# MODELLING BIOLOGICAL MACROMOLECULES IN SOLUTION: 

THE GENERAL TRI-AXIAL ELLIPSOID

by<br>STEPHEN ERNEST HARDING, M.A. (Oxon), M.Sc.<br>A thesis submitted in partial fulfilment of the regulations governing the Ph.D. degree at the University of Leicester.



[^0]'. . . God, in the beginning farm'd Matter in solid, massy, hard, impenetrable, moveable particles . . .'

Newton, Opticks, 1717, Query 31.

## Abstract

Hydrodynamic shape functions for modelling biological macromolecules in solution in terms of an ellipsoid of revolution model are reviewed. Several new, hitherto unpublished shape functions whose experimental determination does not require knowledge of the swollen molecular volume in solution, are given. The limitations and inadequacies of this model are explained. The viscosity increment $v$ for a dilute dispersion of triaxial ellipsoids of semi-axes $a>b>c$, under dominant Brownian motion is derived and an explicit expression in terms of $a, b$ and $c$ is given. Knowledge of the viscosity increment alone is not sufficient to uniquely determine the axial ratios ( $a / b, b / c$ ) because (i) in order to determine $v$, knowledge of the swollen volume in solution is required and (ii) a particular value for $v$ has a line solution of possible values for ( $a / b$, $b / c)$. (i) is dealt with by combining $v$ with the tri-axial frictional ratio Punction $P$ to give the tri-axial $R$ Punction and (ii) by combining graphically the $R$ line solution with $\delta_{+}$and $\delta_{-}$swelling independent line solutions. The experimental determination of $\delta_{+}$and $\delta_{-}$requires the resolution of a 2-term electric birefringence decay into its component relaxation times; current data analysis techniques are however not satisfactory for resolving close relaxation times (as for globular proteins) with the current experimental precision. It is however shown by exhaustive computer simulation that using a new R-constrained nonlinear least squares iterative analysis this is now possible. It is thus concluded that the general tri-axial ellipsoid as a model for the gross conformation of biological macromolecules in solution can now be employed.

## CONTENTS

Paqe
Abstract ..... iii
List of Tables ..... ix
List of Figures ..... xii
Preface ..... 1
Chapter 1 The Mass, Size and Shape of Macromolecules in
Solution: The Ellipsoid of Revolution Model
1.1. Macromolecular Structure in Solution ..... 4
1.1.1. Mass ..... 5
1.1.2. Size ..... 6
1.1.3. Shape ..... 7
1.2. The Hydrodynamic Properties of a Macromolecular Solution ..... 8
1.3. The Viscosity Property of a Macromolecular Solution ..... 8
1.4. The Translational Frictional Property of Macromolecular ..... 13 Solutes
1.4.1. Translational Diffusion ..... 15
1.4.2. Sedimentation Velocity ..... 16
1.5. The Rotational Frictional Property of Macromolecular Solutes ..... 17
1.5.1. Dielectric Dispersion ..... 22
1.5.2. Electric Birefringence ..... 24
1.5.3. Flow Birefringence ..... 25
1.5.4. Fluorescence Depolarization ..... 26
1.6. Scattering ..... 30
1.7. The Problem of Swelling due to Solvation ..... 33
1.7.1. Hydrodynamic non-ideality: the $R$ function ..... 40
Page
1.8. Comment ..... 43
Chapter 2 The Viscosity Increment for a Dilute Newtonian Suspension of Triaxial Ellipsoids
2.1. Hydrodynamic Forces and Brownian Motion ..... 69
2.2. The Simha Model of Overwhelming Brownian Motion ..... 71
2.3. The Viscosity Increment ..... 72
2.4. The Flow Velocity and Pressure ..... 73
2.5. The Dissipation of Energy ..... 75
2.6. The Particle Rotation ..... 77
2.7. The Calculation of $v$ ..... 79
2.8. Discussion ..... 81
Chapter 3 Numerical Inversion Procedures: The Problem of the Line Solution
3.1. Solution of the Elliptic Integrals ..... 91
3.2. Application to the Crystallographic Dimensions of ..... 92Myoglobin: Numerical Inversion
3.3. Other Tri-axial Line Solutions ..... 94
3.3.1. The Translational Frictional Ratio; the $\beta$ and $R$ Functions ..... 94
3.3.2. The Rotational Frictional, Diffusion and Relaxation Line ..... 95
Solutions
3.3.3. Electric Birefringence Decay: the $\delta_{+}$and $\delta_{-}$Functions ..... 98
Chapter 4 Determination of a Stable, Unique Solution by Combining Results from Viscosity, Sedimentation and Electric Birefringence
4.1. Methods for Analyzing the Decay Curve ..... 120
4.1.1. Graphical Peeling Analysis ..... 120
4.1.2. Non-Linear Least Squares Iterative Analysis ..... 121
4.1.3. Fourier Transform Solution of the Laplace Integral ..... 122
Equation
4.1.4. Other Methods of Analysis, Previously Used for ..... 125
Deconvoluting Fluorescence Decay Curves
4.2. Choosing the best algorithm: computer simulation ..... 126
4.3. Non-Linear Least Squares Iterative Method ..... 127
4.4. Fourier Transform Solution of the Laplace Integral ..... 128
Equation Method
4.4.1. Cut-off Errors ..... 128
4.4.2. Numerical Integration ..... 128
4.4.3. Results ..... 130
4.5. A new R-Constrained Non-Linear Least Squares Algorithm ..... 131
4.6. Some Practical Points ..... 134
Chapter 5 Concluding Remarks ..... 168
Appendix I Elliptic Integrals Used In This Study ..... 174
Appendix II Illustration of Use of the $\Lambda$ Punction (equation 50) ..... 175
by Application to Data Available for the Tryptic
Subfragments of Fibrinogen
Appendix III Illustration of Use of the $\Pi$ f function (equation 57) 178
by Application to Data for Hemoglobin
Appendix IV Viscous Flow and Sedimentation of Concentrated ..... 181
Dispersions of Particles
Appendix V FORTRAN IV Computer Programs ..... 194

1. Evaluates values of the various hydrodynamic shape functions ..... 195 for tri-axial ellipsoids for a user specifiable value of the axial ratios ( $a / b, b / c$ )
2. Produces tables of these functions for axial ratios between ..... 1991.0 and 2.0 in steps of 0.1
3. Produces a contour map of $v$ in the $(a / b, b / c)$ plane for axial ..... 220 ratios between 1.0 and 3.0
4. Produces plots of the various trimaxial functions in the $(a / b$, ..... 222$b / c$ ) plane corresponding to the point (1.5, 1.5). Severalplots allow for arbitrary errors in measurement
5. Non-linear least squares iterative method for resolving a 2- ..... 229term exponential birefringence decay. This program (and thefollowing two) produces its own synthetic data
6. Fourier Transform solution of the Laplace Integral Equation ..... 231 method
7. R-constrained non-linear least squares iterative method ..... 235
Appendix VI Use of $M_{r}, \bar{v}$ and $s$ to determine $k_{s}$ ..... 240

# Appendix VII Comparison of the Radius of Gyration for a sphere <br> 241 <br> of uniform mass with that for a sphere of the <br> same mass but with a spherical cavity 

Bibliography ..... 242

## LIST OF TABLES

No. Title

Page

1. Values of $\Lambda, \epsilon_{a}, \epsilon_{b}, \kappa_{1}, \kappa_{2}, \kappa_{3}, \xi_{1}, \xi_{2}, \xi_{3}$ and $\Pi$ for45 prolate and oblate ellipsoids of revolution
2. Use of the R function to predict the conformation of46 various macromolecules in solution in terms of an ellipsoid of revolution model
3. Crystallographic dimensions of some globular proteins47
4. The relation between the notation used in this study and85 that used by Jeffrey (1922)
5. $\quad v$ for an ellipsoid of revolution calculated from the Simha- 86 Saito equation and the Batchelor - Jeffrey equation
6. Extension of Tanford's Tables ("Physical Chemistry of Macro- 87 molecules", 1963, Wiley \& Sons, p 359 and 395) to compare the axial ratios predicted by the Simha - Saito equation and the Batchelor - Jeffrey equation.
7. Values of $v$ as a function of ( $a / b, b / c$ ) for a general 88 tri - axial ellipsoid ( $a>b>c$ )

| No. | Title | Page |
| :---: | :---: | :---: |
| 8. | Values of reduced specific viscosity for various concentrations of sperm whale myoglobin | 102 |
| 9. | Values of $P$ as a function of $(a / b, b / c)$ for a general tri-axial ellipsaid | 103 |
| 10. | Values of $\beta \times 10^{-6}$ as a function of $(a / b, b / c)$ for $a$ general tri-axial ellipsoid | 104 |
| 11. | Values of $R$ as a function of $(a / b, b / c)$ for a general tri-axial ellipsoid | 105 |
| 12. | Values of $\delta_{+}$as a function of $(a / b, b / c)$ for a general tri-axial ellipsoid | 106 |
| 13. | Values of $\delta \_$as a function of ( $a / b, b / c$ ) for a general tri-axial ellipsoid | 107 |
| 14. | Assumed and derived characteristics of three hypothetical globular proteins | 137 |
| 15. | Retrieved decay constants for varying values of $\mu_{0}$ | 138 |
| 16. | Determination of the optimum cut-off time for Protein 1 | 139 |
| 17. | Determination of the optimum cut-off time for Protein 2 | 142 |

19. Mean values for the retrieved axial ratios compared with 148
the real values
20. Effect of experimental errors in the intrinsic viscosity and molecular weight
21. Effect of using different intially assumed values for the
pre-exponential factors $A_{ \pm}^{\prime}$
22. Comparison of model dependent estimates for $V_{e}$ with the 151 real values
23. Hydrodynamic parameters and axial ratios for the tryptic 177 subfragments of fibrinogen
24. Various theoretical estimates and a practical estimate for 186
$k_{2}$, the second coefficient in the expansion for $\eta_{r e l}$ in terms of $\Phi$ (volume fraction)

## LIST OF FIGURES

| No. | Title | Paqe |
| :---: | :---: | :---: |
| 1. | A macromolecule in solution is generally swollen due to solvent association | 48 |
| 2. | Mathematical models for macromolecules in solution | 48 |
| 3. | Shearing of a Newtonian fluid between parallel plates | 48 |
| 4. | Plot of the viscosity increment as a function of axial ratio for ellipsoids of revolution | 49 |
| 5. | Plot of the translational frictional ratio (the "Perrin <br> Function") as a function of axial ratio for ellipsoids of revolution | 50 |
| 6. | Plot of the rotational diffusion coefficient ratios and rotational relaxation time ratios as a function of axial ratio for ellipsoids of revolution | 51 |
| 7. | Dielectric dispersion curves for prolate ellipsoids of revolution | 52 |
| 8. | Plot of the harmonic mean rotational relaxation time ratio as a function of axial ratio for ellipsoids of revolution | 53 |

9. Plot of the fluorescence anisotropy relaxation time ratios 54
10. Plot of the 'reduced' radius of gyration as a function of axial ratio for ellipsoids of revolution
11. Asymmetry and hydration (i.e. solvent assocaition) of certain protein molecules
12. Plot of the Scheraga \& Mandelkern $\beta$ and Rowe $R$ functions 58
versus axial ratio for ellipsoids of revolution

| 14. Plot of $\delta_{a}$ and $\delta_{b}$ as functions of axial ratio for ellipsoids | 59 |
| :--- | :--- | :--- |
| of revolution |  |
| 15. Plot of $\mu_{a}$ and $\mu_{b}$ as functions of axial ratio for ellipsoids | 60 |
| of revolution |  |
| 16. Plot of $\gamma_{a, b} \& \psi$ as functions of axial ratio for ellipsoids | 61 |
| of revolution |  |
| 17. Plot of $\Lambda$ as a function of axial ratio for ellipsoids of | 62 |

No.Title
25. A comparison of the values of $v$ as a function of axial ratio 89
predicted by the Simha-Saito and Batchelor-Jeffrey equations
for ellipsoids of revolution
26.

Plot of $v$ as a function of $a / b$ when $b / c=10.0(a>b>c)$ 90 determined from equation (88)
27.

Contour diagram showing curves of constant $v$ as a function 110 of the semi-axial ratios $a / b, b / c$ on the basis of equation (88)
30.

Plots of constant $v$ and $p$ in the $(a / b, b / c)$ plane corres-
ponding to $a / b=1.5, b / c=1.5$
31. Plots of constant $v, P, \beta$ and $R$, allowing for $\pm 1 \%$ error in112 their measured values, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$
32. Plots of constant $R$ and the rotational relaxation time ratios in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$
33.

Plots of constant fluorescence anisotropy relaxation time
ratios in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c$ $=1.5$
34. Plots of constant $R, \Psi$ and $\Lambda$ in the $a / b, b / c$ plane correspond- 115 ing to $a / b=1.5, b / c=1.5$

Plots of constant R, $\Psi$ and $\Lambda$, allowing for $\pm 1 \%$ error in their measured values, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$

Plots of constant $R, \theta_{+}^{\text {red }}$ and $\theta_{-}^{\text {red }}$, allowing for $\pm 1 \%$ error
in their measured values, in the $a / b, b / c$ plane
corresponding to $a / b=1.5, b / c=1.5$
37. Plots of constant R, $\delta_{+}$and $\delta_{-}$, allowing for $\pm 1 \%$ measured error in $R$ and $\pm 2 \%$ measured error in $\delta_{ \pm}$, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$
38. Plots of constant $R, \gamma_{+}$and $\gamma_{\ldots}$, allowing for $\pm 1 \%$ measured error in $R$ and $\pm 2 \%$ measured error in $\gamma_{ \pm}$, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$

Birefringence decay (expressed in radians) in Helix Pomatia hemocyanin solutions
40. Synthetic two-term exponential electric birefringence decay curve assuming a standard error of $\pm 0.1^{\circ}$ on each data point

Plot of the $R, \delta_{+}$and $\delta_{-}$values obtained from the nonmlinear least squares analysis assuming birefringence data of machine accuracy

Frequency spectrum of $\lambda$ ( $\equiv 1 /$ relaxation time) for a single155
exponential decay and $\mu_{0}=6.0$, assuming data of machine accuracy (14 figures)
43. Effect of increasing $\mu_{0}$ to determine best resolution of the 156 frequency spectrum corresponding to the decay for Protein 2, for 140 logarithmically increasing data points of machine accuracy (14 figures)
44. As for Figure 43 but for data of $.001^{\circ}$ standard arror on each159 of the 140 logarithmically increasing data points
45. Knots in the R curves for specification in the R-constrained ..... 162
least squares analysis (Program 7) for Protein 1As for Figure 45 but for Protein 2163
47. As for Figure 45 but for Protein 3 ..... 164
48. The area marked by dots represents the allowed band of ..... 165 retrieved axial ratios determined using the new R-constrained least squares algorithm for Protein 1166

| 51. | Plot of reduced specific viscosity versus concentration for human oxy - hemoglobin | 180 |
| :---: | :---: | :---: |
| 52. | Empirical data and the equation for transport-concentration dependence (Rowe, 1977), at high solute dilution | 187 |
| 53. | Venn diagram showing the volume elements for two particles in solution | 188 |
| 54. | Relative viscosity of spheres as a Punction of volume fraction | 189 |

55. For highly asymmetric particles the sedimentation coefficient 190 falls very steeply with concentration, to reach a relatively constant 'plateau' value
56. Viscosity/sedimentation coefficients as a function of 191
concentration for $k_{s}\left(k_{n}\right)=1000, \bar{v}_{s}=1$.
57. Viscosity/sedimentation coefficients as a Punction of 192
concentration for $k_{s}\left(k_{\eta}\right)=6$.
58. Hydrodynamic data for BSA fitted using the new general 193
equation for transport at all solute concentrations

## Preface

There are two basic approaches for determining the gross conformation of a biological macromolecule in solution. One is to assume a structure (generally an array of spheres of varying sizes) and then calculate its hydrodynamic properties, for example the intrinsic viscosity, sedimentation coefficient, translational diffusion coefficient, and then see how much these predicted properties differ from the experimentally determined properties for the unknown structure. The model is then successively changed or 'refined' until the predicted properties converge to agree with the actual properties. This method has been developed by Bloomfield, Garcia de la Torre and co-workers (Bloomfield et al, 1967, Garcia de la Torre \& Bloomfield, 1977a,b,c, 1978, Wilson \& Bloomfield, 1979a,b, Garcia Bernal \& Garcia de la Torre, 1980). There is however a serious drawback in that the final calculated structure may not be the only one which gives these properties.

The alternative approach is to calculate the structure directly from the known hydrodynamic properties. Some general model must of course be assumed, but although the models available from this approach are less precise (the most general befors the commencement of this study being an ellipsoid with two equal axes) it does not suffer from the uniqueness problem. This approach was first developed by Stokes (1851, 1880) in terms of a simple spherical model calculated from the translational frictional property and the rotational frictional property and again for a spherical model by Einstein (1906 - with a correction in 1911) from the viscosity property. Although the current state of theoretical, experimental and data analysis techniques allows use of the '2 equal axes' ellipsoid ("ellipsoid of revolution"), it is clear from a simple perusal of
crystallographic models that for many biological structures this model is a very poor approximation to the true structure.

The aim of this thesis is thus twofold: the first is to review all the current ellipsoid of revolution shape functions (in which some new, hitherto unpublished functions are given) and the second is to develop the current theoretical and data analysis techniques to show that with current experimental precision the restriction of two equal axes on the ellipsoid model can now, in principle at least, be dispensed with to allow use of the more general "tri-axial ellipsoid" model.

I would like to take this opportunity to express my deepest gratitude to Dr. A.J. Rowe for his expert guidance and supervision during the course of this study.

I would also like to thank the following people for their help and advice on.specific parts of this study: Dr. M.D. Dampier of the Mathematics Department for helping me derive the viscosity increment for tri-axial ellipsoids, Dr. K. Brodlie of the Computing Advisory Services for helping me with the programming, particularly in the early stages; Drs. J. Rallison \& J. Hinch from Cambridge for helpful discussions on suspension rheology; Professor B. Jennings and Drs. V. Morris and A. Foweracker of Brunel University, Dr. Houssier of Liege University and Dr. J. Jost of the Union Oil Company, California for discussions and communications on electric birefringence, Dr. R. Dale of the Patterson Laboratories on the limitations of fluorescence depolarization, and Mr. A. Pancholi of this laboratory for permission to use his viscosity data for hemoglobin.

I am grateful to the Science Research Council for a Research Studentship and also Fisons Pharmaceuticals Limited for financial assistance during this study.

I would like to thank my Priends and colleagues in this Department for making my stay hers an enjoyable one, and finally my Mother for her great patience whilst typing this manuscript.

```
CHAPTER1
```

The Mass, Size and Shape of Macromolecules in
Solution: The Ellipsoid of Revolution Model

### 1.1. Macromolacular Structure in Solution

The concept of a unique structure for a biological macromolecule in solution and in crystallized form has only relatively recently been established beyond dispute. Prior to the work of Svedberg the view was commonly taken (Sorensen, 1930) that proteins and other macromolecules exist in solution not as unique structures but as dissociable complexes containing possibly several components, that the equilibrium state was dependent on circumstances (for example the composition of the solution) and any components precipitated are not necessarily to be identified with those occurring in solution. Researchers were consequently surprised at the ultracentrifuge results of Svedberg and his co-workers (Svedberg \& Pedersen, 1940) which strongly suggested the molecular homogeneity of many protein systems. Thus, in striking contrast to the polydispersity of many polymer systems (such as carbohydrates, rubber or polystyrene) it was deduced that carefully prepared protein solutions contain one, or at the most a few, different molecular species. This deduction was derived mainly from the observation that boundary spreading observed in the sedimentation of protein solutions could be identified with separately measured translational diffusion coefficients. Bresler and Talmud (1944) suggested however that a monodisperse protein really contains a distribution of molecular weights with a sharply defined maximum. This surmise is, on the other hand, strongly opposed by the immunological properties of proteins (Alexander \& Johnson, 1949) together with the overwhelming evidence now available from protein crystallography (Kendrew at al, 1958, Perutz at al, 1960, Blake at al, 1965, Feldman, 1976) which support the idea of discrete individual structures.

X-ray crystallography is by far the most accurate method for determining these structures. Unfortunately this technique is also the most laborious, requiring several researchers working for a period of months to determine the structure of a single globular protein. The calculated structures are also of the 'fossilized' form of the macromolecule which may not necessarily be the same in solution. There are many techniques available, such as nuclear magnetic resonance, electron spin resonance, fluorescence and other spectroscopic techniques which can give much detailed information about the dynamic properties of localized regions of macromolecules in solution (for example, the active sites of enzymes are being extensively studied). These techniques cannot however give information as to the overall macromolecular mass, size and shape. For this one needs to consider the hydrodynamic properties of solutions of the macromolecule (although scattering phenomena can also give useful information), which allows determination of the molecular weight, simple 'hydrodynamically equivalent' mathematical models for the structure and also the size (including the swelling due to solvent association) of the macromolecule.

### 1.1.1. Mass

The 'inertial mass' of a body can be defined as the quantity of matter in it, or as the ratio of the force applied to its acceleration (Newton's 2nd Law of Motion). For a macromolecule we conveniently express the mass by the 'Molecular Weight' ( $M_{r}$ ) which is defined as the ratio of the mass of the macromolecule to that of one sixteenth of an oxygen $0_{16}$ atom, and is expressed in grams.

The mass of fluid displaced by a macromolecule in a solution will
equal the product of the volume displaced and the density of the solution $\left(M_{I} \bar{v} / N_{A}\right) \rho_{o}$, where $M_{r}$ is the molecular weight, $N_{A}$ Avogadro's number, $\rho_{0}$ the solution density and $\bar{v}$ the partial specific volume of the macromolecule, i.e. the volume increase when unit mass (generally one gram) of solute is added to an infinite volume of the solvent at constant temperature and pressure

$$
\begin{equation*}
\overline{\mathrm{v}}=\left[\frac{\partial \overline{\mathrm{v}}}{\partial \mathrm{~m}}\right)_{\mathrm{T}, \mathrm{p}} \tag{1}
\end{equation*}
$$

The 'Archimedean mass' (i.e. the buoyant mass) of a macromolecule (Van Holde, 1971) in solution will equal the true mass minus the mass of the fluid displaced:

$$
\begin{equation*}
=\frac{M_{r}}{N_{A}}-\left[\frac{M_{r}}{N_{A}} \bar{v}\right] \rho_{0}=\frac{M_{r}}{N_{A}}\left(1-\bar{v} \rho_{0}\right) \tag{2}
\end{equation*}
$$

The molecular weight of a macromolecular solute can be measured from many methods, for example sedimentation velocity and translational diffusion, osmosis, light or x-ray scattering, or most precisely from a sequence analysis. A recent review of these methods is given by Rowe (1978). The partial specific volume can be found either from a concentration determination followed by a densimatric analysis (Kratky et al, 1969, 1973), or for a protein, from Traube's rule (Rowe, 1978). This rule may possibly also be applicable to nucleic acids (Pearce et al, 1975).

### 1.1.2. Size

The size of a rigid macromolecule in solution will differ from that in the anhydrous state because of associated solvent. The hydrodynamic or swollen specific volume $\bar{v}_{s}$, will now comprise of the partial specific
volume, $\bar{v}$, the bound solvent that adheres to the hydrophilic particle surface, and 'entrained' solvent which may be trapped in the various cavities and indentations in the macromolecule (Figure 1). The ratio $\bar{v}_{s} / \bar{v}$ is known as the 'swelling' of the macromolecule and is equal to unity if the macromolecule is anhydrous and compact in solution. The swollen specific valume can be simply related to the "effective" hydrodynamic volume $V_{e}$ i.e. the swollen volume of a single macromolecule in a homogeneous solution:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{e}}=\frac{\overline{\mathrm{v}}_{\mathrm{s}} \mathrm{M}_{\mathrm{r}}}{\mathrm{~N}_{\mathrm{A}}} \tag{3}
\end{equation*}
$$

1.1.3. Shape

Owing to the difficulties in developing theoretical relationships between the shape of a macromolecule and experimentally measurable parameters, only rather simple 'hydrodynamically equivalent' models are currently available, the boundaries of which can be described by a simple mathematical equation; these are (Figure 2) rods, discs and ellipsoids of revolution (Tanford, 1961).

An ellipsoid of revolution is formed by rotating an ellipse either about the major axis (prolate ellipsoid) or about the minor axis (oblate ellipsoid) and thus has the necessary restriction that two of the three axes must be equal. In the limit of large axial ratio, a prolate ellipsoid (2 minor axes, 1 major) becomes a good approximation to a rod whilst an oblate ellipsoid (2 major axes, 1 minor) becomes a good approximation to a disc. Consequently, physical biochemists have tended to use the ellipsoid of revolution model to determine the hydrodynamically equivalent shape of a rigid macromolecule in solution.

It should be made clear at this stage that many macromolecules cannot be modelled by any of these rigid structures as they have no preferred
structure in solution: these 'randomly coiled' macromolecules can only be represented by probability configurations. Many other macromolecules have a well defined rigid structure but cannot be reasonably modelled, judging from the X-ray models at least, by any ellipsoid. The L-shaped Transfer RNA molecule is an outstanding example (Kim, 1974).

### 1.2. The Hydrodynamic Properties of a Macromolecular Solution

The hydrodynamic properties of a macromolecular solution, which are used to determine these structures, can be conveniently divided into three broad classes:
(i) The viscosity property, which concerns the effect of the dissolved macromolecule on the bulk motion of the fluid when a shear gradient is. applied.
(ii) The translational frictional property, which concerns the movement of the macromolecule through its solution when some form of external force is applied. This can be a centrifugal field in a sedimentation experiment or a concentration gradient (i.e. a gradient of chemical potential) in a translational diffusion experiment.
(iii) The rotational frictional property, which concerns the disorienting effect on the macromolecule by the local Brownian motion of the surrounding solvent molecules.

### 1.3. The Viscosity Property of a Macromolecular Solution

The viscosity of a fluid is a measure of its resistance to flow and may be simply defined for a simple shearing flow* (Figure 3) in terms of the shearing stress $\sigma$ and the shear rate $G:$

$$
\begin{equation*}
\sigma=\eta G \tag{4}
\end{equation*}
$$

[^1]where $\eta$ is known as the viscosity coefficient. ${ }^{\text {b }} \eta$ is a proportionality constant independent of the shear rate the fluid is said to be Newtonian. However, if the constituent molecules show preferred orientations, this will alter the retarding forces between adjacent fluid elements and hence the internal friction or viscosity coefficient. This non-Newtonian effect will occur in solutions containing highlyasymmetric or easily deformable molecules and at high shear rates (Batchelor, 1967); this forms the basis of flow birefringence experiments (see 1.5.3). For characterizing the macromolecule in solution we can set the conditions (i.e. very low shear rates) so that the Newtonian condition prevails, whereas the chemical engineer would be more interested in the general flow properties.

Using equation (4) we can simply relate the viscosity coefficient to the energy dissipation during flow. Writing $\sigma$ as a tangential force per unit area $(F / A)$ and the shear rate as the velocity gradient $((d x / d t) / \Delta y)$ :

$$
\frac{F}{A}=\eta \frac{1}{\Delta y} \frac{d x}{d t}
$$

Multiplying both sides by G:

$$
\frac{F d x}{A \Delta y d t}=\eta G^{2}
$$

Since Ady is the volume of the element under consideration, then

$$
\begin{equation*}
\left\langle\frac{d W}{d t}\right\rangle=G^{2} \eta \tag{5}
\end{equation*}
$$

where <dw/dt> is the mean energy dissipated per unit volume.

The effect of dissolved or suspended macromolecules which are assumed to occupy a volume $\phi$ of fluid, is to disturb the streamines of the fluid motion and to reduce the volume of the fluid in which the same overall deformation takes place. Thus the internal friction, the viscosity
coefficient and hence the energy dissipated is increased. This increase can be represented by:

$$
\begin{equation*}
\left\langle\frac{d W}{d t}\right\rangle=G^{2}\left(n-\eta_{0}\right)=G^{2} n_{0} v \phi \tag{6}
\end{equation*}
$$

inc
where $\eta$ is the viscosity coefficient of the solution and $\eta_{0}$ that of the solvent. Rewriting:

$$
\begin{equation*}
\eta=\eta_{0}(1+\nu \phi) \tag{7}
\end{equation*}
$$

Here $v$ is defined as the viscosity increment and is a function of the shape of the particle. Again, rewriting equation (7):

$$
\frac{\eta}{n_{0}}-1=n_{s p}=v \phi
$$

where $\eta_{s p}$ is the specific viscosity. This equation only applies to an infinitely dilute solution in which no solute-solute interactions occur. For finite concentrations:

$$
\eta_{s p}=v \phi+v_{1} \phi^{2}+v_{2} \phi^{3}+\ldots \ldots
$$

or, replacing $\phi$ by $\mathrm{c} \overline{\mathrm{v}}_{\mathrm{s}}$, where c is the concentration and $\overline{\mathrm{v}}_{\mathrm{s}}$ the swollen specific volume:

$$
n_{r e d}=\frac{\eta_{s p}}{c}=v \bar{v}_{s}+v_{1} \bar{v}_{s}^{2} c+v_{2} \bar{v}_{s}^{3} c^{2}+\ldots \ldots
$$

where $\eta_{r e d}$ is the reduced specific viscosity. As the concentration approaches zero, $\eta_{r e d}$ tends to a limiting value, known as the intrinsic viscosity, [ $n$ ] . This can therefore be found by extrapolating a plot of $\eta_{r e d}$ versus concentration to infinite dilution, and, if the swollen specific volume, $\bar{v}_{s}$ is known (section 1.1.2.), $v$ can also be found:

$$
\begin{equation*}
v=\frac{[\eta]}{\bar{v}_{s}}=\frac{[\eta] M_{r}}{V_{e} N_{A}} \tag{8}
\end{equation*}
$$

An approximate value for $v$ can be estimated for 'globular' proteins by using the partial specific volume $\bar{v}$ and assuming that $\bar{v}_{s} / \bar{v}$ is $\sim 1.4$ for globular proteins. A full review of the experimental techniques for determining the intrinsic viscosity, $[\mathrm{n}]$ is given by Yang (1961). Einstein $(1906,1911)$ was the first to determine an explicit value for $\cup$ for a specific particle shape, i.e. a sphere, by solving the equations of motion for the flow using spherical harmonics. His assumptions were:
(i) the particles are large enough compared to the solvent molecules so that the surrounding fluid can be regarded as a continuum and Euler's (Batchelor, 1967) equations concerning the change of flow through specific volume elements rather than the complicated Lagrange equations for particle motion can be used,
(ii) the dimensions of the particles are however considered very much less than the spatial variations in the velocity flow field, (iii) the flow rates are small enough so that squared terms concerning the velocity (and hence normal stress effects) can be neglected and that the inertia or mass forces can be neglected.

Using these assumptions and considering the increase in the average dissipation of energy per unit volume, he found that $v=2.5$, and was independent of particle size. This result has been confirmed experimentally for polystyrene latex spheres by Cheng \& Schachman (1955).

Jeffrey (1922) attempted to extend this theory to find $v$ as a function of axial ratio for ellipsoids of revolution, using ellipsoidal harmonics to solve the equations for the fluid flow. Dwing to the nonisotropic nature of ellipsoids, the hydrodynamic torques on the ellipsoids were shown to have two effects:
(a) the first effect tends to make the particle rotate on average with the local undisturbed angular velocity of the fluid,
(b) the second effect tends to orient the minor axis parallel to the flow for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids. As a result, the fluid is no longer isotropic and an energy dissipation analysis fails to give a unique value for the axial ratio for a given value of $v$ (Brenner, 1972a). However, if the particles are sufficiently small the randomizing effect of the Brownian motion of the surrounding solvent molecules counteracts the orientational tendancy of the hydrodynamic torque (b) so that the particles are randomly oriented (Simha, 1940) and rotate on average with the local angular velocity of the fluid. The solution is then statistically isotropic, allowing an energy dissipation analysis to be used to obtain an unambiguous solution for $v$ in terms of the axial ratio for prolate and oblate ellipsoids of revolution. Simha (1940) was thus able to obtain a formula which has been shown to give good agreement with experiment (Mehl, Oncley \& Simha, 1940):

$$
\begin{equation*}
v=\frac{1}{a b^{2}}\left\{\frac{2 \alpha_{0}^{\prime \prime}}{15 b^{2} \alpha_{0}^{\prime} \beta_{0}^{\prime}}+\frac{7}{15 b^{2} \alpha_{0}^{\prime}}+\frac{2}{5}\left(\frac{\beta_{0}^{\prime}\left(a^{2}+b^{2}\right)+2 \beta_{0}^{\prime \prime}}{\beta_{0}^{\prime}\left[2 a^{2} b^{2} \beta_{0}{ }^{r}+\left(a^{2}+b^{2}\right) \beta_{0}^{\prime \prime}\right]}\right)\right\} \tag{9}
\end{equation*}
$$

where $a, b, b$ are the three semi-axes of the ellipsoid ( $b>a$ for oblate and $\mathrm{b}<\mathrm{a}$ for prolate), and the $\alpha_{0}^{\prime}$ etc. which depend on a and b are elliptic integrals given by Jeffrey (1922) (Appendix I). This relation could be solved numerically for both cases and a table of values for $v$ as a function of axial ratio was given by Mehl, Oncley \& Simha (1940).

The function is plotted in Figure 4. In the limit of large axial ratio $p(=b / a)$

$$
\begin{align*}
& v \sim \frac{1 / p^{2}}{15(\ln (2 / p)-3 / 2)}+\frac{1 / p^{2}}{5(\ln (2 / p)-1 / 2)}+\frac{14}{15} \quad \text { (prolate) }  \tag{10a}\\
& v \sim \frac{16}{15} \tan ^{-1}(p) \quad \text { (oblate) }
\end{align*}
$$

These formulae agree with the independent derivations of Kuhn \& Kuhn (1945) and Kirkwood (1967).

Simha apparently did not assume that the particles were on average rotating with the local angular velocity of the fluid but with zero angular velocity. This objection was raised by Saito (1951) who however obtained exactly the same result (equation 9) despite assuming particles on average rotating with the same local angular velocity of the fluid. He suggested that Simha "probably made some error in his calculation" without actually finding it. We will show in the next Chapter that Simha had apparently arrived at the correct result by making the wrong assumption and then missing out a whole series of terms in his calculation.

### 1.4. The Translational Frictional Property of Macromolecular Solutes

The ease with which a macromolecale moves through its solution under the influence of an applied external force field will depend on its shape and size. The coefficient generally used to describe this ease is the frictional coefficient, $f$, defined as the ratio of the frictional force to the terminal velocity of the particle. Stokes (1851) using spherical harmonics again and assumptions similar to Einstein's (section 1.3)
derived the well-known relation between the frictional coefficient $f$ and
the radius $R$ of a spherical particle:

$$
\begin{equation*}
f=6 \pi n_{0} R \tag{11}
\end{equation*}
$$

where $\eta_{0}$ is the viscosity of the solvent. Perrin (1936) and independently Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case of general ellipsoidal particles:

$$
\begin{equation*}
\frac{f}{f_{0}}=\frac{2}{(a b c)^{1 / 3} \int_{0}^{\infty} \frac{d \lambda}{\left[\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right)\right]^{\frac{1}{2}}}} \tag{12}
\end{equation*}
$$

where $f_{o}$ is the corresponding coefficient for a sphere of the same volume:

$$
\begin{equation*}
f_{0}=6 \pi n_{0}(a b c)^{1 / 3}=6 \pi n_{0}\left(\frac{3 v}{4 \pi}\right)^{1 / 3} \tag{13}
\end{equation*}
$$

$V_{e}$ is the molecular swollen volume, defined in section 1.1.2. The integral in equation (12) is elliptic and could only be solved for the special case of ellipsoids of revolution. For prolate ellipsoids ( $p=(b / a)<1$ ):

$$
\begin{equation*}
\frac{f}{f_{0}}=\frac{\left(1-p^{2}\right)}{p^{4 / 3} \tan ^{-1}\left(p^{2}-1\right)^{\frac{1}{2}}} \tag{14a}
\end{equation*}
$$

and for oblate ellipsoids ( $p=(b / a)>1)$

$$
\begin{equation*}
\frac{f}{f_{0}}=\frac{\left(p^{2}-1\right)}{p^{2 / 3} \tan ^{-1}\left(p^{2}-1\right)^{\frac{1}{2}}} \tag{14b}
\end{equation*}
$$

and can easily be plotted as a function of axial ratio (figure 5). The translational frictional ratio $f / f_{0}$ can be measured experimentally either from a translational diffusion experiment, where the driving force is a concentration gradient, or from ultracentrifugation, where the driving force is a centrifugal field.

### 1.4.1. Translational Diffusion

The translational diffusion coefficient, $D$, is related to the frictional coefficient, f, at a particular particle concentration, c, by the relation:

$$
\begin{equation*}
D_{c}=\frac{k T}{f}\left\{1+c \frac{\partial \ell n \gamma}{\partial c}\right\} \tag{15}
\end{equation*}
$$

(van Holde, 1971), where $\gamma$ is the 'activity coefficient', a measure of the concentration gradient. Extrapolating $D_{c}$ to infinite dilution gives the Einstein relation (Einstein 1905, Tanford, 1961):

$$
\begin{equation*}
D=\frac{k T}{f} \tag{16}
\end{equation*}
$$

By assuming the concentration gradient to be in one direction only, and applying Fick's laws (Tanford, 1961) for a two-component system, a simple relation for finding $D$ experimentally can be derived, in terms of the area under, $A$, and the maximum height of, $H$, a concentration gradient (dc/dx) versus distance ( x ) curve:

$$
\left(\frac{A}{H}\right)^{2}=4 \pi D_{c} t
$$

Thus a plot of $(A / H)^{2}$ versus time, $t$, in a 'free diffusion of a sharp boundary experiment' will give $D_{c}$ from the gradient (Tanford, 1961, van Holde, 1971). $D_{c}$ can be extrapolated to infinite dilution after repeating the procedure for several solute concentrations. Unfortunately, few laboratories have the apparatus required for an accurate determination of $D$ using this method. A fast and accurate method for determining diffusion coefficients has been developed using quasi-elastic laser light scattering (Chu, 1974, Cummins \& Pike, 1973, Berne \& Pecora, 1974); the fluctuations of solute particles from the equilibrium state are a function of the diffusion
coefficients and with adequate instrumentation for signal analysis can be time-resolved.

From equation (16), the frictional ratio can be found from the translational diffusion coefficient using the relation

$$
\begin{equation*}
\frac{f}{f_{0}}=\frac{D_{o}}{D} \tag{17}
\end{equation*}
$$

where $D_{0}$ is the translational diffusion coesficient for a sphere of the same volume and molecular weight:

$$
\begin{equation*}
D_{o}=\frac{k T}{f_{o}}=\frac{k T}{6 \pi \eta_{o}}\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} \tag{18}
\end{equation*}
$$

### 1.4.2. Sedimentation Velocity

In a sedimentation velocity experiment, using an analytical ultracentrifuge (van Holde, 1971), the macromolecules quickly attain the terminal velocity, whence

$$
\frac{M_{r}}{N_{A}}\left(1-\bar{v} \rho_{o}\right) \omega^{2} r=f \frac{d r}{d t}
$$

where $\rho_{0}$ is the solution density, r the distance from the centre of rotation of the solution/solvent boundary, $\omega$ the speed of rotation and $\eta_{r}\left(1-\bar{v} \rho_{0}\right) / N_{A}$ the'buoyant mass' defined in section 1.1.1. Rearranging:

$$
\begin{equation*}
\frac{M_{r}\left(1-\bar{v} \rho_{0}\right)}{N_{A} f}=\frac{d r / d t}{\omega^{2} r}=s_{c} \tag{19}
\end{equation*}
$$

where $s_{c}$ is the sedimentation coefficient at a particular solute concentration. In a sedimentation velocity experiment the movement of the boundary between solution and solvent is monitored as a function of time using the property of change of refractive index with change in
concentration, hence optical techniques such as scanning Schlieren optics or ultra-violet absorption can be used (Lloyd, 1974). If we rearrange and integrate equation (19) we find that

$$
s_{c}=\frac{1}{\omega^{2}} \frac{\Delta \ell n r}{\Delta t}
$$

thus by plotting $\log _{a} r$ versus $t$ and knowing the angular velocity $\omega$, $s_{c}$ can be found from the gradient. The sedimentation coefficient $s_{c}$ is a function of solute concentration, thus is normally extrapolated to infinite dilution to give the sedimentation coefficient, s, which is characteristic of any macromolecular solute. From equation (19) it can be seen that the frictional ratio $f / \rho_{o}$ will be given by

$$
\frac{f}{f_{o}}=\frac{s_{o}}{s}
$$

where $s_{0}$ is the sedimentation coefficient for a compact sphere of the same molecular weight and volume. From equations (19) and (13):

$$
\begin{equation*}
s_{o}=\frac{M_{r}\left(1-\bar{v} \rho_{0}\right)}{N_{A} f_{o}}=\frac{M_{r}\left(1-\bar{v}_{o}\right)}{N_{A} 6 \pi n_{o}} \cdot\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} \tag{20a}
\end{equation*}
$$

and thus the frictional ratio can be found, provided $s, \eta_{r}, \bar{v}, \rho_{0}, \eta_{0}$ and the swollen molecular volume, $V_{e}$ are known:

$$
\begin{equation*}
\frac{f}{f_{o}}=\frac{M_{r}\left(1-\bar{v} \rho_{o}\right)}{N_{A} 6 \pi n_{o} s}\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} \tag{20b}
\end{equation*}
$$

1.5. The Rotational Frictional Property of Macromolecular Solutes

The ability of a macromolecule to rotate under the influence of the local Brownian motion of the neighbouring solvent molecules will depend on its size and shape. By analogy with the translational frictional
coefficient, we can define, for rotation about a specific particle axis, a rotational frictional coefficient, $\zeta_{i}$, as the torque which must be applied to cause the particle to rotate with unit angular velocity. For a general ellipsoidal particle there will be three rotational frictional coefficients corresponding to rotation about each of the three axes; for an ellipsoid of revolution there will be two, and for a spherical particle, one. Each rotational frictional coefficeint can be related to a rotational diffusion constant by analogy with the Einstein relation (1905) (equation 16):

$$
\begin{equation*}
\theta_{i}=\frac{k T}{\zeta_{i}} \tag{21}
\end{equation*}
$$

where $\theta_{i}$ is defined as the ratio of the mean squared angular displacement of the axis to the time elapsed (Tanford, 1961). In a typical rotational frictional experiment an initial orientation of the macromolecule is produced by some external field. If, for example, the macromolecules in a solution are oriented with their "a" axis parallel to an orienting field and the field is suddenly removed, the macromolecules will then relax due to the Brownian motion and tend to assume a random configuration by rotating about the $b$ and $c$ axes. We therefore conveniently define a rotational relaxation time in terms of the rotational diffusion constants $\left(\theta_{b}, \theta_{c}\right.$ about the $b, c$ axes respectively $)$ by

$$
\begin{equation*}
e_{a}=\frac{1}{\theta_{c}+\theta_{b}} \tag{22a}
\end{equation*}
$$

There will be similar relations describing relaxation of the $b$ and $c$ axes:

$$
\varrho_{b}=\frac{1}{\theta_{c}+\theta_{a}} ; \quad \varrho_{c}=\frac{1}{\theta_{a}+\theta_{b}}
$$

By analogy with the translational frictional case, Stokes (1880) using spherical harmonic solutions of the equations of motion with the boundary condition that the fluid in contact with the particle rotates with the same angular velocity (i.e. the 'no-slip' condition) derived an equation linking the rotational frictional coefficient with its radius, R:

$$
\begin{equation*}
\zeta=8 \pi n_{0} R^{3} \tag{23}
\end{equation*}
$$

Edwardes (1893) extended this equation to the case of general ellipsoidal particles. After a correction for a numerical error (Perrin, 1934), these are:

$$
\zeta_{a}=\frac{16 \pi \eta_{o}}{3} \quad \frac{b^{2}+c^{2}}{b^{2} \beta_{o}+c^{2} \gamma_{o}}
$$

$$
\zeta_{b}=\frac{16 \pi \eta_{o}}{3} \quad \frac{c^{2}+a^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{o}}
$$

$$
\begin{equation*}
\zeta_{c}=\frac{16 \pi n_{0}}{3} \frac{a^{2}+b^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{0}} \tag{24}
\end{equation*}
$$

where again the $\alpha_{0}$ etc. are elliptic integrals defined by Jeffrey (1922) see Appendix I. The expressions on the right hand side of equations (24) are functions not only of shape but of volume as well; the corresponding rotational frictional ratios however, are not.

$$
\begin{aligned}
& \frac{\zeta_{a}}{\zeta_{o}}=\frac{\theta_{o}}{\theta_{a}}=\frac{2}{3 a b c} \frac{b^{2}+c^{2}}{b^{2} \beta_{o}+c^{2} \gamma_{o}} \\
& \frac{\zeta_{b}}{\zeta_{o}}=\frac{\theta_{o}}{\theta_{b}}=\frac{2}{3 a b c} \frac{c^{2}+a^{2}}{c^{2} \gamma_{o}+a^{2} \alpha_{o}} \\
& \frac{\zeta^{c}}{\zeta_{o}}=\frac{\theta_{0}}{\theta_{c}}=\frac{2}{3 a b c} \frac{a^{2}+b^{2}}{a^{2} \alpha_{0}+b^{2} \beta_{0}}
\end{aligned}
$$

where $\zeta_{0}\left(=8 \pi \eta_{0} a b c\right) \& \theta_{0}\left(=k T / \zeta_{0}\right)$ are the corresponding coefficients for spheres of the same volume, and can be found experimentally only if the swollen molecular volume, $V_{e}$ is known:

$$
\zeta_{0}=6 \eta_{0} \mathrm{~V}_{\mathrm{e}}, \theta_{0}=\mathrm{kT} / 6 \eta_{0} \mathrm{~V}_{\mathrm{e}}
$$

The corresponding rotational relaxation time ratios are:

$$
\begin{align*}
& \frac{\varrho_{a}}{\varrho_{0}}=\frac{2}{\left[\frac{\theta_{b}}{\theta_{0}}+\frac{\theta_{c}}{\theta_{0}}\right]} \\
& \frac{\varrho_{b}}{\varrho_{0}}=\frac{2}{\left[\frac{\theta_{c}}{\theta_{0}}+\frac{\theta_{a}}{\theta_{0}}\right]} \\
& \frac{\varrho_{c}}{\varrho_{0}}=\frac{2}{\left[\frac{\theta_{a}}{\theta_{0}}+\frac{\theta_{b}}{\theta_{0}}\right]} \tag{27a}
\end{align*}
$$

where $\varrho_{0}=1 / 2 \theta_{0}$.

