ADR.

In order to do this, one has to represent the same style in ADR as described using the

profile. In this way, the prototypical tool support for ADR given in [35] can potentially

be exploited for the UML profile in [33].

ADR In [35], a prototypical tool support for ADR is provided using Maude. Also,

a methodology is given in [35] to implement ADR-based specifications in Maude. In

[35], an implementation of graphs is given in Maude via a couple of functional modules

in order to represent low level language of ADR. Furthermore, an ADR language has

been defined in terms of hierarchical designs. The ADR language can be used at two

different levels namely, symbolic level and interpreted level. At the symbolic level, the

ADR language requires one to define the signature of the style (i.e., defining sorts and

signature of various operations). At the interpreted level, the interpretation of the ab-

stract view in hierarchical design algebra is needed. To this purpose, a module defines

the type graph which represents the style vocabulary and a constant for each design

3These diagrams use the features provided by the latest version of UML i.e., UML 2
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production. The constant consists of a design that corresponds to the design produc-

tion. Also, an interpreted version is defined for each operation. Furthermore, the tool in

[35] allows one to implement the module to support the refinement process in ADR by

giving a rewrite theory to simulate such a process. To support the visual representation

of the designs in ADR and debugging activities, the tool in [35] implements modules

to export various graphical formats (e.g., dot [54] and GraphML [32]) which enables

designers to use the graphical tools (e.g., Graphviz [54] and yEd [24]). For instance,

the visual tool yEd is used in [35] to suitably layout the hierarchical designs.

6.7 Summary

In this section, we summarise the comparison and we also draw some conclusions

over it. For the comparison, we considered the approaches including UML, the pro-

file in [33], ADR, the graph-based approaches in [73, 74, 61, 27], and two ADLs

(C2SADEL [69] and Acme [56]).

In order to compare the approaches, we fixed and described certain criteria pertain-

ing to general and pattern specific architectural aspects of FIM systems. In architectural

aspects, we consider core architectural concepts, styles, style checking, reconfigura-

tion, and refinement. In pattern specific criteria, we consider pattern generation and

pattern identification. Once the criteria for the comparison are described, we discuss

the support provided by each approach for those criteria. Based on such an assessment,

we compare the approaches against those criteria. We outline the comparison against

the general criteria as follows:

• Core concepts: The approaches (except C2SADEL) suitably describe core con-

cepts. C2SADEL supports a particular kind of components (i.e., in C2 style).

• Style: Vocabulary of the style is well supported by all approaches. Similarly, the
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approaches other than UML, the profile in [33] and [27] support style constraints.

UML, the profile in [33], and [27] requires constraints to be defined in OCL.

Such constraints are often not easy to express.

• Style checking: the ADLs’ run-time systems perform type checking. Conse-

quently, one may further require the use of certain analysis tools to perform style

checking in the ADLs. Similarly, UML and [27] require the use of certain vali-

dation tools and techniques. However, this could be problematic due to lack of

the support available for OCL in the widely available UML tools. On the other

hand, ADR and the approaches of [61] and [74] use a formal mechanism that

guarantees construction of valid configurations.

• Reconfigurations: UML does not provide any mechanism to describe reconfig-

urations. The profile in [33] provides unsatisfactory support to describe recon-

figurations in a general way. The ADLs allow a single component (or connector)

to be added at a time. The rest of approaches suitably describe reconfigurations

where they (except [61]) also provide the means to check whether the style is

preserved or not.

• Refinement: UML does not support the notion of abstract architectural compo-

nents which could be replaced with the detailed designs. The approach in [27]

provides limited support for such a refinement process where it defines one-to-

one structural mapping between the elements of two styles. C2SADEL also

provides limited support such as component sub-typing to deal with architec-

tural refinement. On the other hand, the profile in [33], ADR, Acme and the

approaches in [74, 61] suitably describe architectural refinement.

We remark that the graph based approaches including ADR and the approach

of [74] can be singled out for their support to pattern specific criteria where they
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• provide a formal mechanism to generate the configurations of the FIM patterns

in a precise controlled way

• and allow designers to effectively parse the formal description associated with

the configurations to identify their underlying FIM patterns.