Unfortunately, as for the translational frictional coefficients, the elliptic integrals could only be solved analytically for the special case of ellipsoids of revolution of semi-axes $a, b=c$ (Gans, 1928, Perrin, 1934). Although numerically equivalent, Gans uses the less manageable 'eccentricity' ( $\epsilon=1-b / a$ ) rather than the axial ratio ( $p=b / a$ ), hence the equations of Perrin are generally used:

$$
\begin{align*}
& \frac{\zeta_{\mathrm{a}}}{\zeta_{\mathrm{o}}}=\frac{\theta_{\mathrm{o}}}{\theta_{\mathrm{a}}}=\frac{2}{3} \frac{\left(1-\mathrm{p}^{2}\right)}{\left(1-\mathrm{p}^{2} \mathrm{~S}\right)} \\
& \frac{\zeta_{\mathrm{b}}}{\zeta_{\mathrm{o}}}=\frac{\theta_{\mathrm{o}}}{\theta_{\mathrm{b}}}=\frac{2}{3} \frac{\left(1-\mathrm{p}^{4}\right)}{\mathrm{p}^{2}\left[\mathrm{~S}\left(2-\mathrm{p}^{2}\right)-1\right]} \tag{28a}
\end{align*}
$$

where

$$
S=\left(1-p^{2}\right)^{-\frac{1}{2}} \ell n\left\{\left[1+\left(1-p^{2}\right)^{\frac{1}{2}}\right] / p\right\}
$$

for a prolate ellipsoid $(p<1)$, and

$$
S=\left(p^{2}-1\right)^{-\frac{1}{2}} \tan ^{-1}\left[\left(p^{2}-1\right)^{\frac{1}{2}}\right]
$$

for an oblate sllipsoid ( $p>1$ ).

The rotational diffusion ratio $\theta_{i} / \theta_{0}(i=a, b)$ can be related to experimental parameters using equations (26b):

$$
\frac{\theta_{i}}{\theta_{0}}=\left.\frac{6 \eta_{o} V_{e}}{k T}\right|_{i}
$$

The corresponding rotational relaxation time ratios were also given by Perrin (1934) but contained an error of sign involving S. The correct result was given by Koenig (1975):

$$
\begin{align*}
& \frac{\rho_{a}}{\varrho_{0}}=\frac{\theta_{0}}{\theta_{b}}=\frac{2\left(1-p^{4}\right)}{3 p^{2}\left[S\left(2-p^{2} ;-1\right]\right.} \\
& \frac{\varrho_{b}}{\varrho_{0}}=\frac{2}{\left(\frac{a}{\theta_{0}}+\frac{\theta_{b}}{\theta_{0}}\right)}=\frac{4\left(1-p^{4}\right)}{3\left[p^{2} S\left(1-2 p^{2}\right)+1\right]} \tag{29a}
\end{align*}
$$

These may be related to experimental parameters by combining equations (26b, 27b):

$$
\begin{equation*}
\frac{\rho_{i}}{\rho_{0}}=\frac{k T}{3 \eta_{0} V_{e}} e_{i} \tag{29b}
\end{equation*}
$$

All these functions $\left(\zeta_{i} / \zeta_{0}=\theta_{0} / \theta_{0}, \varrho_{i} / \varrho_{0}\right)$ are plotted as functions of axial ratio in Figure 6. It should also be pointed out that, like the translational functions the rotational diffusion coefficients and relaxation times are functions of concentration (Riddiford \& Jennings, 1967) and should be extrapolated to infinite dilution. The same is also true for the harmonic mean relaxation time, the birefringence decay constants and the fluoreseence depolarisation relaxation times mentioned below. The various experimental methods for determining all these shape parameters will now be discussed.

### 1.5.1. Dielectric Dispersion

The capacity of a condenser filled with a solution of the macromolecule is measured as a function of the applied sinusoidal voltage across it
(Edsall, 1953). The 'dielectric increment' or increase in the dielectric constant, $\varepsilon$, due to the presence of the solute is given by

$$
\begin{equation*}
\Delta \varepsilon=\varepsilon-\varepsilon_{0}=\frac{C}{C_{v}}-\frac{C_{0}}{C_{v}} \tag{30}
\end{equation*}
$$

where $\varepsilon_{0}$ is the dielectric constant of the solvent and $C_{, ~} C_{0}$ and $C_{v}$ are the capacities of respectively, the solution, solvent and vacuo. At sufficiently small frequencies, the dipolar macromolecules can keep pace with the alternating field, and the dielectric constant will remain at its 'static' value. At sufficiently high fields, the rotation of the macromolecule about a particular axis will no longer follow the field and its contribution, $\Delta \varepsilon_{\infty}$ to the dielectric constant is that of a non-polar substance (Oncley, 1940); thus over a certain critical range characteristic of the size and shape of the macromolecule, the dielectric constant decreases as the frequency increases. The frequency corresponding to the mid-point of the dispersion curve is known as the 'critical frequency'. For a general particle with three rotational relaxation times $\varrho_{a}, \varrho_{b}, \varrho_{c}$, there will be three critical frequencies:

$$
\begin{equation*}
\nu_{\mathrm{a}}=2 \pi \rho_{\mathrm{a}} \quad ; \quad \nu_{\mathrm{b}}=2 \pi \rho_{\mathrm{b}} \quad ; \quad \nu_{\mathrm{c}}=2 \pi \rho_{\mathrm{c}} \tag{31}
\end{equation*}
$$

For an ellipsoid of revolution there will be two (since $\varrho_{b}=\varrho_{c}$ ) or one, either if the dipolar axis is parallel to the rotation axis of symmetry or for a spherical particle. Typical dielectric dispersion curves for ellipsoids of revolution of various axial ratios are shown in Figure 7 (from Oncley, 1940)

Even in the most favourable case, $\theta=45^{\circ}$, resolution is poor for axial ratios less than 9 (Squire, 1978). Application of this method is
also limited by the fact that, due to electrode polarization, only solutions of low ionic strength can be used, thus restricting the use to proteins of high solubility.

### 1.5.2. Electric Birefringence

Polarized light incident on a solution of macromolecules oriented by an elctric field will be split into perpendicular components because the refractive index will be different for directions parallel and perpendicular to the electric dipole moment (Benoit, 1951). The solution is then said to be birefringent and the amount of birefringence will depend on the nature and concentration of the macromolecules.

The decay due to Brownian motion of the birefringence when the field is suddenly switched off is most interesting since this will be independent of the electric properties of the macromolecules (apart from the initial amplitude of the decay) but dependent on their size and asymmetry, assuming the solution to be homogeneous. The solution must be rendered homogeneous by, say, ultracentrifugation for removing larger impurities, followed by gel filtration for fine purification. The number of terms in the exponential decay will be dependent on the particle asymmetry, assuming that the particles are small enough so that the Rayleigh - Gans - Debye scattering theory applies (i.e. particle dimensions less than $\lambda / 20$ ). Ridgeway $(1966,1968)$ has shown that a general particle will have two relaxation times, $\tau_{+}, \tau_{-}$or two decay constants, $\theta_{+}\left(=1 / 6 \tau_{+}\right)$, $\theta_{-}\left(=1 / 6 \tau_{-}\right):$

$$
\begin{equation*}
\Delta n=\frac{N}{2 n_{\ell}}\left(A_{+} e^{-6 \theta+t}+A_{-} e^{-6 \theta-t}\right) \tag{32}
\end{equation*}
$$

where $\Delta n$ is the birefringence, $N$ is the number density of particles in
suspension, $\Pi_{\ell}$ the refractive index of the solvent and $A_{ \pm}$complicated expressions depending on the initial particle orientations and their dielectric and diffusion properties. Unfortunately, although Ridgeway provided relationships linking $\theta \pm$ with the size and shape of general tri-axial ellipsoids (see Chapters 3 and 4), only one relaxation time has been resolved from the experimental exponential decays for homogeneous solutions. Thus the method has been restricted to ellipsoids of revolution ( $A_{-}=0$ ) for which Benoit (1951) had shown previously that, for an initial birefringence $n_{0}$,

$$
\begin{equation*}
\Delta n=\frac{N}{2 n_{\ell}} A e^{-6 \theta_{b} t}=n_{o} e^{-6 \theta_{b} t} \tag{33}
\end{equation*}
$$

assuming the electric dipole axis coincides with the rotational axis of symmetry. For spherical particles there would be no birefringence.

### 1.5.3. Flow Birefringence

The aligning field can also be produced, if the macromolecules are highly asymmetric, by large flow velocity gradients in the annular space between two concentric cylinders, one rotary and one stationary (van Holde, 1971, Squire, 1978). The orientation of the macromolecules will again be opposed by rotational Brownian motion, and for a constant shear rate, there will be an equilibrium distribution of orientation states. Results for early studies are discussed by Cerf and Scheraga (1952) and by Tanford (1961). This method has the advantage that the steady state birefringence can now be used to derive shape parameters, since this will be independent of the electric properties of the macromolecule. However, the method has the serious disadvantage in that relaxation experiments are virtually impossible,
and also the use is restricted to highly asymmetric molecules (Squire, 1978).

### 1.5.4. Fluorescence Depolarization

This method applies to those macromolecules that possess a pluorescent group or a chromophore (Cantor \& Tao, 1971). If an electron in a chromophore is excited to a higher energy state by the absorption of radiation, then instead of the energy being dissipated non-radiatively in the form of heat as it returns to the ground state, it loses only part of its energy as heat as it returns to the lowest vibrational level of the excited state, but then re-radiates the rest. This will necessarily be of lower energy (hence longer wavelength) than the incident radiation. This phenomenon is called fluorescence.

If the macromolecule is irradiated with polarized light, and if, in the $10^{-8}$ to $10^{-7}$ seconds it takes for the energy to be re-radiated the macromolecule has changed its orientation due to Brownian motion, there will be a net depolarization of the incident light. If the solution is continuously irradiated then a steady state depolarization will be reached depending on the ratio of the fluorescence decay time, $\tau *$ to the harmonic mean of the three rotational relaxation times (equations 27), $\tau_{h}$ (Perrin, 1934) :

$$
\begin{equation*}
\left(\frac{1}{P}-\frac{1}{3}\right)=\left(\frac{1}{P_{o}}-\frac{1}{3}\right)\left(1+\frac{3 \tau^{*}}{\tau_{h}}\right) \tag{34}
\end{equation*}
$$

$P$ is the polarization (i.e. the ratio of the difference in intensities of light polarized parallel and perpindicular to the incident beam to their sum), $P_{0}$ is the intrinsic polarization of the fluorescence (the polarization that would be observed if no rotation had occurred) and $\tau_{h}$ is defined by

$$
\begin{equation*}
\frac{1}{\tau_{h}}=\frac{1}{3}\left(\frac{1}{e_{a}}+\frac{1}{\varrho_{b}}+\frac{1}{\varrho_{c}}\right) \tag{35}
\end{equation*}
$$

for general ellipsoids, or for ellipsoids of revolution $\left(\rho_{b}=\rho_{c}\right)$ :

$$
\frac{1}{\tau_{h}}=\frac{1}{3}\left(\frac{1}{\varrho_{a}}+\frac{2}{\varrho_{b}}\right)
$$

The harmonic mean relaxation time ratio $\tau_{h} / \tau_{0}$ can thus be plotted as a function of axial ratio (Figure 8), where $\tau_{0}$ is the corresponding coefficient for a sphere of the same molecular weight and volume:

$$
\tau_{0}=\frac{3 n_{0} v_{e}}{k T}
$$

Thus $\tau_{h} / \tau_{0}$ can be related to experimental parameters by:

$$
\begin{equation*}
\frac{\tau_{h}}{\tau_{0}}=\frac{k T_{h}}{3 \eta_{0} V_{e}} \tag{36b}
\end{equation*}
$$

Equation (34) is not particularly useful as it stands, since neither $P_{0}$ nor $\tau_{h}$ are known. If $\tau_{h}$ is approximated by $\tau_{h} \sim \tau_{0}$ (i.e. $\left.=3 n_{0} V_{\theta} / k T\right)$ then:

$$
\begin{equation*}
\left(\frac{1}{P}-\frac{1}{3}\right)=\left(\frac{1}{P_{0}}-\frac{1}{3}\right)\left(1+\frac{k T \tau^{*}}{n_{0} V_{e}}\right) \tag{37}
\end{equation*}
$$

If measurements are then made in solutions of varying viscosity (for example by adding glycerol) and/or temperature, ( $1 / \mathrm{P}-1 / 3$ ) can be plotted against $T / \eta_{0}, 1 / P_{0}$ can be found from the intercept and hence $\tau_{h}$
from the gradient, assuming $\tau^{*}$ can be found independently. A major disadvantage of this method is that by adding glycerol or changing the temperature the swelling due to solvation may be altered: also an independent estimate for $\tau^{*}$ is required.

A more accurate method in principle is nanosecond fluorescence depolarization decay (Cantor \& Tao, 1971). Here the solution is irradiated with polarized light pulses of very short duration (~1ns). The anisotropy, A is measured by determining the intensity of emission polarized parallel to $\left(I_{11}\right)$ and perpindicular to ( $I_{\mathcal{L}}$ ) the incident pulse:

$$
\begin{equation*}
A=\frac{I_{11}-I_{1}}{I_{11}+2 I_{1}} \tag{38}
\end{equation*}
$$

For a rigid spherical macromolecule, the anisotropy decay is described by a single exponential term (Jablonski, 1961)

$$
\begin{equation*}
A(t)=A_{0} e^{-t / \tau_{0}} \tag{39}
\end{equation*}
$$

with $\tau_{0}=\eta_{0} V_{0} / k T$. For a rigid ellipsoid of revolution, Memming (1961) and Wahl (1966) have shown that the anisotropy is a sum of three exponential terms:

$$
\begin{equation*}
A(t)=\alpha_{1} e^{-t / \tau_{1}}+\alpha_{2} e^{-t / \tau_{2}}+\alpha_{3} e^{-t / \tau_{3}} \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\frac{1}{6 \theta_{b}} \quad ; \quad \tau_{2}=\frac{1}{5 \theta_{b}+\theta_{a}} \quad ; \quad \tau_{3}=\frac{1}{2 \theta_{b}+4 \theta_{a}} \tag{41}
\end{equation*}
$$

The fluorescence decay time ratios are plotted in Figure 9 where $\tau_{0}$ is the corresponding coefficient for a sphere of the same molecular weight and volume:

$$
\tau_{0}=\frac{\eta_{0} V_{e}}{k T}=\frac{4 \pi \eta_{o} a b^{2}}{3 k T}
$$

Thus the fluorescence anisotropy decay time ratios can be related to experimental. parameters by

$$
\begin{equation*}
\frac{\tau_{j}}{\tau_{0}}=\frac{k T \tau_{j}}{\eta_{0} \mathrm{~V}} \quad \quad(j=1,2,3) \tag{42}
\end{equation*}
$$

The values of the component amplitudes $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and hence the dominant relaxation time will depend on the angle between the transition moment of the chromophore to the rotation axis of symmetry of the ellipsoid of revolution. Unfortunately, resolution of a multi-term exponential decay into its components is notoriously difficult (Jost, 1978), even for relaxation times differing in orders of magnitude; this is coupled to the problem that the observed decay will be a convolution of the finite cut-off time of the incident pulse, the fluorescence decay and the anisotropy decay. There are also more serious problems:
(i) since the fluorescence itself decays within about 10ns, only molecules with very short relaxation times can be investigated,
(ii) most macromolecules do not contain a chromophoric group such as tryptophan; thus one must be introduced. This may significantly alter the true conformation of the molecule,
(iii) even if the macromolecule contains tryptophan, the decay is not perfectly exponential, due to interference between the side chain and the indole ring,
(iv) rotation of the chromophore, or of a fragment of the macromolecule to which the chromophore is attached, with respect to the rest of the macromolecule may occur: Munro et al (1979) have given evidence for internal rotation of the tryptophan residue in Staphylococcus aureus nuclease $B\left(M_{r}=14,100\right)$ and Pseudomonas aeruginosa azurin ( $M_{r}=14,000$ ).

### 1.6. Scattering

Absorption and hence fluorescence phenomena can only occur when the Prequency of the exciting radiation is the same as or near to that of an allowed transition frequency of the molecule. However, at other wavelengths electro-optic interaction can still occur; the electric vector of the incident radiation polarizes the molecule by attracting the nuclear mass and repelling the electron clouds. The frequency of oscillation of the incident radiation is the same as that of the induced oscillating dipole; however, the waves emitted are by Huyghens principle spherical and hence the radiation is scattered in all directions.

The scattering by a solution of macromolecules is most rigarously analysed by considering the local concentration fluctuations of the solution; however, if we consider the particle as small compared with the wavelength of the incident light and the solution to be so dilute so that each particle can be considered independently, relations can be derived between particle shape in terms of the 'radius of gyration' (Tanford, 1961) and the scattering (van de Hulst, 1957). For small particles (< $/ 20$ ) interference effects between radiation scattered by different parts of the
macromolecule can be neglected, and the following relation between molecular weight, $M_{r}$ and the scattering can be derived:

$$
\frac{\mathrm{H}_{c}}{\tau}=\frac{1}{\mathrm{M}_{r}}+2 \mathrm{~B} \cdot \mathrm{c}
$$

where $c$ is the particle concentration, $H$ is the scattering constant ( $\alpha \lambda^{-4}$, and the square of the refractive index increment, $\mathrm{dn} / \mathrm{dc}$ ), $B$ the second virial coefficient and $\tau$ is a measure of the relative scattering perpindicular to the incident beam (i.e. the fraction of light scattered (van Holde, 1971)). Hence if $\mathrm{Hc} / \tau$ is plotted versus concentration, the molecular weight can in principle be determined from the intercept. For large particles ( $d \sim \lambda / 20$ ) destructive interference occurs between light scattered from different parts of the macromolecule. Light scattered in the forward direction cannot however be subject to destructive interference. Unfortunately this cannot be viewed directly, but if the scattering is studied over a range of angles it can be extrapolated to the forward direction. This involves extrapolating to zero-angle and to zero-concentration using the so-called Zimm plot (Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the $c=0$ line gives the radius of gyration of the particle, $R_{G}$, i.e. the mean extension of mass from the centre of gravity. FQr a sphere of radius $R, R_{G}=\sqrt{3 / 5} R$, and for a large rod of length $L, R_{G}=L / \sqrt{12}$, thus light scattering can be used to obtain information about conformation in solution, where particular models for which $R$ can be specified are applicable. Holtzer and Lowey (1956) showed by this method that $L=1500 \AA$ if myosin could be reasonably modelled by a long rod. Martin (1964) has shown that the radius of gyration can be related to the axial ratio of the equivalent ellipsoid of revolution provided that the swollen volume is known:

$$
\mathrm{R}_{\mathrm{G}}^{2}=\left(\frac{3 \mathrm{~V}}{\mathrm{e}}\right)^{2 / 3}\left(\frac{5 \mathrm{p}^{4 / 3}+4 \mathrm{p}^{-2 / 3}}{15}\right)
$$

for a prolate ellipsoid and

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}^{2}=\left(\frac{3 \mathrm{~V}_{\mathrm{e}}}{4 \pi}\right)^{2 / 3}\left(\frac{\mathrm{p}^{4 / 3}+2 \mathrm{p}^{-2 / 3}}{5}\right) \tag{43b}
\end{equation*}
$$

for an oblate ellipsoid.
An explicit relation relating $R_{G}$ to axial ratio alone can be found by 'reducing' it

$$
\begin{equation*}
\left(R_{G}\right)_{\text {red }}=\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} R_{G}=\left(\frac{5 p^{4 / 3}+4 p^{-2 / 3}}{15}\right)^{\frac{1}{2}} \tag{44a}
\end{equation*}
$$

for a prolate sllipsoid and

$$
\begin{equation*}
\left(R_{G}\right)_{\text {red }}=\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} R_{G}=\left(\frac{p^{4 / 3}+2 p^{-2 / 3}}{5}\right)^{\frac{1}{2}} \tag{44b}
\end{equation*}
$$

for an oblate ellipsoid.
This is plotted in Figure 10. Experimental determination of ( $R_{G}$ ) red requires of course a knowledge of $V_{\theta}$.

The same analysis can be used for laser light scattering as this gives good time resolution for rapidly changing solutions (for example aggregation of macromolecules, randomly coiled macromolecules). However a major difficulty with all light scattering experiments is that all
solutions, glassware etc., must be dust free; removal, without damage to the biological solute, poses great difficulties. Due to diffraction effects it is also difficult to measure scattering angles less than about five degrees, thus a clear extrapolation to zero angle may not be possible. Another major difficulty is that, since the resolving power depends on $\left(R_{G} / \lambda\right)^{2}$, the method fails for macromolecules below about 100 A (although $M_{I}$ may still be found). Reducing the wavelength of the incident radiation does not help (until down to the $x$-ray region) since belou 200nm most biological materials absorb very strongly. A method of low angle x-ray scattering (LAXR) has also been developed (Beeman et al, 1957). However, due to very strong diffraction and interference effects, the scattering is almost entirely confined to a very narrow wavelength range. On the other hand, it is possible to collimate the $x$-ray beam much better than a light beam, thus measurements can be made to a low enough angle to a more reasonable extrapolation to zero angle.

Deductions about the size and shape of macromolecules from scattering information is generally restricted however, since any simple interpretation of the radius of gyration must assume that the macromolecule is homogeneous (uniform electron density). If, therefore, the particle contains fluid filled cavities or indentations or a monolayer of bound solvent, the dimensions of any assumed model calculated from the $R_{G}$ will be incorrect. This problem does not apply to the determination of the hydrodynamic shape parameters considered previously since these phenomena do not depend on interactions with or properties of the interior of the macromolecules.

### 1.7. The Problem of Swelling due to Solvation

In order to determine from experimental data the ellipsoid
of revolution shape functions mentioned so far, a knowledge of the swelling due to solvation (i.e. $V_{e}$ ) is required:

$$
\begin{align*}
& v=\frac{[\eta]}{\bar{v}_{s}} \equiv \frac{[\eta] M_{r}}{\bar{N}_{A} \bar{V}_{e}} \\
& \frac{f}{f_{o}} \equiv \frac{M_{r}\left(1-\bar{v} \rho_{o}\right)}{N_{A} 6 \pi \eta_{o} s}\left(\frac{4 \pi}{3 V_{e}}\right)^{1 / 3} \tag{20b}
\end{align*}
$$

$$
\frac{\theta_{i}}{\theta_{0}}=\frac{\zeta_{0}}{\zeta_{i}}=\frac{6 \eta_{o}}{\mathrm{k}_{\Gamma}} \mathrm{e} \theta_{i}
$$

$\frac{\varrho_{i}}{\varrho_{o}}=\frac{k T}{3 \eta_{o} V_{e}} \varrho_{i} \quad(i=a, b)$.

$$
\begin{equation*}
\frac{\tau_{h}^{\tau_{0}}}{\tau_{0}}=\frac{k T}{3 n_{o} V_{e}} \tau_{h} \tag{36b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\tau_{j}}{\tau_{0}}=\frac{k T}{\eta_{o} V_{e}} \tau_{j} \quad(j=1,2,3) \tag{42b}
\end{equation*}
$$

$$
\left(R_{G}\right)_{r e d}=\left(\frac{4 \pi}{3 V}\right)^{1 / 3} R_{G}
$$

The first significant attempt at dealing with this problem was due to Oncley (1941) using a graphical analysis: If $V_{B}$ is fixed then a single value of the shape parameter being considered will correspond to a single value of the axial ratio. If, however, $V_{B}$ is assumed to have a range of possible values, then a single value of the shape parameter will have a
'line solution' of possible values of the axial ratio. This is shown in Figures 11a and 11b for the viscosity increment and translational frictional coefficient. However, if line solutions for two or more of the different shape parameters are compared, then in principle a unique value for the axial ratio and effective volume can be found from the intersection. On the other hand, in practice these curves could only be made to intersect by imposing large experimental errors on the data, and in one case - pepsin - the curves do not cross at all (Figure 12). Here Oncley uses as his abscissa the 'hydration factor' $w$, related to the effective volume, $v_{e}$ by:

$$
w=\rho_{0}\left(\bar{v}_{s}-\bar{v}\right)=\rho_{0}\left[\frac{N_{A} v_{e}}{M_{r}}-\bar{v}\right]
$$

A different approach would be to eliminate $V_{e}$ simultaneóusly by combining any two of the shape parameters together. The effective volume can then also be found by back substitution into the equations. This naturally assumes, as does the Oncley approach, that the axial ratio and the swelling are the same for both types of experiment. Scheraga and Mandelkern (1953) combined equations (8) and (20b) to produce a swellingindependent function $B$ (Figure 13):

$$
\begin{equation*}
\beta=\frac{\ddot{N}_{\mathrm{A}}^{1 / 3}}{\left(16200 \pi^{2}\right)^{1 / 3}} \frac{v^{1 / 3}}{f / f_{0}} \tag{45a}
\end{equation*}
$$

or in terms of experimental parameters, from

$$
\beta \equiv \frac{N_{A} s[n]^{1 / 3} n_{o}}{M_{r}^{2 / 3}\left(1-\bar{v}_{\rho_{o}}\right) 100^{1 / 3}}
$$

where [ $n$ ] is in $\mathrm{ml} / \mathrm{gm}$. Scheraga and Mandelkern also combined equation (8) with equations (28b) to produce swelling independent $\delta_{a}$ and $\delta_{b}$ functions (Figure 14), although in their original paper, only $\delta_{b}$ is given:

$$
\begin{equation*}
\delta_{i}=\frac{\zeta_{o}}{\zeta_{i}} v=\frac{\theta_{i}}{\theta_{0}} v \equiv \frac{6 n_{0} \theta_{i}[n] M_{r}}{N_{A} k T} \tag{46}
\end{equation*}
$$

(i=a,b)
Scheraga (1961) later combined (20b) with (28b) to produce swelling independent $\mu_{a}, \mu_{b}$ functions (Figure 15) although again only $\mu_{b}$ was given:

$$
\mu_{i}=\left(\frac{f_{0}}{f}\right)\left(\frac{\zeta_{i}}{\zeta_{0}}\right)^{1 / 3} \equiv \frac{3 \pi^{2 / 3} s}{\theta_{i}^{1 / 3}} \cdot \frac{N_{A}(k T)^{1 / 3} \eta_{0}^{2 / 3}}{M_{r}\left(1-\bar{v}_{0}\right)}=\frac{3 \pi^{2 / 3} D}{\theta_{i}^{1 / 3}}\left[\frac{n_{0}}{k T}\right)^{2 / 3}
$$

( $i=a, b$ )
Squire et al (1968) combined equation (20b) with (29b) to produce swelling independent $\gamma_{a}$ and $\gamma_{b}$ functions:

$$
\begin{equation*}
\gamma_{i}=\left(\frac{f}{f_{0}}\right)^{3} \frac{\varrho_{0}}{\varrho_{i}} \equiv \frac{1}{54 \pi^{2} N_{A}^{3} k T} \cdot \frac{M_{r}^{3}\left(1-\bar{v}_{o}\right)}{s^{3} \eta_{o}^{2} \varrho_{i}} \tag{48}
\end{equation*}
$$

(i=a,b)
Squire later (1970) combined (20b) with (36b) to give a swelling independent $\Psi$ function (Figure 16)

$$
\Psi\left(\frac{\tau_{0}}{\tau_{h}}\right)^{1 / 3}\left(\frac{f}{f_{0}}\right) \equiv\left(\frac{4 \pi \eta_{0}}{k T}\right)^{1 / 3} \cdot \frac{M_{r}\left(1-\bar{v} \rho_{0}\right)}{6 \pi n_{0} N_{A} s}\left(\frac{1}{\tau_{h}}\right)^{1 / 3}
$$

Plots of the Squire $\gamma_{a}$ and $\gamma_{b}$ parameters as functions of axial ratio are given in Figure 16. A similar swelling independent function can be obtained by combining the viscosity increment, equation (8) instead of equation (20b) with (36b) (see Appendix II and Harding, 1980a):

$$
\begin{equation*}
\Lambda=\left(\frac{\tau_{0}}{\tau_{h}}\right) \nu \equiv \frac{3 n_{0}[\eta] M_{r}}{N_{A} k T \tau_{h}} \tag{50}
\end{equation*}
$$

(Figure 17). Also, by combining equation (8) instead of (20b) with equation (29b), swelling independent $\varepsilon_{a}, \varepsilon_{b}$ functions are produced (Figure 18):

$$
\begin{equation*}
\varepsilon_{i}=v \frac{\varrho_{0}}{\varrho_{i}} \equiv \frac{3 n_{0}[n] M_{r}}{N_{A} k T \varrho_{i}} \tag{51}
\end{equation*}
$$

(i=a, b)
By combining (8) with the fluorescence anisotropy relaxation times (42b) three new functions, $k_{1}, k_{2}, k_{3}$ are produced (Figure 19):

$$
\begin{equation*}
\kappa_{j}=v \frac{\tau_{0}}{\tau_{j}}=\frac{n_{0}[\eta] M_{r}}{N_{A} k T \tau_{j}} \quad \quad(j=1,2,3) \tag{52}
\end{equation*}
$$

Alternatively, combining equation (20b) with equation (42b)(Figure 20):

$$
\begin{equation*}
\xi_{j}=\left(\frac{f}{f_{0}}\right)^{3} \frac{\tau_{0}}{\tau_{j}} \equiv \frac{m_{r}^{3}\left(1-\bar{v} p_{0}\right)^{3}}{162 N_{A}^{3} k T \pi^{2} \eta_{0}^{2} s^{3} \tau_{j}} \quad(j=1,2,3) \tag{53}
\end{equation*}
$$

As far as the author is aware, the $\Lambda, \varepsilon_{i}, k_{j}$ and $\xi_{j}$ functions are new and have not been published before. These functions are tabulated for axial ratios between 1 and 10 (Table 1).

Martin (1964) eliminated the requirement of knowledge of the swollen volume for scattering experiments by combining (44) simultaneously with
either the translational frictional function (Figure 21):

$$
\begin{aligned}
\gamma \equiv \frac{R_{G} \eta_{0} D}{k T} \equiv \frac{R_{G} \eta_{0} N_{A} s}{M_{r}\left(1-\bar{v}_{\rho}\right)} & =\frac{1}{6 \pi} \frac{f_{0}}{f}\left(\frac{5 p^{4 / 3}+4 p^{-2 / 3}}{15}\right)^{\frac{1}{2}} \\
& \text { (prolate ellipsoid) } \\
& =\frac{1}{6 \pi} \frac{f_{0}}{f}\left(\frac{p^{4 / 3}+2 p^{-2 / 3}}{5}\right)^{\frac{1}{2}} \\
& \text { (oblate ellipsoid) }
\end{aligned}
$$

or the viscosity increment (Figure 22):

$$
\begin{aligned}
\alpha \equiv \frac{R_{G}}{[\eta]^{1 / 3} M_{r}^{1 / 3}}= & \frac{75}{\pi N_{A}}\left(\frac{5 p^{4 / 3}+4 p^{-2 / 3}}{15}\right)^{\frac{1}{2}} \cdot \frac{1}{v^{1 / 3}} \\
& \text { (prolate ellipsoid) } \\
= & \frac{75}{\pi N_{A}}\left(\frac{p^{4 / 3}+2 p^{-2 / 3}}{5}\right)^{\frac{1}{2}} \cdot \frac{1}{v^{1 / 3}} \\
& \text { (oblate ellipsoid) }
\end{aligned}
$$

where $p$ is the axial ratio defined in section 1.4.
The molecular covolume has also been given as a function of shape and swollen volume by Nichol at al (1977) Por prolate and oblate ellipsoids

$$
\begin{align*}
U=N_{A} & V_{e}\left\{2+\frac{3}{2}\left(\frac{1+\sin ^{-1} \varepsilon}{\varepsilon\left(1-\varepsilon^{2}\right)^{\frac{1}{2}}}\right)\right. \\
& \left.\left(1+\frac{1-\varepsilon^{2}}{2 \varepsilon} \ln \frac{1+\varepsilon}{1-\varepsilon}\right)\right\} \tag{54}
\end{align*}
$$

where the ellipticity $\varepsilon$ is related to the axial ratio by
$\varepsilon=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}$
for prolate ellipsoids (b<a), and
$\varepsilon=\sqrt{1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}$
for oblate ellipsoids (b>a). By 'reducing' $U$ we obtain a function $U_{\text {red }}$
in terms of shape alone:

$$
\begin{align*}
& U_{r e d}= \frac{U}{N_{A} V_{e}}= \\
& 2+\frac{3}{2}\left(1+\frac{1+\sin ^{-1} \varepsilon}{\varepsilon\left(1-\varepsilon^{2}\right)^{\frac{1}{2}}}\right)  \tag{55}\\
&\left(1+\frac{1-\varepsilon^{2}}{2 \varepsilon} \ln \frac{1+\varepsilon}{1-\varepsilon}\right)
\end{align*}
$$

The covolume $U$ can be found from a sedimentation equilibrium experiment in terms of the activity coefficient, as outlined by Nichol et al (1977) although in order to determine $U_{r e d}$, a knowledge of $V_{B}$ is still required. Nichol et al (1977) however eliminated $V_{e}$ by solving equation (55) simultaneously with the translational frictional ratio (equation 20b) to produce the swelling independent $\psi$ function (not to be confused with the Squire $\Psi$ function)

$$
\begin{equation*}
\psi=\frac{U_{r e d}}{162 \pi^{2}}\left(\frac{f_{0}}{f}\right)^{3} \equiv \frac{U \eta^{3} N_{A}^{2} s^{3}}{M_{r}^{3}\left(1-\bar{v}_{\rho}\right)^{3}} \tag{56}
\end{equation*}
$$

As seen from Figure 23, $\psi$ has the advantage that no prior decision has to be made as to whether the macromolecule is better modelled either by a prolate or oblate ellipsoid. Unfortunately, for typical globular macromolecules (small axial ratios), the parameter is still very
sensitive to experimental error: this is clear Prom Nichol et al's results for ovalbumin, whose axial ratio they found to be $2.5: 1$ with a standard error of 3. This is largely due to the large number of terms on the right hand side of equation (56), several of them cubed.
$U_{\text {red }}$ can of course be combined with any of the equations (8), (20), (28b), (29b), (36b), (42b) to eliminate $V_{e}$. For example, if (55) is combined with the viscosity increment (8), a new swelling independent function is produced (Figure 24) (Harding, 1980b):

$$
\begin{equation*}
\Pi=\frac{U_{\mathrm{red}}}{\nu} \equiv \frac{\mathrm{U}}{[\eta]_{\mathrm{r}}} \tag{57}
\end{equation*}
$$

Values of the II function for various axial ratios are given in Table 1. The results for hemoglobin are in excellent agreement with those found from X-ray crystallography (see Appendix III).

### 1.7.1. Hydrodynamic non-ideality: the $R$ function

The viscosity, translational frictional and rotational parameters considered so far are normally those extrapolated to zero concentration in order to negate the effect of the net volume excluded by the particles and solute-solute interaction. However, the nature of the concentration dependence of these parameters, particularly the sedimentation coefficient. "s" and the reduced specific viscosity, $\eta_{s p} / c$, has now been shown by Rowe (1977) to give valuable information as to the conformation and swelling in solution and also an estimate of the "goodness of fit" of an ellipsoid for the macromolecule in solution.

$$
\text { The variation of } s \text { and } \eta_{s p} / c \text { with concentration can be represented }
$$

by regression parameters $k_{s}$, and $k_{\eta}$ :

$$
\begin{equation*}
s_{c}=s\left(1-k_{s} c\right) \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
\frac{{ }^{\eta} s p}{c}=[\eta]\left(1+k_{\eta} c\right) \tag{59}
\end{equation*}
$$

where $k_{s}$ and $k_{\eta}$ are, respectively, the sedimentation and viscosity concentration regression coefficients. These approximate linear equations are valid only for dilute solutions. A universal equation has been derived by Rowe (see Appendix $I \nabla$ ) for all solute concentrations up to $\phi_{p}$, the critical packing fraction:

$$
\begin{equation*}
\frac{s_{c}}{s} \frac{f_{o}}{f}=\frac{[\eta]}{n_{s p} / c}=1-g c \tag{60a}
\end{equation*}
$$

where

$$
\begin{equation*}
g c=\frac{k c-\left(2 \phi_{p}-1\right)\left(c \bar{v}_{s} / \phi_{p}\right)^{2}}{k c-2 \bar{v}_{s} c+1} \tag{60b}
\end{equation*}
$$

where $k=k_{s}$ (sedimentation) or $k=k_{\eta}$ (viscosity). This provides a more accurate method for extrapolating to infinite dilution to obtain [ $\eta$ ] and "s", and also for finding $k_{s}$ and $k_{\eta}$, from a given set of data, by minimising:

$$
\left\{w_{i}\left[s_{i}-f\left(k_{s}, \bar{v}_{s}, s, c_{i}, \phi_{p}\right)\right]\right\}^{2}
$$

$\left(w_{i}=w e i g h t\right)$
This procedure is unstable if $k_{s}, \bar{v}_{s}$ and $s$ (or the corresponding viscosity parameters) are all taken to be independent variables. However, if we assume $\bar{v}_{s}=k_{s} / 4$ for globular proteins, or assume $\bar{v}_{s}$ from the ratio $\bar{v}_{s} / \bar{v}$
$=k_{\eta}^{\prime} / k_{s}^{\prime}$, where $k_{\eta}^{\prime}$ and $k_{s}^{\prime}$ are the parameters found from the approximate fit (equations $58 \& 59$ ), a stable fit may be found.

Rowe (1977) has shown that the swelling, $\bar{v}_{s} / \bar{v}$, can be found from:

$$
\begin{equation*}
\frac{\bar{v}_{s}}{\mathrm{v}}=\frac{\mathrm{k}_{\eta}}{\mathrm{k}_{\mathrm{s}}} \tag{62}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathrm{V}_{\mathrm{e}}=\frac{\mathrm{M}_{\mathrm{r}} \overline{\mathrm{v}}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{A}}}=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{~N}_{\mathrm{A}}} \cdot \frac{\mathrm{k}_{\eta}}{\mathrm{k}_{\mathrm{s}}} \cdot \overline{\mathrm{v}} \tag{63}
\end{equation*}
$$

The value of $\bar{v}_{s} / \bar{v}$ and hence $v_{e}$ thus found is independent of any assumed model for the protein. Sinee the determination of $V_{\theta}$ by back substitution into the equations given at the beginning of 1.7. after the axial ratio has been determined is dependent on the model chosen (i.e. an ellipsoid of revolution), an estimate for the "goodness of fit" of an ellipsoid of revolution is now available by comparing the model dependent $V_{e}$ with model independent $v_{s}$ (or, equivalently, $\bar{v}_{s}$ or $\bar{v}_{s} / \bar{v}$ ).

This theory also provides a new shape function " $R$ ", which is independent of particle swelling:

$$
\begin{equation*}
R=\frac{2}{\nu}\left(1+\left(\frac{f}{f_{o}}\right)^{3}\right) \equiv \frac{k s}{[n]} \tag{64}
\end{equation*}
$$

Wales \& Van Holde (1954) had previously reported that the ratio $k_{s} /[\eta]$ was some unknown function of shape and equal to 1.6 for spherical particles; this agrees with that predicted by equation (44) (Figure 13). R varies rather rapidly with axial ratio for ellipsoids, even for low axial ratio, and this function provides a precise method for characterizing the axial ratio of relatively symmetrical particles.

Besides its greater sensitivity than the $\beta$ function (or the $\Psi$ function), $R$ has several other advantages:
(1) unlike $\beta$ computation of $R$ does not require knowledge of the absolute solute concentration (Rowe, 1977)
(2) less data is required to compute $R$ and hence the error in the final function is minimized. As rotational parameters are generally very difficult to determine, as will be evident from the earlier parts of this chapter, the $R$ function is also to be preferred over swelling independent functions involving these. The $R$ function is also to be preferred over the scattering $\gamma$ and $\alpha$ functions mainly because of the particle homogeneity problem mentioned in section 1.6. The $\beta$ function can still however be useful, precisely because of its lack of variation for oblate ellipsoids, in deciding whether the macromolecule is better modelled by either a prolate or an oblate ellipsoid. Experimental values for $\beta$ and $k_{s} /[\eta]$ ( $\equiv$ R) have been tabulated for a wide range of proteins by Creeth \& Knight (1965). Values of $\beta$ below the theoretical minimum of $2.112 \times 10^{6}$ and above 1.6 for $R$ may indicate that some proteins cannot be modelled by an equivalent ellipsoid of revolution. This has been suggested for Bovine serum albumin (BSA). A table of values of axial ratio calculated from the $R$ function for recent data, together with a comparison of their 'model dependent' estimates for $\bar{v}_{s} / \bar{v}$ with their 'model independent' estimates to determine the 'goodness of fit' of an ellipsoid of revolution, is given in Table 2.

### 1.8. Comment

Although a hydrodynamically equivalent ellipsoid of revolution model can now be fitted with much greater precision to many rigid macromolecules with the aid of the $R$ function (and possibly the $I I$ function)
the distinction still has to be made as to whether the macromolecule is better modelled either by a prolate or an oblate model. It is clear from a perusal of the crystallographic models of many globular proteins such as carboxypeptidase, myoglobin and ribonuclease (Table 3) that in many cases this is quite arbitrary and indeed in some cases is impossible

It would be a significant step forward therefore if the restriction of two equal axes on the ellipsoid were removed to allow use of the more general tri-axial ellipsoid. However, either due to the lack of the theoretical relationships linking the axial dimensions of the ellipsoid with experimental parameters, or, even if they are available, due to the lack of the necessary experimental precision, numerical inversion procedures or data analysis techniques, this model has not, to date, been available. The aim of the rest of this thesis is to show that the general tri-axial ellipsofid can now be successfully employed to model biological macromolecules in solution. We will start by deriving the tri-axial viscosity increment equation.