On the other hand, the rest of approaches clearly lack such mechanisms. For the

comparison, we also apply UML, the profile [33], and ADR to a case study which de-

scribes a real world FIM scenario. We mainly show that these approaches can be used

to create the initial configurations with respect to pattern then we apply the changes to

these configurations according to the reconfiguration scenario.

Finally, we discuss the available tool support for UML, the profile in [33], and

ADR. In particular, we discus a few free/open-source and commercial UML tools

which provides the support for OCL. To the best of our knowledge, currently there

is no free/open-source UML tool (except a few commercial UML tools) available that

provides such a support for the UML model (i.e., composite structure diagram with

ports) which uses features of the latest version of UML. Also, a UML tool needs to be

developed (or extended) to provide the features (e.g., refinement) specific to the profile

in [33]. However, one may potentially use the prototypical tools support of ADR. This

is because of the formal semantics of the profile are defined in terms of ADR. We also

discuss the prototypical tools support of ADR.
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Chapter 7

Conclusions and Future Work

In this chapter, we draw some conclusions over the modelling approaches used to de-

scribe the models of FIMs proposed in this thesis. Finally, we describe possible future

research directions.

7.1 Modelling FIMs

In this thesis, architectural and reconfigurations aspects of FIMs have been modelled

in UML and ADR. More precisely, we introduced architectural styles for FIMs which

characterise a few “patterns” which have informally been described in [66]. To this

purpose, we developed FIM styles by considering:

• structural diagrams in standard UML where a class diagram with a few OCL

constraints models the FIM style while object/structure diagrams represent FIM

configurations,

• the UML profile in [33] to support architectural refinement and reconfigurations

for FIMs where refinement of abstract FIM architecture are possible, and

• ADR to describe a formal model of FIMs where a type graph with a few produc-
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tions suitably represent the FIM style while the reconfiguration rules precisely

describe the architectural changes for FIMs in a general way.

Our research goal was to investigate

How can architectural description of FIM systems be exploited to model

and analyse threats associated with structural configurations?

The direct answer to this research question (repeated here from page 8 for the conve-

nience of readers) is that the use of architectural styles helps in formally representing

patterns of FIM systems to study their configurations and some security threats associ-

ated with them.

Each of the FIM styles introduced in this dissertation (cf. Chapter 3, 4, and 5)

characterises architectural configurations of the FIM patterns in a general way. In other

words, the FIM patterns given in Section 2.2 are described under a single style. Since

a FIM configuration may change (i.e., add/remove a FIM component) during the de-

velopment life cycle, this may result into changing or preserving its underlying FIM

pattern. Therefore, describing a generic style for FIM systems allowed us to define

such reconfigurations. In addition to this, the support provided by ADLs for pattern

specific criteria (detailed in Section 6.1.2), which includes pattern generation and pat-

tern identification, is crucial for FIM systems. Any configuration created according

to one of the FIM models proposed in this thesis will belong to a particular pattern.

More precisely, we refer the process of instantiating configurations of FIM systems as

pattern generation. In particular, such a process can effectively be used by designers

when a specific FIM pattern is chosen (together with a particular mechanism to deal

with its associated threats).

While using the proposed UML models of FIM systems, the support for pattern

generation is not ideal since designers have to rely on rules of thumb to instantiate

the configurations and UML tools to validate them. On the other hand, ADR design

140



rules defined in the formal model of FIM allow designers to precisely instantiate valid

configurations of interest.

Since the proposed FIM styles model FIM patterns which have different security

requirements and are exposed to different threats, applying changes to the configura-

tions created with respect to those styles may impact on their security requirements and

their associated threats too. More precisely, an application of the reconfiguration may

change the underlying FIM pattern of the configuration. For instance, one may need to

add an SP into an existing configuration of FIM pattern MIF. While allowing such a

reconfiguration, this will result into an updated configuration which now conforms to

FIM pattern AF. In this way, underlying FIM pattern of the configurations may change

from one pattern to the other. Therefore, the support for pattern identification can be

beneficial in order to identify the underlying FIM pattern of the updated configuration.