Table 1. Values of $\Lambda, \varepsilon_{a}, \varepsilon_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}, \xi_{1}, \xi_{2}, \xi_{3}$ and $\Pi$ for prolate and oblate ellipsoids of revolution

| ratio | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Lambda_{p}$ | 2.500 | 2.490 | 2.692 | 3.071 | 3.575 | 4.177 | 4.862 | 5.624 | 6.457 | 7.359 |
| $\Lambda_{0}$ | 2.500 | 2.356 | 2.187 | 2.070 | 1.989 | 1.931 | 1.887 | 1.854 | 1.827 | 1.805 |
| $\varepsilon a, p$ | 2.500 | 1.932 | 1.574 | 1.373 | 1.251 | 1.171 | 1.115 | 1.075 | 1.044 | 1.020 |
| $\varepsilon_{a, 0}$ | 2.500 | 2.522 | 2.343 | 2.202 | 2.102 | 2.029 | 1.974 | 1.931 | 1.896 | 1.868 |
| $\varepsilon_{b, p}$ | 2.500 | 2.768 | 3.250 | 3.920 | 4.737 | 5.679 | 6.736 | 7.899 | 9.164 | 10.528 |
| $\varepsilon_{b, 0}$ | 2.500 | 2.273 | 2.110 | 2.003 | 1.932 | 1.882 | 1.844 | 1.815 | 1.792 | 1.774 |
| $\mathrm{K}_{1, \mathrm{p}}$ | 2.500 | 1.932 | 1.574 | 1.373 | 1.251 | 1.171 | 1.115 | 1.075 | 1.044 | 1.020 |
| $k_{1,0}$ | 2.500 | 2.522 | 2.343 | 2.202 | 2.102 | 2.029 | 1.974 | 1.931 | 1.896 | 1.868 |
| $\mathrm{K}_{2, \mathrm{p}}$ | 2.500 | 2.211 | 2.133 | 2.222 | 2.413 | 2.674 | 2.989 | 3.349 | 3.751 | 4.189 |
| $\mathrm{K}_{2,0}$ | 2.500 | 2.439 | 2.265 | 2.136 | 2.045 | 1.980 | 1.930 | 1.892 | 1.862 | 1.837 |
| $\mathrm{k}_{3, \mathrm{p}}$ | 2.500 | 3.047 | 3.809 | 4.769 | 5.899 | 7.182 | 8.609 | 10.174 | 11.871 | 13.698 |
| $K_{3,0}$ | 2.500 | 2.190 | 2.032 | 1.937 | 1.875 | 1.832 | 1.801 | 1.777 | 1.758 | 1.742 |
| ${ }^{\xi} 1, p$ | 1.000 | 0.756 | 0.588 | 0.487 | 0.421 | 0.374 | 0.340 | 0.313 | 0.292 | 0.275 |
| $\xi_{1,0}$ | 1.000 | 1.000 | 0.920 | 0.860 | 0.818 | 0.787 | 0.763 | 0.745 | 0.731 | 0.719 |
| $\xi_{2, p}$ | 1.000 | 0.865 | 0.797 | 0.788 | 0.811 | 0.854 | 0.911 | 0.976 | 1.051 | 1.129 |
| $\xi_{2,0}$ | 1.000 | 0.967 | 0.890 | 0.834 | 0.796 | 0.768 | 0.747 | 0.731 | 0.718 | 0.707 |
| $\xi_{3, p}$ | 1.000 | 1.192 | 1.423 | 1.691 | 1.983 | 2.295 | 2.623 | 2.966 | 3.322 | 3.690 |
| $\xi_{3,0}$ | 1.000 | 0.868 | 0.798 | 0.757 | 0.729 | 0.711 | 0.697 | 0.686 | 0.678 | 0.671 |
| $\Pi_{p}$ | 3.200 | 3.122 | 2.960 | 2.778 | 2.601 | 2.438 | 2.291 | 2.159 | 2.041 | 1.935 |
| $\Pi_{0}$ | 3.200 | 3.180 | 3.179 | 3.192 | 3.208 | 3.225 | 3.241 | 3.255 | 3.268 | 3.280 |

subscript $p:$ prolate ellipsoid o: oblate ellipsoid

Table 2. Use of the $R$ function to predict the conformation of various macromolecules in solution in terms of an ellipsoid of revolution model

| Protein | $\begin{aligned} & k_{\mathbf{s}} \\ & \mathrm{ml} / \mathrm{gm} \end{aligned}$ | $\begin{gathered} k_{n} \\ \mathrm{ml} / \mathrm{gm} \end{gathered}$ | $\begin{gathered} {[n]} \\ \mathrm{ml} / \mathrm{gm} \end{gathered}$ | $R$ | axial <br> ratio | $\begin{aligned} & \text { model } \\ & \text { dependent } \\ & \left(v_{8} / v\right) \end{aligned}$ | model <br> independent $\left(\bar{v}_{3} / \bar{v}\right)$ | Conclusion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apoferritin ${ }^{1}$ | 8 | 12 | 5.16 | 1.55 | $1.45{ }^{*}+$ | $2.6{ }^{*}+$ | 1.5 | spherical |
| $\mathrm{BSA}^{2}$ | 5.5 | 7.7 | 2.75 | 2.0 | - | - | 1.4 | not a hydrodynamic sllipsoid (cf $\beta<$ 2.1) |
| Fibrinogen ${ }^{3}$ | 7 | 14 | 7.8 | 0.9 | $6.3{ }^{\text {t }}$ | $1.1{ }^{\text {t }}$ | 2.0 | prolate ellipsoid ~6:1. Agrees with electron microscopy (Hall \& Slayter, 1959) |
| C-protein ${ }^{4}$ | 11 | 15.4 | 12.6 | 0.87 | $26.0,{ }^{*} 6.65^{\dagger}$ | $0.9,2.12^{\dagger}$ | 1.4 | $\begin{aligned} & \text { oblate ellipsoid } \\ & \sim 25: 1 \end{aligned}$ |
| Myosin ${ }^{5}$ | 85 | 92 | 234 | 0.38 | $30^{\dagger}$ | $4.3{ }^{\text {t }}$ | 1.1 | not hydrodynamic |
| Synthatic A-Pilaments ${ }^{6}$ | 160.8 | 366 | 176 | 0.9 | .19.5 ${ }^{\dagger}$ | $16^{\text {t }}$ | 2.3 | ellipsoids of sevolution |
| Collagen sonicates ${ }^{7}$ |  |  |  |  |  |  |  |  |
| (i) $M_{r}=352,000$ | 308 | 880 | 1252 | 0.246 | $80^{t}$ | $2.28^{\text {t }}$ | 2.85 | prolate ~80:1 |
| (ii) $M_{r}=330,000$ | 291 | 756 | 1078 | 0.270 | $64^{+}$ | $2.85{ }^{\text {t }}$ | 2.60 | prolate ~65:1 |
| (iii) $M_{r}=273,000$ | 241 | 564 | 639 | 0.377 | $30^{\frac{1}{4}}$ | $6.12^{t}$ | 2.34 | not hydrodynamic |
| (iv) $M_{r}=227,000$ | 193 | 428 | 400 | 0.483 | $18^{\frac{1}{4}}$ | $9.13^{\text {t }}$ | 2.22 | ellipsoids of revolution |
| ```t prolate ellipsoid, * oblate ellipsoid. Refs: 1&2 Rowe & Pancholi (unpub.), 3 Rowe & Mihalyi (unpub.) 4 Offer et el (1973), 5 Emes (1977), Emes & Rowe (1978a), 6 Emes (1977), Emes & Rowe (1978b), 7rom Nisihara & Doty (1958)``` |  |  |  |  |  |  |  |  |

Table 3. Crystallographic dimensions of some globular proteins

| Protein | Dimensions ( $\AA$ ) | Reference |
| :--- | :--- | :--- |
| Carboxypeptidase | $50 \times 42 \times 38$ | Lipscomb (1971) |
| Myoglobin | $43 \times 35 \times 23$ | Kendrew et al (1958) |
| Cytochrome c | $25 \times 25 \times 35$ | Dickerson \& Geiss (1969) |
| Lysosyme | $45 \times 30 \times 30$ | Blake et al (1965) |
| Ribonuclease | $38 \times 28 \times 22$ | Kartha et al (1967) |
| Pre - albumin | $70 \times 55 \times 50$ | Blake et al (1978) |
| Hemoglobin | $64 \times 55 \times 50$ | Perutz et al (1960) |

## $\overparen{V A} \equiv \overline{\mathrm{~V}}$

ב-= associated solvent
trapped or entrained solvent


Figure 1. A macromolecule in solution is generally
swollen due to solvent association

Rod


Prolate ellipsoid of revolution ( $b<a$ )

Figure 2. Mathematical models for macromolecules in solution

length of arrows are proportional to the fluid velocity at that value of $y$

Fiqure 3. Shearing of a Newtonian fluid between parallel plates (from Van Holde, 1971)


Figure 4. Plot of the viscosity increment as a function of axial ratio for ellipsoids of revolution


Figure 5. Plot of the translational frictional ratio (the "Perrin Punction") as a function of axial ratio for ellipsoids of revolution


Fiqure G. Plot of the rotational diffusion coefficient ratios and rotational relaxation time ratios as a function of axial ratio for ellipsoids of revolution

Figure 7. Dielectric dispersion curves for prolate ellipsoids of
revolution. Constant dipole angle ( $\theta=45^{\circ}$ ) and varying
axial ratio ( $a / b$ from 1 to 50). From Oncley (1940)




Fiqure 8. Plot of the harmonic mean rotational relaxation time ratio as a function of axial ratio for ellipsoids of revolution


Fiqure 9. Plot of the fluorescence anisotropy relaxation time ratios as a function of axial ratio for ellipsoids of revolution


Figure 10. Plot of the 'reduced' radius of gyration as a function of axial ratio for ellipsoids of revolution

Figure 11. (a) Values of axial ratio and hydration as a function of $\underline{v\left(\bar{v}_{s} / \bar{v}\right)}$. Contour lines denote values of $v\left(\bar{v}_{s} / \bar{v}\right)$
(b) As above, but as a function of $\left(f / f_{0}\right) \cdot\left(\bar{v}_{s} / \bar{v}\right)^{1 / 3}$. Contour lines denote values of $\left(f / f_{0}\right) \cdot\left(\bar{v}_{s} / \bar{v}\right)^{1 / 3}$

(b)


Figure 12. Asymmetry and hydration (i.e. solvent association) of certain protein molecules. (from Oncley, 1941)


Grams of Water per Gram of Protein


Wrom dielectric dispersion, $\begin{aligned} & \text { with one relaxation time }\end{aligned}$

ITT From viscosity coefficient (cssuming $\pm 10 \%$ error)
$\square$ From X-ray studies
From dielectric dispersion, with two relaxation times


Fiqure 13. Plot of the Scheraga \& Mandelkern $B\left(\times 10^{-6}\right)$ and Rowe $R$ functions versus axial ratio for ellipsoids of revolution


Figure 14. Plot of $\delta_{a}$ and $\delta_{b}$ as functions of axial ratio for ellipsoids of revolution


Fiqure 15. Plot of $\mu_{a}$ and $\mu_{b}$ as functions of axial ratio for ellipsoids
of revolution


Figure 16. Plot of $\gamma_{a}, \gamma_{b}$ and $\Psi$ as functions of axial ratio for ellipsoids of revolution


Figure 17. Plot of $\Lambda$ as a function of axial ratio for ellipsoids of revolution


Figure 18. Plot of $\varepsilon_{a}$ and $\varepsilon_{b}$ as functions of axial ratio for ellipsoids
of revolution


Figure 19. Plot of $k_{1}, k_{2}$ and $k_{3}$ as functions of axial ratio for ellipsoids
of revolution


Figure 20. Plot of $\xi_{1}, \xi_{2}$ and $\xi_{3}$ as functions of axial ratio for ellipsoids of revolution


Figure 21. Plot of $\gamma$ as a function of axial ratio for ellipsoids of revolution (from Martin, 1964)


Fiqure 22. Plot of $\alpha$ as a function of axial ratio for ellipsoids of revolution


Figure 23. Plot of $\psi$ as a function of axial ratio for ellipsoids of revolution


Figure 24. Plot of $\Pi$ as a function of axial ratio for ellipsoids of revolution


The Viscosity Increment for a Dilute, Newtonian

## Suspension of Tri-axial Ellipsoids

### 2.1. Hydrodynamic Forces and Brownian Motion

Although the forces and torques exerted upon a suspended particle by a fluid are all ultimately of molecular origin, it is convenient to distinguish those that can be explained by continuum hydrodynamics from those, due to molecular fluctuations, that give rise to Brownian motion. If we first completely neglect the Brownian motion, it is clear that, once a steady state has been attained, suspended particles free of any external imposed impressed forces or torques must move in such a way that the net hydrodynamic force and torque, $T_{H}$ acting upon them are zero, i.e. $\quad T_{H}=0$.

Let us consider a steady simple shearing flow (section 1.3.), as in, for example, a simple capillary or Ubbelohde viscometer experiment (Yang, 1961). The motion of the fluid in the neighbourhood of any point can be decomposed into three components; a translational velocity which varies Prom point to point, an angular velocity which for this type of flow is the same for all points, and a pure straining motion which again is the same for all points. If now a single, neutrally bouyant, rigid ellipsoidal particle is introduced the flow will be disturbed, although at large distances from the ellipsoid the disturbance will tend to zero. We shall assume that the motion of the ellipsoid and of the fluid is such that the Reynold's number (Batchelor, 1967) is very small. Then it is possible on the basis of work by Oberbeck (1876) and Jeffrey (1922) to say what the hydrodynamic forces and torques acting upon the particle are. In particular it is known that the force will be zero when the translational velocity of the particle is the same as the translational velocity of the point in the undisturbed flow at which the point is suspended. The situation for angular velocity is more complicated since two factors come
into play; one gives a torque if the angular velocity of the particle differs from the angular velocity defined by the undisturbed flow (or, equivalently, by the actual flow at infinity), whilst the other gives a torque if the principal axes of the ellipsoid have a different orientation from the principal axes of the straining motion defined by the undisturbed flow. Taken together, these mean that the angular motion of the particle under zero hydrodynamic torque conditions is very complicated (Chwang, 1975) and a complete solution for it is not known.

Turning to the Brownian motion which is in the nature of fluctuations the simplest question we can ask is what is the average: velocity and the average angular velocity of the particle? By the average we mean in the first instance the time average, although in practice this will be assumed equal to the volume average taken over an ensemble over a very large number of particles suspended in unit volume (see Batchelor, 1970 for a detailed discussion of various methods of averaging). Ignoring for the moment the hydrodynamic forces, we can answer the question by saying that on average the particle is at rest in the local frame of reference defined by the undisturbed flow. In other words it is on average moving with the translational velocity of the point in the undisturbed flow at which it is suspended and with the angular velocity defined by the undisturbed flow (Kuhn \& Kuhn, 1945, Brinkman et al, 1949, Scheraga, 1955).

When we come to consider the combined effect of the hydrodynamic forces and the Brownian motion no problem arises with the translational motion since both effects tend in the same direction - motion with the translational velocity of the flow. But for the angular motion the situation is less simple, the two effects do not have the same tendancy and we must consider a range of possibilities depending on the relative strengths of the two. This range is represented by the Peclet number
$\alpha=G / \theta$ (Brenner, 1972a) where $G$ is the shear rate and $\theta$ the mean rotational diffusion coefficient. We shall only be considering the case of overwhelming Brownian motion $(\alpha \rightarrow 0)$ in which the hydrodynamic effects are completely negligible compared with the Brownian motion effects. Thus we shall take it that on average the particles are rotating with the local angular velocity of the ambient flow; and we may additionally assume that the orientation of the particles will be random. This last fact would not be so if hydrodynamic forces and torques were not negligible for they introduce systematic metions and hence preferred orientations.

### 2.2. The Simha Model of Overwhelming Brownian Motion

We consider a homogeneous dilute suspension of identical rigid ellipsoids randomly oriented in an incompressible Newtonian fluid in which they are neutrally buoyant. The ambient flow is taken to be a slow simple shearing flow, whilst the suspended particles are taken to be moving with the velocity and the angular velocity of the ambient flow appropriate to the point at which each is suspended. Near each particle this ambient flow is disturbed but is still taken to be a slow (low Reynold's number) flow so that we may apply the classical results of Jeffrey (1922).

This model, which is taken to be appropriate for the case of overwhelming Brownian motion derives from Simha (1940) although in his original work doubt is left about whether or not the particles are rotating with the local angular velocity of the fluid. An attempt to clear this difficulty is made below (section 2.6.). The key simplifying feature of the model introduced by Simha is that it eliminates the complicated statistical problem presented by the Brownian motion by substituting an assembly of
particles all moving with the average motion. This, together with the assumptions of diluteness and random orientation, allows us to compute the effect of the suspended particles by simply summing their individual effects. The isotropy of the particle distribution in the model means that non-Newtonian behaviour will not appear, and also allows us to use the energy dissipation method of computing the viscosity (Batchelor, 1970, Brenпer, 1972b, p93).

The simplifications of the model are achieved, however, at a price. Non-Newtonian and concentration dependent effects, which to the theoretical rheologist are of the greatest interest, have been deliberately discarded; and the model can say nothing about lesser degrees of Brownian motion. In effect we shall be calculating the first term of a series; nevertheless this is of great value to the molecular biologist who can deliberately arrange the conditions of a viscosity experiment so that the model is applicable:
(i) Giesekus (1962) has shown that non-Newtonian normal stress effects are of 2 nd order, and can thus be neglected for very low shear rates as ing for example, a capillary viscometer (Yang, 1961);
(ii) Viscosity coefficients are normally extrapolated to 'infinite dilution' i.e. zero concentration-dependent effects, to give the 'intrinsic viscosity' (Van Holde, 1971), related to the viscosity increment by equation (8).

### 2.3. The Viscosity Increment

We let $\eta$ be the viscosity measured in an experiment on a dilute suspension of particles in a fluid of viscosity $\eta_{0}$. If $\phi$ is the volume concentration - the total volume of the particles in unit volume of the suspension - then the viscosity increment $v$ is defined, from
equation (7), by

$$
\begin{equation*}
\frac{n}{n_{0}}=1+v \phi \tag{65}
\end{equation*}
$$

where, when $v$ is independent of $\phi$, the linear dependence of $\eta / \eta_{0}$ upon $\phi$ gives the empirical characteristic of a dilute suspension. From the theoretical point of view however, a dilute suspension is one in which there are no hydrodynamic interactions between the particles and thus one in which each particle independently contributes to the viscosity the same amount it would were it alone present. This contribution for a general ellipsoidal particle was first calculated by Jeffrey (1922) using the simple energy dissipation analysis for averaging over the particle ensemble (Batchelor, 1970) and it is a straightforward matter to extend his results to cover the case of ellipsoids rotating with the local angular velocity of the ambient flow as required by our model.

### 2.4. The Flow Velocity and Pressure

In order to calculate the additional dissipation of energy caused by introducing the particle into a given flow, we compare that given flow with the consequent disturbed flow within a suitable sphere, 5 , of radius R, centred on the particle position. We impose two requirements upon S: first, that it is small compared with the scale of spatial variations in the given flow, and thus within it that flow is effectively given as a linear variation of velocity with position; secondly, that it is large compared with the size of the particle, and thus that the disturbed flow will not appreciably differ from the given flow by the time the surface
of $S$ is reached. Naturally, these requirements can only be met when the particle is, as we have assumed, very much smaller than the scale of spatial variations in the velocity field of the given flow.

For our purposes then, the disturbed flow may be taken to be the flow of an incompressible fluid in the region between the rotating ellipsoidal surface of the particle and the concentric spherical surface S. On the inner surface we impose the usual no-slip boundary condition, whilst on $S$ we require the velocity field to be equal to its value in the original flow. We give the velocity components of the two flows with respect to rectangular Cartesian axes fixed in the rotating particle so that its ellipsoidal surface will always be given by

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{66}
\end{equation*}
$$

The undisturbed flow is given, within S, by

$$
u_{i}^{o}=g_{i j} x_{j}
$$

where $g_{i j}$ are the components of the velocity gradient tensor which are by our assumptions, independent of position within S. In this equation and in subsequent equations, the indices range over the values $1,2,3$ and the summation convention is used whereby when an index is repeated within a term a summation is indicated over the three values of that index. Using ellipsoidal harmonics, Jeffrey was able to give the plow velocity and pressure in the region of $S$ for $R$ large, but finite. He gives the result under the assumption that the angular velocity is such that no net hydrodynamic torque acts on it, i.e. hydrodynamic effects alone affect the motion of the particle. In order to consider the Brownian motion we follow Simha in dropping this restriction whence the flow near $S$ is found,
to leading order, to be

$$
\begin{equation*}
u_{i}=u_{i}^{0}-4 \Phi x_{i}\left(\frac{1}{r^{5}}-\frac{1}{R^{5}}\right)+\frac{5 \partial \Phi}{\partial x_{i}}\left(\frac{1}{R^{3}}-\frac{r^{2}}{R^{5}}\right) \tag{67}
\end{equation*}
$$

In this equation, $\Phi=A_{i j} X_{i} X_{j}$, whilst the $A_{i j}$ themselves are coefficients independent of position but dependent on the $g_{i j}$ and the components, $\omega_{i}$ of the angular velocity of the particle; their explicit values are given by Jeffrey (see Table 4 for the relationship between his notation and ours). We consider the values of the $A_{i j}$ below.

On the assumption that terms of second order in the velocity may be neglected and that the particle spins are of the same order as the fluid velocities, the dynamical equation for the pluid reduces to

$$
\begin{equation*}
\eta \nabla^{2} \underline{u}=\nabla p \tag{68}
\end{equation*}
$$

from which the pressure, $p$, can be found. For the disturbed flow we find the pressure on $S$ to be

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{\mathrm{o}}-\frac{50 \eta \Phi}{\mathrm{R}^{5}} \tag{69}
\end{equation*}
$$

where $P_{0}$ is a constant.

### 2.5. The Dissipation of Energy

Assuming a steady state, we can compare the rates of dissipation of energy within $S$ in the two flows by comparing the corresponding rates for working of the viscous stresses on the surface S. This rate of working, $d \mathrm{l} / \mathrm{dt}$, is given by

$$
\begin{equation*}
\frac{d W}{d t}=\int_{s} u_{i}^{o} \sigma_{i j} n_{j} d S \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+\eta\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right) \tag{71}
\end{equation*}
$$

are the components of the stress tensor, and

$$
\begin{equation*}
n_{j}=\frac{x_{j}}{R} \tag{72}
\end{equation*}
$$

are the components of the unit normal to S.

## Far the disturbed flow we find

$$
\begin{equation*}
\frac{d W}{d t}=\frac{8}{3} \pi \eta a_{i j} a_{i j} R^{3}+\frac{32}{3} \pi \eta A_{i j} g_{i j} \tag{73}
\end{equation*}
$$

where the $a_{i j}=\frac{1}{2}\left(g_{i j}+g_{j i}\right)$ are the components of the local distortion in the undisturbed flow. On the other hand, the well-known formula of Stokes gives, for the undisturbed flow

$$
\begin{equation*}
\frac{d W}{d t}=\frac{8}{3} \pi \eta a_{i j} a_{i j} R^{3} \tag{74}
\end{equation*}
$$

We thus obtain an expression for $\Delta$, the extra dissipation of energy when the particle is present, namely

$$
\begin{equation*}
\Delta=\frac{32}{3} \pi \eta A_{i j} g_{i j} \tag{75}
\end{equation*}
$$

If we split $g_{i j}$ into its symmetric and skew-symmetric parts, we have

$$
\begin{equation*}
\Delta=\frac{32}{3} \pi n\left(A_{i j} a_{i j}+A_{i j} \xi_{i j}\right) \tag{76}
\end{equation*}
$$

where $\xi_{i j}=\frac{1}{2}\left(g_{i j}-g_{j i}\right)$. Jeffrey, as a consequence of the dynamical assumption mentioned above, was working with symmetrical $A_{i j}$, and so naturally obtained only the first term in our expression for $\Delta$; and it appears that Simha, although he removed the restriction on $A$, failed to find the second term. The consequence of this for his calculation will now be discussed.

### 2.6. The Particle Rotation

Simha takes the average angular velocity to be zero and on this basis calculates his well known formula for $v$ (equation 9), a formula which has been shown to give good agreement with observations (Mehl, Oncley \& Simha, 1940, Tanford, 1961). A few years later, Saito (1951) using the assumption that the particles should rotate on average with the local undisturbed rotation of the pluid obtained precisely the same result; he suggested that Simha "has committed some errors in calculation" but does not investigate the matter further. Using Jeffrey's notation (Table 4) we have:

$$
\begin{equation*}
A_{i j}{ }^{a}{ }_{i j}=(A \underline{a}+B \underline{b}+C \underline{c})+\left(F+F^{\prime}\right) \underline{f}+(G+G) \underline{g}+\left(H+H^{\prime}\right) \underline{h} \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
A_{i j} \xi_{i j}=\left(F^{\prime}-F\right) \xi+\left(G^{\prime}-G\right) n+\left(H^{\prime}-H\right) \zeta \tag{78}
\end{equation*}
$$

whilst the values of, for example, $F$ and $F^{\prime}$ are

$$
\begin{equation*}
F=\frac{\beta_{0} \underline{f}-c^{2} \alpha_{0}^{\prime}\left(\xi-\omega_{1}\right)}{2 \alpha_{0}^{\prime}\left(b^{2} \beta_{o}+c^{2} \gamma_{0}\right)} \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
F^{\prime}=\frac{\gamma_{0} \underline{f}+b^{2} \alpha_{0}^{\prime}\left(\xi-\omega_{1}\right)}{2 \alpha_{0}^{\prime}\left(b^{2} \beta_{0}+c^{2} \gamma_{0}\right)} \tag{80}
\end{equation*}
$$

In Jeffrey's paper the $\alpha_{0}^{\prime}$ etc. in the numerators of the above expressions are misprinted as $\alpha_{0}$ etc.

We can thus deduce that

$$
\begin{align*}
& \left(F+F^{\prime}\right) \underline{f}=\frac{\frac{2 \alpha_{0}^{\prime \prime}}{\alpha_{0}^{\prime}} \underline{f}^{2}+\left(b^{2}+c^{2}\right) \underline{f}^{2}+\left(b^{2}-c^{2}\right)\left(\xi-\omega_{p}\right) \underline{f}}{2\left(b^{2} \beta_{0}+c^{2} \gamma_{0}\right)}  \tag{81}\\
& \left(F^{\prime}-F\right) \Xi=\frac{\left(b^{2}-c^{2}\right) \underline{f} \xi+\left(b^{2}+c^{2}\right)\left(\xi-\omega_{1}\right) \xi}{2\left(b^{2} \beta_{0}+c^{2} \gamma_{0}\right)}
\end{align*}
$$

where we have utilised the various relations between $\alpha_{0}$, $\beta_{0}$ etc. that are given by Jeffrey.

Now Simha apparently did not find the $A_{i j} \xi_{i j}$ term and thus would not have had terms like ( $F^{\prime}-F$ ) in his calculation. We can see, however, that taking $\omega_{1}=0$ as he apparently did, in the $\left(F+F^{\prime}\right) \underline{f}$ term gives the same final result as taking $\omega_{1}=\xi$ in the sum of the $\left(F+F^{\prime}\right) \underline{f}$ and the ( $F^{\prime}-F$ ) terms. Since the same argument applies to the other terms we conclude that Simha's formula (equation 9) although incorrect for $\omega_{i}=0$ on account of the omission of the term $A_{i j}{ }^{\xi}{ }_{i j}$, is, by a lucky coincidence, actually correct if $\omega_{1}=\xi, \omega_{2}=\eta, \omega_{3}=\zeta$.

It is worth noting that if one does take $\omega_{1}=0$ and includes the $A_{i j} \xi_{i j}$ term, one obtains for spherical particles $\nu=4$, in contrast to Einsteins (1906, 1911) value of 2.5. The result $v=4$ for $\omega_{i}=0$ agrees
with that previously found by Brenner (1970). In all that follows we take the assumption that $\omega_{1}=\xi$ atc. i.e. that the particles are on average rotating with the local angular velocity of the fluid.

### 2.7. The Calculation of $\nu$

To complete our calculation we take, as before, the given flow to be locally a simple shearing flow with shear rate G. The principal axes of any particular particle will not in general coincide with the shear axes but, using the Euler angles to describe relative orientation of the two sets of axes, we can calculate the components $g_{i j}$ relative to the particle axes in terms of $G$ and the Euler angles $\theta, \phi$ and $\psi$. Hence we can obtain $\Delta$ for that particle as a function of these variables; the details can be found at least for a special case in Jeffrey's paper (1922). Since Jeffrey's calculations show that the $A_{i j}$ are linear in the $g_{i j}{ }^{\prime} s$, it follows that $\Delta$ will involve $G^{2}$ as a factor and hence that the total dissipation will be of the form $\eta G^{2}$ as originally asserted.

To find the total dissipation in unit volume we average the effects of the $N$ particles on the assumption that they are randomly oriented, obtaining

$$
\begin{equation*}
\bar{\Delta}=\frac{N}{2 \pi} \int_{0}^{2 \pi}\left\{\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \Delta(\theta, \phi, \psi) \sin \theta d \theta d \phi\right\} d \psi \tag{83}
\end{equation*}
$$

The integrations yield

$$
\bar{\Delta}=\frac{32}{3} \quad \pi \eta \quad \mathrm{NG}^{2} \mathrm{Z}
$$

where

$$
\begin{align*}
Z= & \frac{1}{30}\left(\frac{\alpha_{0}^{\prime \prime}+\beta_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime}}{\beta_{0}^{\prime \prime} \gamma_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime} \alpha_{0}^{\prime \prime}+\alpha_{0}^{\prime \prime} \beta_{0}^{\prime \prime}}\right) \\
& +\frac{1}{40}\left(\frac{\beta_{0}+\gamma_{0}}{\alpha_{0}^{\prime}\left(b^{2} \beta_{0}+c^{2} \gamma_{0}\right)}+\frac{\gamma_{0}+\alpha_{0}}{\beta_{0}^{\prime}\left(c^{2} \gamma_{0}+a^{2} \alpha_{0}\right)}+\frac{\alpha_{0}+\beta_{0}}{\gamma_{0}^{\prime}\left(a^{2} \alpha_{0}+b^{2} \beta_{0}\right)}\right) \tag{85}
\end{align*}
$$

Thus $v$ is determined from

$$
\eta \cup V G^{2}=\eta \cup N \frac{4}{3} \pi a b \propto G^{2}=\frac{32}{3} \pi \eta N G^{2} Z
$$

as

$$
\begin{equation*}
v=\frac{8 Z}{a b c} \tag{87}
\end{equation*}
$$

Hence on substituting for $Z$ we obtain

$$
\begin{align*}
v=\frac{1}{a b c}\left\{\begin{array}{l}
\frac{4\left(\alpha_{0}^{\prime \prime}+\beta_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime}\right)}{15\left(\beta_{0}^{\prime \prime} \gamma_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime} \alpha_{0}^{\prime \prime}+\alpha_{0}^{\prime \prime} \beta_{0}^{\prime \prime}\right)}+\frac{1}{5}\left[\frac{\beta_{0}+\gamma_{0}}{\alpha_{0}^{\prime}\left(b^{2} \beta_{0}+c^{2} \gamma_{0}\right)}+\right. \\
\\
\left.\left.\frac{\gamma_{0}+\alpha_{0}}{\beta_{0}^{\prime}\left(c^{2} \gamma_{0}+a^{2} \alpha_{0}\right)}+\frac{\alpha_{0}+\beta_{0}}{\gamma_{0}^{\prime}\left(a^{2} \alpha_{0}+b^{2} \beta_{0}\right)}\right]\right\}
\end{array}\right.
\end{align*}
$$

where $a, b, c$ are the semi-axes, and the elliptic integrals $\alpha_{0}$ etc. now depend on $a, b$ and $c$ (Appendix I).

The formula reduces to the Simha-Saito formula (equation 9) when $b=c$, and gives Einstein's value of 2.5 when $a=b=c$. It may be of interest to note that had we followed Simha in taking $\omega_{i}=0$ then $Z$ would have contained the following term in addition to those given above,

$$
\begin{equation*}
\frac{1}{24}\left\{\frac{b^{2}+c^{2}}{b^{2} \beta_{0}+c^{2} \gamma_{0}}+\frac{c^{2}+a^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{0}}+\frac{a^{2}+b^{2}}{a^{2} \alpha_{0}+b^{2} \beta_{0}}\right\} \tag{89}
\end{equation*}
$$

It is the presence of this added term that gives the value of $v=4$ for spheres rather than the Einstein value $v=2.5$ which is obtained when it is absent. The value of 2.5 has been confirmed experimentally for polystyrene latex spheres by Cheng \& Schachman (1955).

### 2.8. Discussion

An equation similar to (88) was given by Batchelor (1970) on the assumption that the suspended particles, although randomly oriented, moved so that zero hydrodynamic torque acted upon them. His result was

$$
\begin{align*}
\nu=\frac{1}{a b c} & \left\{\frac{4\left(\alpha_{0}^{\prime \prime}+\beta_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime}\right)}{15\left(\beta_{0}^{\prime \prime} \gamma_{0}^{\prime \prime}+\gamma_{0}^{\prime \prime} \alpha_{0}^{\prime \prime}+\alpha_{0}^{\prime \prime} \beta_{0}^{\prime \prime}\right)}+\frac{2}{5}\left[\frac{1}{\alpha_{0}^{\gamma}\left(b^{2}+c^{2}\right)}+\right.\right. \\
& \left.\left.\frac{1}{\beta_{0}^{\prime}\left(c^{2}+a^{2}\right)}+\frac{1}{\gamma_{0}^{\prime}\left(a^{2}+b^{2}\right)}\right]\right\} \tag{90}
\end{align*}
$$

when written in the same notation as we have used before. It does not seem likely that (90) would be applicable to the case of overwhelming Brownian motion since one would need to include the Brownian torque $T_{B}$ as well as the purely hydrodynamic torque, $T_{H}$ in satisfying the
condition of zero net torque, i.e.

$$
\begin{equation*}
T_{B}+T_{H}=0 \tag{91}
\end{equation*}
$$

Random orientation alone is not a sufficient characterisation of overwhelming Brownian motion since one also needs to describe correctly the distribution of the angular velocity. Both (88) and (90) are obtained by methods that avoid the full statistical treatment of the angular motion but as explained earlier we consider the simplified model underlying (88) to be the appropriate one for overwhelming Brownian motion. In effect, formula (88) generalises the Simha-Saito equation for ellipsoids of revolution, whilst (90) generalises formulae of Jeffrey for ellipsoids of revolution. In general the two formulae give quite different results as can be seen from Figure 25 and Table 5, both of which are for convenience restricted to the case of ellipsoids of revolution. Since (90) does not reduce to the classical Simha-Saito formula the classic experimental evidence on macromolecules which favours the latter (Mehl, et al, 1940, Lauffer, 1942) strengthens the view that (90) is incorrect. More recent experimental evidence is given by Tanford (1961) who allows for particle swelling due to solvation and Table 6 extends his tables to include a comparison with the Jeffrey-Batchelor equation. The table compares the axial ratio inferred from translational diffusion experiments with that inferred from viscometric experiments on the basis first of the Simha-Saito equation and secondly of the Jeffrey-Batchelor equation. Tanford (1961) says "within the accuracy of the measurements, the description of globular proteins in aqueous solution provided by the (Simha-Saito) equation is identical with that provided by (translational)
diffusion". On the other hand we see that the Jeffrey-Batchelor equation gives values of the axial ratio that are consistently too high and outside the expected experimental error bounds. We conclude that (90) is not applicable to the cases of interest to the molecular biologist.

As previously stated, we have avoided the full statistical treatment of the angular motion but have made the assumption of particles being on average at rest in the local referential frame in which they are suspended to be appropriate for the case of overwhelming Brownian motion. Although this has been rigorously proved only for axisymmetric particles (Brenner, 1972), we have made the assumption that it will be a good approximation for general tri-axial ellipsoids, at least for low axial ratios.

Since the derivation of equation (88) a general analysis using the full statistical treatment of the angular motion has been given by Rallison (1978). His results for the case of overwhelming Brownian motion show that to first-order in the shear rate the non-Newtonian stress effects vanish, which is consistent with our assumption of Newtonian behaviour for very low shear rates. He also gives an expression for $v$ correct to firstorder in the shear rate, although not in the form of a simple formula like equation ( 88 ), but by using numerical methods Rallison is able to give a plot of $v$ for various axial ratios; the results are clearly very close to those obtained from equation (88) - compare my Figure 26 with Rallison's Figure 7. However, an exact comparison (personal communication by J.M. Rallison) shows a very slight discrepancy between values from equation (88) and Rallison's procedure, although no difference at levels likely to be experimentally significant for globular particles (i.e. $a / b: 1.0-3.0, b / c: 1.0-3.0)$ is observed, and the discrepancy is not
apparent within four significant figures for $a / b: 1.0 \rightarrow 2.0, b / c:$ $1.0 \rightarrow 2.0$. The values given in Table 7 are therefore definitive.

It has been indicated to us (J.M. Rallison, H. Brenner, private communications of unpublished work) that our formula requires the addition of a very small term related to the deviation from our assumed condition of non-axisymmetric particles rotating on average with the local angular velocity of the fluid:

$$
\begin{equation*}
-\frac{1}{5 a b c}\left\{\frac{\left[\frac{a^{2}-b^{2}}{a^{2} \alpha_{0}+b^{2} \beta_{0}}+\frac{b^{2}-c^{2}}{b^{2} \beta_{0}+c^{2} \gamma_{0}}+\frac{c^{2}-a^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{0}}\right]}{\left[\frac{a^{2}+b^{2}}{a^{2} \alpha_{0}+b^{2} \beta_{0}}+\frac{b^{2}+c^{2}}{b^{2} \beta_{0}+c^{2} \gamma_{0}}+\frac{c^{2}+a^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{0}}\right]}\right\} \tag{88Ь}
\end{equation*}
$$

The numerical results show our approximation to be extremely accurate for 'globular' particles, as noted above, but for certain particles of higher asymmetry calculations suggest that deviations of up to $1 \%$ in $v$ can arise. It is clear though that our formula provides a good approximation over the entire molecular range. of particular interest is the fact that the discrepancy tends asymptotically to zero for ellipsoids whose axes are all substantially different in length (i.e. $a \gg b \gg c$ - "tapes").

$$
\left(A_{i j}\right)=\left(\begin{array}{lll}
A & H & G^{\prime} \\
H^{\prime} & B & F \\
G & F^{\prime} & C
\end{array}\right)
$$

$$
\left(\mathrm{a}_{\mathrm{ij}}\right)=\left(\begin{array}{ccc}
\mathrm{a} & \underset{\sim}{h} & \underset{\sim}{g} \\
\mathrm{~h} & \underset{\sim}{b} & \underset{\sim}{f} \\
\underset{\sim}{g} & \underset{\sim}{f} & \underset{\sim}{c}
\end{array}\right) \text {, }
$$

$$
\left(\xi_{i j}\right)=\left(\begin{array}{rrr}
0 & -\zeta & n \\
\zeta & 0 & -\zeta \\
-n & \xi & 0
\end{array}\right)
$$

Table 5
$\checkmark$ for an ellipsoid of revolution calculated from the Simha - Saito equation and the Batchelor - Jeffrey equation

Axial Ratio
Prolata Model
Oblate Model

| $S-S$ | $B-J$ | $\underline{S-S}$ | $\underline{B-J}$ |
| :--- | :--- | :--- | :--- |
| 2.500 | 2.500 | 2.500 | 2.500 |
| 2.908 | 2.583 | 2.854 | 2.610 |
| 3.685 | 2.786 | 3.431 | 2.868 |
| 4.663 | 3.077 | 4.059 | 3.198 |
| 5.806 | 3.434 | 4.708 | 3.563 |
| 7.099 | 3.844 | 5.367 | 3.947 |
| 8.533 | 4.302 | 6.032 | 4.342 |
| 10.103 | 4.804 | 6.700 | 4.744 |
| 11.804 | 5.346 | 7.371 | 5.151 |
| 13.634 | 5.928 | 8.043 | 5.562 |

Table 6

Extension of Tanford's Tables ("Physical Chemistry of Macromolecules", 1961, Wiley \& Sons, p 359 and 395) to compare the axial ratios predicted by the Simha-Saito equation and the Batchelor-Jeffrey equation, using a 0.2 grams/gram solvation for pour globular proteins.

|  |  |  | late |  | Obla |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Diffusion | 5-5 | B-J | Diffusion | S-5 | B-J |
|  | $u$ | $a / b$ |
| Ribonuclease | 3.6 | 2.1 | 2.9 | 5.5 | 2.2 | 3.4 | 5.3 |
| $\beta$-lactoglobulin | 3.6 | 3.7 | 2.9 | 5.5 | 4.0 | 3.4 | 5.3 |
| Serum albumin | 4.0 | 4.9 | 3.3 | 6.5 | 5.0 | 4.0 | 6.3 |
| Hemoglobin | 3.8 | 2.1 | 3.1 | 6.0 | 2.2 | 3.6 | 5.8 |

Table 7. Values of $v$ as a function of ( $a / b, b / c$ ) for a general tri-axial ellipsoid ( $a>b>c$ )

|  |  |  | (on the basis of equation 88) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| Oblate Ellipsoid | 1.0 |  | 2.500 | 2.507 | 2.524 | 2.550 | 2.583 | 2.620 | 2.661 | 2.706 | 2.753 | 2.803 | 2.854 |
|  | 1.1 | 2.507 | 2.520 | 2.544 | 2.576 | 2.614 | 2.656 | 2.702 | 2.751 | 2.803 | 2.857 | 2.913 |
|  | 1.2 | 2.525 | 2.545 | 2.575 | 2.612 | 2.655 | 2.703 | 2.754 | 2.808 | 2.865 | 2.923 | 2.983 |
|  | 1.3 | 2.553 | 2.579 | 2.615 | 2.658 | 2.706 | 2.579 | 2.815 | 2.874 | 2.935 | 2.998 | 3.063 |
|  | 1.4 | 2.588 | 2.621 | 2.662 | 2.711 | 2.764 | 2.822 | 2.883 | 2.947 | 3.013 | 3.081 | 3.151 |
|  | 1.5 | 2.630 | 2.668 | 2.716 | 2.770 | 2.829 | 2.892 | 2.958 | 3.027 | 3.098 | 3.171 | 3.245 |
|  | 1.6 | 2.677 | 2.722 | 2.775 | 2.834 | 2.899 | 2.967 | 3.039 | 3.113 | 3.189 | 3.267 | 3.346 |
|  | 1.7 | 2.729 | 2.779 | 2.839 | 2.904 | 2.974 | 3.047 | 3.124 | 3.204 | 3.285 | 3.368 | 3.453 |
|  | 1.8 | 2.785 | 2.842 | 2.907 | 2.978 | 3.053 | 3.132 | 3.215 | 3.300 | 3.386 | 3.475 | 3.565 |
|  | 1.9 | 2.844 | 2.908 | 2.978 | 3.055 | 3.137 | 3.222 | 3.310 | 3.400 | 3.492 | 3.586 | 3.681 |
|  | 2.0 | 2.908 | 2.977 | 3.054 | 3.137 | 3.224 | 3.315 | 3.408 | 3.504 | 3.602 | 3.702 | 3.803 |



Fiqure 25. A comparison of the values of $v$ as a function of axial ratio predicted by the Simha - Saito and Batchelor - Jeffrey equations for ellipsoids of revolution


Fiqure 26. Plot of $v$ as a function of $a / b$ when $b / c=10.0(a>b>c)$ determined from equation (88). This plot agrees very closely with that from the numerical procedure of Rallison (Figure 7, 1978)
N.B. Rallison has $c>a>b$

Numerical Inversion Procedures:
The Problem of the Line Solution

### 3.1 Solution of the Elliptic Integrals

In order to determine the viscosity increment $v$ that corresponds to a particular value of the axial ratios $a / b, b / c$, the slliptic integrals $\alpha_{o}$ etc. (Appendix I) must be solved. Analytic solutions are not possible but the integrals can be solved numerically with the aid of a high speed computer. The subroutine used for this was the United Kingdom NAG Mk. 6 routine DO1AGF which evaluates a definite integral of the form

$$
I=\int_{A}^{B} f(t) d t
$$

where $A=0$, using an interval subdivision strategy developed by Oliver (1972) and based on Clenshaw-Curtis quadrature (1960). Since infinity cannot be used as the upper limit, a finite value of $B$ must be specified. However, a satisfactory value for $B$ can be determined by using successively higher values until the value of the integral converges to a limiting value; in this case a value for $B$ of $10^{6}$ was sufficient. Higher values are also suitable although evaluation of the integral takes longer. The number of interval subdivisions is also specifiable by the user; the maximum number of 50 was used. The routine also estimates the error on the integrals (0'Hara \& Smith, 1968). If this error is greater than the maximum allowable error specifiable by the user the routine will stop and print an error message. The maximum allowed absolute error specified was $1.0 \times 10^{-8}(\equiv .001 \%)$. The subroutine for evaluating the elliptic integrals can easily be incorporated into a program for evaluating $v$ for a given value of $(a / b, b / c)$. This is given in Appendix $V$ as Program 1.

### 3.2. Application to the Crystallographic Dimensions of Myoolobin;

## Numerical Inversion

The result can be applied to crystallographic data available for myoglobin. Kendrew et al (1958) gave the dimensions of sperm whale myoglobin to be $43 \times 35 \times 23 \AA$ (Table 3). This corresponds to a general tri-axial ellipsoid of semi-axes $a=21.5, b=17.5$ and $c=11.5 \AA$, and axial ratios $a / b=1.23, b / c=1.52$. Using Program 1 (Appendix $V$ ) this corresponds to a viscosity increment of 2.729. The predicted intrinsic viscosity can then be found from equation (B):

$$
\begin{equation*}
[\eta]=\nu \bar{v}_{s} \equiv \nu \bar{v}\left(\frac{\bar{v}_{s}}{\bar{v}}\right) \tag{92}
\end{equation*}
$$

where $\left(\bar{v}_{s} / \bar{v}\right)$ is the swelling ratio (section 1.7.1). By fitting data of reduced specific viscosity against concentration (Table 8, Figure 27) I have determined the intrinsic viscosity of myoglobin to be (3.25 $\pm .05$ ) $\mathrm{ml} / \mathrm{gm}$, using a weighted least squares analysis (straight line fit). The concentrations were determined using a high precision auto density meter (Kratky et al, 1969, 1973) together with a $\bar{v}$ for myoglobin of .741 ml/gm (Theorell, 1934):

$$
\begin{equation*}
c_{i}=\frac{\rho_{i}-\rho_{o}}{1-\bar{v}_{\rho}} \tag{93}
\end{equation*}
$$

where $\rho_{0}$ is the solvent density and $\rho_{i}$ the solute densities. Use of the auto density meter, which is based on the time taken to perform a preset number of oscillations of a U-tube filled with the sample has the added advantage that, besides being very accurate, only small amounts of fluid are required ( $\sim 1 \mathrm{ml}$ ). The experimental arrangement used for the viscosity and densimetric work is illustrated in Figure 28. The
platinum resistance thermometer shown was used to monitor the sample temperatures to accuracies of .005 degrees and was calibrated by myself. In order that the crystallographic dimensions gives this same value for [ $n$ ], from equation (92), a swelling ratio $\left(\bar{v}_{s} \sqrt{v}\right.$ ) of 1.6 is required; alternatively myoglobin is more asymmetric in solution.

In order to determine the actual dimensions of the equivalent triaxial ellipsoid for myoglobin in solution (or any other macromolecule) from the experimental value for [ $n$ ], the situation is more complicated however. Although equation (88) defines a unique value of $v$ for a given value of $(a / b, b / c)$, an analytic inversion of (88) to produce an explicit expression for $(a / b, b / c)$ in terms of $v$ is not available. The inversion must therefore be done numerically by tabulating, or better plotting $v$ as a function of ( $a / b, b / c$ ). The same subroutine mentioned in section 3.1. for evaluating the elliptic integrals may be incorporated. $A$ perusal of Table 7 (produced from Program 2) reveals however that a given value of $v$ does not correspond to a unique value of $(a / b, b / c)$ but to $a$ 'line solution' of possible values of $(a / b, b / c)$. This is clearly illustrated in the contour plot (Figure 29) produced from Program 3 using GHOST graphical facilities where $v$ is incremented from 2.5 to 7.0 in steps of 0.5. In order to determine a unique solution for $(a / b, b / c)$ and hence the axial dimensions of a macromolecule in solution other hydrodynamic information must be used; we must therefore consider the translational and rotational frictional properties (section 1.2).

### 3.3. Other Tri-axial Line Solutions

### 3.3.1. The Translational Frictional Ratio; the $\beta$ and $R$ Functions

It was previously stated in section 1.4. that although Perrin (1936) had provided an explicit formula for the translational Prictional ratio of a general tri-axial ellipsoid in terms of the axial ratios ( $a / b, b / c$ ), the elliptic integral in equation (12) could only be solved analytically for the special case of ellipsoids of revolution (i.e. two equal axes). However, since the elliptical integral is similar to those for the triaxial viscosity increment, it too can now be solved numerically using for example the subroutine discussed in section 3.1. A higher value for the upper limit, $B$ was required: $5 \times 10^{7}$. A table of values of the Perrin function $f / f_{0}(\equiv \mathrm{P}$ ) for values of $a / b$ and $b / c$ was thus obtained (Table 9). Again, a perusal of the table reveals that a given value of $P$ has a line solution of possible values of $(a / b, b / c)$. However, in principle at least, by combining the line solution for $P$ of a given macromolecule with the line solution for $v$, a unique solution for ( $a / b, b / c$ ) can in principle be found from their intersection. This can be illustrated by assuming a particle of $(a / b, b / c)=(1.5,1.5)$, calculating the corresponding values for $v$ and $P$ using Program 1, and then plotting the line solutions using Program 4. Unfortunately Figure 30 reveals that the intersection for accuracies in $\nu$ and $P$ to Pour significant figures is very shallow, and allowing for $\pm 1 \%$ experimental error in each there is no intersection at all in the 'globular protein' range of the Figure. There is also the additional problem that in order to determine experimentally both $v$ and P, knowledge is required of the swollen volume in solution.

However, now that $v$ and $P$ are available for tri-axial ellipsoids, then so should the $\beta$ and $R$ functions which do not require a knowledge of the swollen volume (equations $45 \& 64$ ). I have thus produced tables of these also (Tables $10 \& 11$ ); all four tri-axial functions so far mentioned viz $V, P, B$ and $R$ are plotted in Figure 31 allowing for $\pm 1 \%$ experimental error in each. There is still no reasonable intersection; the $\beta$ function is, as expected, seen to be of little practical use as it is very sensitive to experimental error (the $\beta$ - $1 \%$ line is completely off the map area). Of the 4 functions however, the $R$ function is the most useful since it is relatively insensitive to experimental error and the experimental determination does not require a knowledge of the swollen volume (section 1.7.1.). In order to find a unique solution for ( $a / b, b / c$ ) therefore, this should ideally be combined with a rotational frictional or relaxation tri-axial shape function which should satisfy the following criteria:
(i) provides a suitable intersection with R
(ii) is relatively insensitive to experimental error but sensitive to axial ratio
(iii) is experimentally measurable to a high precision with currently available apparatus and data analytic techniques and (iv) does not require a knowledge of the swollen volume for its experimental determination.

### 3.3.2. The Rotational Frictional, Diffusion and Relaxation Line Solutions

For a tri-axial ellipsoid there will be three rotational frictional ratios $\zeta_{i} / \zeta_{0}(i=a, b, c)$ corresponding to rotation about aach of the three axes and hence three rotational diffusion ratios $\theta_{i} / \theta_{0}$. By analogy with the translational case in the previous section, although Perrin (1934) had
given explicit formula for the $\zeta_{i} / \zeta_{0}$ in terms of ( $a / b, b / c$ ), - eqn. (25), the elliptic integrals could only be solved analytically for the case of ellipsoids of revolution. The integrals can now be solved numerically, again utilising the routine described in section 3.1 (Programs $1,2 \& 4$ ). There is however no experimental technique for determining the rotational frictional or diffusion coefficients directly; rotational experiments determine rather relaxation time ratios. For example, the dielectric dispersion relaxation time ratios are related to the rotational frictional and diffusion ratios by equations (27). A plot of the rotational relaxation time ratio line solutions corresponding to (a/b, b/c) $=(1.5,1.5)$ is given together with the R function in Figure 32. Unfortunately, because of the difficulties raised in 1.5.1. resolution of the dielectric dispersion curve into the 3 relaxation times for a homogeneous solution of tri-axial ellipsoid particles is impossible in practice.

Whereas for ellipsoids of revolution there are three fluorescence anisotropy decay times (equation 42), for general tri-axial ellipsoids, there will be Pive (Cantor \& Tao, 1971, Small \& Isenberg, 1977) related to the three rotational diffusion coefficients by:

$$
\begin{align*}
& \tau_{1}=\frac{1}{3\left(\theta+\theta_{1}\right)} \quad ; \quad \tau_{2}=\frac{1}{3\left(\theta+\theta_{2}\right)} \quad ; \quad \tau_{3}=\frac{1}{3\left(\theta+\theta_{3}\right)} \\
& \tau_{4}=\frac{1}{2(3 \theta-\Delta)} \quad ; \quad \tau_{5}=\frac{1}{2(3 \theta+\Delta)} \tag{94}
\end{align*}
$$

where $\theta=\left(\theta_{1}+\theta_{2}+\theta_{3}\right) / 3$ is the mean rotational diffusion coefficient, and $\Delta$ is defined by

$$
\Delta=\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}-\theta_{1} \theta_{2}-\theta_{2} \theta_{3}-\theta_{3} \theta_{1}\right)^{\frac{1}{2}}
$$

The fluorescence anisotropy relaxation time ratios $\tau_{j} / \tau_{0}$ can thus be evaluated (equation 42, where $j$ is now $=1,2,3,4,5$ ); these have been tabulated by Small \& Isenberg (1977) and are plotted in Figure 33, for $(a / b, b / c)=(1.5,1.5)$. Consideration of these functions however, at the moment at least, is purely academic; besides the problems cited in section 1.5.4., the necessary resolution of the decay curve into its four component exponentials (since $\tau_{5} \sim_{1}$ ) is impossible (Small \& Isenberg, 1977). Furthermore, since neither the fluorescence anisotropy decay time ratios nor the dielectric dispersion relaxation time ratios for tri-axial ellipsoids are of apparent use at the moment, the same must be true of their corresponding swelling independent functions, the explicit expressions in terms of axial ratio being obtainable from:

$$
\begin{equation*}
\delta_{i}=\frac{\zeta_{0}}{\zeta_{i}} \nu . \quad ; \quad \mu_{i}=\left(\frac{f_{0}}{f}\right) \quad\left(\frac{\zeta_{i}}{\zeta_{0}}\right)^{1 / 3} \tag{95,96}
\end{equation*}
$$

$\gamma_{i}=\left(\frac{f}{f_{0}}\right)^{3} \frac{\varrho_{0}}{\varrho_{i}} \quad ; \quad \varepsilon_{i}=v \frac{\varrho_{0}}{\varrho_{i}}$

$$
\begin{equation*}
k_{j}=v\left(\frac{\tau_{0}}{\tau_{j}}\right) \quad ; \quad \xi_{j}=\left(\frac{f}{f_{0}}\right)^{3} \frac{\tau_{0}}{\tau_{j}} \tag{99,100}
\end{equation*}
$$

where $i=a, b, c$ and $j=1,2,3,4,5$. The relations for these functions in terms of experimental parameters have already been given in section 1.7.

Evaluation of the harmonic mean rotational relaxation time ratio in terms of axial ratio for tri-axial ellipsoids we can similarly obtain from

$$
\frac{\tau_{h}}{\tau_{0}}=\frac{3}{\left(\frac{\varrho_{0}}{\varrho_{a}}+\frac{\varrho_{0}}{\varrho_{b}}+\frac{\varrho_{0}}{\varrho_{c}}\right)}
$$

(Programs 1, $2 \& 4$, Figure 34). The corresponding swelling independent functions $\psi$ and $\Lambda$ determined by combining with the translational frictional ratio and the viscosity increment respectively we can now also obtain from

$$
\begin{align*}
& \Psi=\left(\frac{\tau_{0}}{\tau_{h}}\right)^{1 / \beta}\left(\frac{f}{f_{0}}\right)^{2}  \tag{102}\\
& \Lambda=\left(\frac{\tau_{0}}{\tau_{h}}\right)^{0} \nu \tag{103}
\end{align*}
$$

(Programs $1,2 \& 4$, Figure 34). Unfortunately, these functions are generally very sensitive to experimental error, as Figure 35 illustrates; also the problems in determining the harmonic mean relaxation time raised in 1.5.4. still apply.
3.3.3 Electric Birefringence Decay: the $\delta$ and $\delta$ - Functions

In section 1.5.2. we stated that Ridgeway $(1966,1968)$ has shown that the decay of electric birefringence for a homogeneous suspension of asymmetric macromolecules (e.g. tri-axial ellipsoids) would consist op two exponential terms:

$$
\begin{equation*}
\Delta n=\frac{N}{2 n_{\ell}}\left\{A_{+} e^{-6 \theta_{+} t}+A_{-} e^{-6 \theta_{-} t}\right\} \tag{32}
\end{equation*}
$$

where $\Delta n$ is the birefringence, $N$ the number density of particles in suspension and $n_{\ell}$ the refractive index of the suspending medium. $A_{+}$ and $A_{\text {_ }}$ are complicated functions depending on the initial orientation of the particles and their dielectric and diffusion properties. We may rewrite $N A_{ \pm} / 2 n_{\ell}$ as $A_{ \pm}$, the 'pre-exponential factors'. Equation (32) then becomes:

$$
\Delta n=A_{+}^{\prime} e^{-6 \theta_{+} t}+A_{-}^{\prime} e^{-6 \theta_{-} t}
$$

$\theta_{+}$and $\theta_{-}$are related to the rotational diffusion constants $\theta_{i}$ (and hence the rotational frictional coefficients since $\zeta_{i}=k T / \theta_{i}$ ) by

$$
\begin{align*}
\theta_{ \pm} & =\frac{1}{3} \sum \theta_{i} \pm\left\{\left(\frac{1}{3} \sum \theta_{i}\right)^{2}-\frac{1}{3} \sum \sum_{i>j} \theta_{i} \theta_{j}\right\}^{\frac{1}{2}}  \tag{105a}\\
& =\frac{k T}{3}\left\{\sum_{i} \frac{1}{\zeta_{i}} \pm\left(\sum_{i} \frac{1}{\zeta_{i}^{2}}-\sum \sum_{i>j} \frac{1}{\zeta_{i} \zeta_{j}}\right)^{\frac{1}{2}}\right\}
\end{align*}
$$

The dimensions of equation (105) are of energy/(volume $\times$ viscosity) we therefore 'reduce' it to a punction of shape alone:

$$
\begin{align*}
& \theta_{ \pm}^{\mathrm{red}} \equiv\left(\frac{0_{0}}{\mathrm{kT}}\right) \mathrm{V}_{\mathrm{e}^{\theta_{ \pm}}}=\frac{\mathrm{abc}}{12}\left\{\left(\frac{1}{\zeta_{a}^{\prime \prime}}+\frac{1}{\zeta_{b}^{\prime \prime}}+\frac{1}{\zeta_{c}^{\prime \prime}}\right)\right. \\
& \left. \pm\left[\left(\frac{1}{\zeta_{a}^{112}}+\frac{1}{\zeta_{b}^{112}}+\frac{1}{\zeta_{c}^{112}}\right)-\left(\frac{1}{\zeta_{a}^{\prime \prime} \zeta_{b}^{\prime \prime}}+\frac{1}{\zeta_{b}^{\prime \prime \prime} \zeta_{c}^{\prime \prime}}+\frac{1}{\zeta_{c}^{\prime \prime} \zeta_{a}^{\prime \prime}}\right)\right]^{\frac{1}{2}}\right\} \tag{106}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta_{a}^{\prime \prime}=\frac{b^{2}+c^{2}}{b^{2} \beta_{0}+c^{2} \gamma_{0}} ; \quad \zeta_{b}^{\prime \prime}=\frac{c^{2}+a^{2}}{c^{2} \gamma_{0}+a^{2} \alpha_{0}} ; \quad \zeta_{c}^{\prime \prime}=\frac{a^{2}+b^{2}}{a^{2} \alpha_{0}+b^{2} \beta_{0}} \tag{107}
\end{equation*}
$$

The elliptic integrals $\alpha_{o}$ etc. are those defined by Jeffrey (1922) and are given in Appendix I.

A plot of the $\theta_{+}^{\theta^{\text {red }}}$ and ${ }_{-}^{\text {red }}$ functions, together with the $R$ function corresponding to the point $(a / b, b / c)=(1.5,1.5)$ allowing for $\pm 1 \%$ experimental error is given in Figure 36. It is seen that the intersections are very reasonable (the $\theta_{+}^{\text {red }}$ - $R$ intersection is nearly orthogonal) and the Punctions are relatively sensitive to axial ratio. However, experimental determination of $\theta_{ \pm}^{\text {red requires of course knowledge }}$ of the swollen molecular volume in solution (equation 106). This can be conveniently eliminated however in the standard way by combining (106) either with the viscosity increment (8) or the translational frictional ratio (20b). If for example (106) is combined with the viscosity increment (8), swelling independent $\delta_{ \pm}$functions are produced (Tables 12, 13, Figure 37):

$$
\delta_{ \pm}=6 \theta_{ \pm}^{\mathrm{red}} v \equiv \frac{6}{N_{A} k}\left(\frac{\eta_{0}^{\theta} \pm}{T}\right)[n] M_{r}
$$

 with the translational Prictional ratio (20b) to give swelling independent $\gamma_{ \pm}$Punctions (Programs 1,2,4, Figure 38):

$$
\begin{equation*}
\gamma_{ \pm}=6 \theta_{ \pm}^{\mathrm{red}}\left(\frac{f}{f_{0}}\right)^{3} \equiv \frac{M_{r}^{3}\left(1-\overline{\mathrm{v}} \rho_{0}\right)^{3} \theta_{ \pm}}{27 N_{\mathrm{A}} \mathrm{kT} \mathrm{\pi}^{2} \eta_{0}^{2} \mathrm{~s}^{3}} \tag{109}
\end{equation*}
$$

The $\delta_{ \pm}$and $\gamma_{ \pm}$functions are new. The $\delta_{ \pm}$functions are preferred over the $\gamma_{ \pm}$functions since they require fewer experimental measurements and do not involve squared or cubed terms; hence in principle can be measured more
accurately. It is seen therefore that combination of the R-function with the $\delta_{ \pm}$functions as a method for determining a unique solution for the axial ratios (and hence the axial dimensions, if $V_{\theta}$ is known from $k_{n} / k_{s}$ - section 1.7.1) of a macromolecule in solution satisfies the criteria (i), (ii) and (iv) of section 3.3.1. In order for the method to satisfy criterion (iii) however, there still remains the problem of resolving the exponential decay term into its 2 component relaxation times or decay constants (the same is true of course for the $\theta_{ \pm}^{\text {red }}$ and $\gamma_{ \pm}$ functions). To date this has not been possible. We now show that with a new 'constrained' least squares algorithm using intersection with the R-curve as the constraint, this is now possible with currently available experimental precision.

Table 8. Values of reduced specific viscosity for various concentrations of sperm whale myoglobin ( 0.1 M NaCl buffer, $\mathrm{pH}=7.1$ )

| Concentration, c <br> $(\mathrm{mg} / \mathrm{ml})$ | $\eta_{\mathrm{rel}}$ | $\eta_{\mathrm{sp}} / \mathrm{c}$ <br> $(\mathrm{ml} / \mathrm{m})$ |
| :---: | :---: | :---: |
| 90.2 | 1.450 | 4.99 |
| 66.1 | 1.298 | 4.51 |
| 53.3 | 1.224 | 4.20 |
| 50.2 | 1.215 | 4.29 |
| 40.7 | 1.163 | 4.00 |
| 34.4 | 1.138 | 4.02 |
| 30.5 | 1.116 | 3.81 |
| 29.6 | 1.115 | 3.89 |
| 23.2 | 1.084 | 3.61 |
| 15.5 | 1.055 | 3.57 |
| 9.7 | 1.038 | 3.47 |
| 8.1 |  | 3.50 |


| $\frac{b / c}{a / b}$ |  | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oblate Ellipsoid 1.0 | 1.000 | 1.001 | 1.003 | 1.006 | 1.010 | 1.014 | 1.019 | 1.025 | 1.030 | 1.036 | 1.042 |
| 1.1 | 1.001 | 1.002 | 1.005 | 1.009 | 1.014 | 1.019 | 1.024 | 1.030 | 1.036 | 1.042 | 1.049 |
| 1.2 | 1.003 | 1.005 | 1.009 | 1.013 | 1.018 | 1.024 | 1.030 | 1.036 | 1.043 | 1.049 | 1.056 |
| 1.3 | 1.006 | 1.009 | 1.013 | 1.018 | 1.024 | 1.030 | 1.037 | 1.043 | 1.050 | 1.057 | 1.064 |
| 1.4 | 1.010 | 1.014 | 1.019 | 1.024 | 1.030 | 1.037 | 1.044 | 1.051 | 1.058 | 1.065 | 1.073 |
| 1.5 | 1.015 | 1.019 | 1.024 | 1.031 | 1.037 | 1.044 | 1.051 | 1.059 | 1.066 | 1.074 | 1.082 |
| 1.6 | 1.020 | 1.025 | 1.031 | 1.037 | 1.044 | 1.052 | 1.059 | 1.067 | 1.075 | 1.083 | 1.091 |
| 1.7 | 1.026 | 1.031 | 1.037 | 1.044 | 1.052 | 1.060 | 1.068 | 1.076 | 1.084 | 1.092 | 1.101 |
| 1.8 | 1.031 | 1.037 | 1.044 | 1.052 | 1.059 | 1.068 | 1.076 | 1.085 | 1.093 | 1.102 | 1.111 |
| 1.9 | 1.038 | 1.044 | 1.051 | 1.059 | 1.067 | 1.076 | 1.085 | 1.093 | 1.102 | 1.111 | 1.120 |
| 2.0 | 1.044 | 1.051 | 1.059 | 1.067 | 1.075 | 1.084 | 1.093 | 1.102 | 1.112 | 1.121 | 1.130 |


|  | ${ }^{c}$ |  | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oblate Ellipsoid | 1.0 | 2.111 | 2.112 | 2.112 | 2.113 | 2.113 | 2.114 | 2.115 | 2.116 | 2.117 | 2.117 | 2.118 |
|  | 1.1 | 2.112 | 2.112 | 2.113 | 2.113 | 2.114 | 2.115 | 2.116 | 2.117 | 2.118 | 2.118 | 2.119 |
|  | 1.2 | 2.112 | 2.113 | 2.114 | 2.114 | 2.115 | 2.116 | 2.11 .7 | 2.118 | 2.119 | 2.120 | 2.121 |
|  | 1.3 | 2.113 | 2.114 | 2.115 | 2.116 | 2.117 | 2.118 | 2.119 | 2.120 | 2.121 | 2.122 | 2.123 |
|  | 1.4 | 2.114 | 2.115 | 2.117 | 2.118 | 2.119 | 2.120 | 2.121 | 2.123 | 2.124 | 2.125 | 2.126 |
|  | 1.5 | 2.116 | 2.117 | 2.119 | 2.120 | 2.121 | 2.123 | 2.124 | 2.125 | 2.127 | 2.128 | 2.129 |
|  | 1.6 | 2.118 | 2.119 | 2.121 | 2.123 | 2.124 | 2.126 | 2.127 | 2.129 | 2.130 | 3.131 | 2.132 |
|  | 1.7 | 2.120 | 2.122 | 2.123 | 2.125 | 2.127 | 2.129 | 2.130 | 2.132 | 2.133 | 2.135 | 2.136 |
|  | 1.8 | 2.122 | 2.124 | 2.126 | 2.128 | 2.130 | 2.132 | 2.134 | 2.136 | 2.137 | 2.139 | 2.140 |
|  | 1.9 | 2.124 | 2.127 | 2.129 | 2.131 | 2.134 | 2.136 | 2.138 | 2.139 | 2.141 | 2.143 | 2.144 |
|  | 2.0 | 2.127 | 2.130 | 3.132 | 2.135 | 2.137 | 2.139 | 2.141 | 2.143 | 2.145 | 2.147 | 2.149 |


|  |  | $\begin{array}{r} \text { 品 } \\ \text { or } \\ \text { 品 } \\ \text { 品品 } \\ \text { 品 } \\ 1.0 \\ 1.0 \end{array}$ | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oblate Ellipsoid | 1.0 | 1.600 | 1.598 | 1.592 | 1.583 | 1.573 | 1.561 | 1.548 | 1.535 | 1.521 | 1.507 | 1.494 |
|  | 1.1 | 1.598 | 1.593 | 1.585 | 1.575 | 1.563 | 1.549 | 1.536 | 1.521 | 1.507 | 1.493 | 1.478 |
|  | 1.2 | 1.592 | 1.585 | 1.575 | 1.563 | 1.549 | 1.535 | 1.520 | 1.505 | 1.490 | 1.475 | 1.460 |
|  | 1.3 | 1.582 | 1.573 | 1.561 | 1.548 | 1.533 | 1.518 | 1.502 | 1.486 | 1.471 | 1.455 | 1.440 |
|  | 1.4 | 1.570 | 1.559 | 1.546 | 1.531 | 1.515 | 1.499 | 1.483 | 1.466 | 1.450 | 1.435 | 1.419 |
|  | 1.5 | 1.556 | 1.543 | 1.529 | 1.513 | 1.496 | 1.479 | 1.462 | 1.445 | 1.429 | 1.413 | 1.397 |
|  | 1.6 | 1.540 | 1.526 | 1.511 | 1.494 | 1.476 | 1.459 | 1.441 | 1.424 | 1.407 | 1.391 | 1.375 |
|  | 1.7 | 1.524 | 1.509 | 1.491 | 1.474 | 1.455 | 1.437 | 1.419 | 1.402 | 1.385 | 1.368 | 1.352 |
|  | 1.8 | 1.507 | 1.490 | 1.472 | 1.453 | 1.434 | 1.416 | 1.398 | 1.380 | 1.362 | 1.346 | 1.330 |
|  | 1.0 | 1.489 | 1.471 | 1.452 | 1.433 | 1.413 | 1.394 | 1.376 | 1.358 | 1.340 | 1.324 | 1.307 |
|  | 2.0 | 1.471 | 1.452 | 1.432 | 1.412 | 1.392 | 1.373 | 1.354 | 1.336 | 1.318 | 1.302 | 1.285 |

Table 12. Values of $\delta$ as a function of ( $a / b, b / c$ ) for a general tri-axial ellipsoid ( $a>b>c$ )


|  |  |  | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oblate Ellipsoid | 1.0 | 2.500 | 2.454 | 2.413 | 2.377 | 2.344 | 2.314 | 2.286 | 2.259 | 2.235 | 2.212 | 2.190 |
|  | 1.1 | 2.445 | 2.410 | 2.372 | 2.337 | 2.305 | 2.274 | 2.246 | 2.220 | 2.195 | 2.172 | 2.151 |
|  | 1.2 | 2.387 | 2.350 | 2.313 | 2.277 | 2.245 | 2.214 | 2.185 | 2.159 | 2.134 | 2.111 | 2.089 |
|  | 1.3 | 2.326 | 2.286 | 2.248 | 2.212 | 2.178 | 2.147 | 2.118 | 2.091 | 2.066 | 2.043 | 2.021 |
|  | 1.4 | 2.264 | 2.222 | 2.183 | 2.146 | 2.112 | 2.081 | 2.051 | 2.024 | 1.999 | 1.976 | 1.954 |
|  | 1.5 | 2.203 | 2.160 | 2.119 | 2.082 | 2.048 | 2.016 | 1.987 | 1.961 | 1.936 | 1.913 | 1.892 |
|  | 1.6 | 2.144 | 2.100 | 2.059 | 2.021 | 1.987 | 1.956 | 1.927 | 1.901 | 1.877 | 1.854 | 1.834 |
|  | 1.7 | 2.087 | 2.042 | 2.001 | 1.964 | 1.930 | 1.899 | 1.871 | 1.845 | 1.822 | 1.800 | 1.780 |
|  | 1.8 | 2.033 | 1.987 | 1.946 | 1.910 | 1.876 | 1.846 | 1.819 | 1.794 | 1.771 | 1.750 | 1.730 |
|  | 1.9 | 1.981 | 1.936 | 1.895 | 1.859 | 1.826 | 1.797 | 1.770 | 1.746 | 1.724 | 1.703 | 1.685 |
|  | 2.0 | 1.932 | 1.887 | 1.847 | 1.812 | 1.780 | 1.751 | 1.725 | 1.702 | 1.680 | 1.661 | 1.643 |

Fiqure 27. Plot of reduced specific viscosity versus concentration for
sperm whale myoglobin ( 0.1 M NaCl , buffer. $\mathrm{pH}=7.1$ )
The straight line is that due to a weighted least squares fit to $\frac{\eta_{s p}}{c}=[n]\left(1+k_{\eta} c\right)$ where $[\eta]=3.25 \mathrm{ml} / \mathrm{gm}$ and $k_{\eta}=5.9 \mathrm{ml} / \mathrm{gm}$

The weight used was

$$
\begin{array}{cc}
\frac{1}{\text { concentration }(\mathrm{mg} / \mathrm{ml})} & (\text { conc. }<40 \mathrm{mg} / \mathrm{ml}) \\
\frac{1}{40} & (\text { conc. } \geqslant 40 \mathrm{mg} / \mathrm{ml})
\end{array}
$$



Figure 28. Photograph of the apparatus used for determining solution densities and viscosities. Temperatures were kept constant to within $\pm 0.01^{\circ}$ using a high precision Townson - Mercer constant temperature tank, with a pump attachment to supply the water bath in the precision density meter. These temperatures could be monitored to within $\pm 0.005^{\circ}$ using the platinum resistance thermometer situated directly above the density meter.



Figure 29. Contour diagram showing curves of constant $v$ as a function of the semi-axial ratios $a / b, b / c$ on the basis of equation (88)


Figure 30. Plots of constant $v$ and $P$ in the ( $a / b, b / c$ ) plane corresponding to $a / b=1.5, b / c=1.5$


Figure 31. Plots of constant $v, P, \beta$ and $R$, allowing for $\pm 1 \%$ error in their measured values, in the $a / b, b / c$ plane corresponding
to $a / b=1.5, b / c=1.5$


Fiqure 32. Plots of constant $R$ and the rotational relaxation time ratios in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$


Figure 33. Plots of constant fluorescence anisotropy relaxation time ratios in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$


Figure 34. Plots of constant $R, \Psi$ and $\Lambda$ in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$


Fiqure 35. Plots of constant $R, \Psi$ and $\Lambda$, allowing for $\pm 1 \%$ error in their measured values, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$


Figure 36. Plots of constant $R, \theta_{+}^{\text {red }}$ and $\theta_{-}^{\text {red }}$, allowing for $\pm 1 \%$ error in their measured values, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$


Figure 37. Plots of constant $R, \delta_{+}$and $\delta_{-}$, allowing for $\pm 1 \%$ measured error in $R$ and $\pm 2 \%$ measured error in $\delta \pm$, in the $a / b, b / c$ plane
corresponding to $a / b=1.5, b / c=1.5$


Figure 38. Plots of constant $R, \gamma_{+}$and $\gamma_{-}$, allowing for $\pm 1 \%$ measured error in $R$ and $\pm 2 \%$ measured error in $\gamma_{ \pm}$, in the $a / b, b / c$ plane corresponding to $a / b=1.5, b / c=1.5$

```
CHAPTER 4
```

Determination of a Stable, Unique Solution by Combining Results from Viscosity, Sedimentation and Electric Birafringence


#### Abstract

4.1 Methods for Analyzing the Decay Curve

Resolution of a 2-term exponential birefringence decay curve into its two component relaxation times or decay constants is notoriously difficult, even for components that differ by several orders of magnitude. The situation is especially difficult for globular macromolecules for which the decay constants will generally not differ by more than $\sim 20 \%$ (see below). A recent review of the salient methods currently used for attempting to analyse multi-component exponential decay curves, emphasing these difficulties, has been given by Jost and $\mathbf{D}^{\prime}$ Konski (1978). The three methods that are apparently the most useful are (1) Graphical Peeling Analysis (0'Konski and Haltner, 1956) (2) Non-Linear Least Squares Analysis (Wilde, 1964, Powell and Macdonald, 1972, Gill and Murray, 1976) (3) Fourier Transform Solution of the Laplace Integral Equation (Gardner, Gardner, Laush \& Meinke, 1958)


4.1.1. Graphical Peeling Analysis

In this method, the logarithm of the birefringence is plotted as a function of time. For a single term decay this should of course give a straight line. If the plot for a two-term decay can be extended to relatively long times with sufficient signal-tomoise ratio, and if the two tarms are not too close, then the limiting slope will give an estimate for the longest relaxation time (or shortest decay constant). This limiting slope can be extrapolated back to zero time and then "subtracted" from the original signal; the slope of the resultant can then be determined and hence the shortest relaxation time found (Figure 39). As might be expected, this method, although rapid, is very approximate and
is of little use for resolving relaxation times of the same order of nagnitude. However it is still useful for indicating the orders of nagnitude of the decay constants which may be used as initial estimates in non-linear least squares iterative procedures.

### 4.1.2. Non-Linear Least Squares Iterative Analysis

In this method, the weighted sum of the squares of the residuals $x^{2}$ is calculated between a set of experimental data points and the function to be fitted. If $x_{j}$ represents the value of the $j$ th experimental point and $\xi_{j}\left(X_{m}\right)$ the corresponding computer point for a given estimate for the $X$, the number of independent variables, then we define our 'goodness of fit' parameter, $x^{2}$, by

$$
\begin{equation*}
x^{2}=\sum_{j=1}^{n}\left(\frac{x_{j}-\xi_{j}}{\sigma_{j}}\right)^{2} \tag{110}
\end{equation*}
$$

where $\sigma_{j}$ is the standard error in the $j$ 'th experimental point. The best values of the $X_{m}$ are such that $\partial x^{2} \gamma \partial X_{m}=0$, for all the $X_{m}$. For the particular case of electric birefringence, $\sigma_{j}$ is approximately constant for all the $X_{j}$ (although this is not generally true for photon counting - e.g. fluorescence depolarization anisotropy - experiments) and the minimization condition becomes

$$
\begin{equation*}
\frac{\partial F}{\partial X_{m}}=0 \tag{111}
\end{equation*}
$$

where

$$
F=\sum_{j=1}^{n}\left\{x_{j}-\xi_{j}\right\}^{2}
$$

In the case of a two-term birefringence decay, the minimization is said to be 'non-linear' in that the data are to be fitted to a function which is the sum of a product of terms consisting of an adjustable parameter (i.e. a pre-exponential factor) with another function of another adjustable parameter (i.e. a decay constant or relaxation time). In order to evaluate $\partial F / X_{m}$ for a current estimate for the parameters $X_{m}$, the solution either has to be linearized using a Taylor expansion as outlined by Jost \& D'Konski, or alternatively, a quadratic or quasi-Newtonian procedure can be employed (Gill \& Murray, 1976). In this latter case, the parameters $X_{m}$ are iterated until the minimum in $F$ is found. Gill \& Murray's algorithm is particularly attractive in that upper and lower limits for the variable can be specified and included as external constraints. A problem with the least squares technique however is that the method is very sensitive to subsidiary minima in $X^{2}$ (or F) leading to false 'best parameters', even for data of very high precision. The presence of these subsidiary minima can often be detected by repeating the analysis for a series of different initial guesses of the adjustable parameters.
4.1.3. Fourier Transform Solution of the Laplace Integral Equation The birefringence $\Delta n(t) \equiv S(t)$ is written as a Stieljes integral:

$$
\begin{equation*}
S(t)=\sum_{i}^{n} A_{i}^{\prime} e^{-6 \theta_{i}^{t}} \equiv \sum_{i}^{n} A_{i}^{\prime} e^{-\lambda t}=\int_{0}^{\infty} \exp (-\lambda t) d h(\lambda) \tag{112}
\end{equation*}
$$

where $h(\lambda)$ is a step function, $i=+,-$ and $\lambda=6 \theta_{i}$.

The right hand side of equation (112) can be rewritten in the form of a Laplace Integral:

$$
S(t)=\int_{0}^{\infty} \exp (-\lambda t) g(\lambda) d \lambda
$$

where $g(\lambda)$ represents a sum of Dirac delta functions. A plot of $g(\lambda)$ versus $\lambda$ will give a Prequency spectrum with peaks; the centre of each peak corresponds to a specific decay constant, and the height of the peak ie proportional to the value of the pre-exponential factor $A_{i}$. We transform $\lambda=e^{-y}$ and $t=e^{x}$. Then

$$
\begin{equation*}
S\left(e^{x}\right)=\int_{-\infty}^{\infty} \exp \left[-e^{(x-y)}\right] g\left(e^{-y}\right) e^{-y} d y \tag{114}
\end{equation*}
$$

Multiplying by $e^{x}$ :

$$
\begin{equation*}
e^{x} S\left(e^{x}\right)=\int_{-\infty}^{\infty} \exp \left[-e^{(x-y)}\right] e^{(x-y)} g\left(e^{-y}\right) d y \tag{115}
\end{equation*}
$$

Taking the Fourier Transform of the left hand side of (115)

$$
\begin{equation*}
F(\mu)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{x} S\left(e^{x}\right) e^{i \mu x} d x \tag{116}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F(\mu)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} \exp \left[-e^{(x-y)}\right] e^{(x-y)} \cdot g\left(e^{-y}\right) d y\right\} \cdot \exp [i \mu(s+y)] d s \tag{117}
\end{equation*}
$$

```
with \(s=x-y\). Rearranging
```

$$
\begin{equation*}
F(\mu)=\sqrt{\frac{1}{2 \pi}} \int_{-\infty}^{\infty} g\left(e^{-y}\right) \exp (i \mu y) d y \cdot \int_{-\infty}^{\infty} \exp \left(-e^{s}\right) e^{s} \exp (i \mu s) d s \tag{118}
\end{equation*}
$$

Now, if we compare equation (113) with equation (114):

$$
\begin{equation*}
g\left(e^{-y}\right) d y \equiv \frac{g(\lambda)}{\lambda} d \lambda \tag{119}
\end{equation*}
$$

Thus if we obtain $g\left(e^{-y}\right)$ as a function of $y$, using equation (119) this will be equivalent to a plot of $g(\lambda) / \lambda$ as a function of $\lambda$. The right hand side of equation (118) is the product of the Fourier Transform, $G(\mu)$ of $g\left(e^{-y}\right)$ and the Fourier Transform, $K(\mu)$ of $\exp \left(-e^{s}\right)$. Therefore

$$
\begin{equation*}
F(\mu)=\sqrt{2 \pi} G(\mu) K(\mu) \tag{120}
\end{equation*}
$$

i.e.

$$
G(\mu)=\sqrt{\frac{1}{2 \pi}} \frac{F(\mu)}{K(\mu)}
$$

Taking the inverse fourier Transform of $G(\mu):$

$$
\begin{equation*}
g\left(e^{-y}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(\mu)}{K(\mu)} e^{-i y \mu_{d \mu}} \tag{122}
\end{equation*}
$$

$K(\mu)$ can be evaluated analytically in terms of the complex $\Gamma$ function:

$$
\begin{equation*}
K(\mu)=\sqrt{\frac{1}{2 \pi}} \Gamma(1+i \mu) \tag{123}
\end{equation*}
$$

The method therefore has four basic steps:
(i) Evaluate the Fourier Transform of the data (equation 116)
(ii) Divide by the complex $\Gamma$ function (equation 123)
(iii) $g\left(e^{-y}\right)$ as a function of $y$ is found by using the inverse fourier Transform
(iv) A plot of $g(\lambda) / \lambda$ is thus obtained as a function of $\lambda$ The advantage of this method is that an initial choice as to the number of exponential terms to be fitted is not required.
4.1.4. Other methods of analysis, previously used for deconvoluting

## Fluorescence decay curves

O'Connor, Ware and Andre (1979) have recently compared methods for deconvoluting both one and two term exponential fluorescence decay curves (sections $1.5 .4,3.3 .2$ ) - methods which could be equally applicable to corresponding birefringence decays. The methods chosen were
(i) Non-Linear Least Squares
(ii) Method of Moments
(iii) Laplace Transforms
(iv) Method of Modulating Functions,
(v) Exponential series method
(vi) Fourier Transforms

They discovered that all six methods were satisfactory for analysing undistorted one - component data, but that the least squares method was most suitable when distortions are present. For resolving two closely spaced terms (9.5ns \& 11.5ns) in a 2-term undistorted decay only the least squares method and the method of modulating functions proved satisfactory. They thus concluded that the non-linear least squares iterative method
was the technique of preference for the analysis of simple decay laws.

### 4.2. Choosing the best algorithm: computer simulation

Following the work of Jost \& D'Konski (1978) and $D^{\prime}$ Connor, Ware \& Andre (1979), the non-linear least squares iterative and possibly the Fourier Transform Solution of the Laplace Integral Equation methods seemed to be the best available methods for resolving a 2-term exponential birefringence decay. I attempted to test for myself these methods by assuming three proteins of known (tri-axial) dimensions and hence axial ratios $(a / b, b / c)$, assuming a swelling ratio $\left(\bar{v}_{s} / \sqrt{v}\right)=1.3$, and $\bar{v}=.73$ (typical for globular proteins). From these values the molecular weight, viscosity increment, R-function, $\delta$, functions, intrinsic viscosity and hence decay constants $\theta_{ \pm}$could be predicted (Table 14). We then assume pre-exponential factors $A_{+}^{\prime}, A^{\prime}$, of, respectively, 0.07 and 0.05 radians taken from a typical initial birefringence ( $\left(\equiv A_{+}^{\prime}+A_{y}^{\prime}\right.$ ) of 0.12 radians (Kirause \& D'Konski, 1959) and hence the unperturbed decay curve for each simulated protein can be given. The actual individual values for $A_{ \pm}^{\prime}$ are not significant in the analyses, except when they differ by several orders of magnitude (see section 4.5). One then places simulated experimental error on each of 100 data points for the curves, using a computer normal pseudo-random number generator, and, first of all assuming no errors in the molecular weight or intrinsic viscosity, investigate how much error in the data points is tolerable, before each algorithm fails to give back the correct decay constants and hence axial ratios, within reasonable limits. The algorithms would then be tested for errors in the intrinsic viscosity and molecular weight. Figure 40 illustrates such a mock experimental decay curve with 0.1 degree standard error (about the
current available experimental precision - B. Jennings \& V. Morris, private communication) on each of 1000 data points, for Protein 1 [true $(a / b, b / c)=(1.5,1.5)]$. In the analyses the pre-exponential factors $A_{ \pm}^{\prime}$ are of course regarded as unknown variables.

### 4.3 Non-Linear Least Squares Iterative Mathod

The quasi-Newtonian quadratic method for minimizing any function (i.e. in this case, the sum of the squares of the residuals $F$ ) given by Gill \& Murray (1976) and incorporated in the UK NAG Mk.VI subroutine EO4JAF was used. In this algorithm the user, besides supplying the subroutine for calculating the value of $F$ at any point $X$, has to supply fixed upper and lower bounds on the independent variables $X_{1}, X_{2}$, ........., $X_{m}$. This routine was incorporated in the FORTRAN IV program given in Appendix IV, as Program 5. This program generated its own hypothetical decay curve with normal (Gaussian) pseudo-random error generated on each data point (using NAG routine GO5ADF), the amount specifiable by the user. The program attempted to retrieve the decay constants, hence the $\delta_{ \pm}$functions (from the user-specified molecular weight and intrinsic viscosity) and hence the axial ratios ( $a / b, b / c$ ) of the general tri-axial ellipsoid. Owing to the problem of the presence of the danger of the routine falling into subsidiary minima as mentioned by Jost \& O'Konski (1978) - see section 4.1.2. - it was necessary to repeat the method for a large number (30) of initial guesses. In fact the program was written to generate its own thirty different initial guesses by using "DO" loop between user specifiable initial guess limits. Unfortunately, even data as accurate as . 001 degree standard error on each data point (about 2 orders of magnitude greater than the current

```
experimental precision) failed to give back the correct (a/b, b/c)
within reasonable limits, and even data of machine accuracy (14
significant figures) did not generate the exact value of (1.5, 1.5),
as Figure 41 illustrates.
```

4.4. Fourier Transform Solution Method of the Laplace Integral Equation Method

### 4.4.1. Cut-off Errors

In order to use this method outlined in section 4.1.3., the integrals involved in taking the Fourier Transform of the data (equation 116) and in taking the inverse fourier Transform (equation 122) have to be solved numerically. Unfortunately, the integrals extended from $-\infty$ to $+\infty$; with real data there exists a finite cut-off time, $t_{0}$ or equivalently $x_{0}$. Cut-off errors tend to increase the height of the error ripples in the final results. For equation (116), if we choose a cut-off too short for $\mu_{0}$ there is a loss of resolution of the component peaks. On the other hand, if we choose a cut-off in $\mu_{0}$ too long then the cut-off at $x_{0}$ causes the amplitude of the error ripples to increase; $\mu_{0}$ has to be varied therefore to obtain the optimum resolution for a given data set.