This may enable designers to control the threats associated with the updated configu-

ration (i.e., via realising a given security mechanism). For identifying the underlying

FIM patterns, the configurations of FIM systems need to be analysed by enumerating

instances of particular type (i.e., SP and IDP). In order to do this, UML instance level

(object or structure) diagrams need to be analysed. On the other hand, ADR terms can

effectively be parsed to identify the underlying patterns of the configurations.

UML has recently been promoted as an ADL [71]. For instance, in [33] it is shown

how an extension of UML enables the modelling of architectural aspects of service-

oriented applications. The use of UML as an ADL appears natural as some UML

diagrams can express aspects of software architectures. For instance, class diagrams

provide a reasonably suitable language to represent architectural elements and their

interconnections.

Our main result is a critical analysis of the usage of UML as ADL conducted by

modelling architectural aspects of FIMs. We argue that
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• despite the fact that some UML diagrams (e.g., class/structure diagrams) can be

used to model software architectures, overall UML carries a heavy overhead as

most of the architectural information is scattered across many (loosely related)

diagrams.

• The UML designer is typically forced to use complex features of UML to model

architectural styles; for instance, even for straightforward conditions on the as-

sociation relations of some class diagrams, the designer has to introduce OCL

constraints.

• It is very hard to precisely characterise an architectural style; in fact, styles can

intuitively be thought of as “types” that can be assigned to architectures; UML

fails to precisely characterise such styles and often UML models over- or under-

specify the classes of architectures of interest.

Our contention is that ad-hoc architectural design languages are more suitable than

UML when it comes to modelling architectural aspects of systems. For instance, many

ad-hoc ADLs have been proposed (see [72] for a survey). We consider ADR which

features a mathematically rigorous style preserving modelling approach in terms of

suitable graphs, whose edges model components and whose nodes model the ports

through which components are connected. Architectural styles are seen in ADR as a

hierarchy over the architecture based on an algebraic presentation of style-based de-

sign. In fact, ADR design rules (or productions) correspond to basic operations for the

typed composition of architectures. Such operations can be applied to graphs (repre-

senting architectures) to transform them while preserving their types (i.e., their style).

ADR uses graph transformations to formally model architectural styles (e.g., [86, 53])

and it features a precise notion of correctness.
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7.2 Future Work

Currently, ADR provides a mechanism to describe design-time reconfigurations namely,

changes in a software architecture introduced by designers. Since ADR is a graph-

based approach to model style-based reconfigurable software systems, graphs in ADR

can potentially represent behaviour of a system where graph rewrites can be used to

model execution of the system [34]. In this regard, we intend to investigate the ap-

proach in [67] on how to describe the changes triggered by the system at run time,

for instance, when providers leave/join a CoT (e.g., in a Cloud) based on its overall

reputation, or, when the federation component governing the CoT forces a provider

to leave the CoT if the provider violates certain rules of cooperation (e.g., a service

level agreement in service-oriented computing). In this connection, we refer to these

changes as behavioural reconfigurations in FIM systems. We believe that such kind

of changes may potentially be realised via implementing a dynamic security and trust

management component in a FIM system. Therefore, a major aspect to be tackled in

future work is the extension of our ADR model to represent behavioural reconfigu-

rations of FIMs. The most challenging facet of this research is to give a new model

were behavioural reconfigurations preserve patterns or, when this is not possible, they

happen in a ”controlled” way so that designers and architects are aware of the security

threats a reconfiguration could introduce.

The formal model given in Chapter 5 has been designed by considering structural

requirements of FIMs (and structural reconfigurations). That model has two main

drawbacks which we plan to address in future research.

The first drawback we plan to address is the fact that the model does not consider

users and services. Specifically, we intend to model users at a suitable level of ab-

straction. For instance, a user may encapsulate information related to one of several

kinds of users (i.e., human-users, services, applications, etc.) that can invoke services
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at the SPs within and across the CoTs in a FIM system. We believe that such an exten-

sion to the model is crucial to represent behavioural aspects of FIMs. To this purpose,

we propose to investigate in the future how to formalise these aspects in ADR (e.g.,

via formalising one of the existing FIM specifications [3, 2]). In this way, a formally

described executable FIM architecture could emerge. The obvious benefit of such an

architecture is that it may provide the basis for realising a dynamic CoT in the FIMs.