### 4.4.2. Numerical Integration

Following Gardner et al (1958), each value of $S(t)$ was multiplied by the current value of $t$ to give $e^{x_{S}}\left(e^{x}\right)$ (equation 115). Whereas $t$ ranges from $0 \rightarrow \infty$, $\times$ ranges from $-\infty$ to $+\infty$, thus we can split the integral in equation (116) into symmetric and anti-symmetric parts:

$$
F(\mu)=\sqrt{\frac{1}{2 \pi}} \int_{0}^{x_{0}}\left[s^{*}(x)+s^{*}(-x)\right] e^{i \mu x} d x
$$

## Therefore

$$
\begin{align*}
F(\mu)=\sqrt{\frac{1}{2 \pi}} & \int_{0}^{x_{0}}\left\{\left[S^{*}(x)+S^{*}(-x)\right] \cos \mu x\right. \\
& \left.+i\left[S^{*}(x)-S^{*}(-x)\right] \sin \mu x\right\} d x \tag{125}
\end{align*}
$$

giving real and imaginary parts for $F(\mu)$, i.e., $F_{c} \& F_{s} . K(\mu)$ can be similarly split into real \& imaginary parts $K_{c} \& K_{s}$. Equation (121) thus becomes:

$$
\begin{equation*}
G(\mu)=\sqrt{\frac{1}{2 \pi}} \frac{F_{c}+i F_{s}}{K_{c}+i K_{s}}=\frac{\left(F_{i}+i F_{s}\right)\left(K_{c}-i K_{s}\right)}{K_{c}^{2}+K_{s}^{2}} \tag{126}
\end{equation*}
$$

and the inverse transform (122) becomes

$$
\begin{equation*}
g\left(e^{-y}\right)=\frac{1}{2 \pi} \int_{-\mu_{0}}^{\mu_{0}} \frac{\left(F_{c}+i F_{s}\right)\left(K_{c}+i K_{s}\right)}{K_{c}^{2}+K_{s}^{2}}(\text { cosyu }-i \sin y \mu) d \mu \tag{127}
\end{equation*}
$$

where $\mu_{0}$ and $-\mu_{0}$ are the cut-off values for $\mu_{\text {. }}$ Since all odd values vanish,
$g\left(e^{-y}\right)=\frac{1}{2 \pi} \int_{0}^{\mu_{0}}\left\{\frac{F_{c} K_{c}+F_{s} K_{s}}{K_{c}+K_{s}} \cos y \mu+\frac{F_{s} K_{c}-F_{c} K_{s}}{K_{c}+K_{s}} \sin y \mu\right\} d \mu$

The numerical integrations (125) and (128) are solved using the NAG routine D01GAF. The value of the complex $\Gamma$ function needed for calculating $K_{c}$ and $K_{s}$ was deduced using a routine given by Lucas \& Terril (1970). As with the non-linear least squares iterative method, the program (Appendix IV Program 6) generated its own synthetic data using NAG normal pseudo-random number routines GO5ADF \& GO5BBF.

### 4.4.3. Results

The program was firstly checked by applying it to the case first considered by Gardner et al for a single exponential decay, viz.

$$
S(t)=100 e^{-0.02 t}
$$

assuming data of machine accuracy (i.e. no perturbation routine included). The retrieved $\lambda$ from Figure 42 is . 021, in close agreement with Gardner et als value. The data was taken at logarithmic intervals (corresponding to equal linear intervals in $x$ ). The algorithm was then applied to the two term exponential decay curve for Protein 2. However, even with data of machine accuracy and taken at logarithmic intervals in $t$ (impossible to obtain in practice for our particular case) the retrieved values for $\lambda_{i}$ and hence the decay constants was poor and varied with the cut-off values for $\mu_{0}$ as Figure 43 and Table 15 shows. When normal pseudo-random error of .001 deg was applied to the data points, no resolution was possible for all values of $\mu_{0}$, as Figure 44 clearly demonstrates. We thus conclude this method to be of little use for our case of interest.
4.5. A new R-Constrained Non-Linear Least Squares Algorithm

Owing to the inadequacy of the other treatments for resolving a two-term exponential birefringence decay into its component relaxation times (or decay constants), particularly for globular proteins (close decay constants), I have now developed a new R-constrained least squares algorithm. If the R-function line solution (3.3.1), which can be found from the ratio of the sedimentation regression coefficient $k_{s}$ to the intrinsic viscosity [ $n$ ], is included in the least squares algorithm (4.3) as a constraint, then the problem is effectively reduced from one of four independent variables $\left(\theta_{+}, \theta_{-}, A_{+}^{\prime}, A_{-}^{\prime}\right)$ to one of three $\left(a / b, A_{+}^{\prime}, A_{-}^{\prime}\right)$. The solution is constrained to lie on the R-curve, thus a given estimate for $a / b$ will necessarily give a 'constrained' value for $b / c$; the computer program can then calculate the values for $\delta_{+}$and $\delta_{-}$corresponding to this estimate, hence the decay constants (using also the values for $\left[\eta\right.$ ], $M_{r}$ equation 107), the decay curve and finally the sum of the squares of the residuals (SSR) between the computer points and the experimental curve. By iterating along this R-curve for $a / b$ and the two pre-exponential factors A', the best estimate for $(a / b, b / c)$ can be found from the minimum value of the SSR.

The constraint of the R-curve was included in the algorithm (Program 7 of Appendix IV) for the three simulated proteins considered previously by use of the Leicester University Computer Library routine E01LF1, a listing of which is given towards the end of Program 7. The user specifies the coordinates of knots in the curve (see Figures $45,46 \& 47$ ), or alternatively, the whole curve digitised, and the routine interpolates between these points using a cubic polynomial ('spline') fit (K. Brodlie,
private communication). In the main program, normal (Gaussian) random error of 0.1 degrees on each of the 100 linearly separated data points was supplied using the pseudo random number routines mentioned previously. The magnitude of this error corresponds to that expected from current experimental precision (B.R. Jennings, V. Morris, private communication). It was found in pilot runs that the danger of the algorithm falling into subsidiary minima, as present for the unconstrained case (section 4.3.) was no longer significant. The number of initial guesses was thus reduced from thirty to three to save on Computer time; the best estimates were generally the same for all three initial guesses (except those marked with an asterisk in Tables 16, $17 \& 18$ ). The values for $(a / b, b / c)$ retrieved did however depend on the cut-off time specified for the decay curve. If there ware no error in the data points then very long cut-off times would be desirable, since this region is dominated by the longest relaxation time (or shortest decay constant, $\theta_{-}$). However, the effect of a given absolute error is more pronounced the lower the birefringence signal.

The optimum cut-off time, and hence the best value for ( $a / b, b / c$ ) was found by repeating for eight different streams of normal random data, specified by the UK NAG MK VI routine $\operatorname{GOSBAF}(0 . N)$, where $N$ represents the stream number of the random data; the optimum cut-off time for each decay curve was then determined by finding the best standard deviation of the $a / b$ 's from the eight streams for increments of 5 ns in the cut-off times. The values for the corresponding best mean value for $a / b$ (and hence $b / c$ ) together with the corresponding standard error for the eight streams of data could then be found (Tables 16a, 17a \& 18a).

This procedure was then repeated allowing for $\pm 1 \%$ experimental error
in the R-curves (Tables 16b, c, 17b, c, 18b, c). If the points corresponding to $\langle(a / b, b / c)\rangle+\sigma_{E}$ are joined together for each of the R-curves, and then those of the $\langle(a / b, b / c)\rangle-\sigma_{E}$, regions of allowed values for $(a / b, b / c)$ could then be found (Figures $48,49 \& 50$ ). The mean values agree very closely with the true values (Table 19). The algorithm was then tested for the effect of experimental errors in the intrinsic viscosity ( $\pm 1 \%$ ) and molecular weight ( $\pm 1.4 \%$ ). These were found to be not significant (Table 20); indeed, the molecular weight can now be found precisely from the results of sequence analyses. Finally, the algorithm was tested for different initially assumed values for the pre-exponential factors $A_{+}^{\prime}$ and $A_{-}^{\prime}$ (Table 21). Again, these were found to have no significant effect on•the results; even for premexponential factors differing by two orders of magnitude, though the retrieved $A^{\prime}$ was poor, the retrieved $a / b$ was in close agreement with the other values.

Once the value for the axial ratios $(a / b, b / c)$ has been found for $a$ particular protein, it can be combined with the swollen volume of the protein, if known, to determine the axial dimensions. In Table 22 a "model dependent" (section 1.7.1) estimate for $V_{e}$ has been found for each of the three simulated proteins we have considered by back substitution of the mean values of $(a / b, b / c)$ determined from the analysis above into equation (8) for the viscosity increment, and again the agreement with the initially assumed values (Table 19) is excellent. If the model dependent values of $V_{e}$ are then combined with the values for $(a / b, b / c)$, the semi-axial dimensions $a, b, c$ for the three proteins considered are found to be ( A ):
Protein 1: $45.00,29.98,20.01(45.0,30.0,20.0)$
Protein 2: $42.28,25.59,19.61(42.5,25.0,20.0)$
Protein 3: $43.11,33.58,19.81(42.5,34.0,20.0)$
again, in excellent agreement with the initially assumed (bracketed) values.

### 4.6. Some Practical Points

In applying these equations and algorithms to real protein and other macromolecular solutions several important factors must be taken into consideration:
(1) Two or more decay constants can also arise if the system is polydisperse. It is therefore essential that the solution be rendered monodisperse by, for example, gel filtration techniques.
(2) It has now been well established that the single exponential decay constant previously resovable from the birefringence decay of monodisperse protein solutions shows a concentration dependence (Riddiford \& Jennings, 1967), and it was therefore necessary to determine its value at several concentrations and then extrapolate to infinite dilution. One must naturally assume therefore that the two decay constants for the decay of a monodisperse solution of asymmetric ellipsoids also show a concentration dependence, and hence must be extrapolated to infinite dilution. On the other hand, because of the constraint in our algorithm that they must correspond to $\delta_{+}$and $\delta_{-}$line solutions that intersect with the R-curve, the values for the decay constants are such that they are not the 'true' decay constants for each particular concentration but are closer to the infinite dilution values. Since the extrapolation procedure must therefore be empirical the best estimates for $a / b$ at particular solute concentrations rather than these 'damped' decay constants may be extrapolated to infinite dilution; once the extrapolated value for $a / b$ has been found the corresponding value for b/c can thus also be found from the R-curve.
(3) The requirement on the precision of the electric birefringence apparatus is not only in producing transient decays to a precision of 0.1 degree on each data point but also the availability of response times (i.e. the finite time it takes for the orienting electric pulse to be switched off) of about
an order of magnitude less than that of the faster relaxation time Adequate response times are now available (Williams, Ham \& Wright, 1976) however with apparatus that uses a laser light source, cable discharge generator and a memory oscilloscope, giving a response time of ~ $5 n s$. (4) In the above analysis it has been shown that greater accuracies in obtaining the axial ratios can be obtained if the optimum cut-off time for the decay is found. In our simulations this was achieved by averaging over several streams of random data; this corresponds in practice to taking several decays of the same preparation. Different samples of the same preparation should be used because of the danger of denaturing the protein by continually pulsing through high electric fields (temperature affects).
(5) It has also been assumed that the $R$ Punction can be measured to a precision of $\sim \pm 1 \%$. Since $s_{c}$ values in an $s_{c}$ versus concentration plot can be determined to within ~ $\pm .2 \%$ (Squire, 1978), the $k_{s}$ value can presumably be measured to within $\pm 1 \%$ (as, from equation 58 , it is approximately a function of $\left(s_{c} / s\right) \times$ concentration ${ }^{-1}$ ). The intrinsic viscosity [ n ] can also be measured to within $\sim \pm 1 \%$, the limiting factor here being the accuracy to which the flow times can be measured. The error in $R$ will thus be of the order of $1 \%$ after taking into consideration that any systematic errors in measuring absolute solute concentrations will cancel in the ratio $k_{s} /[\eta]$ (Rowe, 1977).
(6) Finally, it should be pointed out that because of polarisation effects on the electrodes and also the danger of denaturation due to heating effects mentioned in (4), solutions of low ionic strength (<0.01M) generally have to be used. This apparently prevents the investigation of less soluble materials. On the other hand, an interesting new method is being developed
at Brunel University by Professor B. Jennings and his co-workers in which an ultrasonic field rather than an electric field is used to initially orient the macromolecules before the decay is observed. This "acoustic birefringence" (Ballinger \& Jennings, 1979) method does not suffer from the problems of electrode polarisation and denaturation associated with ionic strengths >.01M for the electric birefringence case, allowing the possibility for the investigation of less soluble materials.

Table 14. Assumed and derived characteristics of three hypothetical
globular proteins
$\begin{array}{llll}\text { Protein } & 1 & 2 & 3\end{array}$

## ASSUMED VALUES

## Characteristic

| a,b,c | $45 \AA, 30 \AA, 20 \AA$ | $42.5 \AA-25 \AA, 20 \AA$ | $42.5 \AA, 34 \AA, 20 \AA$ |
| :---: | :---: | :---: | :---: |
| $\bar{v}$ | $0.730 \mathrm{ml} / \mathrm{gm}$ | $0.730 \mathrm{ml} / \mathrm{gm}$ | $0.730 \mathrm{ml} / \mathrm{gm}$ |
| $\bar{v}_{s} / \bar{v}$ | 1.3 | 1.3 | 1.3 |

DERIVED VALUES
Characteristic
$a / b, b / c$
$\bar{v}_{s}$
swollen molecular volume
$V_{e}=\frac{4}{3} \pi b c$
Anhydrous molecular
volume $v\left(=\left(\bar{v} / \bar{v}_{s}\right) v_{e}\right)$ Molecular weight $M_{r}\left(=\left(N_{A} \sqrt{v}\right) \vee\right)$
$\nu$
$[n]\left(=N_{A} v_{e} v / m_{r}\right)$
R
$\theta_{+}^{\text {red }}, \theta_{-}^{\text {red }}$

Decay constants*
$\theta_{ \pm}=\frac{N_{A} k T}{\sigma_{n_{0}}[n] M_{r}} \delta_{ \pm}$
Relaxation times
$\tau_{ \pm}=1 / 6 \theta_{ \pm}$
1.50,1.50
$0.949 \mathrm{ml} / \mathrm{gm}$

$$
1.1309732 \times 10^{-19} \mathrm{~cm}^{3} \quad 0.89011784 \times 10^{-19} \mathrm{~cm}^{3}
$$

$$
0.8699793 \times 10^{-19} \mathrm{~cm}^{3} \quad 0.684706 \times 10^{-19} \mathrm{~cm}^{3} \quad 0.9312001 \times 10^{-19} \mathrm{~cm}^{3}
$$

$$
71,744
$$

$$
2.892
$$

$$
2.75 \mathrm{ml} / \mathrm{gm}
$$

$$
1.479
$$

$$
0.163,0.116
$$

$$
2.821,2.016
$$

$$
5.8153835 \times 10^{6} \mathrm{sec}^{-1} \quad 7.7660465 \times 10^{6} \mathrm{sec}^{-1}
$$

$$
4.1564612 \times 10^{6} \mathrm{sec}^{-1} \quad 5.2290121 \times 10^{6} \mathrm{sec}^{-1}
$$

28.6596ns,
40.0982ns
1.70,1.25
1.25,1.70

$$
0.949 \mathrm{ml} / \mathrm{gm}
$$

$$
1.2105602 \times 10^{-19} \mathrm{~cm}^{3}
$$

$$
56,510
$$

$$
76,853
$$

2.840
$2.695 \mathrm{ml} / \mathrm{gm}$
1.496
0.155, 0.125
2.645, 2.125
$5.1872430 \times 10^{6} \mathrm{sec}^{-1}$ $4.1674860 \times 10^{6} \mathrm{sec}^{-1}$
32.1301ns,
39.9921ns

* $T=293 \mathrm{~K}, \eta_{0}=0.01 \mathrm{gm} \mathrm{cm}^{-1} \mathrm{sec}^{-1}$

Table 15. Retrieved decay constants for varying values of $\mu_{0}$

|  | $y_{1}$ | $y_{2}$ | $\lambda_{1}=e^{-y_{1}}$ | $\lambda_{2}=e^{-y_{2}}$ | $\theta_{+} \times 10^{-6} \sec ^{-1}$ | $\theta_{-} \times 10^{-6} \sec ^{-1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 11.5 | 3.13 | 3.55 | 0.04372 | 0.02872 | 7.286 | 4.787 |
| 11.6 | 3.00 | 3.50 | 0.04979 | 0.03020 | 8.292 | 5.033 |
| 11.7 | 2.94 | 3.45 | 0.05287 | 0.03175 | 8.811 | 5.291 |
| 12.0 | 3.14 | 3.72 | 0.04328 | 0.02423 | 7.214 | 4.039 |

True value for $\quad \theta_{+}=7.7660465 \times 10^{6} \mathrm{sec}^{-1}$
True value for $\theta_{-}=5.2290121 \times 10^{6} \mathrm{sec}^{-1}$

Table 16. Determination of the optimum cut-opf time for Protein 1. True $(a / b, b / c)=(1.5,1.5)$
(a) No assumed error in R

| Cut-off <br> time | $80 n s$ <br> $a / b$ | $100 n s$ <br> $a / b$ | $110 n s$ <br> $a / b$ | $115 n s$ <br> $a / b$ | $120 n s$ <br> $a / b$ | $140 n s$ <br> $a / b$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Stream 1 | 1.580 | 1.534 | 1.513 | 1.503 | 1.493 | 1.454 |
| Stream 2 | $1.946^{*}$ | 1.785 | 1.692 | 1.654 | 1.619 | 1.497 |
| Stream 3 | 1.591 | 1.512 | 1.483 | 1.468 | 1.452 | 1.392 |
| Stream 4 | 1.644 | 1.487 | 1.425 | 1.396 | 1.367 | 1.249 |
| Stream 5 | 1.623 | 1.480 | 1.426 | 1.401 | 1.377 | 1.287 |
| Stream 6 | 1.186 | 1.275 | 1.303 | 1.315 | 1.326 | 1.364 |
| Stream 7 | 1.573 | 1.645 | 1.678 | 1.694 | 1.710 | 1.772 |
| Stream 8 | 1.716 | 1.623 | 1.590 | 1.575 | 1.562 | 1.514 |
| Mean | 1.6074 | 1.5426 | 1.5138 | 1.5008 | 1.4883 | 1.4411 |
| $\sigma(S D)$ | 0.209696 | 0.148967 | 0.133899 | 0.132475 | 0.134402 | 0.163491 |
| $\sigma(S E)$ | 0.07414 | 0.05267 | 0.04734 | 0.04684 | 0.04752 | 0.05780 |

$\sigma(S D)=$ Standard Deviation ; $\sigma(S E)=$ Standard Error

* different answers for different initial guesses

Optimum cut-off time $=115 \mathrm{~ns}$
Best estimate for $a / b=1.501$ ( $\pm .047$ )
Corresponding estimate for $b / c=1.498$
(b) $+1 \%$ assumed measured error in $R$

| Cut-aff <br> time | $110 n s$ | $115 n s$ | $120 n s$ | $125 n s$ | $130 n s$ | $135 n s$ | 140 ns |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $a / b$ |
| Stream 1 | 1.546 | 1.534 | 1.523 | 1.511 | 1.500 | 1.489 | 1.478 |
| Stream 2 | 1.837 | 1.735 | 1.679 | 1.633 | 1.594 | 1.557 | 1.522 |
| Stream 3 | 1.510 | 1.492 | 1.474 | 1.457 | 1.440 | 1.423 | 1.406 |
| Stream 4 | 1.439 | 1.406 | 1.374 | 1.342 | 1.310 | 1.278 | 1.244 |
| Stream 5 | 1.442 | 1.414 | 1.387 | 1.361 | 1.337 | 1.312 | 1.289 |
| Stream 6 | 1.312 | 1.325 | 1.340 | 1.349 | 1.360 | 1.370 | 1.380 |
| Stream 7 | 1.816 | 1.871 | 1.847 | 1.840 | 1.878 | 1.893 | 1.909 |
| Stream 8 | 1.643 | 1.624 | 1.606 | 1.590 | 1.575 | 1.561 | 1.548 |
| Mean | 1.5681 | 1.5501 | 1.5288 | 1.5104 | 1.4992 | 1.4854 | 1.4720 |
| $\sigma$ (SD) | 0.185700 | 0.183700 | 0.174243 | 0.173033 | 0.186398 | 0.195406 | 0.206181 |

Optimum cut-off time $=125 n s$
Best estimate for $a / b=1.510( \pm .061)$
Corresponding estimate for $b / c=1.400$
(c) $-1 \%$ assumed measured error in $R$

| Cut-off <br> time | 110 ns <br> $\mathrm{a} / \mathrm{b}$ | 115 ns <br> $\mathrm{a} / \mathrm{b}$ | 120 ns <br> $\mathrm{a} / \mathrm{b}$ |
| :--- | :--- | :--- | :--- |
| Stream 1 | 1.494 | 1.485 | 1.476 |
| Stream 2 | 1.644 | 1.616 | 1.588 |
| Stream 3 | 1.468 | 1.454 | 1.440 |
| Stream 4 | 1.419 | 1.392 | 1.366 |
| Stream 5 | 1.418 | 1.395 | 1.373 |
| Stream 6 | 1.300 | 1.311 | 1.321 |
| Stream 7 | 1.626 | 1.638 | 1.649 |
| Stream 8 | 1.561 | 1.549 | 1.537 |
| Mean | 1.4913 | 1.4800 | 1.4688 |
| $\sigma(S D)$ | 0.115922 | 0.114924 | 0.115761 |
| $\sigma(S E)$ | 0.04098 | $0.04063^{\circ}$ | 0.04093 |

Optimum cut-off time $=115 n s$
Best estimate for $a / b=1.480( \pm .041)$
Corresponding estimate for $b / c=1.611$

Table 17. Determination of the optimum cut-off time for Protein 2. Irue $(a / b, b / c)=(1.7,1.25)$
(a) No assumbd arror in R

| Cut-opf <br> time | $85 n s$ <br> $a / b$ | 90ns |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $a / b$ | $95 n s$ | $100 n s$ <br> $a / b$ | $105 n s$ <br> $a / b$ | $110 n s$ <br> $a / b$ | $120 n s$ <br> $a / b$ | $a / b$ |
| Stream 1 | 1.709 | 1.691 | 1.675 | 1.659 | 1.644 | 1.630 | 1.603 |
| Stream 2 | 1.963 | 1.926 | 1.872 | 1.777 | 1.716 | 1.666 | 1.579 |
| Stream 3 | 1.670 | 1.645 | 1.622 | 1.600 | 1.578 | 1.558 | 1.520 |
| Stream 4 | 1.602 | 1.561 | 1.523 | 1.486 | 1.452 | 1.418 | 1.351 |
| Stream 5 | 1.600 | 1.566 | 1.534 | 1.505 | 1.478 | 1.453 | 1.408 |
| Stream 6 | 1.482 | 1.496 | 1.509 | 1.521 | 1.533 | 1.544 | 1.566 |
| Stream 7 | 1.924 | 1.924 | 1.923 | 1.923 | 1.923 | 1.923 | 1.922 |
| Stream 8 | 1.847 | 1.803 | 1.771 | 1.745 | 1.723 | 1.703 | 1.669 |
| Mean | 1.7246 | 1.7015 | 1.6786 | 1.6520 | 1.6309 | 1.6119 | 1.5773 |
| $\sigma(S D)$ | 0.170801 | 0.166408 | 0.161588 | 0.154362 | 0.155373 | 0.159776 | 0.173689 |
| $\sigma($ SE) | 0.06039 | 0.05883 | 0.05713 | 0.05458 | 0.05493 | 0.05649 | 0.06141 |

Dptimum cut-off time $=100 \mathrm{~ns}$
Best estimate for $\mathrm{a} / \mathrm{b}=1.652$ ( $\pm .055$ )
Corresponding estimate for $b / c=1.305$
(b) $+1 \%$ assumed measured error in $R$

| Cut-off <br> time | 75ns | $80 n s$ | $85 n s$ | $90 n s$ | $95 n s$ | $100 n s$ | $105 n s$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $a / b$ |
| Stream 1 | 1.856 | 1.856 | 1.856 | 1.820 | 1.821 | 1.767 | 1.834 |
| Stream 2 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 |
| Stream 3 | 1.856 | 1.821 | 1.791 | 1.732 | 1.691 | 1.658 | 1.628 |
| Stream 4 | 1.843 | 1.728 | 1.555 | 1.599 | 1.551 | 1.508 | 1.467 |
| Stream 5 | 1.834 | 1.716 | 1.655 | 1.608 | 1.568 | 1.532 | 1.501 |
| Stream 6 | 1.471 | 1.492 | 1.511 | 1.528 | 1.544 | 1.560 | 1.575 |
| Stream 7 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 |
| Stream 8 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 | 1.856 |
| Mean | 1.8035 | 1.7726 | 1.7545 | 1.7319 | 1.7179 | 1.6991 | 1.6841 |
| $\sigma$ (SD) | 0.134604 | 0.127668 | 0.131819 | 0.135561 | 0.145962 | 0.153037 | 0.163378 |
| $\sigma$ (SE) | 0.04759 | 0.04514 | 0.04661 | 0.04791 | 0.05161 | 0.05411 | 0.05776 |

Optimum cut-off time $=80 n 3$
Best estimate for $a / b=1.773$ ( $\pm .045$ )
Corresponding estimate for $b / c=1.0875$
(c) $-1 \%$ assumed measured error in $R$

| Cut-off time | 80ns <br> $a / b$ | 85ns <br> $a / b$ | $\begin{aligned} & \text { 90ns } \\ & a / b \end{aligned}$ | 95ns <br> $a / b$ | $100 \mathrm{~ns}$ <br> $a / b$ | 105ns <br> $a / b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stream 1 | 1.670 | 1.656 | 1.643 | 1.630 | 1.617 | 1.605 |
| Stream 2 | $1.936^{\frac{1}{7}}$ | 1.861 | 1.799 | 1.749 | 1.705 | 1.665 |
| Stream 3 | 1.648 | 1.628 | 1.608 | 1.589 | 1.570 | 1.552 |
| Stream 4 | 1.614 | 1.576 | 1.541 | 1.507 | 1.475 | 1.444 |
| Stream 5 | 1.606 | 1.573 | 1.543 | 1.516 | 1.490 | 1.466 |
| Stream 6 | 1.452 | 1.466 | 1.478 | 1.489 | 1.499 | 1.509 |
| Stream 7 | 1.815 | 1.842 | 1.870 | 1.902 | $1.936^{\frac{1}{1}}$ | $1.936^{\frac{1}{1}}$ |
| Stream 8 | 1.759 | 1.737 | 1.716 | 1.698 | 1.681 | 1.666 |
| Mean | 1.6875 | 1.6674 | 1.6498 | 1.6350 | 1.6216 | 1.6054 |
| $\sigma$ (SD) | 0.147596 | 0.137488 | 0.136111 | 0.142556 | 0.153928 | 0.157728 |
| $\sigma$ (SE) | 0.05218 | 0.04861 | 0.04812 | 0.05040 | 0.05442 | 0.05577 |

${ }^{4}$ Upper $\operatorname{limit}(\equiv b / c=1.0)$

Optimum cut-off time $=90 n s$
Best estimate for $a / b=1.650( \pm .048)$
Corresponding estimate for $b / c=1.3905$

Table 18. Determination of the optimum cut-off time for Protein 3. True $(a / b, b / c)=(1.25,1.7)$
(a) No assumed error in R

| Cut-off <br> time | $80 n s$ <br> $a / b$ | $100 n s$ <br> $a / b$ | $105 n s$ <br> $a / b$ | $110 n s$ <br> $a / b$ | $115 n s$ <br> $a / b$ | $120 n s$ <br> $a / b$ | $a / b$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Stream 1 | 1.367 | 1.315 | 1.303 | 1.291 | 1.278 | 1.266 | 1.215 |
| Stream 2 | 1.881 | 1.587 | 1.547 | 1.510 | 1.476 | 1.442 | 1.313 |
| Stream 3 | 1.388 | 1.301 | 1.281 | 1.263 | 1.240 | 1.219 | 1.119 |
| Stream 4 | 1.464 | 1.285 | 1.244 | 1.200 | 1.151 | 1.089 | 1.001 |
| Stream 5 | 1.448 | 1.278 | 1.239 | 1.200 | 1.157 | 1.108 | 1.000 |
| Stream 6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Stream 7 | 1.314 | 1.393 | 1.409 | 1.424 | 1.439 | 1.453 | 1.505 |
| Stream 8 | 1.514 | 1.421 | 1.402 | 1.385 | 1.370 | 1.354 | 1.297 |
| Mean | 1.4220 | 1.3225 | 1.3031 | 1.2841 | 1.2639 | 1.2414 | 1.1813 |
| $\sigma($ SD) | 0.243637 | 0.165850 | 0.160554 | 0.158626 | 0.161019 | 0.168224 | 0.184692 |
| $\sigma(\operatorname{SE})$ | 0.08614 | 0.05864 | 0.05676 | 0.05608 | 0.05693 | 0.05948 | 0.06530 |

Optimum cut-off time $=110 \mathrm{~ns}$
Best estimate for $a / b=1.284$ ( $\pm .056$ )
Corresponding estimate for $b / c=1.695$
(b) $+1 \%$ assumed measured arror in $R$

| Cut-off <br> time | $105 n s$ <br> $a / b$ | $110 n s$ <br> $a / b$ | $115 n s$ <br> $a / b$ |
| :--- | :--- | :--- | :--- |
| Stream 1 | 1.319 | 1.306 | 1.293 |
| Stream 2 | 1.618 | 1.562 | 1.516 |
| Stream 3 | 1.294 | 1.272 | 1.249 |
| Stream 4 | 1.247 | 1.199 | 1.145 |
| Stream 5 | 1.245 | 1.202 | 1.155 |
| Stream 6 | 1.000 | 1.000 | 1.000 |
| Stream 7 | 1.444 | 1.462 | 1.481 |
| Stream B | 1.431 | 1.412 | 1.394 |
| Mean | 1.3248 | 1.3019 | 1.2791 |
| $\sigma(S D)$ | 0.181404 | 0.176485 | 0.178272 |
| $\sigma(S E)$ | 0.06414 | 0.06240 | 0.06303 |

```
Optimum cut-off time = 110ns
Best estimate for a/b = 1.302 ( }\pm.062
Corresponding estimate for b/c = 1.5395
```

(c) $-1 \%$ assumed measured error in $R$

| Cut-off <br> time | $105 n s$ <br> $a / b$ | $110 n s$ <br> $a / b$ | $115 n s$ <br> $a / b$ |
| :--- | :--- | :--- | :--- |
| Stream 1 | 1.294 | 1.283 | 1.271 |
| Stream 2 | 1.511 | 1.481 | 1.452 |
| Stream 3 | 1.275 | 1.257 | 1.238 |
| Stream 4 | 1.246 | 1.206 | 1.163 |
| Stream 5 | 1.240 | 1.204 | 1.165 |
| Stream 6 | 1.000 | 1.000 | 1.000 |
| Stream 7 | 1.387 | 1.400 | 1.413 |
| Stream 8 | 1.385 | 1.370 | 1.355 |
| Mean | 1.2923 | 1.2751 | 1.2571 |
| $\sigma($ SD $)$ | 0.149290 | 0.147794 | 0.149222 |
| $\sigma(S E)$ | 0.05278 | 0.05225 | 0.05276 |

Optimum cut-off time $=110 \mathrm{~ns}$
Best estimate for $a / b=1.275$ ( $\pm .052$ )
Corresponding estimate for $b / c=1.764$

Table 19. Mean values for the retrieved axial ratios compared with the real values

|  | Retrieved <br> $\left(\frac{a}{b}, \frac{b}{c}\right)$ | Real <br> $\left(\frac{a}{b}, \frac{b}{c}\right)$ |
| :--- | :---: | :---: |
| Protein 1 | $(1.501,1.498)$ | $(1.50,1.50)$ |
| Protein 2 | $(1.652,1.305)$ | $(1.70,1.25)$ |
| Protein 3 | $(1.284,1.695)$ | $(1.25,1.70)$ |

## Table 20. Effect of experimental errors in the intrinsic viscosity and molecular woight

(and hence the product [ $n$ ]. $M_{r}$ used in calculating the decay constants - of Table 14 and equation 108)
\(\left.\begin{array}{ccc}Assumed error in[\eta]= \pm 1 \% <br>

" \quad " \quad n \quad M_{r}= \pm 1.4 \%\end{array}\right\}\)| total error ~ $\pm 1.7 \%$ (calculated |
| :--- |
| from formula given in Paradine \& Rivett |
| $(1960))$ |

Results are for Protein 1, cut-off time $=115 \mathrm{~ns}, \pm 0.1^{0}$, standard error on each of the 100 data points

| Stream no. <br> of random <br> data | $-1.7 \%$ | No error <br> $a / b$ | $+1.7 \%$ |
| :---: | :--- | :--- | :--- |
| 1 | 1.493 | 1.503 | 1.520 |
| 2 | 1.638 | 1.654 | 1.679 |
| 3 | 1.455 | 1.468 | 1.487 |
| 4 | 1.374 | 1.396 | 1.424 |
| 5 | 1.383 | 1.401 | 1.425 |
| 6 | 1.305 | 1.315 | 1.333 |
| 7 | 1.695 | 1.694 | 1.704 |
| 8 | 1.566 | 1.575 | 1.593 |
| mean a/b | 1.4886 | 1.5008 | 1.5206 |
| $\sigma_{S D}$ | 0.136305 | 0.132475 | 0.130253 |
| $\sigma_{S E}$ | 0.04819 | 0.04684 | 0.04668 |
|  |  |  |  |
|  | $\sigma_{S D}=$ standard deviation |  |  |
|  | $\sigma_{S E}=$ standard error |  |  |

Table 21. Effect of using different initially assumed values for the pre-exponential factors $A^{\prime} \pm$

Protein 1, Cut off time $=100 \mathrm{~ns}, 0.1 \mathrm{s.e}$. on each of the 100 data points ${ }^{*}$

| Assumed |  | Retrieved |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $A^{\prime}+$ | $A^{\prime}-$ | $a / b$ | $A^{\prime}+$ | $A^{\prime}$, |
| 0.06 | 0.06 | 1.683 | 0.057 | 0.064 |
| 0.07 | 0.05 | 1.674 | 0.065 | 0.055 |
| 0.09 | 0.03 | 1.660 | 0.083 | 0.038 |
| 0.11 | 0.01 | 1.664 | 0.099 | 0.021 |
| 0.119 | 0.001 | 1.644 | 0.109 | 0.012 |

*The data for this table were obtained after the UK NAG Mk VI routines had been updated to MK VII; the new random number routines corresponding to GO5ADF \& GO5BAF in Mk VI are GO5CAF \& GO5CBF

Table 22. Comparison of model dependent estimates for $V_{B}$ with the real values

|  | Retrieved <br> $\left(\frac{a}{b}, \frac{b}{c}\right)$ | Model-dependent <br> $v_{e}\left(\mathrm{~cm}^{3}\right)$ | Real $v_{e}\left(\mathrm{~cm}^{3}\right)$ <br> $(\mathrm{cf} \mathrm{Table} \mathrm{14)}$ |
| :--- | :---: | :---: | :---: |
| Protein 1 | $(1.501,1.498)$ | $1.131 \times 10^{-19}$ | $1.131 \times 10^{-19}$ |
| Protein 2 | $(1.652,1.305)$ | $0.889 \times 10^{-19}$ | $0.890 \times 10^{-19}$ |
| Protein 3 | $(1.284,1.695)$ | $1.202 \times 10^{-19}$ | $1.211 \times 10^{-19}$ |

*calculated by determining the value of $v$ corresponding to ( $\frac{a}{b}, \frac{b}{c}$ ) and then back substituting into the equation $V=[\eta] M_{I} / N_{A} V_{s}$, where [ $n$ ] is in $\mathrm{ml} / \mathrm{gm}$


Figure 39. Birefringence decay (expressed in radians) in Helix Pomatia
hemocyanin solutions. The triangles represent the difference between the tangential curve (long relaxation time) and the experimental points. (Fram Pytkowickz \& O'Konski, 1959)


Fiqure 40. Synthetic two-term exponential electric birefringence decay curve assuming a standard error of $\pm 0.1^{\circ}$ on each data point.

Relaxation times assumed: $28.66 \mathrm{~ns}, 40.10 \mathrm{~ns}$


Figure 41. Plot of the $R, \delta_{+}$and $\delta_{-}$values obtained from the non-linear least


Figure 42. Frequency spectrum of $\lambda(\equiv 1 /$ relaxation time) for a single exponential decay and $\mu_{0}=6.0$, assuming decay data of machine
accuracy ( 14 fiqures). The position of the highest peak corresponds to a value of $\lambda$ of .021 , in agreement with the initially assumed value of 0.02

Figure 43 (I - VI)

```
Effect of increasing }\mp@subsup{\mu}{0}{}\mathrm{ to determine best resolution of the frequency
spectrum corresponding to the decay for Protein 2, for 140 logarithmically
increasing data points of machine accuracy (14 Pigures)
```






Figur-44 (I - VI)

As for figure 43 but for data of $.001^{\circ}$ standard error on each of the 140 logarithmically increasing data points








Fiqure 45. Knots in the R curves for specification in the R - constrained least squares analysis (Program 7) for Protein 1


Fiqure 46. As for Fiqure 45 but for Protein 2


Figure 47. As for Figure 45 but for Protein 3


Figure 48. The area marked by dots represents the allowed band of retrieved axial ratios determined using the new $R$ - constrained least squares algorithm for Protein 1. Simulated experimental error of $\pm 0.1^{\circ}$ standard error on each data point for the electric birefringence decay curve was assumed.



CHAPTER 5

Concluding Remarks

In this study an extensive review of all the possible shape functions available for modelling a biological macromolecule in solution in terms of an ellipsoid model with the restriction of two equal axes has been given, thus updating the classical reviews of Edsall (1953) and Tanford (1961). It was concluded that the most suitable shape parameter (particularly for axial ratios less than 20:1) was the $R$ parameter which can be determined from the ratio of the sedimentation regression coefficient, $k_{s}$ to the intrinsic viscosity, [ $\eta$ ] A word of warning should perhaps be given out here in that the $k_{s}$ value found from fitting sedimentation coefficient versus concentration data either to the general equation (60) or to the approximate linear equation (58), is the value based on particle migration relative to the solvent, whereas the $[\eta$ ] values are normally measured to solution density (Tanford, 1955). The value of $k_{s}$ must therefore be corrected to solution density, and this can be achieved simply by subtracting the value of the partial specific volume, $\bar{v}$ (Rowe, 1977) since this latter can be equated to the reciprocal density of the solute, an assumption reasonably accurate for proteins and possibly for nucleic acids (Pearce et al, 1975). It is also now possible to estimate a value for $k_{s}$ direct from a knowledge of the sedimentation coefficient, the molecular weight and $\bar{v}$ (Appendix VI).

Despite the availability of the $R$ function for determining the 'equivalent hydrodynamic ellipsoid of revolution' for a structure in solution to a reasonable precision (and also the $\Pi$ function for prolate ellipsoids Appendix III), it was clear from a perusal of the crystallographic dimensions given in Table 3 and a comparison of model dependent with model independent estimates for $\bar{v}_{s} \sqrt{v}$ in Table 2 , that for many macromolecules the assumption of two equal axes on the ellipsoid model is a poor
approximation to the real structure in solution. This stimulated my attempts to develop the necessary theoretical and data analysis techniques so that the restriction of two equal axes could be dispensed with and the subsequent research has shown that the more general tri-axial ellipsoid can now, in principle at least, be successfully employed for modelling biological macromolecules in solution.

The first step was to derive an explicit expression for the viscosity increment $v$ for a dilute suspension of general trimaxial ellipsoids in overwhelming Brownian motion, based on a model first given by Simha (1940) and improved by Saito (1951) for ellipsoids of revolution. Although the assumption of the particles rotating on average with the same local angular velocity of the fluid has only been rigorously proved so far for ellipsoids of revolution (Brenner, 1972a), it was assumed that this would be a very close approximation for tri-axial ellipsoids, particularly for low axial ratios ( $<3.0$, i.e. the globular particle range). After the derivation of equation (88) a numerical procedure (involving complicated numerical matrix inversions), but based on a full statistical analysis of the angular motion was made available by Rallison (1978). It was explained in section 2.8. how the difference in the results predicted by equation (88) and Rallisons approach was negligible (<.01\%) for the globular particle range mentioned above, and for some particles of higher asymmetry discrepancies of not more than $1 \%$ arose. Rallison has also given a numerical procedure for calculating the normal stress coefficients in terms of axial ratio; normal stress affects are however second order in the shear rate, thus in order to measure these coefficients it is necessary to use high shear rates. However, the assumption of overwhelming Brownian motion with respect to the shear rate ceases to be valid, and hence, unfortunately, the normal stress coefficients cannot be applied.


#### Abstract

It was described how the problem of the line solution (i.e. how a given value for $v$ does not uniquely fix a value for the axial ratios ( $a / b, b / c$ ) could be dealt with by combining it graphically with translational frictional or rotational relaxation line solutions. I was able to give the $R$ function for trimaxial ellipsoids and also many other tri-axial functions whose experimental determination did not require a knowledge of the swollen molecular volume in solution. After a careful consideration of all these line solutions with ragard to giving suitable intersections, experimental measurability, insensitivity to experimental error and sensitivity to axial ratio, it was decided that the best approach for determining a unique solution would be to combine the $R$ line solution graphically with the $\delta_{+}$and $\delta$ line solutions, the latter to be determined from the two electric birefringence decay constants and the intrinsic viscosity.

Unfortunately, this still requires having to resolve the two decay constants or relaxation times from a two-term exponential birefringence decay for a homogeneous solution of asymmetric particles. This problem is notoriously difficult, as reported by Jost \& ${ }^{\prime}$ Konski (1978) and O'Connor, Ware \& Andre (1979), particularly for close relaxation times (as applies to globular proteins). The currently best available methods evident from these studies, viz. the non-linear least squares iterative method and possibly the Fourier Transform solution of the Laplace Integral equation method of Gardner et al (1959) were tested by exhaustive computer simulation to see how much error on the data points each could tolerate before failing to resolve the decay constants within reasonable limits. The Fourier method failed, even for data of machine accuracy (14 figures). The non-linear least squares method was found to be unstable due to the problem


of subsidiary minima located in the iteration procedure, even for data of two orders of magnitude more precise than that currently available from the best instrumentation.

The idea of applying the $R$ function line solution as a constraint in the least squares analysis was then applied to the three simulated decays thus effectively reducing the problem from one of four independent variables (the two pre-exponential factors and the two decay constants) to one of three (two pre-exponential factors and one axial ratio, $a / b$ ). The algorithm was then shown to be very successful for synthetic data corresponding to that available from current experimental precision. The problem of the concentration dependence of the decay constants (or equivalently the relaxation times) was then mentioned, and the necessity for extrapolating the values for the axial ratios determined at various concentrations to infinite dilution. The need for extrapolating axial ratios is somewhat conceptually difficult to envisage at first sight, since one would more naturally extrapolate the decay constants and then calculate the axial ratios from them. In the algorithm however, I have included the $R$ value as the constraint - the $R$ function line solution of possible values of ( $a / b, b / c$ ) is the value applicable at infinite dilution, thus the decay constants in the algorithm are constrained to lis on the 'infinite dilution' curve; hence none of these values are the true values for the decay constants at each particular solute concentration. Any extrapolation procedure is therefore empirical, whether it be for the decay constants or for the values of the axial ratio $a / b$.

Investigation of the theoretical reasons for the concentration dependence of the decay constants provides however both an interesting and important field for further work. It has been described (section 1.7.1. \&

Appendix IV) how several important results have arisen from consideration of the concentration dependence of the 'translational' (i.e. viscosity, sedimentation and diffusion) transport coefficients: for example, in producing the $R$ function and making available an estimate of the swollen volume of a macromolecule in solution independent of any model assumed for the macromolecule. The analysis of the concentration dependence of the decay constants is however much more complicated: Rowe's (1977) theory for the translational coefficients was derived assuming only hydrodynamic (i.e. volume flux) concentration effects, viz. solutions of high ionic strength ( $>0.1 \mathrm{M}$ ) and such that electric charge effects (solutemolute interactions) were not present. The situation is apparently the reverse when we come to consider the decay constants: since we are dealing with a rotary macromolecular property, there should be no solute volume flux effects on average giving rise to the hydrodynamic concentration effects considered by Rowe. On the other hand, the current practical restriction of low ionic strengths for the electric birefringence probably results in some solutemsolute electric charge effects; the double layer thickness of charge around a macromolecule in solution is inversely proportional to the square root of the ionic strength (Guoy, 1910, Chapman, 1913). For example, for a macromolecule suspended in a 0.1 M NaCl buffer the thickness of the double layer is $\sim 1 n m$, whereas in a 0.001 M NaCl buffer, the thickness is as high as 10nm (Shaw, 1970). There is therefore a greater likelihood of interference between the relaxations of individual macromolecules, the degres of which one would expect to increase with concentration. In section 1.6. the techniques of light and low-angle x-ray scattering were discussed as an alternative to the hydrodynamic techniques, and stated how Martin (1964) had given formulas relating the radius of gyration to
axial ratio for ellipsoids of revolution. Mendelson and Hartt (1980) have applied results from low angle $x$-ray scattering in terms of a general triaxial ellipsoid model to the regulatory light chains of scallop myosin, and determined axial dimensions of $16 \mathrm{~nm} \times 4.16 \mathrm{~nm} \times 1.26 \mathrm{~nm}$. We also mentioned however that the major disadvantage of the scattering approach was that it is necessary to assume the macromolecule to be of uniform electron density; this can lead to errors of the order of $3 \%$, natwithstanding other errors in measurement as the simple calculation given in Appendix VII for a hypothetical spherical macromolecule with a cavity (based on the electron microscopy and x-ray diffraction results for apoferritin - Harrison, 1959) shows.

It is hoped however that the results of the research described here have now made it possible to determine the gross conformation of biological macromolecules in solution in terms of a general ellipsoid - independent of any assumptions concerning the internal homogeneity of the macromolecules by combining the results of viscosity, sedimentation and electric (or acoustic) birefringence. There are some macromolecules however that apparently will never be modelled by an ellipsoid, even tri-axial. Bovine serum albumin (BSA) is a typical example; McCammon et al (1975) have attempted to account for a value for $\beta$ below the theoretical minimum of $2.112 \times 10^{6}$ (and above the theoretical maximum for $R$ of $1.6-$ see Table 2) by assuming its structure to be porous with respect to the solvent, but found the discrepancy was still far too large. With the availabilty of the tri-axial ellipsoid model and a comparison|with model independent estimates for the swollen molecular volume; a classification of proteins into those which do and those which do not behave as hydrodynamic triaxial ellipsoids in solution can now be made.
APPENDICES

## Appendix I Elliptic Integrals used in this study

$$
\alpha_{0}=\int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda\right) \Delta} ; \beta_{0}=\int_{0}^{\infty} \frac{d \lambda}{\left(b^{2}+\lambda\right) \Delta} \quad ; \quad r_{0}=\int_{0}^{\infty} \frac{d \lambda}{\left(c^{2}+\lambda\right) \Delta}
$$

where $\lambda$ is the positive root of

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}+\frac{z^{2}}{c^{2}+\lambda}=1
$$

and $\quad \Delta=\left\{\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right)\right\}^{\frac{1}{2}}$.

Also

$$
\begin{array}{ll}
\alpha_{0}^{\prime}=\int_{0}^{\infty} \frac{d \lambda}{\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right) \Delta} & \alpha_{0}^{\prime \prime}=\int_{0}^{\infty} \frac{\lambda d \lambda}{\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right) \Delta} \\
\beta_{0}^{\prime}=\int_{0}^{\infty} \frac{d \lambda}{\left(c^{2}+\lambda\right)\left(a^{2}+\lambda\right) \Delta} & \beta_{0}^{\prime \prime}=\int_{0}^{\infty} \frac{\lambda d \lambda}{\left(c^{2}+\lambda\right)\left(a^{2}+\lambda\right) \Delta} \\
\gamma_{0}^{\prime}=\int_{0}^{\infty} \frac{d \lambda}{\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right) \Delta} & \gamma_{0}^{\prime \prime}=\int_{0}^{\infty} \frac{\lambda d \lambda}{\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right) \Delta}
\end{array}
$$

Appendix II Illustration of use of the $\Lambda$ function (equation 50) by application to data available for the tryptic subfragments of fibrinogen

It is apparent from Figure 17 that, until the harmonic mean relaxation time $\tau_{h}$ can be measured to a precision greater than that currently available (~ $\pm 3 \%$ at best, assuming no significant internal rotations of the chromophore or segmental rotations of parts of a macromolecule relative to other parts), use of $\Lambda$ will generally be restricted to prolate ellipsoidal particles above an axial ratio of about three.

Unfortunately, there is at present a lack of reliable steady state fluorescence depolarization data for macromolecules in this axial range. Use of the function may however be illustrated by application to data available for the tryptic fragment of bovine fibrinogen. By using a steady-state fluorescence - depolarization technique, Johnson \& Mihalyi (1965) reported a harmonic mean relaxation time for fibrinogen of $195 \pm 5 \mathrm{~ns}$, a value lower than the corresponding value for a sphere of the same volume (299 ns); the value for $\tau_{h}$ of the tryptic subfragment was 178 ns , strongly suggesting that the tryptic subfragments had rotational freedom within the fitrinogen molecule. Assuming there is still no further internal rotation within the subfragment itself, one can combine this result with viscosity and molecular-weight data obtained previously by Mihalyi \& Godfrey (1963).

Taking $\eta_{r}$ as $95,000 \pm 2,000,[n]$ as $(7.18 \pm 0.07) \mathrm{ml}^{-1} 9^{-1}$ and assuming a $\pm 5 \mathrm{~ns}$ standard error in $\tau_{h}, \Lambda$ is calculated to be $4.74 \pm 0.17$ where the method for calculating the standard error in $\Lambda$ is given by Paradine \& Rivett (1960). This corresponds from Figure 17 to a prolate ellipsoid of axial ratio $6.8 \pm 0.3$ consistent with the estimates of the axial ratio


#### Abstract

derived from four other hydrodynamic parameters, three of which assume no particle suelling due to solvent association (Table 23). The results from electron microscopy studies suggest however that the subfragments are nearly spherical (Hall \& Slayter, 1959); as Mihalyi \& Godfrey (1963) have previously stated, this difference is probably too large to be explained by drying effects alone. At least part of this difference can, however, be possibly ascribed to an apparent discrepancy between the viscosity data of their Figure 4 with the sedimentation data of their equation 2 ; the latter suggests a sedimentation regression coefficient, $k_{s}$, of $\sim 3.6$ (after correction to solution density; Rowe, 1977), whereas the viscosity regression coefficient, $k_{\eta}$, is only $\sim 2.5$. Rowe (1977) has shown that the ratio $k_{\eta} / k_{s}$ is equal to the swelling ratio $\bar{v}_{s} \sqrt{v}$, where $\bar{v}_{s}$ is the swollen specific volume in solution. Mihalyi \& Godfrey's (1963) data apparently gives a value for the swelling of less than 1, indicating the particle to contract in solution, an unlikely event. Unfortunately, although the pH values of the solutions used for the sedimentation and harmonic mean relaxation time measurements are given and are near ( 6.5 and 7.1 respectively), that for the viscosity is not given, so this is a possible source of error.

It is hoped that the availability of the new $\Lambda$ function will encourage the production of more reliable data in order to resolve these difficulties, and also accelerate improvement in the methodology so that $\tau_{h} / \tau_{0}$ can be measured with much greater precision, enabling application of the $\Lambda$ function to prolate ellipsoids of axial ratio less than three and also to oblate ellipsoids.


Table 23. Hydrodynamic parameters and axial ratios for the tryptic subfragments of fibrinogen

| Hydrodynamic <br> Parameter | Derived Axial <br> Ratio | Reference |
| :---: | :---: | :---: |
| $v^{*}$ | 7.8 | Mihalyi \& Godfrey (1963) |
| $f / f_{0}^{*}$ | 7.1 | $n$ |
| $\beta$ | 9.3 | $n$ |
| $\tau_{h} / \tau_{0}^{*}$ | 5.0 | Johnson \& Mihalyi (1965) |
| $\Lambda$ | 6.8 | This study |

Assuming no particle swelling due to solvent association

# Appendix III Illustration of use of the $I$ function (equation 57) by application to data for hemoglobin 

The $I$ function obtained in section 1.7. can be applied to molecular covolume and viscosity data available for hemoglobin. The molecular covolume, $U$, is related to the 2nd virial coefficient, B employed in osmometry by $U=28 M_{I}{ }^{2}$. Baghurst ot al (1975), using a molecular weight of 64,500 found $\cdots$ : the value of the product $B M_{r}$ to be $4.8 \mathrm{ml} / \mathrm{gm}$. Using instead the exact value for the molecular weight found by sequence analysis to be 64,793, this product becomes $4.78 \mathrm{ml} / \mathrm{gm}$; this gives the ratio $U / M_{I}$ to be $9.56 \mathrm{ml} / \mathrm{gm}$. From the plot of reduced specific viscosity against concentration (Figure 51) an intrinsic viscosity of $2.99 \mathrm{ml} / \mathrm{gm}$ has been determined by a least squares fit to the new universal equation for transport coepficients at all solute concentrations (see section 1.7.1. and Appendix IV). The value of $I I$ is calculated to be 3.20 , corresponding to a spherical particle (Figure 24). This is consistent with the findings of X-ray crystallography (Perutz et al, 1960). The value of $\nu$ for a spherical particle is the Einstein value of 2.5. By back substitution into equation ( 8 ) and using a value for $M_{r}$ of 64,793 one obtains a value for $v_{e}$ of $1.286 \times 10^{-19} \mathrm{~cm}^{3}$. This corresponds to a Stokes radius of 31.3 A , in excellent agreement with the result of 32.3 A calculated by Alpert \& Banks (1976) from the diffusion coefficient determined by laser correlation spectroscopy and agrees exactly with the result of 31.3 A calculated by Laurent \& Killander (1964) Prom the diffusion coefficient determined by gel filtration, both groups assuming a hard sphere model. The Stokes radius can also be found directly from the molecular covolume and molecular weight assuming a hard sphere model: Baghurst et al (1975)
determined a value of 31.3 A , again in exact agreement. The corresponding radius of the sphere calculated from the crystallographic dimensions of $64 \times 55 \times 50 \mathrm{~A}$ of Perutz et al (1960) is 28.0 A , indicating hemoglobin to be swollen in solution by approximately $40 \%$ (v/v).

If one uses standard errors of $\pm .03(\equiv 1 \%)$ and $\pm .096(\equiv 1 \%)$ in
$U / M_{r}$ respectively, the calculated standard error (Paradine \& Rivett, 1960) in $\Pi$ is $\pm .045$. The maximum error corresponds to an axial ratio of
1.8 for a prolate model but as high as 6.8 for an oblate model, indicating the difficulty in applying $\Pi$ to macromolecules that are oblatoid.

## Figure 51.

Plot of reduced specific viscosity versus concentration for human oxy hemoglobin ( 0.1 MKCl , buffer $\mathrm{pH}=6.0$ ).

The curve fitted is that due to a weighted least squares fit to the new universal equation for the concentration dependence of transport coefficients (equation 60). The weighting factor used was (1/concentration). $[n]=2.99 \mathrm{ml} / \mathrm{gm}, k_{\eta}=7.8 \mathrm{ml} / \mathrm{gm}$.


Appendix IV Viscous Flow and Sedimentation of Concentrated Dispersions of Particles (quoted Prom A.J. Rowe, mss. in preparation)

The hydrodynamic properties of dispersions of particles in fluids are quite well described at very high particle dilution, both for simple models (spheres, ellipsoids, rods) and for more complex models which may be represented as assemblies of simple models and the appropriate interaction tensors computed. Restricting outselves to the case of small particles (Brownian motion dominant) suspended in liquids, the work of Stokes, Einstein, Perrin, Simha, Broersma and others (for simple models) and of Kirkwood, Bloomfield and others (for assemblies) enables a reasonably accurate description to be given of the sedimentation and viscous flow properties of such suspensions to be given at 'infinite dilution'.

At real particle concentrations however, no theory has proved adequate, even for the simplest particle model - the sphere. The need for such a theory is evident in many fields: in my oun field of Biochemistry it would be useful both for methodological purposes in characterising macromolecular properties and for the description of 'in vivo' systems, which are generally rather concentrated dispersions of macromolecular particles. I have been concerned to derive such a theory, relating the properties of suspensions of particles at real concentration to their 'infinite dilution' behaviour. In a recent paper (Rowe, 1977) a first part of such a theory was described: the extension of this theory to cover the case of high concentrations is now described. The State of the Problem

It has long been noted that the concentration dependence of
sedimentation and of reduced specific viscosity is finite even at high dilution, and remains nearly linear over moderate ranges of concentration:
(sedimentation) $s_{c}=s\left(1-k_{s} c\right) \sim s\left(1+k_{s} c\right)^{-1}$
(viscous flow)

$$
\frac{n_{s p}}{c}=\left(\frac{n_{s p}}{c}\right)_{c \rightarrow 0} \cdot\left(1+k_{n} c\right)
$$

A recently derived theory (Rowe, 1977) shows that

$$
k=k_{s}=2 \bar{v}\left(\frac{\bar{v}_{s}}{\bar{v}}+\left(f / p_{0}\right)^{3}\right)
$$

for compact particles, where $\overline{\mathrm{v}}$ is the partial specific volume of the particle and $f / \rho_{0}$, the frictional ratio, is a parameter computable for simple models and for assemblies of sub-units. This theory is thus applicable to particles of any conformation. The values predicted for both spheres and other particles agree well with experimental evidence and with earlier theoretical predictions for spheres (Figure 52, Table 24).

At higher concentrations two further effects must be considered:
(i) mutually proximity of the particles affects the rate of energy dissipation at constant shear (the 'cloud effect' of Burgers). In general this poses a many-body problem which is not amenable to solution by classical techniques.
(ii) the critical packing fraction ( $\phi_{p}$ ) will be approached. Semiempirical equations due to Mooney (1951), Dougherty and Kreiger (1972) and others describe the viscosity of suspensions of spheres in terms of $\phi_{p}$.
A New General Approach
The theory applicable to high dilutions (Rowe, 1977) was based on the supposition that only a 'frame-of-reference' effect need be considered in this case. Derived in terms of sedimentation, it is shown that the
latter must be unchanged with concentration in a frame of reference defined by the solvent in return flux (i.e. solvent not transported or convected with the particles). The equation above then follows from the relation between the defined frame of reference and the cell-fixed Prame of reference in which measurements are normally made.

To extend this approach to higher concentrations we re-define the problem by considering the system to consist of a large but finite number of volume elements, each element small in comparison to a particle. These volume elements can be classified as elements of disjoint sets V1....V4, shown in a Venn diagram for two particles (Figure 53).

Among interesting properties which may be noticed are that
(i) Sets V1, V3 can be classified into sub-sets
$v 1_{1}-v 1_{n}, v 3_{1}-v 3_{n}$, for $n$ particles in the system
(ii) $\quad v 1_{i} \cap v 1_{j}=\Phi ;$ but $v 3_{i} \cap v 3_{j} \neq \Phi$
(iii) In Newtonian flow, the magnitude of the flow vector of the solvent at any point in the system is defined by the fraction of the volume elements in the vicinity of that point classified as in V2 U V3 in relation to those in V4 U V2 U V3
(iv) V1 ${ }_{i} \cap V 2 \neq \Phi:$ more completely $V 2$ is partitioned into the disjoint subsets V2a and V2b, where v1 ${ }_{i} \cap$ V2a $=\Phi$; $V 1_{i} \cap \mathrm{~V} 2 \mathrm{~b} \neq \Phi:$ and $\phi_{P}$, the critical packing volume of the particles, determines the relative number of elements in $V 2 a$ and $V 2 b \quad\left\{\phi_{p}=1 ; V 2 a=\Phi\right\}$.

On the assumptions that $n$ is large, and that the elements in V3 are located randomly in VZ UV4, then a simple finite probability space
can be constructed, enabling us to calculate the number of elements in V1....V4, and hence the quantity 9 c in

$$
\frac{s_{c}}{s}=\frac{n_{s p} / c}{\left(n_{s p} / c\right)_{c \rightarrow 0}}=(1-g c)
$$

since V1 UV2 UV3 = qc.
The result is given by

$$
\frac{g c-z}{1-z}=\Phi=\left(k c-2 c \bar{v}_{s}\right)-\sum_{i=2}^{i=\infty}(i-1)\left(\Phi^{i}-\Phi^{i+1}\right)
$$

where $z=2 c \bar{v}_{s}-\frac{1}{\phi_{p}}\left(c \bar{v}_{s}\right)^{2}(1-Q)_{+} ; \quad Q=\left(1-\phi_{P}\right) / \phi_{P}$
which for almost all cases simplifies to

$$
\frac{k c-\frac{2 \phi_{p}-1}{\phi_{p}^{2}}\left(c \bar{v}_{s}\right)^{2}}{k c-2 c \bar{v}_{s}+1}
$$

where $k=k_{s}$ or $k_{\eta} ; \bar{v}_{s}=$ specific volume of the hydrodynamic particle.
This equation predicts rather accurately the high-shear viscosity of latex spheres over the entire concentration range (Figures 54 - 58). It is applicable only to Newtonian flow, but is free of arbitrary or empirical constants. The treatment used has some affinity with the widely used approach involving transient doublets, triplets, etc. (i=2 in the above summation refers to 'doublet' interaction, etc.), but as no particle model is employed, the results should be general for all particles. The $\phi_{p}$ term would often be difficult to estimate, but computer simulation shows that an exact knowledge of $\phi_{p}$ is unimportant except at the highest concentrations

Figures 54-58 demonstrate the success of the theory in predicting known properties of sedimentation and viscous flow at real concentrations.

Table 24. Various theoretical estimates and a practical sstimate for $k_{2}$, the second coefficient in the expansion for ${ }^{n}$ rel in terms of $\Phi$ (volume fraction)

$$
\eta_{r e l}=1+k_{1} \Phi+k_{2} \Phi^{2}+
$$

Estimate for $k_{2}$
7.5
9.15
7.5
14.1
12.6
7.6
10.0
'about 10'

Author

Vand (1948)
Manley \& Mason (modification of Vand) (1954)
Kynch (1956)
Gold (1937)
Simha (modification of Gold) (1952)
Batchelor \& Green (1972)
Rowe (1977)
Cheng \& Schachman data on PSL spheres (1955)

## Figure 52.

```
Empirical data and the equation for transport-concentration dependence (Rowe 1977), at high solute dilution. The equation enables \(M_{r}\) (molecular weight) values to be calculated from \(s\) and \(k_{s}\) only. The agreement found between values for \(M_{r}\) computed thus and \(M_{r}\) values from the literature (various methods) is good evidence for the applicability of the equation to a wide range of systems.
```

| Solute | $\frac{M_{r}\left(s+k_{s}\right)}{M_{r}(l i t)}$ | Standard error | Symbol |
| :---: | :---: | :---: | :---: |
| Proteins, nucleic acids, viruses | 1.02 | 0.01 | $\bigcirc$ |
| Cellulose derivatives in CUAM | 1.01 | 0.09 | $\bigcirc$ |
| Cellulose derivatives in ACETONE | 0.97 | 0.10 | $\triangle$ |
| Levans (aqueous) | 0.99 | 0.04 | $\square$ |
| ```Poly(methylymacrylate) in ETHYL ACETATE``` | 1.05 | 0.08 | $\Delta$ |




Figure 53. Venn diagram showing the volume elements for two particles
in solution

```
V1 - particle volume
V2 - particle comvolume
V3 - solvent frictional forward flux
V4 - solvent return volume flux
```



Fiqure 54. Relative viscosity of spheres as a function of volume fraction. Predicted line, for $k_{\eta}=4, \bar{v}_{s}=1, \phi_{p}=0.64$. Experimental data points are also shown


Figure 55. For highly asymmetric particles the sedimentation coefficient falls very steeply with concentration, to reach a relatively constant 'plateau' value. Computed curves.


Figure 56. Viscosity/sedimentation coefficients as a function of concentration for $k_{s}\left(k_{n}\right)=1000, \bar{v}_{s} \equiv 1$. The $1 / \mathrm{s}$ plot is linear, whilst the direct plot is markedly curved. Computed curves.


Fiqure 57. Viscosity/sedimentation coefficients as a function of concentration for $k_{s}\left(\underline{k}_{n}\right)=6$. Both plots are reasonably linear over this concentration range. Computed curves.

Figure 58. Hydrodynamic data for Bovine serum albumin fitted
using the new general equation for transport at
all solute concentrations


Appendix $V$ FORTRAN IV computer programs
Program 1: Evaluates values of the various hydrodynamic shape functions

\[\)|  for tri-axial ellipsoids for a user specifiable value of  |
| :--- |
|  the axial ratios $(a / b, b / c)$ |

\]

Program 2: Produces tables of these functions for axial ratios between 1.0 and 2.0 in steps of 0.1

Program 3: Produces a contour map of $v$ in the ( $a / b, b / c$ ) plane for axial ratios between 1.0 and 3.0

Program 4: . Produces plots of the various triaxial functions in the ( $a / b, b / c$ ) plane corresponding to the point (1.5, 1.5). Several plots allow for arbitrary errors in measurement

Program 5: Non-linear least squares iterative method for resolving a 2term exponential birefringence decay. This program (and the following two) produces its own synthetic data

Program 6: Fourier Transform solution of the Laplace Integral Equation method

Program 7: R-constrained non-linear least squares iterative method

## Function

$a / b$
$b / c$
$v$
$f / f_{0}(\equiv P)$
$\zeta_{a} / \zeta_{0}$
$\zeta_{b} / \zeta_{0}$
$\zeta_{c} / \zeta_{o}$
$e_{a} / e_{0}$
$e_{b} / \varrho_{0}$
$e_{c} / \rho_{o}$
B
R
$\delta_{a}$
$\delta_{b}$
$\delta_{c}$
$\gamma_{a}$
$\gamma_{b}$
$\gamma_{c}$
${ }^{\mu}$ a
$\mu_{b}$
$\mu_{c}$
$\tau_{h} / \tau_{o}$
$\Psi$
$\Lambda$
$\theta_{+}^{\text {red }}$
${ }_{\theta}^{\text {red }}$

Computer Symbol

$$
A / B
$$

B/C

$$
N U, S
$$

F
CA, CA/CO
CB, CB/CD
CC, CC/CO
RHOA, RHOA/RHOD
RHOB, RHOB/RHOD
RHOC, RHOC/RHOO
BETA
R
DELTAA, DELTA(A)
DELTAB, DELTA(B)
DELTAC, DELTA(C)
GAMMAA, GAMMA(A)
gammab, gamma(b)
GAMMAC, GAMMA(C)
MUA, MU(A)
MUB, MU(B)
MUC, MU(C)
tau, tau/taud
PSI
LAMBDA
TPLS, THETA+, Z
TMNS, THETA-, U

| Function | Computer Symbol |
| :---: | :---: |
| $\delta_{+}$ | DPLS, DELTA,$+ V$ |
| $\delta_{-}$ | DMNS, DELTA-, W |
| $\gamma_{+}$ | GPLS, GAMMA + |
| $\gamma_{-}$ | GMNS, GAMMA- |
| $\tau_{1} / \tau_{0}$ | T1 |
| $\tau_{2} / \tau_{0}$ | T2 |
| $\tau_{3} / \tau_{0}$ | T3 |
| $\tau_{4} / \tau_{0}$ | T4 |
| $\tau_{5} / \tau_{0}$ | T5 |
| $\theta_{+}$ | THPLUS |
| $\theta_{-}$ | THMNUS |

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
THIS PROGRAM GENERATES VALUES OF THE VARIOUS HYDROOYNAMIC SHAPE FUNCTIONS FOR A USER SPECIFIABLE VALUE OF THE AXIAL RATIOS $A / B(=N 1)$ \＆$B / C(=N 2)$
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
PROGRAM MAIN（INPUT，OUTPUT，TAPEZ＝INPUT，TAPE3＝OUTPUT）
COMMON／PARAM／A，C，NN
EXTERNAL FUN
DIMENSION ALPHA（10）
REAL NU，M，O，P
REAL MUA，MUB，MUC，PSI，N1，N2，RHOA，RHOB，RHOC
$C$ ENTER AS DATA AT THE FOOT OF THE PROGRAM（A／B，B／C）
READ（ $2, *$ ）N1，N2
NN＝3
COMPUTE THE ELLIPTIC INTEGRALS
D045 K＝1，10
$A=N 1$
$\mathrm{B}=1$ ． 0
$C=1.0 / \mathrm{N} 2$
$\mathrm{NN}=\mathrm{NN}+1$
SET LIMITS FOR NUMERICAL INTEGRATION（THESE LIMITS
BELOW HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCEI
$A A=0.0$
$B B=1000000$
IF（NN．EQ．10）BB $=500000000$
MAXDIV $=50$
EPS $=1.0 \mathrm{E}-08$
$A C C=0.0$
IFAIL＝0
CALL U．K．＂NAG＂LIBRARY ROUTINE FOR NUMERICAL EVALUATION
OF THE INTEGRALS＂ALPHA＂GIVEN IN THE SUBROUTINE BELOW
CALL DOIAGF（AA，BB，FUN，MAXDIV，EPS，ACC，ANS，ERROR，NOFUN，IFAIL）
ALPHA $(N N)=$ ANS
45 CONTINUE
$B=1.0$
now compute the function values using the stored integral values
$N U=(1.0 /(A * B * C)) *(14.0 / 15.0) *(1$ ALPHA（7）$+A L P H A(8)$
＋＋ALPHA（9））／（ALPHA 81 ＊ALPHA（9）＋ALPHA（9）＊ALPHA
$+(7)+A L P H A(7) * A L P H A(8)))+(1.0 / 5.0) *((1)$ ALPHA（2）

+ ＋ALPHA（3））／（ALPHA（4）＊（B＊B＊ALPHA $(2)+C * C \neq A L P H A(3)$
$+1) 1+((A L P H A(3)+A L P H A(1)) /(A L P H A(5) *(C * C * A L P H A(3)$
$\left.\left.++A^{*} A^{*} A L P H A(1)\right)\right)+((A L P H A(1)+A L P H A(2)) /(A L P H A(6)$
+ ＊（A＊A＊ALPHA（1）＋B＊$\left.\left.B^{*} A L P H A(2)\right) 11\right)$
$M=(B * B+C * C) /(B * B * A L P H A(2)+C * C * A L P H A(3))$
$0=(C * C+A * A) /(C * C * A L P H A(3)+A * A * A L P H A(1))$
$P=\left(A^{*} A+B^{*} B\right) /\left(A * A * A L P H A(1)+B^{*} B^{*} A L P H A(2)\right)$
TPLS $=\left(\left(A^{*} B+C\right) /(12.0)\right) *((1(1.0 / M)+(1.0 / 0)+(1.0 / P$
$+1)+\left(\left(1.0 / M^{* * 2.0)+(1.010 * * 2.0)+(1.0 / P * * 2.0))-~}\right.\right.$
$+((1.0 /(M * 0))+(1.0 /(0 * P))+(1.0 /(P * M$
$+1111 * * 0.511$
TMNS $=\left(\left(A^{*} B * C\right) /(12.0)\right) *((1(1.0 / M)+(1.0 / 0)+(1.0 / P$
$+))-\left((1,0 / M * * 2.0)+\left(1.0100^{* * 2} 0\right)+(1.0 / P * * 2.0)\right)-$
$+\left(11.0 /\left(M^{*} 0\right)\right)+(1.0 /(0 * P))+(1.0 /(P * M$
$+1110 * 0.511$
DPLS $=6.0^{* T P L S * N U}$
DMNS $=6.0^{*} T$ MNS ${ }^{*}$ NU
$\left.F=2.0 /\left(\left(1 A^{*} B^{*} C\right)^{* *}(1.0 / 3.0)\right) * A L P H A(10)\right)$
$R=2.0 *(1.0+(F * * 3.0)$ ）$/ \mathrm{NU}$
BETA $=(1.0 / 1000000.0) *(1(6.0249 * *(1.0 / 3.0)) *(10.0 * *(23.0 / 3.0$
$+) 1 / /(16200 . j * 3.141592654 * 3.141592654) * *(1.0 / 3.0))) *(N U$
＋＊＊（1．0／3．0） 1 ／F
$C A=\left(2.0 /\left(3.0 * A * B^{*} C\right)\right) * M$
$C B=(2.0 /(3.0 * A * B * C)) * 0$
$C C=\left(2.0 /\left(3.0 * A^{*} B^{*} C\right)\right) * P$
RHOA $=2.0 /(1.0 / C B)+(1.0 / C C))$
RHOB $=2.0 /((1: 0 / C C)+(1: 0 / C A))$
$R H O C=2.0 /(1.0 / C A)+(1.0 / C B))$
DELA $=N U / C A$
DELB＝NU／CB
DELC＝NU／CC
TAU $=3.0 /(1.0 / C A)+(1.0 / C 3)+(1.0 / C C))$
PSI $=F *((1.0 / T A U) * *(1.0 / 3.0))$
$V=N U / T A U$
$Z Z=(1.012 .0) *(F * * 3.0)$
GAMMA $=Z Z *((1.0 / C B)+(1.0 / C C))$
GAMMAB $=2 Z *((1.0 / C C)+(1.0 / C A))$
GAMMAC $=2 Z *((1.0 / C A)+(1.0 / C B))$
MUA $=\left(C A^{* *}(1.0 / 3.0)\right) / F$
$M \cup B=\left(C B^{* *}(1.3 / 3.0)\right) / F$
MUC $=(C C * *(1.0 / 3.0)) / F$
GPLS $=6.0^{*} T P L S^{*}(F * * 3.0)$

```
    GMNS=6.0*TMNS*(F**3.0)
    X1=0.5*((1.0/RHOB) + (1.0/RHOC)-(1.0/RHOA))
    x2=0.5*((1.0/RHOC) +(1.0/RHOA)-(1.0/RHOB))
    X3=0.5*((1.0/RHOA)+(1.0/RHOB)-(1.0/RHOC))
    x4=(x1+x2+x3)/3.0
    x5=((x1**2.0)+(x2**2.0)+(x3**2.0)-(x1* x2)-(x2* x3)-(x3* x1))
+**0.5
    T1=1.0/(\times4+\times1)
    T2=1.0/(\times4+\times2)
    T3=1.0/(X4+X3)
    T4=3.0/((6.0**4)-(2.0**5))
    T5=3.0/((6.0**4)+(2.0**5))
    WRITE (3,97)
9 7
    WRITE(3,98)
98
9) FORMATI' 5X,* A/B
*F7.2,* B/C ",F7.21
    FORMAT( 5X,* A
100 FORMAT( 5X,*NNU *,F10.5)
    WRITE (3,106)F
106 FORMAT( 5X,**F *,F10.5)
    WRITE(3,101)TPLS
101 FORMAT( 5X,*" THETA+ ",F15.5)
    WRITE (3,102)TMNS
102 FORMAT('5X,* THETA- ",F15.5)
    WRITE (3,103) DPLS
103 FORMAT('5x,* DELTA+ ",F15.5)
    WRITE(3,104)OMNS
104 FORMAT('5X,* DELTA- ",F15.5)
    WRITE (3,105)R
105 FORMAT('5x,* R *,F15.5)
    WRITE (3,107) BETA
107 FORMAT( 5X,* BETA *,F15.5)
    WRITE (3,202)
202 FORMAT( 5X,*THE 3 ROTATIONAL FRICTIONAL RATIOS:*)
    WRITE (3,108).CA
108 FORMAT( 5X,% CA *,F15.5)
    WRITE (3,109)CB CB *,F15.5)
    WRITE (3, 110)CC
10 FORMAT(5x,* CC ",F15.5)
    WRITE(3,203)
203 FORMAT( 5X,"THE 3 ROTATIONAL RELAXATION TIME RATIOS:*)
    WRITE (3,111)RHOA
111 FORMAT( 5X,* RHOA *,F15.5)
    WRITE (3,112) QHOB
112 FORMAT ( 5x,* RHOB *,F15.5)
    WRITE (3,113),RHOC *, *,F15.5)
    WRITE (3,114) OELA
114 FORMAT( 5X,* DELTAA *,F15.5)
    WRITE(3, 115)DELB NOLTAB ••,F15.5)
    WRITE (3,116)DELC
116 FORMAT( 5X,* DELTAC *,F15.5)
    WRITE (3,204)
204 FORMAT('5X,"THE HARMONIC MEAN RELAXATION TIME RATIO:")
    WRITE (3,117) TAU
117 FORMAT( 5X,**TAU *,F15.5)
    WRITE (3,118)PSI
118 FORMAT( 5X,* PSI *,F15.5)
    WRITE (3,119)V
119 FORMAT( 5X,*LAMBDA *,F15.5)
120 FORMAT!, 5X,*GAMMAA *,F15.5)
    WRITE (3,121) GAMMAB
121 FORMAT( 5X,'0GAMMAB
122 FORMAT(' 5X,*GAMMAC *,F15.5)
123 FORMAT('5X,*MMUA *,F15.5)
    WRITE (3,124)MUB
124 FORMAT( 5X,**MUB **F15.5)
    WRITE (3,125)MUC
125 FORMAT( 5X,**MUC *,F15.5)
    WRITE (3,126) GPLS
126 FORMAT('5X,*GAMMA+ *,F15.5)
127 FORMAT(, 5X, GGAMMA-*,F15.5)
    WRITE (3,201)
```



REAL FUNCTION FUN (X)
COMMON/PARAM/A,C,NN
$B=1.0$
GOTO $(10,20,30,40,50,60,70,80,90,100)$, NN
$10 \mathrm{FUN}=1 /\left((A * A+X) * * 1.5 *\left(B^{*} B+X\right) * * 0.5^{*}(C * C+X) * * 0.5\right)$ RETURN
$20 \mathrm{FUN}=1 /\left((A * A+X) * * 0 \cdot 5 *(B * B+X) * * 1 \cdot 5^{*}(C * C+X) * * 0.5\right)$ RETURN
$30 \mathrm{~F} \cup \mathrm{~N}=1 /\left(\left(A^{*} A+X\right) * * 0.5 *(B * B+X) * * 0.5 *(C * C+X) * * 1.5\right)$ RETURN
$40 \mathrm{FUN}=1 /\left((A * A+X) * * 0.5 *(B * B+X) * * 1 \cdot 5^{*}(C * C+X) * * 1.5\right)$ RETURN
$50 \mathrm{FUN}=1 /\left(\left(A^{*} A+X\right) * * 1.5^{*}\left(B^{*} B+X\right) * * 0.5^{*}(C * C+X) * * 1.5\right)$ RETURN
$60 \mathrm{FUN}=1 /\left((A * A+X) * * 1 \cdot 5^{*}\left(B^{*} B+X\right) * * 1 \cdot 5^{*}(C * C+X) * * 0.5\right)$ RETURN
$70 \mathrm{FUN}=X /\left(\left(A^{*} A+X\right) * * 0.5^{*}\left(B^{*} B+X\right) * * 1.5^{*}\left(C^{*} C+X\right) * * 1.5\right)$ RETURN
$80 \mathrm{FUN}=\mathrm{X} /\left((A * A+X) * * 1.5 *(B * B+X) * * 0.5^{*}(C * C+X) * * 1.5\right)$ RETURN
$90 \mathrm{FUN}=\mathrm{X} /\left(\left(A^{*} A+X\right) * * 1.5^{*}\left(B^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 0.5\right)$ RETURN
100 FUN=1.0/( $((A * A+X) *(B * B+X) *(C * C+X)) * *(0.5)$ RETURN
END


THIS PROGRAM COMPUTES TABLES OF THE VISCOSITY INCREMENT NU, THE TRANSLATIONAL FRICTIJNAL RATIO (F/FO), THE ROTATIONAL FRICTIONAL RATIOS CA/CO, CB/CO, CC/CO, THE ROTATIONAL RELAXATION TIME RATIOS(RHOA/RHOO, RHOB/RHOO, RHOC/RHOO), THE HARMONIC MEAN RELAXATION TIME RATIO( TAU/TAUO, , THE RIDGEWAY ELECTRIC BIREFRINGENCE DECAY CONSTANTS (THETA+, THETA-), AND THEIR CORRESPONDING SWELLING - INDEPENDENT FUNCTIONS:
R, BETA, DELTAA, DELTAB, DELTAC, GAMMAA, GAMMAB, GAMMAC, MUA, MUB, MUC, PSI, DELTA+, DELTA-, GAMMA + AND GAMMAAS FUNCTIONS OF THE AXIAL RATIOS A/B, B/C, IN THE RANGE 1.0 TO 2. 0 IN STEPS OF O.1, FOR A GENERAL TRIAXIAL ELLIPSOID PARTICLE MODEL. I THE SUBSCRIPT *O REFERS TO THE CORRESPONDING COEFFICIENT FOR A SPHERE OF EQUAL VOLUME,

PROGRAM MAIN(INPUT, OUTPUT, TAPE2=INPUT,TAPE3=OUTPUT) COMMON/PARAM/A, C, NN
EXTERNAL FUN
DIMENSION ALPHA $(10,11,11), \operatorname{NU}(11,11), F(11,11), R(11,11), H(1)$
, BETA 11,11$), C A(11,11), C B(11,11), C C(11,11), M(11,11), 0(11,11)$
, P(11, 11), TPLS $(11,11)$, TMNS $(11,11), \operatorname{RHOA}(11,11), \operatorname{RHOB}(11,11)$
, RHOC $(11,11)$, TAU $(11,11), \operatorname{PSI}(11,11), D E L A(11,11), D E L B(11,11)$
, $\operatorname{DELC}(11,11), \operatorname{GAMMAA}(11,11), \operatorname{GAMMAB}(11,11), \operatorname{GAMMAC}(11,11), M \cup A(11,11)$
, MUB $(11,11), \operatorname{MUC}(11,11), D P L S(11,11), D M N S(11,11), G P L S(11,11)$
, GMNS (11, 11), Y(11), Z(11), ZZ(11,11)
REAL NU,M,O,P, MUA,MUB,MUC,PSI
COMPUTE THE ELLIPTIC INTEGRALS
$\mathrm{NN}=0$
$0045 \mathrm{~K}=1,10$
$A=0.9$
$\mathrm{NN}=\mathrm{NN}+1$
$0040 \quad I=1,11$
$A=A+0.1$
$C=1.0 / 0.9$
D030 $\mathrm{N}=1,11$
$C=C /\left(1.0+0.1^{*} C\right)$
SET LIMITS FOR NUMERICAL INTEGRATION (THESE LIMITS
BELOW HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCE)
$A A=0.0$
$B B=1000000$
IF (NN.EQ.10) BB=500000000
MAXDIV=50
EPS $=1 \cdot 0 E-08$
$A C C=0.0$
IFAIL=0
CALL U.K. "NAG* LIBRARY ROUTINE FOR NUMERICAL EVALUATION
OF THE INTEGRALS "ALPHA" GIVEN IN THE SUBROUTINE BELOW
CALL DO1AGF (AA, BS, FUN, MAXDIV,EPS, ACC, ANS, ERROR, NOFUN, IFAIL)
ALPHA $(N N, I, N)=A N S$
CONT INUE
CONT INUE
CONT INUE
$B=1.0$
$A=0.9$
$0080 \mathrm{~J}=1,11$
$A=A+0 \cdot 1$
$Y(J)=A$
$C=1.0 / 0.9$
$0070 \mathrm{~N}=1,11$
$C=C /(1 \cdot 0+0 \cdot 1 * C)$
$Z(N)=1 / C$
NOW COMPUTE THE FUNCTION VALUES USING THE STORED INTEGRAL VALUES
$N \cup(J, N)=\left(1.0 /\left(A * B^{*} C\right)\right) *((4.0 / 15.0) *((A L P H A(7, J, N)+A L P H A(3, J, N)$

+ +ALPHA $(9, J, N)) /(A L P H A(8, J, N) * A L P H A(9, J, N)+A L P H A(9, J, N) * A L P H A$
$+(7, J, N)+A L P H A(7, J, N) * A L P H A(8, J, N))+(1.0 / 5.0) *(($ (ALPHA $2, J, N)$
+ +ALPHA $(3, J, N)) /\left(A L P H A(4, J, N)^{*}\left(B^{*} B^{*} A L P H A(2, J, N)+C * C * A L P H A(3, J, N)\right.\right.$
$+1))+\left((A L P H A(3, J, N)+A L P H A(1, J, N)) /\left(A L P H A(5, J, N) *\left(C^{*} C * A L P H A(3, J, N)\right.\right.\right.$
$++A * A * A L P H A(1, J, N)))+((A L P H A(1, J, N)+A L P H A(2, J, N)) /(A L P H A(5, J, N)$
+     * (A*A*ALPHA $\left.\left.\left.\left.(1, j, N)+B^{*} B^{*} A L P H A(2, J, N)\right)\right)\right)\right)$
$F(J, N)=2.0 /(((A * B * C) * *(1.0 / 3.0)) * A L P H A(10, J, N))$
$R(J, N)=2.0 *(1.0+(F(J, N) * * 3,0)) / N U(J, N)$
$\operatorname{BETA}(J, N)=(1.0 / 100 C 000.0) *((16.0249 * *(1.0 / 3.0)) *(10.0 * *(23.0 / 3.0$
$+)) / /((16200.0 * 3.141592654 * 3.141592654) * *(1.0 / 3.0)))^{*}(N U(J, N)$
$+* *(1,0 / 3.0)) / F(J, N)$
$M(J, N)=\left(B^{*} B+C * C\right) /\left(B^{*} B^{*} \operatorname{ALPHA}(2, J, N)+C^{*} C * A L P H A(3, J, N)\right)$
$O(J, N)=\left(C \neq C+A^{*} A\right) /\left(C C^{*} C^{*} A L P H A(3, J, N)+A * A * A L P H A(1, J, N)\right)$
$P(J, N)=(A * A+B * B) /\left(A * A * A L P H A(1, J, N)+B^{*} B^{*} A L P H A(2, J, N)\right)$
$\operatorname{TPLS}(J, N)=\left(\left(A^{*} B^{*} C\right) /(12.0)\right) *(((1.0 / M(J, N))+(1.0 / 0(J, N))+(1.0 / P(J$,
$+N))+(((1.0 / M(J, N) * * 2.0)+(1.0 / 0(J, N) * * 2.0)+(1.0 / P(J, N) * * 2.0))=$

```
    +((1.0/(M(J,N)*0(J,N)))+(1.0/(0(J,N)*P(J,N)))+(1.0/(P(J,N)*M(J,
    + N||)|)**0.5)|
    TMNS (J,N)=((A*B*C)/(12.0))*((1(1.0/M(J,N))+(1.0/0(J,N))+(1.0/P(J,
```



```
    +((1.0/(M(J,N)*O(J,N)))+(1.0/(O(J,N)*P(J,N)))+(1.0/(P(J,N)*M(J,
    + N|)|)|**0.5)|
        CA(J,N)=(2.0/(3.0*A*B*C))*M(J,N)
    CB(J,N)=(2.0)(3.0*A*B*C))*O(J,N)
    CC (J,N)=(2.0/(3.0*A*B*C))*P(J,N)
    RHOA (J,N)=2.0/((1.0/CB(J,N))+(1.0/CC(J,N)))
    RHOB (J,N)=2.0/((1.O/CA(J,N))+(1.O/CC(J,N)))
    RHOC (J,N)=2.0/((1.O/CA(J,N))+(1.0/CB(J,N)))
    OELA (J,N)=NU(J,N)/CA(J,N)
    DELB (J,N)=NU (J,N)/CB(J,N)
    DELC}(J,N)=NU(J,N)/CC(J,N
    TAU(J,N)=3.0/((1.0/CA(J,N))+(1.0/CB(J,N))+(1.0/CC(J,N)))
    PSI (J,N)=F(J,N)*((1.0/TAU(J,N))**(1.0/3.0))
    ZZ (J,N)=(1.0%2.0)*(F}(J,N)**3.0
    GAMMAA }(J,N)=ZZ(J,N)*((1.0/CB(J,N))+(1.0/CC (J,N))
    GAMMAB(J,N)=ZZ(J,N)*((1.O/CA(J,N))+(1.0/CC(J,N)))
    GAMMAC (J,N)=ZZ(J,N)*((1.0/CA(J,N))+(1.0/CB(J,N)))
    MUA(J,N)=(CA (J,N)**(1.0/3.0))/F(J,N)
    M\cupB(J,N)=(CB (J,N)**(1.0/3.0))/F(J,N)
    MUC(J,N)=(CC(J,N)**(1.0/3.0))/F(J,N)
    DPLS (J,N)=6.0*TPLS (J,N)*NU(J,N)
    DMNS (J,N)=6.0*TMNS (J,N)*NU(J,N)
    GPLS (J,N )=6.0*TPLS (J,N)*(F (J,N)**3.0)
    GMNS (J,N)=6.0*TMNS (J,N)*(F (J,N)**3.0)
    70 CONTINUE
    80 CONTINUE
    THE PROGRAM NOW WRITES OUT THE COMPUTED VALUES IN TABLE FORM
    WRITE (3,600)
    PRINT (3,60)
    60 FORMAT ( "1
        B/C NU F/FO
                                BETA*)
    0071 J=1,11
    DRITE N=1, % 1 1) Y (J),Z(N),NU(J,N),F(J,N),R(J,N),BETA(J,N)
    73 FORMAT
    CONTINUE
    7 1
    CONTINUE
    WRITE (3,610)
    6 1 0 ~ F O R M A T ~ ( * * ) ~ ( \% )
    PRINT(3,61) A/B B/C CA/CO CB/CO CC/CO*)
    0074 J=1,11
    D075 N=1,11
    WRITE (3,76)Y(J),Z(N),CA(J,N),CB(J,N),CC(J,N)
    76
    FORMAT( 2F7.1,3F8.3)
    75 CONTINUE
    74 CONTINUE
    WRITE (3,620)
620 FORMATP
    PRINT (3,62)
    6 2 \text { FORMAT('*1}
    D081 J=1,11
    WRITE(3,83)Y(J),Z(N),RHOA(J,N),RHOB(J,N),RHOC(J,N)
    FORMAT("2F7.1,3F9.3)
    82 CONTINUE
    CONTINUE
    WRITE (3,630)
    FORMAT( "*)
    PRINT (3,63)
    63 FORMAT ('1
    D084 J=1,11
    0085 N=1,11
    WRITE(3,86)Y(J),Z(N),DELA(J,N),DELB(J,N),DELC(J,N)
        ORMAT( 2F7.1,3F8.3)
    CONTINUE
    84 CONTINUE
        WRITE (3,640)
        FORMAT(, %4*)
        PRINT (3,64)
    64 FORMAT( "1
                                A/B B/C GAMMA(A) GAMMA(B) GAMMA (C)")
    0091 J=1,11
    0092 N=1,11
    WRITE (3,93)Y(J),Z(N),GAMMAA (J,N),GAMMAB(J,N),GAMMAC(J,N)
    93
    FORMAT('2F7.1,3F8.3)
    92 CONTINUE
    9 1 ~ C O N T I N U E ~
```