For instance, a dynamic CoT may enable providers to join up and leave the FIMs at run

time. In order to do so, it is worth considering some evolutions to the FIM components

in the future. For instance, a dynamic CoT may be developed by considering a detailed

design of an underlying DTMS (after dynamic trust management system).

The second drawback of the model is due to a limitation of the ADR theory and it

concerns a technical issue. In fact, we intend to work on a few enhancements to ADR in

order to provide the support for describing (i) sub-types and (ii) mechanisms to specify

generic (or meta) productions. Below, we comment on those lines of research.

(i) Sub-types. We believe that component sub-types will certainly be beneficial

to achieve polymorphic behaviour in the FIM components while producing executable

FIM architectures in ADR. For instance, two component (sub-)types IDP and SP can be

related to a component of (super-)type provider. This may allow us to realise a possible

common behaviour of the providers in FIMs. Similarly, a (super-)type of user in a FIM

system can be specialised via more specific classes of users. Furthermore, component

sub-typing in ADR may be beneficial to deal with reconfiguration in a general way.

For instance, this may help in migrating one or more particular IDPs and SPs from one

CoT to the other in a complex FIM system in a single step. Similar reconfiguration

rules can be defined for the CoTs.

(ii) Generic (or meta-)productions. We believe that once support for sub-types in

ADR is provided one may potentially exploit such a concept to describe generic pro-

ductions. Observing the model given in Chapter 5, one can notice that productions for
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IDP and SP are quite similar. Therefore, it would be rather helpful to specify generic

productions which may be instantiated to generate both of these FIM components.

This would enable us to substantially simplify our model and, as a result, be able to

efficiently maintain the designs during the development life-cycle of FIMs.
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Appendix A

Formal Definitions of the Productions

In this section, we give the formal definitions for all of the design productions given in

Section 5.1.2. The type graph (named as H) depicted in Figure 5.1 (page 78), which

represents the architectural elements of FIMs, together with these productions describe

architectural style for FIMs. The formal definitions of the productions are given as

follows:

A.1 Productions for CoT

Figure 5.2 (page 79) shows productions fed and chain that can be used to generate a

federation of providers and a chain of CoT respectively.

c1
} ct0:CoToo c2

}

•
p1

(a) The typed graph Lp

a
} ct1:CoToo

JJJJ
b
} ct2:CoToo

tttt
d
}

•
c

(b) The typed graph Rp

Figure A.1: LHS and RHS graphs of production chain typed over the graph H

The production chain The morphism between the LHS typed graph Lp (Figure A.1(a))

of the production chain (Figure 5.2 on page 79) and the type graph H is given below;
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where p is chain

fVLp
:


c1 7−→}

c2 7−→}

p1 7−→ •

fELp
: ct0 7−→CoT

Similarly, the morphism between the RHS typed graph Rp (Figure A.1(b)) of the pro-

duction chain and the type graph H is given below; where p is chain

fVRp
:



a 7−→}

b 7−→}

d 7−→}

c 7−→ •

fERp
:

 ct1 7−→CoT

ct2 7−→CoT

In production chain, function ip maps the interface nodes of Lp (Figure A.1(a)) with

the interface nodes of Rp (Figure A.1(b)) and function lp is the bijective mapping of

the non-terminals in the Rp on an initial segment [1,2, ...,np]; where p is chain

ip :


c1 7−→ a

c2 7−→ d

p1 7−→ c

lp :

 ct1 7−→ 1

ct2 7−→ 2

c1
} ct0:CoToo c2

}

•
p1

(a) The typed graph Lp

a
} f :Foo b

}

◦
c pi:P0oo d•

ps:P1

eeKKKK ttt

(b) The typed graph Rp

Figure A.2: LHS and RHS graphs of production fed typed over the graph H

The production fed The morphism between the LHS typed graph Lp (Figure A.2(a))

of the production fed (Figure 5.2 on page 79) and the type graph H is given below;
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where p is fed

fVLp
:


c1 7−→}

c2 7−→}

p1 7−→ •

fELp
: ct0 7−→CoT

Similarly, the morphism between the RHS typed graph Rp (Figure A.2(b)) of the

production fed and the type graph H is given below; where p is fed

fVRp
:



a 7−→}

b 7−→}

c 7−→ ◦

d 7−→ •

fERp
:


f 7−→ F

pi 7−→ P0

ps 7−→ P1

In production fed, function ip maps the interface nodes of Lp (Figure A.2(a)) with the

interface nodes of Rp (Figure A.2(b)) and function lp is the bijective mapping of the

non-terminals in the Rp on an initial segment [1,2, ...,np]; where p is fed

ip :


c1 7−→ a

c2 7−→ b

p1 7−→ d

lp :

 pi 7−→ 1

ps 7−→ 2

A.2 Productions for identity providers

Now, we define the productions pips, ips, ip, and noip given in Figure 5.3 (page 80)

that can be used to generate identity providers in the CoT.

f1◦ p0:P0oo p1•
(a) The typed graph Lp

◦
a pi:IPsoo b•

i:IDP

eeJJJ ttt

(b) The typed graph Rp

Figure A.3: LHS and RHS graphs of production pips typed over the graph H
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The production pips The morphism between the LHS typed graph Lp (Figure A.3(a))

of the production pips (Figure 5.3 on page 80) and the type graph H is given below;

where p is pips

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: p0 7−→ P0

Similarly, the morphism between the RHS typed graph Rp (Figure A.3(b)) of the pro-

duction pips and the type graph H is given below; where p is pips

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:

 pi 7−→ IPs

i 7−→ IDP

In production pips, function ip maps the interface nodes of Lp with the interface nodes

of Rp and function lp is the bijective mapping of the non-terminals in the Rp on an

initial segment [1,2, ...,np]; where p is pips

ip :

 f1 7−→ a

p1 7−→ b
lp : pi 7−→ 1

f1◦ ip:IPsoo p1•
(a) The typed graph Lp

a◦ ip1:IPsoo b•

ip2:IPs

eeKKK sss

(b) The typed graph Rp

Figure A.4: LHS and RHS graphs of production ips typed over the graph H

The production ips The morphism between the LHS typed graph Lp (Figure A.4(a))

of the production ips (Figure 5.3 on page 80) and the type graph H is given below;
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where p is ips

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: ip 7−→ IPs

Similarly, the morphism between the RHS typed graph Rp (Figure A.4(b)) of the pro-

duction ips and the type graph H is given below; where p is ips

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:

 ip1 7−→ IPs

ip2 7−→ IPs

In production ips, function ip maps the interface nodes of Lp with the interface nodes

of Rp and function lp is the bijective mapping of the non-terminals in the Rp on an

initial segment [1,2, ...,np]; where p is ips

ip :

 f1 7−→ a

p1 7−→ b
lp :

 ip1 7−→ 1

ip2 7−→ 2

f1◦ ips:IPsoo p1•
(a) The typed graph Lp

a◦ i:IDPoo b•
(b) The typed graph Rp

Figure A.5: LHS and RHS graphs of production ip typed over the graph H

The production ip The morphism between the LHS typed graph Lp (Figure A.5(a))

of the production ip (Figure 5.3 on page 80) and the type graph H is given below;

where p is ip

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: ips 7−→ IPs
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Similarly, the morphism between the RHS typed graph Rp (Figure A.5(b)) of the pro-

duction ip and the type graph H is given below; where p is ip

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:
{

i 7−→ IDP

The function ip in the production ip maps the interface nodes of Lp with the interface

nodes of Rp; where p is ip

ip :

 f1 7−→ a

p1 7−→ b

Since there is no non-terminal in the production ip, the function lp in the production

does not represent the mapping.

f1◦ ips:IPsoo p1•
(a) The typed graph Lp

a◦ b•
(b) The typed graph Rp

Figure A.6: LHS and RHS graphs of production noip typed over the graph H

The production noip The morphism between the LHS typed graph Lp (Figure A.6(a))

of the production noip (Figure 5.3 on page 80) and the type graph H is given below;

where p is noip

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: ips 7−→ IPs

Similarly, the morphism between the RHS typed graph Rp (Figure A.6(b)) of the pro-

duction noip and the type graph H is given below; where p is noip
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fVRp
:

 a 7−→ ◦

b 7−→ •

The function ip in production noip maps the interface nodes of Lp with the interface

nodes of Rp; where p is noip

ip :

 f1 7−→ a

p1 7−→ b

Since there is no non-terminal in the production noip, the function lp in the production

does not represent the mapping.