WRITE $(3,650)$
650 FORMAT $(, 6)$
65 FORMAT $\left.{ }^{* 1} \quad A / B \quad B / C \quad \operatorname{MU}(A) \quad \operatorname{MU}(B) \quad \operatorname{MU}(C) *\right)$
$0094 \mathrm{~J}=1,11$
$0095 \mathrm{~N}=1,11$
WRITE $(3,96) Y(J), Z(N), M U A(J, N), M U B(J, N), M \cup C(J, N)$

## 96

 FORMAT ( 2 F7.1,3F8. 395 CONTINUE
94 CONTINUE
WRITE $(3,650)$
660 FORMAT
PRINT $(3,66)$
66 FORMAT(". 1
A/B B/C THETA + THETA- TAU/TAUO PSI*)
$D 0101 \mathrm{~J}=1,11$
$00102 \mathrm{~N}=1,11$
WRITE $(3,103) Y(J), Z(N), T P L S(J, N), T M N S(J, N), T A U(J, N), P S I(J, N)$
103 FORMAT ( 2 F7.1,4F8.3)
102 CONTINUE
101 CONTINUE
WRITE $(3,670)$
670 FORMAT
PRINT $(3,67)$
67. FORMAT ( " 1
$D 0104$
00105
$\mathrm{~N}=1,11$
11
WRITE $(3,106) Y(J), Z(N), D P L S(J, N), D M N S(J, N)$
106 FORMAT ( 2 F7.1,2F8.3)
105 CONTINUE
104 CONTINUE
WRITE $(3,680)$
680 FORMAT( **)
PRINT $(3,68)$ GORMA $(=1$ GAMMA+ GAMMA-*)
FOR
D0111 $\mathrm{J}=1,11$
DO112 $N=1,11$
WRITE $(3,113) Y(J), Z(N), G P L S(J, N), G M N S(J, N)$
113 FORMAT( 2 F7.1,2F8.3)
112 CONTINUE
111 CONTINUE
WRITE $(3,690)$
FORMAT
690
00114
00115
$\mathrm{~N}=1,11$
$\mathrm{~N}=11$
115 CONTINUE
114 CONTINUE
STOP
STOP

REAL FUNCTION FUN ( $X$ )
COMMON/PARAM/A,C,NN
$B=1.0$
GOTO $(10,20,30,40,50,60,70,80,90,100)$, NN
$10 \mathrm{FUN}=1 /((A * A+X) * * 1.5 *(B * B+X) * * 0.5 *(C * C+X) * * 0.5)$
RETURN
$20 \mathrm{FUN}=1 /(-(A * A+X) * * 0.5 *(B * B+X) * * 1.5 *(C * C+X) * * 0.5)$
RETURN
30 FUN $=1 /\left(\left(A^{*} A+X\right) * * 0.5 *(B * B+X) * * 0.5 *(C * C+X) * * 1.5\right)$
RETURN
40 FUN $=1 /\left(\left(A^{*} A+X\right) * * 0.5^{*}\left(B^{*} B+X\right) * * 1.5 *(C * C+X) * * 1.5\right)$
RETURN
$50 \mathrm{FUN}=1 /((A * A+X) * * 1.5 *(B * B+X) * * 0.5 *(C * C+X) * * 1.5)$
RETURN
$60 \mathrm{FUN}=1 /((A * A+X) * * 1 \cdot 5 *(B * B+X) * * 1.5 *(C * C+X) * * 0.5)$
RETURN
$70 \mathrm{FUN}=\mathrm{X} /\left(\left(A^{*} A+X\right) * * 0.5 *\left(B^{*} B+X\right) * * 1.5 *(C * C+X) * * 1.5\right)$
RETURN
$80 \mathrm{FUN}=X /((A * A+X) * * 1.5 *(8 * B+X) * * 0.5 *(C * C+X) * * 1.5)$
RETURN
$90 \mathrm{FUN}=\mathrm{X} /\left(\left(A^{*} A+X\right) * * 1.5^{*}\left(B^{*} B+X\right) * * 1.5 *(C * C+X) * * 0.5\right)$
$100 \mathrm{FUN}=1.0 /(((A * A+X) *(B * B+X) *(C * C+X)) * * 0.5)$
RETURN
END










| A/B | B/C | RHOA/RHOO | RHOB/RHOO | RHOC/RHOO |
| :---: | :---: | :---: | :---: | :---: |
| 1.0 | 1.0 | 1.000 | 1.000 | 1.000 |
| 1.0 | 1.1 | 1. 013 | 1.013 | -986 |
| 1.0 | 1. 2 | 1.030 | 1.030 | -983 |
| 1.0 | 1.3 | 1.050 | 1.050 | -988 |
| 1.0 | 1.4 | 1.074 | 1.074 | -998 |
| 1.0 | 1.5 | 1.100 | 1.100 | 1.013 |
| 1.0 | 1.6 | 1.128 | 1.128 | 1.032 |
| 1.0 | 1.7 | 1.158 | 1.158 | 1. 154 |
| 1.0 | 1.8 | 1.189 | 1.189 | 1.378 |
| 1.0 | 1.9 | 1. 222 | 1. 222 | 1.104 |
| 1.0 | 2.0 | 1. 256 | 1.256 | 1.132 |
| 1.1 | 1.0 | 1.025 | . .993 | -.993 |
| 1.1 | 1.1 | 1.043 | 1.006 | -985 |
| 1.1 | 1.2 | 1.066 | 1.024 | -986 |
| 1.1 | 1.3 | 1.092 | 1.045 | -995 |
| 1.1 | 1.4 | 1.122 | 1.069 | 1.009 |
| 1.1 | 1.5 | 1.153 | 1.095 | 1.327 |
| 1.1 | 1.6 | 1.187 | 1.124 | 1.049 |
| 1.1 | 1.7 | 1.222 | 1.154 | 1.074 |
| 1.1 | 1.8 | 1. 258 | 1.186 | 1.101 |
| 1.1 | 1.9 | 1. 295 | 1. 219 | 1.130 |
| 1.1 | 2.0 | 1.334 | 1.253 | 1. 160 |
| 1.2 | 1.0 | 1.058 | - 992 | -. 992 |
| 1.2 | 1.1 | 1.082 | 1.005 | -988 |
| 1.2 | 1.2 | 1.111 | 1.023 | -993 |
| 1.2 | 1.3 | 1.143 | 1.044 | 1.005 |
| 1.2 | 1.4 | 1.177 | 1.069 | 1.022 |
| 1.2 | 1.5 | 1. 214 | 1.096 | 1.043 |
| 1.2 | 1.6 | 1. 253 | 1.125 | 1.068 |
| 1.2 | 1.7 | 1. 293 | 1.156 | 1. 095 |
| 1.2 | 1.8 | 1.334 | 1.188 | 1. 124 |
| 1.2 | 1.9 | 1.376 | 1.222 | 1.155 |
| 1.2 | 2.0 | 1.419 | 1.256 | 1.188 |
| 1.3 | 1.0 | 1.097 | . 994 | -994 |
| 1.3 | 1.1 | 1.128 | 1.008 | -994 |
| 1.3 | 1.2 | 1.162 | 1.026 | 1.002 |
| $1 \cdot 3$ | 1.3 | 1.199 | 1.048 | 1.017 |
| 1.3 | 1.4 | 1. 239 | 1.072 | 1.036 |
| 1.3 | 1.5 | 1. 281 | 1.100 | 1. 060 |
| 1.3 | 1.6 | 1.325 | 1.130 | 1.086 |
| 1.3 | 1.7 | 1.370 | 1.161 | 1.116 |
| 1.3 | 1.8 | 1.417 | 1.194 | 1.147 |
| 1.3 | 1.9 | 1.464 | 1. 228 | 1. 180 |
| 1.3 | 2.0 | 1. 512 | 1.263 | 1. 215 |
| 1.4 | 1.0 | 1. 143 | . 999 | -999 |
| 1.4 | 1.1 | 1. 179 | 1.013 | 1.002 |
| 1.4 | 1.2 | 1. 219 | 1.031 | 1.012 |
| 1.4 | 1.3 | 1. 262 | 1.053 | 1.029 |
| 1.4 | 1.4 | 1.307 | 1.079 | 1.051 |
| . 4 | 1.5 | 1.355 | 1.107 | 1.077 |
| 1.4 | 1.6 | 1.404 | 1.137 | 1.105 |
| 1.4 | 1.7 | 1.454 | 1.168 | 1.136 |
| 1.4 | 1.8 | 1.505 | 1.202 | 1.169 |
| 1.4 | 1.9 | 1. 558 | 1.237 | 1.204 |
| 1.4 | 2.0 | 1.611 | 1.272 | 1. 240 |
| 1.5 | 1.0 | 1.193 | 1.006 | 1.006 |
| 1.5 | 1.1 | 1. 235 | 1.020 | 1.311 |
| 1.5 | 1.2 | 1. 281 | 1.038 | 1.024 |
| 1.5 | 1.3 | 1. 330 | 1.061 | 1.043 |
| 1.5 | 1.4 | 1.381 | 1.086 | 1.066 |
| 1.5 | 1.5 | 1.433 | 1.115 | 1.093 |
| 1.5 | 1.6 | 1.488 | 1.145 | 1.123 |
| 1.5 | 1.7 | 1.543 | 1.178 | 1.156 |
| 1.5 | 1.8 | 1.600 | 1.212 | 1.190 |
| 1.5 | 1.9 | 1.657 | 1.247 | 1. 227 |
| 1.5 | 2.0 | 1.715 | 1.283 | 1. 254 |
| 1.6 | 1.0 | 1. 248 | 1.014 | 1. 014 |
| 1.6 | 1.1 | 1. 296 | 1.028 | 1. 021 |
| . 6 | 1.2 | 1.348 | 1.046 | 1.035 |
| 1.6 | 1.3 | 1.402 | 1.069 | 1.056 |
| 1.6 | 1.4 | 1.458 | 1.095 | 1.081 |
| 1.6 | 1.5 | 1.517 | 1. 124 | 1.109 |
| 1.6 | 1.6 | 1.576 | 1.155 | 1. 141 |
| 1.6 | 1.7 | 1.637 | 1.188 | 1.175 |
| 1.6 | 1.8 | 1.699 | 1. 223 | 1. 210 |
| 1.6 | 1.9 | 1.762 | 1.258 | 1. 248 |
| . 6 | 2.0 | 1.825 | 1.295 | 1. 287 |
| 1.7 | 1.0 | 1.307 | 1.022 | 1.022 |
| 1.7 | $1 \cdot \frac{1}{1}$ | 1.361 | 1.036 | 1.031 |
| 1.7 | 1.2 | 1.418 | 1.055 | 1.347 |
| 1.7 | 1.3 | 1.479 | 1.078 | 1.0.69 |
| 1.7 | $1 \cdot 4$ | 1. 541 | 1.105 | 1.095 |
| 1.7 $1: 7$ | 1.5 1.5 | 1.605 1.670 | 1.134 1.165 | $\begin{aligned} & 1.125 \\ & 1.158 \end{aligned}$ |







| A/B | $B / C$ | OELTA(A) | DELTA (B) | DELTA C |
| :---: | :---: | :---: | :---: | :---: |
| $1.0$ | $1 \cdot 0$ | $2.500$ | $2.500$ | $2.500$ |
| 1.0 | 1.1 | 2.541 | 2.541 | 2.410 |
| 1.0 | 1.2 | 2.568 | 2. 568 | 2.336 |
| 1.0 | 1.3 | 2.582 | 2.582 | 2. 274 |
| 1.0 | 1.4 | 2.588 | 2.588 | 2.222 |
| 1.0 | 1.5 | 2.586 | 2.586 | 2.178 |
| 1.0 | 1.6 | 2.579 | 2.579 | 2.139 |
| 1.0 | 1.7 | 2.568 | 2.568 | 2.105 |
| 1.0 | 1.8 | 2.555 | 2. 555 | 2.075 |
| 1.0 | 1.9 | 2.539 | 2.539 | 2.048 |
| 1.0 | 2.0 | 2.522 | 2.522 | 2.024 |
| 1.1 | 1.0 | 2.601 | 2.446 | 2.446 |
| 1.1 | 1.1 | 2.648 | 2.470 | 2. 362 |
| 1.1 | 1.2 | 2.679 | 2.481 | 2.292 |
| 1.1 | 1.3 | 2.697 | 2.482 | 2. 234 |
| 1.1 | 1.4 | 2.706 | 2.475 | 2.185 |
| 1.1 | 1.5 | 2.707 | 2.464 | 2.143 |
| 1.1 | 1.6 | 2.702 | 2.449 | 2.106 |
| 1.1 | 1.7 | 2.694 | 2.431 | 2.074 |
| 1.1 | 1.8 | 2.682 | 2.412 | 2.046 |
| 1.1 | 1.9 | 2.667 | 2.392 | 2.020 |
| 1.1 | 2.0 | 2.651 | 2.371 | 1.998 |
| 1.2 | 1.0 | 2.704 | 2.387 | 2.387 |
| 1.2 | 1.1 | 2.757 | 2.397 | 2.308 |
| 1.2 | 1.2 | 2.793 | 2.395 | 2.242 |
| 1.2 | 1.3 | 2.815 | 2.385 | 2.188 |
| 1.2 | 1.4 | 2.827 | 2.370 | 2.141 |
| 1.2 | 1.5 | 2.831 | 2.351 | 2.102 |
| 1.2 | 1.6 | 2.829 | 2.330 | 2.067 |
| 1.2 | 1.7 | 2.822 | 2.308 | 2.037 |
| 1.2 | 1.8 | 2.812 | 2.285 | 2.010 |
| 1.2 | 1.9 | 2.799 | 2.261 | 1.987 |
| 1.2 | 2.0 | 2.784 | 2. 238 | 1.966 |
| 1.3 | 1.0 | 2.809 | 2.326 | 2.326 |
| 1.3 | 1.1 | 2.868 | 2.323 | 2. 251 |
| $1 \cdot 3$ | $1 \cdot 2$ | 2.909 | 2.311 | 2.190 |
| 1.3 | 1.3 | 2.936 | 2. 293 | 2.139 |
| 1.3 | 1.4 | 2.951 | 2.272 | 2.095 |
| 1.3 | 1.5 | 2.958 | 2.248 | 2.058 |
| 1.3 | 1.6 | 2.959 | 2. 223 | 2.025 |
| 1.3 | 1.7 | 2.954 | 2.197 | 1.997 |
| $1 \cdot 3$ | 1.8 | 2.945 | 2.172 | 1.972 |
| 1.3 | 1.9 | 2.934 | 2.147 | 1.950 |
| 1.3 | 2.0 | 2.920 | 2.122 | 1.930 |
| 1.4 | 1.0 | 2.916 | 2.254 | 2. 264 |
|  | 1.1 | 2.981 | 2. 252 | 2.194 |
|  | 1.2 | 3.028 | 2. 232 | 2.136 |
| 4 | 1.3 | 3.059 | 2.208 | 2.088 |
| 4 | 1.4 | 3.078 | 2.181 | 2.047 |
| 1.4 | 1.5 | 3.088 | 2.154 | 2.012 |
| 1.4 | 1.6 | 3.091 | 2.126 | 1.982 |
| 4 | 1.7 | 3.089 | 2.099 | 1.955 |
| . 4 | 1.8 | 3.082 | 2.072 | 1.932 |
| 1.4 | 1.9 | 3.072 | 2.046 | 1.911 |
| . 4 | 2.0 | 3.060 | 2.021 | 1.892 |
| $1 \cdot 5$ | 1.0 | 3.026 | 2. 203 | 2. 203 |
| 1.5 | 1.1 | 3.097 | 2.183 | 2.137 |
| 1.5 | 1.2 | 3.149 | 2.157 | 2.083 |
| 1.5 | 1.3 | 3.185 | 2.128 | 2. 038 |
| 1.5 | 1.4 | 3.208 | 2.098 | 2.000 |
| 1.5 | 1.5 | 3.222 | 2.068 | 1.967 |
| 1.5 | 1.6 | 3.227 | 2.039 | 1.938 |
| 1.5 | 1.7 | 3. 227 | 2.015 | 1.913 |
| 1.5 | 1.8 | 3.222 | 1.983 | 1.891 |
| 1.5 | 1.9 | 3.214 | 1.956 | 1.871 |
| 1.5 | 2.0 | 3.204 | 1.931 | 1.854 |
| 1.6 | 1.0 | 3.137 | 2. 144 | 2.144 |
| 1.6 | 1.1 | 3.215 | 2. 117 | 2.082 |
| 1.5 | 1. 2 | 3.273 | 2.087 | 2.031 |
| 1.6 | $1 \cdot 3$ | 3.313 | 2.055 | 1.989 |
| 1.6 | 1.4 | 3.341 | 2.023 | 1.953 |
| 6 | 1.5 | 3.358 | 1.991 | 1.922 |
| 1.6 | 1.6 | 3.366 | 1.960 | 1.895 |
| 1.6 | 1.7 | 3.369 | 1.931 | 1.371 |
| 6 | 1.8 | 3.366 | 1.903 | 1.851 |
| 1.6 | 1.9 | 3.360 | 1.877 | 1.832 |
| 1.6 | 2.0 | 3.351 | 1.852 | 1.816 |
| 1.7 | 1.0 | 3.251 | 2.087 | 2.087 |
| 1.7 | 1.1 | 3.336 | 2.055 | 2.029 |
| 1.7 | 1.2 | 3.399 | 2.021 | 1.981 |
| 1.7 | 1.3 | 3.445 | 1.987 | 1.941 |
| 1.7 | 1.4 | 3.476 | 1.953 | 1.907 |
| 1.7 | 1.5 | 3.497 | 1.920 | 1.878 |
| 1.7 | 1.6 | 3.509 | 1.889 | 1.853 |


|  <br>  |
| :---: |
|  |
|  |  |
|  |
|  |
|  |
|  |
|  |
|  |
|  <br>  |
|  |  |
|  |  |
|  |  |
|  |
|  |
|  |
|  |
|  |
|  |


1.00
1.01

$$
\begin{aligned}
& 000 \\
& 016
\end{aligned}
$$

.980
.970
.990
1.0126
1.031
1.032
1.031
.970
$\cdot 949$
.939
.970
.959
1.031
1.031
1.027
1.021
.929
.919
949
$\cdot 939$
1.021
1.015
1.008
.910
-901
.978
.919
$\cdot 910$
1.015
1.008
1.009
1.003
.966
.953
.009
.001
-093
-1
1.023
1.030
1.033
1.0332
1.0329
.917
.905
.984
974
.965
1.0
1.0
1.0
1.0
.884
.874
.864
956
$\cdot 947$
$\cdot 937$
1.0

24
17
10
002
0

1.

9
0
0
0


1. 0

034
036

1. 0
1.023
1.016
1.008
$\begin{array}{r}1.016 \\ 1.008 \\ \hline .000 \\ \hline 1091\end{array}$

- 0
1.02
$\begin{array}{r}035 \\ 039 \\ \hline\end{array}$
1039
.039
.036
-031
- 0 | 18 |
| :--- |
| 09 |
- 001
.992
.032
1.041

1. 044
1.04
$\cdot 035$
$\cdot 029$
1021
.013

- 005
- 996
.047
1.050
1.046
1.041
1.035
- 027
.019
. 011
1.047
1.055
1.058
.057
. 054
.048
.042
1.035
1.027
1.019
1.010
. 055
1063
.066
.066
.065
.062
.057
.051

| 1.7 | 1.7 | . 717 | 1. 038 | 1.044 |
| :---: | :---: | :---: | :---: | :---: |
| 1.7 | 1.8 | -706 | 1.032 | 1.036 |
| 1.7 | 1.9 | . 697 | 1.026 | 1.029 |
| 1.7 | 2.0 | . 688 | 1.020 | 1.020 |
| 1.8 | 1.0 | -801 | 1.064 | 1.064 |
| 1.8 | 1.1 | -781 | 1.068 | 1.072 |
| 1.8 | 1.2 | .763 | 1.070 | 1.075 |
| 1.8 | 1.3 | - 746 | 1.069 | 1.075 |
| 1.8 | 1.4 | . 731 | 1.067 | 1.072 |
| 1.8 | 1.5 | . 717 | 1.064 | 1.068 |
| 1.8 | 1.6 | . 705 | 1.059 | 1.062 |
| 1.8 | 1.7 | . 693 | 1.054 | 1. 055 |
| 1.8 | 1.3 | . 683 | 1.049 | 1.048 |
| 1.8 | 1.9 | -674 | 1.043 | 1.040 |
| 1.8 | 2.0 | . 665 | 1.037 | 1.032 |
| 1.9 | 1.0 | - 778 | 1.073 | 1.073 |
| 1.9 | 1.1 | -758 | 1.079 | 1.081 |
| 1.9 | 1.2 | -739 | 1.082 | 1.085 |
| 1.9 | 1.3 | . 723 | 1. 082 | 1.085 |
| 1.9 | 1.4 | - 708 | 1.081 | 1.083 |
| 1.9 | 1.5 | - 695 | 1.079 | 1.079 |
| 1.9 | 1.6 | . 582 | 1.075 | 1.074 |
| 1.9 | 1.7 | . 671 | 1.070 | 1.067 |
|  | 1.8 | . 661 | 1.065 | 1.060 |
| 1.9 | 1.9 | -652 | 1.060 | 1.053 |
| 1.9 | 2.0 | . 643 | 1.054 | 1.045 |
| 2.0 | 1.0 | -756 | 1.083 | 1.083 |
| 2.0 | 1.1 | - 736 | 1.090 | 1.092 |
| 2.0 | 1. 2 | $\bullet 717$ | 1.095 | 1.096 |
| 2.0 | 1.3 | . 701 | 1.096 | 1.097 |
| 2.0 | 1.4 | . 687 | 1.096 | 1.095 |
| 2.0 | 1.5 | . 673 | 1.094 | 1.092 |
| 2.0 | 1.6 | . 661 | 1.091 | 1.087 |
| 2.0 | 1.7 | . 651 | 1.087 | 1.081 |
| 2.0 | 1.8 | . 641 | 1.083 | 1.074 |
| 2.0 | 1.9 | -632 | 1.078 | 1.067 |
| 2.0 | 2.0 | - 524 | 1.072 | . 060 |














977
9974
972
969
992
991
990
988
985
983
980
978
975
972
970
992
991
989
988
986
983
981
978
976
973
971
991
991
990
988
986
984
982
979
977
975
972







 845
822
800
780
033
987
946
910
876
846
819
794
771
750
730
981
936
895
859
826
797
770
746
724
703
685
932
887
847
812
780
751
725
702
680
661
643







## Program 3

THIS PROGRAM PRODUCES A CONTOUR MAP OF THE VISCOSITY
INCREMENT OVER THE AXIAL RANGE A/B, B/C 1.0 TO 3.0 , IN
STEPS OF O.5 OF THE FUNCTION FROM NU $=2.5$ TO NU $=7.0$

PROGRAM MAIN(INPUT, OUTPUT, TAPE2=INPUT,TAPE3=OUTPUT)
COMMON/PARAM/AB,C,NN
EXTERNAL FUN
OIMENSION ALPHA $(10,21,21), N U(21,21), H(10)$
REAL NU
$N N=E$
COMPUTE THE ELLIPTIC INTEGRALS
DO45 K=1,10
$A=0.9$
$N N=N N+1$
$0040 \quad \mathrm{I}=1,21$
$A=A+0.1$
$\mathrm{C}=1.0 / 0.9$
$0030 \quad N=1,21$
$C=C /(1 \cdot 0+0 \cdot 1 * C)$
SET LIMITS FOR NUMERICAL INTEGRATION ITHESE LIMITS
BELON HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCEI
$A A=0.0$
$\mathrm{BB}=1003000$
IF (NN.EQ. 10) BB=500000000
MAXDIV=50
EPS $=1.0 E-08$
$A C C=0.0$
IFAIL=0
CALL U.K. "NAG* LIBRARY ROUTINE FOR NUMERICAL EVALUATION
OF THE INTEGRALS "ALPHA* GIVEN IN THE SUBROUTINE BELON
CALL DO1AGF (AA, BB, FUN, MAXDIV,EPS, ACC, ANS, ERROR, NOFUN, IFAIL)
$A L D H A(N N, I, N)=A N S$

## 30

CONTINUE
CONTINUE
$B=1.0$
$A=0.9$
$0083 \mathrm{~J}=1,21$
$A=A+0.1$
$C=1.0 / 0.9$
$0070 \mathrm{~N}=1,21$
$C=C /(1.0+0.1 * C)$
NOH COMPUTE THE FUNCTION VALUES USING THE STORED INTEGRAL VALUES


+ +ALPHA $(9, J, N) /(A L P H A(8, J, N) * A L P H A(9, J, N)+A L P H A(9, J, N) * A L P H A$
$+(7, J, N)+A L P H A(7, J, N) * A L P H A(8, J, N))+(1.0 / 5.0) *((1 A L P H A(2, J, N)$
$++A L P H A(3, J, N) /\left(A L P H A(4, J, N) *\left(B^{*} B^{*} A L P H A(2, j, N)+C * C \neq A L P H A(3, J, N)\right.\right.$
$+1) 1+((A L P H A(3, J, N)+A L P H A(1, J, N)) /(A L P H A(5, J, N) \neq(C * C * A L P H A(3, J, N)$
$++A \neq A \neq A L P H A(1, J, N)))+((A L P H A(i, J, N)+A L P H A(2, J, N)) /(A L P H A(6, J, N)$
$+*(A * A * A L P H A(1, J, N)+B * B * A L P H A(2, J, N))) \|$


## 80 CONTINUE

CALL CONTOUR PLOTTING ROUTINE
CALL PAPER(1)
$H(1)=2 \cdot 5$
$H(2)=3.0$
$H(3)=3.5$
$H(4)=4.0$
$H(5)=4.5$
$H(6)=5.0$
$H(7)=5.5$
$H(8)=6.0$
$H(9)=6.5$
$H(10)=7.0$
CALL $\operatorname{MAP}(1,0,3,0,1,0,3,0)$
CALL SCALES
CALL BORDER
CALL CONTRL(NU,1,21,21,1,21,21, H,1,13)
CALL GREND
STOP
ENO

REAL FUNCTION FUN（X）
COMMON／PARAM／A，C，NN
$B=1.0$
GOTO（10，20，30，40，50，60，70，80，90，100），NN
$10 \mathrm{FUN}=1 /((A * A+X) * * 1.5 *(B * B+X) * * 0.5 *(C * C+X) * * 0.5)$ RETURN
20 FUN $=1 /\left(\left(A^{*} A+X\right) * * 0.5^{*}\left(B^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 0.5\right)$ RETURN
$30 \mathrm{FUN}=1 /\left((A * A+X) *-0.5^{*}\left(B^{*} B+X\right) * * 0.5^{*}(C * C+X) * * 1.5\right)$
RETURN
$40 \mathrm{FUN}=1 /\left(\left(A^{*} A+X\right) * * 0.5^{*}(B * B+X) * * 1.5 *(C * C+X) * * 1.5\right)$ RETURN
$50 \mathrm{FUN}=1 /((A * A+X) * * 1.5 *(B * B+X) * * 0.5 *(C * C+X) * * 1.5)$
RETURN
$60 \mathrm{~F} \cup \mathrm{~N}=1 /\left(\left(A^{*} A+X\right) * * 1.5 *\left(B^{*} B+x\right) * * 1.5 *(C * C+x) * * C .5\right)$
RETURN
$70 \mathrm{FUN}=\mathrm{X} /\left(\left(A^{*} A+X\right) * * 0.5^{*}\left(3^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 1.5\right)$ RETURN
80 FUN $=X /\left(\left(A^{*} A+X\right) * * 1.5^{*}\left(B^{*} B+X\right) * * 0.5^{*}(C * C+X) * * 1.5\right)$ RETURN
90 FUN $=X /\left(\left(A^{*} A+X\right) * * 1.5^{*}\left(B^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 0.5\right)$
RETURN
$100 \mathrm{~F} \cup N=1.0 /\left(\left(\left(A^{*} A+X\right) *\left(B^{*} B+X\right) *(C * C+X)\right) * * 0.5\right)$
RETURN
END

THIS PROGRAM GIVES PLOTS OF THE LINE SOLUTIONS OF THE VARIOUS TRIAXIAL SHAPE FUNCTIONS ( AS TABULATED IN THE PREVIOUS PROGRAM) FOR AXIAL RATIOS A/B $=B / C=1.5$, IN ORDER TO DETERMINE THE BEST COMBINATION FOR PRODUCING A UNIQUE SOLUTION.

PROGRAM MAIN(INPUT, OUTPUT, TAPE2=INPUT, TAPE3=OUTPUT) COMMON/PARAM/A,C,NN
EXTERNAL FUN
DIMENSION ALPHA $(10,21,21), N U(21,21), F(21,21), R(21,21), H(1)$
, P (21, 21), TPLS $(21,21)$, TMNS $(21,21), \operatorname{RHOA}(21,21)$, RHOB(21,21)
, RHOC $(21,21), \operatorname{TAU}(21,21), \operatorname{PSI}(21,21), \operatorname{DELA}(21,21), \operatorname{DELB}(21,21)$
, DELC $(21,21), \operatorname{GAMMAA}(21,21), G A M M A B(21,21), \operatorname{GAMMAC}(21,21), M U A(21,21)$
, MUB (21,21), MUC $(21,21), D P L S(21,21)$, DMNS $(21,21), G P L S(21,21)$
, GMNS $(21,21), V(21,21)$
$+, \times 1(21,21), \times 2(21,21), \times 3(21,21), \times 4(21,21), \times 5(21,21)$
$+, T 1(21,21), T 2(21,21), T 3(21,21), T 4(21,21), T 5(21,21)$
REAL NU, M, O, P, MUA, MUB, MUC, PSI
COMPUTE THE ELLIPTIC INTEGRALS
$\mathrm{NN}=0$
$0045 \mathrm{~K}=1,10$
$A=0.95$
$\mathrm{NN}=\mathrm{NN}+1$
$0040 \quad I=1,21$
$A=A+0.05$
$C=1.0 / 0.95$
$0030 \mathrm{~N}=1,21$
$C=C /(1.0+0.05 * C)$
SET LIMITS FOR NUMERICAL INTEGRATION (THESE LIMITS
BELOW HAVE BEEN PREVIOUSLY TESTED FOR CONVERGENCE)
$A A=0.0$
$B B=1000000$
IF (NN.EQ. 10) BB=500000000
MAXDIV=50
$E P S=1 \cdot 0 E-08$
$A C C=0.0$
IFAIL=0
CALL U.K. "NAG* LIBRARY ROUTINE FOR NUMERICAL EVALUATION
OF THE INTEGRALS "ALPHA" GIVEN IN THE SUBROUTINE BELOW
CALL DO1AGF(AA,BB,FUN, MAXDIV,EPS, ACC, ANS, ERROR, NOFUN, IFAIL)
ALPHA $(N N, I, N)=A N S$
30 CONTINUE
40 CONTINUE
45 CONTINUE
$B=1.0$
$A=0.95$
D080 J=1,21
$A=A+0.05$
$C=1.0 / 0.95$
$0070 \mathrm{~N}=1,21$
$\mathrm{C}=\mathrm{C} /\left(1.0+0.05^{*} \mathrm{C}\right)$
NOW COMPUTE THE FUNCTION VALUES USING THE STORED INTEGRAL VALUES
$N \cup(J, N)=\left(1.0 /\left(A^{*} B^{*} C\right)\right) *\left((4.0 / 15.0)^{*}((\operatorname{ALPHA}(7, J, N)+A L P H A(8, J, N)\right.$

+ +ALPHA $(9, J, N)) /(A L P H A(8, J, N) * A L P H A(9, J, N)+A L P H A(9, J, N) * A L P H A$
$+(7, J, N)+A L P H A(7, J, N) * A L P H A(8, J, N))+(1.0 / 5.0) *(($ (ALPHA $(2, J, N)$
$++A L P H A(3, J, N)) /\left(A L P H A(4, J, N) *\left(B^{*} B^{*} A L P H A(2, J, N)+C * C * A L P H A(3, J, N)\right.\right.$
$+))+((A L P H A(3, J, N)+A L P H A(1, J, N)) /(A L P H A(5, J, N) *(C * C * A L P H A(3, J, N)$
$\left.\left.++A^{*} A^{*} A L P H A(1, J, N)\right)\right)+((A L P H A(1, J, N)+A L P H A(2, J, N)) /(A L P H A(6, J, N)$
$\left.\left.\left.+*\left(A^{*} A * A L P H A(1, J, N)+B^{*} B^{*} A L P H A(2, J, N)\right)\right)\right)\right)$
$F(J, N)=2.0 /\left(\left(\left(A^{*} B^{*} C\right) * *(1.0 / 3.0)\right)^{* A L P H A}(10, J, N)\right)$
$R(J, N)=2.0 *(1,0+(F(J, N) * * 3,0)) / N U(J, N)$
BETA (J,N) $=(1.0 / 1000000.0)^{*}\left(\left(16.0249^{* *}(1.3 / 3.0)\right)^{*}\left(10.0^{* *}(23.0 / 3.0\right.\right.$
$+)) / /((16200.0 * 3.141592654 * 3.141592654) * *(1.0 / 3.0))) *(N U(J, N)$
$+* *(1.0 / 3.0)) / F(J, N)$
$M(J, N)=\left(B^{*} B+C * C\right) /\left(B^{*} B^{*} A L P H A(2, J, N)+C * C * A L P H A(3, J, N)\right)$
$O(J, N)=(C * C+A * A) /(C * C * A L P H A(3, J, N)+A * A * A L P H A(1, J, N))$
$P(J, N)=\left(A^{*} A+B^{*} B\right) /\left(A^{*} A^{*} A L P H A(1, J, N)+B^{*} B^{*} A L P H A(2, J, N)\right)$
$\operatorname{TPLS}(J, N)=\left(\left(A^{*} B^{*} C\right) /(12.0)\right) *((1(1.0 / M(J, N))+(1.0 / 0(J, N))+(1.0 / P(J$,
$+N))(((1.0 / M(J, N) * * 2.0)+(1.0 / 0(J, N) * * 2.0)+(1.0 / P(J, N) * * 2.0))=$
$+((1.0 /(M(J, N) * O(J, N)))+(1.0 /(0(J, N) * P(J, N)))+i 1.0 /(P(J, N) * M(J$,
+ Ni)! $11 * * 0.51$ )
TMNS (J,N) $=((A * B * C) /(12.0)) *(((1.0 / M(J, N))+(1.0 / 0(J, N))+(1.0 / P(J$,
$+N))=\left(\left(\left(1.0 / M(J, N)^{* * 2.0)+(1.0 / 0(J, N) * * 2.0)+(1.0 / P(J, N) * * 2.0))-10) ~}\right.\right.\right.$
$+((1.0 /(M(J, N) * O(J, N)) i+(1.0 /(0(J, N) * P(J, N)))+(1.0 /(P(J, N) * M(J$,
+ N) (j) $1 * * 0.51)$
$C A(J, N)=(2.0 /(3.0 * A * B * C)) * M(J, N)$
$C B(J, N)=\left(2.0 /\left(3.0^{*} A^{*} B^{*} C\right)\right) * O(J, N)$

```
    \(C C(J, N)=(2.0 /(3.0 * A * B * C)) * P(J, N)\)
    \(\operatorname{RHOA}(J, N)=2.0 /((1.0 / C B(J, N))+(1.0 / C C(J, N)))\)
    \(\operatorname{RHOB}(J, N)=2.0 /((1.0 / C A(J, N))+(1.0 / C C(J, N)))\)
    \(\operatorname{RHOC}(J, N)=2.0 /((1.0 / C A(J, N))+(1.0 / C B(J, N)))\)
    OELA \((J, N)=N U(J, N) / C A(J, N)\)
    DELB \((J, N)=\operatorname{NU}(J, N) / C B(J, N)\)
    \(D E L C(J, N)=N U(J, N) / C C(J, N)\)
    \(\operatorname{TAU}(J, N)=3.0 /((1.0 / C A(J, N))+(1.0 / C B(J, N))+(1.0 / C C(J, N)))\)
    PSI \((J, N)=F(J, N)^{*}\left((1.0 / \operatorname{TAU}(J, N))^{* *}(1.0 / 3.0)\right)\)
    \(V(J, N)=N U(J, N) / T A \cup(J, N)\)
    \(X_{1}(J, N)=0.5 *((1.0 / \operatorname{RHOB}(J, N))+(1.0 / \operatorname{RHOC}(J, N))-(1.0 / \operatorname{RHOA}(J, N)))\)
    \(\times 2(J, N)=0.5^{*}((1.0 / R H O C(J, N))+(1.0 / R H O A(J, N))-(1.0 / R H O B(J, N)))\)
    X3 \((J, N)=0.5^{*}((1.0 / R H O A(J, N))+(1.0 / R H O B(J, N))-(1.0 / R H O C(J, N)))\)
    \(X_{4}(J, N)=(X 1(J, N)+X 2(J, N)+X 3(J, N)) / 3.0\)
    \(\times 5(J, N)=((X 1(J, N) * * 2.0)+(X 2(J, N) * * 2.0)+(X 3(J, N) * * 2.0)-(X 1(J, N) * X 2\)
    \(+(J, N))-(x 2(J, N) * \times 3(J, N))-(x 3(J, N) * \times 1(J, N))) * * 0.5\)
    \(T 1(J, N)=1.0 /(\times 4(J, N)+\times 1(J, N))\)
    \(1(J, N)=1.0 /(\times 4(J, N)+\times 2(J, N))\)
    T3 \((J, N)=1.0 /(\times 4(J, N)+\times 3(J, N))\)
    \(T 4(\mathrm{~J}, \mathrm{~N})=3.0 /((6.0 * \times 4(\mathrm{~J}, \mathrm{~N}))-(2.0 * \times 5(\mathrm{~J}, \mathrm{~N})))\)
    T5 \(5, N\) ) \(=3.0 /\left(\left(6.0^{*} \times 4(J, N)\right)+\left(2.0^{*} \times 5(J, N)\right)\right)\)
    \(\operatorname{GAMMAA}(J, N)=(1.0 / 2.0) *(F(J, N) * * 3.0) *((1.0 / C B(J, N))+(1.0 / C C(J, N)))\)
    \(\operatorname{GAMMAB}(J, N)=(1.0 / 2.0) *(F(J, N) * * 3.0) *((1.0 / C A(J, N))+(1.0 / C C(J, N)))\)
    \(\operatorname{GAMMAC}(J, N)=(1.0 / 2.0) *(F(J, N) * * 3.0) *((1.0 / C A(J, N))+(1.0 / C B(J, N)))\)
    \(\operatorname{MUA}(J, N)=(C A(J, N) * *(1.0 / 3.0)) / F(J, N)\)
    \(\operatorname{MUB}(J, N)=(C B(J, N) * *(1.0 / 3.0)) / F(J, N)\)
    \(\operatorname{MUC}(J, N)=(C C(J, N) * *(1.0 / 3.0)) / F(J, N)\)
    \(\operatorname{DPLS}(J, N)=6.0 * \operatorname{TPLS}(J, N) * N U(J, N)\)
    \(\operatorname{DMNS}(J, N)=6.0^{*} \operatorname{TMNS}(J, N) * N U(J, N)\)
    \(\operatorname{GPLS}(J, N)=6.0^{*} \operatorname{TPLS}(J, N) *(F(J, N) * * 3.0)\)
    \(\operatorname{GMNS}(J, N)=6.0 * \operatorname{TMNS}(J, N) *(F(J, N) * * 3.0)\)
    70 CONTINUE
80 CONTINUE
CALL PAPER(1)
CALL MAP (1.0,2.0,1.0.2.0)
CALL SCALSI(0.1,0.1)
CALL GPSTOP(21)
CALL BORDER
CALL CSPACE(0.0,0.0001,0.0,0.0001)
```

(I)PLOT OF VISCOSITY INCREMENT AND PERRIN TRANSLATIONAL FRICTIONAL FUNCTION
$H(1)=2.992$
CALL CONTRL(NU,1,21,21,1,21,21,H,1,1)
CALL REDPEN
$H(1)=1.044$
CALL CONTRL(F,1,21,21,1,21,21,H,1,1)
(II)PLOT OF THE TRANSLATIONAL FUNCTIONS: THE VISCOSITY INCREMENT THE PERRIN FUNCTION, THE BETA FUNCTION AND THE R FUNCTION, ALL WITH $+/-1 \%$ ASSUMED EXPERIMENTAL ERROR

CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE $(0.0,1.0,0.0,1.0)$
CALL SCALSI $(0.1,0.1)$
CALL CSPACE (0.0,0.0001,0.0,0.0001)
$H(1)=2.92092$
CALL CONTRL(NU,1,21,21,1,21,21,H,1,1)
$H(1)=2.86308$
CALL CONTRL(NU,1,21,21,1,21,21, H,1,1)
$H(1)=2.14423$
CALL REDPEN
CALL CONTRL(BETA,1,21,21,1,21,21,H,1,1)
$H(1)=2.10177$
CALL CONTRL(BETA,1,21,21,1,21,21,H,1,1)
$H(1)=1.05444$
CALL GRNPEN
CALL CONTRL(F,1,21,21,1,21,21,H,1,1)
$H(1)=1.03356$
CALL CONTRL(F,1,21,21,1,21,21,H,1,1)
$H(1)=1.49379$
CALL BROKEN $(4,8,8,8)$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=1.46421$
CALL CONTRL(マ,1,21,21,1,21,21,H,1,1)

CALL FRAME
CALL
CALL
FULL
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI $(0.1,0.1)$
CALL CSPACE(0.0,0.0001,0.0,0.0001)
$H(1)=1.479$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=1.433$
CALL CONTRL (RHOA, 1, 21, 21, 1, 21, 21, H, 1, 1)
$H(1)=1.115$
CALL REDPEN
CALL CONTRL(RHOB,1,21,21,1,21,21,H,1,1)
$H(1)=1.093$
CALL GRNPEN
CALL CONTRL(PHOC,1,21,21,1,21,21,H,1,1)
(IV)PLOT OF THE R FUNCTION WITH +/- $1 \%$ ASSUMED ERROR AND THE ROTATIONAL RELAXATION TIME RATIOS WITH +/-2\% ASSUMED ERROR
(IV)PLOT OF THE R FUNCTION, HARMONIC MEAN RELAXATION TIME RATIO (TH/TO) THE PSI \&AMBDA FUNCTIONS

CALL FRAME
CALL BLKPEN
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI(0.1,0.1)
CALL CSPACE $0.0,0.0001,0.0,0.0001)$
$H(1)=1.479$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=1.195$
CALL CONTRL(TAU,1,21,21,1,21,21,H,1,1)
$H(1)=.98378$
CALL REDPEN
CALL CONTRL(PSI, 1, 21, 21,1,21,21, H, 1,1)
$H(1)=2.41886$
CALL GRNPEN
CALL CONTRL(V,1,21,21,1,21,21,H,1,1)
(V)PLOT OF THE R FUNCTION $(+/-1 \%)$ THE HARMONIC MEAN RELAXATION TIME RATIO $(+/-1 \%)$ AND THE PSI FUNCTION $(+/-2 \%) \&$ THE LAMBDA FUNCTION $(+/-2 \%)$
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE $(0.0,1.0,0.0,1.0)$
CALL SCALSI (0.1, 0.1)
CALL CSPACE $0.0,0.0001,0.0,0.00011$
$H(1)=1.49379$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=1.46421$
CALL CONTRL $(R, 1,21,21,1,21,21, H, 1,1)$
$H(1)=1.20695$
CALL CONTRL(TAU, 1, 21, $21,1,21,21, H, 1,1$ )
$H(1)=1.18305$
CALL CONTRL(TAU,1,21,21,1,21,21,H,1,1)
$H(1)=1.0034556$
CALL REDPEN
CALL CONTRL(PSI, 1, 21, 21,1,21,21, H,1,1)
$H(1)=0.9641044$
CALL CONTRL(PSI, 1, 21, 21,1,21,21,H,1,1)
CALL GRNPEN
$H(1)=2.4672372$
CALL CONTRL(V,1,21,21,1,21,21,H,1,1)
$H(1)=2.3704828$
CALL CONTRL(V,1,21,21,1,21,21,H,1,1)
(VI)PLOT OF R $(+/-1 \%)$, DELTA1 $(+/-1 \%)$, DELTA2 $(+/-1 \%)$