A.3 Productions for service providers

Figure 5.4 (page 81) shows the productions psps, sps, sp, and nosp that can be used to

generate service providers in the CoT.

f1◦ p1:P1oo p1•
(a) The typed graph Lp

a◦ ps:SPsoo b•

s:SP

eeKKK sss

(b) The typed graph Rp

Figure A.7: LHS and RHS graphs of production psps typed over the graph H

The production psps The morphism between the LHS typed graph Lp (Figure A.7(a))

of the production psps (Figure 5.4 on page 81) and the type graph H is given below;
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where p is psps

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: p1 7−→ P1

Similarly, the morphism between the RHS typed graph Rp (Figure A.7(b)) of the pro-

duction psps and the type graph H is given below; where p is psps

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:

 ps 7−→ SPs

s 7−→ SP

In production psps, function ip maps the interface nodes of Lp with the interface nodes

of Rp and function lp is the bijective mapping of the non-terminals in the Rp on an

initial segment [1,2, ...,np]; where p is psps

ip :

 f1 7−→ a

p1 7−→ b
lp : ps 7−→ 1

f1◦ sp:SPsoo p1•
(a) The typed graph Lp

a◦ sp1:SPsoo b•

sp2:SPs

eeKKKK ssss

(b) The typed graph Rp

Figure A.8: LHS and RHS graphs of production sps typed over the graph H

The production sps The morphism between the LHS typed graph Lp (Figure A.8(a))

of the production sps (Figure 5.4 on page 81) and the type graph H is given below;

where p is sps

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: sp 7−→ SPs
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Similarly, the morphism between the RHS typed graph Rp (Figure A.8(b)) of the pro-

duction sps and the type graph H is given below; where p is sps

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:

 sp1 7−→ SPs

sp1 7−→ SPs

In production sps, function ip maps the interface nodes of Lp with the interface nodes

of Rp and function lp is the bijective mapping of the non-terminals in the Rp on an

initial segment [1,2, ...,np]; where p is sps

ip :

 f1 7−→ a

p1 7−→ b
lp :

 sp1 7−→ 1

sp2 7−→ 2

f1◦ sps:SPsoo p1•
(a) The typed graph Lp

a◦ s:SPoo b•
(b) The typed graph Rp

Figure A.9: LHS and RHS graphs of production sp typed over the graph H

The production sp The morphism between the LHS typed graph Lp (Figure A.9(a))

of the production sp (Figure 5.4 on page 81) and the type graph H is given below;

where p is sp

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: sps 7−→ SPs

Similarly, the morphism between the RHS typed graph Rp (Figure A.9(b)) of the pro-

duction sp and the type graph H is given below; where p is sp

fVRp
:

 a 7−→ ◦

b 7−→ •
fERp

:
{

s 7−→ SP
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The function ip of the production sp maps the interface nodes of Lp with the interface

nodes of Rp; where p is sp

ip :

 f1 7−→ a

p1 7−→ b

Since there is no non-terminal in the production sp, the function lp does not represent

the mapping.

f1◦ sps:SPsoo p1•
(a) The typed graph Lp

a◦ b•
(b) The typed graph Rp

Figure A.10: LHS and RHS graphs of production nosp typed over the graph H

The production nosp The morphism between the LHS typed graph Lp (Figure A.10(a))

of the production nosp (Figure 5.4 on page 81) and the type graph H is given below;

where p is nosp

fVLp
:

 f1 7−→ ◦

p1 7−→ •
fELp

: sps 7−→ SPs

Similarly, the morphism between the RHS typed graph Rp (Figure A.10(b)) of the

production nosp and the type graph H is given below; where p is nosp

fVRp
:

 a 7−→ ◦

b 7−→ •
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The function ip maps the interface nodes of Lp with the interface nodes of Rp;

where p is nosp

ip :

 f1 7−→ a

p1 7−→ b

Since there is no non-terminal in the production nosp, the function lp in the pro-

duction does not represent the mapping.
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