AND DELTA3 $(+/-1 \%)$
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0.1.0)
CALL SCALSI(0.1, 0.1)
GALL CSPACE ( $0.0,0.0001,0.0,0.0001)$
$H(1)=1.49379$

```
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
\(H(1)=1.46421\)
CALL CONTRL(R,1,21,21,1,21,21, H,1,1)
\(H(1)=3.2849\)
CALL CONTRL(DELA, 1, 21, 21, 1, 21, 21, H,1,1)
\(H(1)=3.1560802\)
CALL CONTRL(DELA, 1, 21, 21, 1, 21,21,H,1,1)
\(H(1)=2.110\)
CALL REDPEN
CALL CONTRL(DELB, 1, \(21,21,1,21,21, H, 1,1)\)
\(H(1)=2.072\)
CALL CONTRL (DELB, 1, 21, 21, 1, 21, 21, H, 1, 1)
\(H(1)=2.006\)
CALL GRNPEN
CALL CONTRL(DELC, 1, 21, \(21,1,21,21, \mathrm{H}, 1,1)\)
\(H(1)=1.928\)
CALL CONTRL(DELC, 1, 21, 21, 1, 21, 21, H,1,1)
(VII)PLOT OF THE R, GAMMAA, GAMMAB AND GAMMAC FUNCTIONS
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE \(0.0,1.0,0.0,1.0)\)
CALL SCALSI(0.1,0.1)
CALL CSPACE (0.0,0.0001,0.0,0.0001)
\(H(1)=1.479\)
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
\(H(1)=0.795\)
CALL CONTRL(GAMMAA,1,21,21,1,21,21,H,1,1)
\(H(1)=1.022\)
CALL REDPEN
CALL CONTRL(GAMMAB,1,21,21,1,21,21,H,1,1)
\(H(1)=1.042\)
CALL GRNPEN
CALL CONTRL(GAMMAC,1,21,21,1,21,21,H,1,1)
(VIII)PLOT OF R \((+/-1 \%)\), GAMMAA \((+/-1 \%)\), GAMMAB \((+/-1 \%)\)
AND GAMMAC \((+/-1 \%)\)
```

CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE $0.0,1.0,0.0,1.0)$
CALL SCALSI (0.1,0.1)
CALL CSPACE (O.0,0.0001,0.0,0.0001)
$H(1)=1.49379$
CALL CONTRL(R, 1; 21, 21, 1, 21, 21, H,1,1)
$H(1)=1.46421$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=.81498$
CALL C ONTRL(GAMMAA,1,21,21,1,21,21,H,1,1)
$H(1)=.78302$
CALL CONTRL(GAMMAA,1,21,21,1,21,21,H,1,1)
$H(1)=1.04244$
CALL REDPEN
CALL CONTRL(GAMMAB,1,21,21,1,21,21,H,1,1)
$H(1)=1.00156$
CALL CONTRL (GAMMAB,1,21,21,1,21,21,H,1,1)
CALL GRNPEN
$H(1)=1.06284$
CALL CONTRL(GAMMAC, 1, 21, 21, 1, 21,21, H, 1, 1)
$H(1)=1.02116$
CALL CONTRL(GAMMAC,1,21,21,1,21,21,H,1,1)
(IX)PLOT OF THE R, MUA, MUB AND MUC FUNCTIONS

CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI(0.1,0.1)
CALL CSPACE(0.0,0.0001,0.0,0.0001)
$H(1)=1.479$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=0.924$
CALL CONTRL(MUA,1,21,21,1,21,21,H,1,1)
CALL REDPEN
H(1) $=1.071$
CALL CONTRL(MUB.1,21,21,1,21,21,H,1,1)

```
CALL GRNPEN
\(H(1)=1.089\)
CALL CONTRL(MUC,1,21,21,1,21,21,H,1,1)
```

(x) PLOT OF R $(+/-1 \%)$, MUA $(+/-1 \%)$, MUB $(+/-1 \%)$

AND MUC ( $+/-1 \%$ )
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE(0.0,1.0,0.0,1.0)
CALL SCALSI(0.1,0.1)
CALL CSPACE(0.0,0.0001,0.0,0.0001)
$H(1)=1.49379$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=1.46421$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
$H(1)=.94248$
CALL CONTRL(MUA,1,21,21,1,21,21,H,1,1)
$H(1)=.90552$
CALL CONTRL(MUA,1,21,21,1,21,21,H,1,1)
$H(1)=1.90242$
CALL REDPEN
CALL CONTRL(MUB,1,21,21,1,21,21,H,1,1)
$H(1)=1.04958$
CALL CONTRL(MUB,1,21,21,1,21,21,H,1,1)
$H(1)=1.11078$
CALL GRNPEN
CALL CONTRL(MUC,1,21,21,1,21,21,H,1,1)
$H(1)=1.06722$
CALL CONTRL(MUC,1,21,21,1,21,21,H,1,1)
(XI)PLOT OF THE R, REDUCED THETA + AND REDUCED THETA - FUNCTIONS

CALL FRAME
CALL BORDER
CALL CSPACE(0.0,1.0,0.0,1.0)
CALL SCALSI (0.1, 0.1)
CALL CSPACE(0.0, $0.0001,0.0,0.0001)$
$H(1)=1.479$
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
CALL REDPEN
$H(1)=.163$
CALL CONTRL(TPLS,1,21,21,1,21,21, H,1,1)
CALL GRNPEN
$H(1)=.116$
CALL CONTRL(TMNS,1,21,21,1,21,21,H,1,1)

```
(XII) PLOT OF THE R(+/-1\%), REDUCED THETA + (+/-1\%)
AND REDUCED THETA- \((+/-1 \%)\) FUNCTIONS
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI(0.1,0.1)
CALL CSPACE(0.0,0.0001,0.0,0.0001)
\(H(1)=1.49379\)
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
```



```
CALL REDPEN
\(H(1)=.16463\)
CALL CONTRL(TPLS,1,21,21,1,21,21,H,1,1)
\(H(1)=.16137\)
CALL CONTRL(TPLS,1,21,21,1,21,21,H,1,1)
CALL GRNPEN
\(H(1)=: 11716\)
CALL CONTRL(TMNS, 1, 21,21,1,21,21, H,1,1)
\(H(1)=.11484\)
CALL CONTRL(TMNS,1,21,21,1,21,21,H,1,1)
```

CALL FRAME
CALL
CALL BORDER
CALL CSPACE $(0.0,1.0,0.0,1.0)$
CALL SCALSI（0．1，0．1）
CALL CSPACE（0．0，0．0001，0．0，0．0001）
$H(1)=1.479$
CALL CONTRL（R，1，21，21，1，21，21，H，1，1）
CALL REDPEN
$H(1)=2.821$
CALL CONTRL（DPLS，1，21，21，1，21，21，H，1，1）
CALL GRNPEN
$H(1)=2.016$
CALL CONTRL（DMNS，1，21，21，1，21，21，H，1，1）

```
(XIV)PLOT OF R (;/-1%), DELTA+ (+/-2%) AND DELTA- (+/-2%)
```

```
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI \((0.1,0.1)\)
CALL CSPACE (0.0,0.0001,0.0,0.0001)
\(H(1)=1.49379\)
CALL CONTRL (R,1,21,21,1,21,21,H,1,1)
\(H(1)=1.46421\)
CALL CONTRL (R,1,21,21,1,21,21,H,1,1)
CALL REDPEN
\(H(1)=2.87742\)
CALL CONTRL(DPLS,1,21,21,1,21,21,H,1,1)
\(H(1)=2.76458\)
CALL CONTRL (DPLS,1,21,21,1,21,21,H,1,1)
CALL GRNPEN
\(H(1)=2.05632\)
CALL CONTRL (DMNS, 1, 21, 21, 1, 21, 21, H, 1, 1)
\(H(1)=1.97568\)
CALL CONTRL (DMNS, 1,21,21,1,21,21,H,1,1)
```

（XV）PLOT OF THE R，GAMMA＋AND GAMMA－FUNCTIONS

```
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI (0.1,0.1)
CALL CSPACE (0.0,0.0001,0.0,0.0001)
H(1)=1.479
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
CALL REDPEN
H(1)=1.111
CALL CONTRL(GPLS,1,21,21,1,21,21,H,1,1)
CALL GRNPEN
CALL CONTRL(GMNS,1,21,21,1,21,21,H,1,1)
```

（XVI）PLOT OF $R(+/-1 \%)$ ，GAMMA＋$(+/-2 \%)$ AND GAMMA－$(+/-2 \%)$

```
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE \((0.0,1.0,0.0,1.0)\)
CALL SCALSI \((0.1,0.1)\)
CALL CSPACE (0.0,0.0001,0.0,0.0001)
\(H(1)=1.49379\)
CALL CONTRL \((2,1,21,21,1,21,21, H, 1,1)\)
\(H(1)=1.46421\)
CALL CONTRL(R,1,21,21,1,21,21,H,1,1)
CALL REDPEN
\(H(1)=1.13322\)
CALL CONTRL(GPLS, 1, 21, 21, 1, 21, 21, H, 1, 1)
\(H(1)=1.08378\)
CALL CONTRL(GPLS,1,21,21,1,21,21, H,1,1)
CALL GRNPEN
\(H(1)=.80988\)
CALL CONTRL(GMNS,1,21,21,1,21,21,H,1,1)
\(H(1)=.77812\)
```

CALL CONTRL（GMNS，1，21，21，1，21，21，H，1，1）

```
(XVII)PLOT OF THE 5 FLUORESCENCE ANISOTROPY RELAXATION TIME
RATIOS
CALL FRAME
CALL BLKPEN
CALL BORDER
CALL CSPACE (0.0,1.0,0.0,1.0)
CALL SCALSI \((0.1,0.1)\)
CALL CSPACE \(0.0,0.0001,0.0,0.0001)\)
\(H(1)=1.02536\)
CALL CONTRL(T1,1,21,21,1,21,21,H,1,1)
\(H(1)=1.28883\)
CALL REDPEN
CALL CONTRL(T2,1,21,21,1,21,21,H,1,1)
CALL GRNPEN
\(H(1)=1.31877\)
CALL CONTRL(T3,1,21,21,1,21,21,H,1,1)
CALL BROKEN \((4,8,8,8)\)
\(H(1)=1.43405\)
CALL CONTRL \((T 4,1,21,21,1,21,21, H, 1,1)\)
CALL BLKPEN
\(H(1)=1.02497\)
CALL CONTRL(T5,1,21,21,1,21,21,H,1,1)
STOP
END
```

REAL FUNCTION FUN（X）
COMMON／PARAM／A，C，NN
$B=1$ ． 0
GOTO $(10,20,30,40,50,60,70,80,90,100), N N$
$10 \mathrm{FUN}=1 /((A * A+X) * * 1.5 *(B * B+X) * * 0.5 *(C * C+X) * * 0.5)$ RETURN
$20 \mathrm{FU}=1 /((A * A+X) * * 0.5 *(B * B+X) * * 1.5 *(C * C+X) * * 0.5)$
RETURN
$30 \mathrm{FUN}=1 /((A * A+X) * * 0.5 *(B * B+X) * * 0.5 *(C * C+X) * * 1.5)$
RE TURN
$40 \mathrm{FUN}=1 /\left(\left(A^{*} A+x\right) * * 0.5^{*}\left(B^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 1.5\right)$ RETURN
$50 \mathrm{FUN}=1 /\left(\left(A^{*} A+X\right) * * 1.5 *\left(B^{*} B+X\right) * * 0.5^{*}(C * C+X) * * 1.5\right)$
RE TURN
$60 \mathrm{FUN}=1 /\left((A * A+X) * * 1.5 *(B * B+X) * * 1.5^{*}(C * C+X) * * 0.5\right)$ RETURN
$70 \mathrm{FUN}=\mathrm{X} /\left(\left(A^{*} A+X\right) * * 0.5 *\left(B^{*} B+X\right) * * 1.5^{*}(C * C+X) * * 1.5\right)$ RETURN
$80 \mathrm{FUN}=\mathrm{X} /\left((\mathrm{A} * A+X) * * 1.5 *\left(B^{*} B+X\right) * * 0.5 *(C * C+X) * * 1.5\right)$ RETURN
$90 \mathcal{F} \cup N=x /((A * A+X) * * 1.5 *(B * B+X) * * 1.5 *(C * C+X) * * 3.5)$
RETURN
$100 \mathrm{FUN}=1.0 /(((A * A+X) *(B * B+X) *(C * C+X)) * * 0.5)$
RETURN
ENO

## Program 5

NON-LINEAR LEAST SQUARES METHOD USING AN ALGORITHM OF GILL AND MURRAY (1976)

```
GAMMA = BIREFRINGENCE (RADS), F = SUM OF SQUARES OF THE RESIDUALS
```

DPLS $=$ DELTA + , DMNS $=$ DELTA-
$\times(1)=$ CURRENT INITIAL GUESS FOR THETA+


```
<2 = % % %% % % =
```

$x_{4}=\cdots \quad . \quad$. $A_{A}!+$
LINEAR TIME INCREASE, 100PTS.
.001 DEGREES S.E.
RANDOM NUMBER RUN 50

PROTEIN 3

```
PROGRAM MAIN(INPUT,OUTPUT,TAPE 2=INPUT,TAPE S=OUTPUT)
    COMMON/PARAM/GAMMA(101),T(101),R(101)
    REAL BL(4),BU(4),X(4),F,W(54)
    REAL Q1,Q2,Q3,Q4,Q5
    INTEGER IBOUND,IFAIL,J,LIW,LW,N
    INTEGER IW(5)
    P=-1.0
    D021 I=1,101
    P=P+1.0
    R(I)=P
    T(I) =R(I)*1.0E-09
    21 CONTINUE
    WRITE (3,32)
    32 FORMAT('.* TIME(NS) GAMMA**)
```

C GO5BBF REINITIALIZES THE STREAM OF THE RANDOM NUMBERS
CALL G 058 BF
C CALCULATE THE UNPERTURBED DECAY CURVE
$0050 \quad I=1,101$
$\operatorname{GAMMA}(I)=0.07 * \operatorname{ExP}(-T(I) * 6.0 * 5.187243 E 06)$ +
$+0.05 * E X P(-T(I) * 6.0 * 4.167486 E 06)$
C NOW PERTURB EACH OF THE 160 DATA POINTS USING A NORMAL PSEUDO-RANDOM
C NUMBER GENERATOR GO5ADF
GAMMA $(\mathrm{I})=\operatorname{GAMMA}(\mathrm{I})+(10.1 * 1.74555 E-04) * G 05 A D F(Y))$
WRITE(3, 3 ) R (I), GAMMA (I)
33 FORMAT('F10.5,F8.5)
50 CONTINUE
$N=4$
IBOUND $=0$
Q1=1.0
C DO THE MINIMIZATION FOR 30 INITIAL GUESSES TO ATTEMPT TO AVOID
C SUBSIDIARY MINIMA
$0010 \quad I=1,30$
C GALL RECTANGULAR PSEUDO RANDOM NUMBER ROUTINE GOFAAF
$Z=G 05 \mathrm{AAF}(\mathrm{X})$
$x(1)=4.0+2.0 * 2$
$x(2)=3.0+2.0 * 2$
$x(3)=6.0+2.0 * 2$
$x(4)=4: 0+2.0 * 2$
BL (1) $=4.0$
$B L(2)=3.0$
$B L(3)=6.0$
$B L(4)=4.0$
BU (1) $=6.0$
BU (2) $=5.0$
BU(3) $=8.0$
BU(4) $=6.0$
LIW $=6$
LW=54
IFAIL=1
CALL EOUJAF(N, IBOUND, BL,BU, X,F, IW, LIW, W,LW, IFAIL)
IF (IFAIL.NE.0) WRITE (3,103)IFAIL
IF (IFAIL.EQ.1) GOTO 20
100 FORMAT ("ERRDR EXIT TYPE",I3,"SEE ROUTINE MANUAL")
WRITE 3,110$)$ F
WRITE $(3,120)(x(J), J=1,4)$
110 SORMAT( "FUNCTION VALUE ON EXIT IS",F15.:2)

```
120 FORMAT! ** THETA+*",F10.7," THETA-",F10.7,"A *",F7.4,
    + * A-*,F7.4
        IF(Q1.LE.F)GOTO 30
        Q1=F
        Q2=x(1)
        Q3 =X(2)
        Q4=x(3)
        Q5=X(4)
    30 CONTINUE
    WRITE (3,130)
130 FORMAT (**)
    WRITE (3,140)
140 FORMAT
    10 CONTINUE
        DPLS =0.50996303*Q2
        DMNS =0.50996303*Q3
        WRITE (3,141)
        FORMAT।
        WRITE (3,142)
142 FORMAT(':%)
    WRITE (3,143)
143 FORMAT('0
    WRITE (3,145)
145 FORMAT(***)
    WRITE (3, 150)Q1
150 FORMAT('* BEST LEAST SQUARES VALUE = ",F15.12)
    WRITE (3,160)Q2
160 FORMAT (**
170 FORME FO,,170)Q3
    WRITE (3,180)Q4
    FORMAT(, % % Q $ 
    WRITE (3,200) DPLS
200 FORMAT('* OELTA+ = *,F10.7)
210 FORMAT(,210)DMNS DELTA= = ",F10.7)
    20 STOP
    END
```

75 CONTINUE
RETURN
END

## Program 6

```
FOURIER TRANSFORM SOLUTION OF THE LAPLACE INTEGRAL EQUATION METHOD OF
GARDNER, GARDNER, LAUSH AND MEINKE (1959)
S = BIREFRINGENCE (RADS), GM = INTEGRANO OF EQUATION , G = G(EXP(-Y))
T = TIME (SEC), R = TIME (NS), EC AND ES ARE THE ERROR ESTIMATES IN FC
AND FS RESPECTIVELY DUE TO THE NUMERICAL INTEGRATION IN EQN. 125
AND ER IS THE ERROR ESTIMATE DUE TO THE NUMERICAL INTEGRATION IN
EQN. 128
```

LOGARITHMIC TIME INCREASE, 140 DATA PTS.
. 001 DEGREES S.E.
RANDOM NUMBER RUN 2

## 

## PROTEIN 2

## ***************************

PROGRAM MA IN (INPUT, OUTPUT, TAPE2=INPUT,TAPE3=OUTPUT)
EXTERNAL FUNXN
REAL MMU ( 66 ), KC ( 66 ), KS ( 66 ), FC $(66), F S(66), G M(66)$, MU
REAL YYY, G ( 690 ), Y(690), EC(66), ES(66)
INTEGER N,I, IFAIL
INTEGER L
REAL X(141),S(141),R(141),T(141),YC(141),YS(141)
COMPLEX Z,C,K,CGAMMA
$\mathrm{P}=-7.1$
DO21 I=1,141
$\mathrm{P}=\mathrm{P}+.1$
WRITE (3,500)
500 FORMAT( $\left.{ }^{\circ} .{ }^{\circ}\right)$
$\mathrm{X}(\mathrm{I})=\mathrm{P}$
$T(I)=(1 \cdot 0 E-09) * E X P(X(I))$
$R(I)=T(I) * 1.0 E 09$
21 CONTINUE
WRITE (3,32)
FORMAT $\quad x \quad$ TIME $\left.(N S) \quad S(T)=S(E X P(-X))^{\circ}\right)$
WRITE (3,501)
WRITE $(3,502)$

WRITE (3,503)
503 FORMAT (HITIALIZES THE STREAM OF THE RANDOM NUMBERS
CALL G05BBF
D050 $\mathrm{I}=1,141$
C CALCULATE THE UNPERTURBED DECAY CURVE
S(I) $=0.07^{*} \operatorname{EXP}(-T(I) * 4.6596278 E 07)+$
$+0.05 * E X P(-T(I) * 3.137407 E 07)$
C NOW PERTURB EACH OF THE 140 JATA PTS USING A NORMAL PSEUDO-RANDOM
C NUMBER GENERATOR
S(I) $=\mathrm{S}(\mathrm{I})+(10.1 * 1.74555 \mathrm{E}-04) * \mathrm{G} 05 \mathrm{ADF}(\mathrm{Y}))$
WRITE (3,33)R(I), X(I),S(I)
33 FORMAT (F10.5,F6.2,F8.5)
50 CONTINUE
D047 L=1,20
WRITE $(3,504)$
504 FORMAT
47 CONTINUE
C THE NEXT PART OF THE PROGRAM EVALUATES THE FOURIER TRANSFORM OF THE DATA $M U=-1$
WRITE (3,99)
99 FORMAT
MU KC KS")
505 FRIME (3,505)
WRITE $(3,505)$
506 FORMAT ( 0.0 **
507 FORMAT('.....)
$0010 J=1,66$
$M U=M U+.1$
$\operatorname{MMU}(J)=M U$
D051 $I=1,141$
$Y C(I)=(E X P(X(I))) * S(I) * \operatorname{Cos}(M U * X(I))$
$Y S(I)=(E X P(X(I))) * S(I) * S I N(M U * X(I))$
$Y(I)=C M P L X(Y C(I), Y S(I))$
51 CONTINUE
$\mathrm{N}=141$
IFAIL=1

CALL DOIGAF (X,YC,N,ANS, ER, IFAIL)
$F C(J)=((1.0 /(2.0 * 3.141593)) * * 0.5) *$ ANS
$E C(J)=\left(\left(1.0 /\left(2.0^{*} 3 \cdot 141593\right)\right)^{* * 0.5) * E R}\right.$
CALL DO1GAF (X,YS, $N, A N S, E R, I F A I L)$
FS $(J)=((1.0 /(2.0 * 3.141593)) * * 0.5) *$ ANS
$E S(J)=\left(\left(1.0 /\left(2.0^{* 3.141593)) * * 0.5) * E R}\right.\right.\right.$
C EVALUATE THE COMPLEX GAMMA FUNCTION FOR THE CURRENT VALUE OF MU USING
C THE SUBROUTINE BELOW
$Z=$ CMPLX $(1: 0$
$C=$ CGAMMA $(Z)$
C DETERMINE THE EULER INTEGRAL OF THE COMPLEX GAMMA FUNCTION (EQN. 123 )
$K=((1.0 /(2.0 * 3.141593)) * * 0.5) * C$
$K C(J)=R E A L(K)$
$K S(J)=A I M A G(K)$
$C=C G A M M A(Z)$
WRITE (3,101) MU,K
101 FORMAT( $7 \times, 1$ F8.2,2E15.7)
10 CONTINUE
$0049 \mathrm{~L}=1,20$
WRITE 3,509$)$
509 FORMAT
49 CONTINUE
WRITE (3,90)
90 FORMAT ( ${ }^{\circ}$ (ERR) "•)
$M U \quad F C$ (ERR
FS
510 FORMAT(*)
WRITE $(3,511)$
511 FORMAT
+*********)
WRITE $(3,512)$
FORMAT $(, 0)$

WRITE (3,91)MMU(J), FC(J), EC(J),FS(J), ES(J)
91 FORMAT ( $1 \times, 1$ F8.2,4E14.7)
38 CONTINUE
$0052 L=1,20$
WRITE 3,513$)$
513 FORMAT (**)
52 CONTINUE
WRITE (3,93)
93 FORMAT( ${ }^{\circ}$
Y
$G(E X P(-Y))$
ERROR*)
514 FORMAT(
WRITE $(3,515)$
515 FORMAT ( 5 WRITE 3,516$)$
516 FORMAT (**)
$Y Y Y=-01$
D031 $M=1,690$
$Y Y Y=Y Y Y+.01$
$Y(M)=Y Y Y$
$0029 J=1,66$
C DIVIDE THE FOURIER TRANSFORM OF THE DATA BY THE EULER INTEGRAL FOR THE
C COMPLEX GAMMA FUNCTION
GM (J) $=((((F C(J) * K C(J))+(F S(J) * K S(J))) * C O S(Y Y Y * M M U(J))) /((K C(J)$
+*KC(J))
$++(K S(J) * K S(J)))+((((F S(J) * K C(J))-(F C(J) * K S(J))) * S I N(Y Y Y * M M U(J))) /$
$+($ (KC (J)*KC (J)) + (KS (J) *KS (J)) ))
29 CONTINUE
$\mathrm{N} N=66$
C NOW G (EXP (-Y)) AS A FUNCTION OF Y IS FOUND FROM THE INVERSE FOURIER
C TRANSFORM USING THE SAME NUMERICAL INTEGRATION ROUTINE
CALL DO1GAF (MMU,GM, NN, ANS, ER, IFAIL)
$G(M)=(1.0 / 3.141593) * A N S$
$E R=(1.0 / 3.141593) \neq E R$
WRITE (3,290) YYY,G (M), ER
IF (IFAIL) $241,261,241$
241 WRITE (3,289)
261 CONT INUE
290 FORMAT (/3X,F7.2,4X,1E15.7,4X,1E15.7)
289 FORMAT (/28H LESS THAN 4 POINTS SUPPLIED)
31 CONTINUE
C HENCE A PLOT OF G(EXP(-Y)) AGAINST Y IS OBTAINED CALL PAPER(1)
CALL MAP (0.0,0.0,0.0,0.0)
CALL CURVEO(Y,G,1,690)
CALL SCALES
CALL BORDER
CALL GRAPHF(FUNXN)

FUNCTION FUNXN(X)
FUNXN=0.0
RETURN
END

```
SUBROUTINE FOR CALCULATING THE COMPLEX GAMMA FUNCTION C = CGAMMA(Z) FOR
THE CURRENT VALUE OF MU. THIS SUBROUTINE IS THAT GIVEN BY LUCAS AND
TERRILL (1970)
    COMPLEX FUNCTION CGAMMA(Z)
    COMPLEX Z,ZM,T,TT,SUM,TERM,DEN,PI,A
    DIMENSION C(12)
    LOGICAL REFLEX
SET IOUT FOR PROPER OUTPUT CHANNEL OF COMPUTER SYSTEM FOR
    R MESSAGES
    IOUT=3
    PI=(3.141593,0.0)
    X=REAL (Z)
    Y=AIMAG(Z)
TOL = LIMIT OF PRECISION OF COMPUTER SYSTEM IN SINGLE PRECISION
    TOL=1.OE=07
    REFLEX=.TRUE.
DETERMINE WHETHER Z IS TOO CLOSE TO A POLE
CHECK WHETHER TOO CLOSE TO ORIGIN
    IF(X.GE.TOL) GO TO 20
FIND THE NEAREST POLE AND COMPUTE DISTANCE TO IT
    XDIST=X-INT (X - .5)
    ZM=CMPLX(XOIST,Y)
    IF(CABS(ZM).GE.TOL)GOTO 10
IF Z IS TOO CLOSE TO A POLE, PRINT ERROR MESSAGE AND RETURN
    WRITE (IOUT,900IZ
    CGAMMA=(1.E7,0.EO)
    RETURN
FOR REAL(Z) NEGATIVE EMPLOY THE REFLECTION FORMULA
    GAMMA (Z) = PI (SINPI*Z) *GAMMA (1-Z))
AND COMPUTE GAMMA(1-Z). NOTE REFLEX IS A TAG TO INDICATE THAT
THIS RELATION MUST BE USED LATER.
    10 IF(X.GE.O.0)GOTO 20
    REFLEX=.FALSE.
    Z=(1.0,0.0)-Z
    X=1.0-X
    Y=-Y
IF Z IS NOT TOO CLOSE TO A POLE, MAKE REAL (Z)>10 AND ARG(Z)<PI/4
    20 M=0
    40 IF (X.GE.10.) GOTO 50
        X=X+1.0
        M=M+1
        GOTO }4
    50. IF(ABS(Y).LT,X)GOTO 60
        M=M+1
        GOTO }5
    60 T=CMPLX(X,Y)
        TT=T*T
        DEN=T
```

```
C COEFFICIENTS IN STIRLING*S APPROXIMATION FOR LN(GAMMA(T))
    C(1)=1./12.
    C}(3)=1./1260
    C(4)=-1./1680.
    C}(5)=1:/1188
    C(6) =-691./36060.
    C}(7)=1./156
    C (8)=-3617./122400.
    C(9)=43867./244188.
    C}(10)=-174611./125400
    C(11) =77683./5796.
    SUM=(T-(.5,0.0))*CLOG(T) -T*CMPLX(.5*ALOG(2.*3.14159),0.0)
    J=1
        7 0 ~ T E R M = C ~ ( J ) / D E N ~
C TEST REAL AND IMAGINARY PARTS OF LN(GAMMA(Z))SEPARATELY FOR
C CONVERGENCE. IF Z IS REAL SKIP IMAGINARY PART OF CHECK.
    IF (ABS (REAL(TERM)/REAL (SUM)).GE.TOL)GOTO 80
    IF(Y.EQ.O.O)GOTO 100
    IF(ABSS(ÁIMAG(TERM)/AIMAG(SUM)).LT.TOL)GOTO 100
    80 SUM=SUM +TERM
    j=j+1
    DEN=DEN*TT
C TEST FOR CONVERGENCE
    IF(J.EQ.12)GOTO 90
    GOTO }7
    C STIRLINGS SERIES DID NOT CONVERGE. PRINT ERROR MESSAGE AND
    C PROCEDE
    90 WRITE(IOUT,910)Z
C RECURSION RELATION USED TO OBTAIN LN(GAMMA(Z))
                        LN(GAMMA (Z))=LN(GAMMA (Z+M)/(Z*(Z+1)*\ldots*(Z+M-1)))
                            =LN(GAMMA (Z+M)-LN(Z)-LN(Z+1)-\ldots-LN(Z+M-1)
        100 IF(M.EQ.O) GOTO 120
    0110 I=1,M
    A=CMPLX (I*1,-1, 0.0)
    110 SUM=SUM-CLOG (Z+A)
    C CHECK TO SEE IF REFLECTION FORMULA SHOULD BE USED
        120 IF (REFLEX) GOTO 130
        SUM=CLOG(PI/CSIN(PI*Z))-SUM
        130 CGAMMA =CEXP(SUM)
        RETURN
        900 FORMAT (1X,2F14.7,10X,49HARGUMENT OF GAMMA FUNCTION IS TOO CLOSE TO
        + A POLE)
        9 1 0 ~ F O R M A T ~ ( 4 4 H ~ E R R O R ~ - ~ S T I R L I N G ' S ~ S E R I E S ~ H A S ~ N O T ~ C O N V E R G E D / 1 4 X , 4 H T , ~
        +2E14.7)
        END
```


## R-CONSTRAINED NON-LINEAR LEAST SQUARES METHOD (HAROING)

GAMMA $=$ BIREFRINGENCE (RADS), FC $=$ SUM OF SQUARES OF THE RESIDUALS
X(1) = CURRENT INITIAL GUESS FOR A/B


ON EXIT, $x(1), x(2), x(3)$ CONTAIN THE BEST ESTIMATES FOR THESE PARAMETERS $X C(1)=A=$ CURRENT ESTIMATE FOR A/B

$X C(2)=$ CURRENT ESTIMATE FOR A+
$\times \sim(3)=$
AA1,AA2,$\ldots . . A A 6$ ARE THE A/B COORDINATES FOR 5 PTS ON THE R-GURVE
THE VALUE FOR B/C CORRESPONDING TO THE CURRENT ESTIMATE FOR A/B CAN THEN BE FOUND USING A CUBIC POLYNOMIAL INTERPOLATION PROCEDURE BETWEEN THE SIX GIVEN POINTS. THIS IS DONE USING A LIBRARY ROUTINE EUILFI

## PROTEIN 1

LINEAR TIME INCREASE, 100PTS.
CUT OFF TIME: 10ONS
STREAM OF RANDOM NUMBERS: 3
0. 1 DEG STANDARD ERROR ON EACH DATA PT.

PROGRAM MAIN(INPUT, OUTPUT, TAPE2=INPUT, TAPE3 $=0$ UTPUT)
COMMON/PARAM/GAMMA (101), T(101), A, C, D, NN, AA (6), AD (6)
REAL R(101)
REAL AA1,AA2,AA3,AA4,AA5,AA6,AD1,AD2,AD3, AD4,AD5,AD6
REAL BL(3), BU (3), $x(3), F, W(39)$
INTEGER IBOUND, IFAIL, J,LIW,LW,N
INTEGER IW (5)
REAL Q1, Q2,Q3,Q4
WRITE (3,37)
37 FORMAT('. PROTEIN 1, 0.1 DEG. STANDARD ERROR")
WRITE $(3,38)$
38 FORMATI

+ $100 \mathrm{NS}, 100 \mathrm{PTS}{ }^{\prime \prime}$ )
WRITE (3, 39 )
39 FORMATI
+STREAM $3^{\prime \prime}$ )
$\mathrm{P}=-1.1$
$0021 \mathrm{I}=1,101$
$\mathrm{P}=\mathrm{P}+1.1$
$R(I)=P$
$T(I)=R(I) * 1.0 E-09$
$R(I)=T(I) * 1.0 E 09$
21 CONTINUE
C G05bAF $(0 . x)$ SPECIFIES THE XTH STREAM OF THE RANDOM NUMBERS CALL G05BAF $(0.3)$
$0050 \quad I=1,101$
C CALCULATE THE UNPERTURBED DECAY CURVE
GAMMA (I) $=0.07^{7 * E X P}(-T(I) * 5 \cdot 0 * 5.815383 E 061+$
$+0.05 *$ EXP $(-T(I) * 6.0 * 4.1564612 E 06)$
C NOW PERTURB EACH OF THE 100 DATA POINTS USING A NORMAL PSEUDO RANDOM
NUMBER GENERATOR GO5ADF
GAMMA (I) = GAMMA (I) $+((1.74555 E-03) * G 05$ ADF (Y) )
50 CONTINUE
READ IN THE VALUES FOR THE LOWER LIMITS FOR THE INITIAL GUESSES OF THE A/B, A+, A- (X10D), THE LOWER AND UPPER LIMITS FOR THE COMPUTER ESTIMAATES THE COORDINATES OF THE A/B VALUES ANO THEN THE COORDINATES OF THE B/C
FOR THE R-CURVE TO WHICH THESE ESTIMATES ARE CONSTRAINED
$\operatorname{READ}(2, *) \times \times 1, \times \times 2, \times \times 3, B B L 1,8 B L 2, B B L 3, B B U 1, B B U 2, B B U 3$,
$+A A 1, A A 2, A A 3, A A 4, A A 5, A A 6, A D 1, A D 2, A D 3, A D 4, A D 5, A D 6$
$A A(1)=A A 1$
$A A(2)=A A 2$
$A A(3)=A A B$
$A A(4)=A A 4$
$A A(5)=A A 5$
$A A(6)=A A 5$
$A D(1)=A D 1$
$A D(2)=A D 2$
$A D(3)=A D 3$
$A D(4)=A D 4$
$A D(5)=A D 5$

```
    AD(6)=AD6
    N=3
    I BOUND=0
    Q1=1.0
    D010 I =1,3
    Z=G05AAF (X)
    x(1)=x\times1+0.2*Z
    x(2)=x\times2+2.0**
    x(3)=xx3+2.0*2
    BL(1)=BBL1
    BL(2)=BBL2
    BU(1)=BBU1
    BU(2)=BBU2
    BU(3)=8BU3
    LIW=5
    LW=39
    IFAIL=1
    CALL EOLJAF(N,IBOUND,BL,BU,X,F,IW,LIW,W,LW,IFAIL)
    IF(IFAIL.NE.O)WRITE(3,100)IFAIL
    IF (IFAIL.EQ.1) GOTO 20
    x(2)=x(2)*.01
    x(3)=x(3)*.01
    WRITE (3,110)F
    WRITE(3,120) (x(1),x(2),x(3))
1 1 0
120 FORMAT!*A/B=*,F8.5,* A+=*,F15.12,
    +"* A==**F15.12)
        30
    Q1=F
    Q2=x(1)
    Q3=x(2)
    30 CONTINUE
    WRITE (3,130)
    WRITE (3,140)
140 FORMATI
    WRITE (3,150)Q1
    FORMAT('* BEST LEAST SQUARES VALUE = ",F15.12)
    WRITE ( 3, 160)Q2
160 FORMATI
    WRITE (3,170) Q3
170 FORMAT (%"
180 FORMAT ("*
    WRITE (3,190)Q4
190 FORM
```

    END
    SUBROUTINE FOR CALCULATING THE SUM OF THE SQUARES OF THE RESIDUALS FOR CURRENT ESTIMATES OF A／B，A＋AND A－ $K B=$ BOLTZMANNS CONSTANT，NA $=$ AVOGADROS NUMBER

SUBROUTINE FUNCT1（N，XC，FC）
COMMON／PARAM／GAMMA（101），T（101），A，C，D，NN，AA（6），AD（6）
EXTERNAL FUN
REAL $Q$ ，FC
INTEGER N
DIMENSION ALPHA（9）
REAL XC（N）
REAL X2，X3
REAL THPLUS，THMNUS，TEMP，ETA，M，O，P，KB，NA，MW
$N N=0$
$A=X C(1)$ $N M=6$ IEXIT＝0
C CALL LIBRARY ROUTINE FOR THE CUBIC POLYNOMIAL FIT TO THE R－CURVE POINTS LISTING OF THIS IS GIVEN BELOW

CALL EO1LF1（NM，AA，AD，A，D，IEXIT）
$C=1.0 / D$
$B=1.0$
D045 K＝1，9
$A Z=0.0$
$B Z=1000000$
$\mathrm{N} N=\mathrm{N} N+1$
$M A X D I V=50$
$E P S=1.0 E-08$
ACC＝0．0
IFAIL＝0
CALL DO1AGF（AZ，BZ，FUN，MAXDIV，EPS，ACC，ANS，ERROR，NOFUN，IFAIL） ALPHA $(N N)=A N S$

## 45

$S=\left(1.0 /\left(A^{*} B^{*} C\right)\right) *((4.0 / 15.0) *((\operatorname{ALPHA}(7)+A L P H A(8)$
＋＋ALPHA（9））／（ALPHA（8）＊ALPHA 9 ）＋ALPHA 19 ）＊ALPHA
＋（7）＋ALPHA（7）＊ALPHA（8）））＋（1．0／5．0）＊（（（ALPHA（2）

+ ＋ALPHA（3））／（ALPHA（4）＊（B＊B＊ALPHA（2）＋C＊C＊ALPHA（3）
＋））＋（（ALPHA（3）＋ALPHA（1））／（ALPHA（5）＊（C＊C＊ALPHA（3）
$++A * A * A L P H A(1))))+((A L P H A(1)+A L P H A(2)) /(A L P H A(6)$
+ ＊$\left.\left.\left.\left.A^{*} A * A L P H A(1)+B^{*} B^{*} A L P H A(2)\right)\right)\right)\right)$
$M=\left(B^{*} B+C * C\right) /\left(B^{*} B^{*} A L P H A(2)+C * C * A L P H A(3)\right)$
$0=\left(C^{*} C+A^{*} A\right) /\left(C^{*} C * A L P H A(3)+A * A * A L P H A(1)\right)$
$P=\left(A^{*} A+B^{*} B\right) /\left(A^{*} A^{*} A L P H A(1)+B^{*} B^{*} A L P H A(2)\right)$
$Z=((A * B * C) /(12.0)) *(((11.0 / M)+(1.0 / 0)+(1.0 / P$
$+1)-\left(\left(\left(1.0 / M^{* * 2.0)+(1: 0 / 0 * * 2.0)+(1.0 / 0 * * 2.0))=}\right.\right.\right.$
$+((1.0 /(M * 0))+(1.0 /(0 * P))+(1.0 /(P * M$
$+1))^{* * 0.5)}$
$U=\left(\left(A^{*} B^{*} C\right) /(12.0)\right) *(((1.0 / M)+(1.0 / 0)+(1.0 / P$
$+))+(((1.0 / M * * 2.0)+(1.0 / 0 * * 2.0)+(1.0 / P * * 2.0))-$
$+\left(\left(1.0 /\left(M^{*} 0\right)\right)+(1.0 /(0 * P))+(1.0 /(P * M\right.$
$+1111 * * 0.511$
$V=6.0^{*} U^{*} \mathrm{~S}$
$W=6.0^{*} Z^{*} S$
ENTER INTRINSIC VISCOSITY
ETA＝2．746
ENTER TEMPERATURE
TEMP $=293.0$
ENTER MOLECULAR WEIGHT
$M W=71744.0$
$\mathrm{KB}=1.38046 \mathrm{E}-16$
$N A=6.0248 E 23$
THPLUS $=\left(\right.$ NA $\left.^{*} K B^{*} 100.0 / 6.0\right) *(T E M P /(E T A * M W)) * V$
THMNUS $=(N A * K B * 100.0 / 6.0) *(T E M P /(E T A * M W)) * W$
$\times 2=x C(2)$
X $3=\mathrm{xC}(3)$
$\mathrm{FC}=0.0$
D075 I＝1， 101
$Q=\left(G A M M A(\bar{I})-\left(0.01 * \times 2 * E \times P\left(-6.0^{*} T H P L U S * T(I)\right)+0.01^{*} \times 3 * E X P\right.\right.$
$+\left(-6.0^{*}\right.$ THMNUS＊T（I））））＊＊2．0
$F C=F C+Q$
75 CONTINUE
RETURN
END

C LEICESTER UNIVERSITY CLMPUTER LIBRARY SUBROUTINE FOR A CUBIC ${ }_{C}^{C}$ COLYNOMIAL FIT TO A SET OF POINTS (K. BROOLIE)

SUBROUTINE EO1LF1(N, AX,AY,X,Y, IEXIT)
DIMENSION AX (N), AY (N)
C CHECK DATA POINTS ARE MONOTONICALLY INGREASING
IEXIT=1

5 CONTINUE
C CHECK THAT $X$ IS A VALID POINT IEXIT=2

- LOCATE
$C$ LOCATE INTERVAL IN WHICH X LIES -AX(J-1),LT, X,LE, AX(J)
IE XIT $=0$
$Y=A Y(1)$
IF (X.EQ.AX(1))RETURN
$0010 \mathrm{I}=2, \mathrm{~N}$
$\mathrm{J}=\mathrm{I}$
IF (X.LE.AX(I))GOTO 20
10 CONTINUE
20 CONT INUE
$Y=A Y(J)$
IF (X,EQ. AX(J))RE TURN
C ESTIMATE SLOPE AT AX $(\mathrm{J}-1)$
CALL EO11A (N, AX,AY,J-1,G1)
C ESTIMATE SLOPE ATAX ${ }^{\prime}(J)$
CALL EO11A (N, AX, AY, J,G2)
C CONSTRUCT INTERPOLATING CUBIC POLYNOMIAL IN INTERVAL $0=A Y(J-1)$
$C=61$
$H=A X(J)-A X(J-1)$
$S=(A Y(J)-A Y(J-1)) / H$
$B=(3.0 * S-2.0 * G 1-G 2) / H$
$A=(G 1+G 2-200$ ©S $) / \mathrm{H} / \mathrm{H}$
C EVALUATE POLYNOMIAL AT POINT
$H=X-A x(J-1)$
$Y=((A * H+B) * H+C) * H+D$
RE TURN
END
SU BROUTINE EO11A (N,AX,AY,J,G)
DIMENSION AX (N), AY (N)
C CALCULATE SLOPES ON EITHER SIDE OF DATA POINT JM1 $=\mathrm{J}-1$
JP $1=\mathrm{J}+1$
IF (J.NE. 1)GO TO 20
C END-POINT IS DIFFERENT
$H 1=A X(2)-A X(1)$
$S 1=2.0^{*}(A Y(2)-A Y(1)) / H 1-(A Y(3)-A Y(2)) /(A X(3)-A X(2))$
GO TO 30
20 CONTINUE
$\mathrm{H} 1=A \times(J)-A X(J-1)$
S1=(AY(J)-AY (JM1))/H1
30
CONT INUE
IF (J.NE,N) GO TO 40
C END-POINT IS OIFFERENT
$\mathrm{H} 2=A X(N)-A X(N-1)$
S2 $=2.0 *(A Y(N)-A Y(N-1)) / H 2-(A Y(N-1)-A Y(N-2)) /(A X(N-1)-A X(N-2))$
40 CONTINUE
$\mathrm{H}_{2}=A X(\mathrm{JP} 1)-A \times(\mathrm{J})$
S2=(AY(JP1)-AY(J))/H2
50 CONTINUE
C IF DATA SI*S NOT MONOTONIC SET SLOPE TO ZERO
IF (S12.GT.0.0)GO TO 10
$\mathrm{G}=0.0$
RE TURN
C WHEN DATA IS MONOTONIC USE WEIGHTED AVERAGE OF NORMAL SLOPES
$T 1=2 \cdot 0 * H 1+H 2$
$T 2=H 1+2,0 * H 2$
$T=(T 1 * S 2+\mathrm{T} 2 * S 1) /(3.0 *(H 1+H 2))$
$\mathrm{G}=\mathrm{S} 12 / \mathrm{T}$
RE TURN
END

REAL FUNCTION FUN(Y)
COMMON/PARAM/GAMMA (101), T(101), A, C, D,NN, AA (6), AD(6) $B=1.0$
GOTO (10, 20, 30, 40, 50, $60,70,80,90)$, NN
$10 \mathrm{FUN}=1.0 /((A * A+Y) * * 1.5 *(B * B+Y) * * 0.5 *(C * C+Y) * * 0.5)$ RETURN
20 FUN $=1.0 /((A * A+Y) * * 0.5 *(B * B+Y) * * 1.5 *(C * C+Y) * * 0.5)$ RETURN
0 FUN $=1.0 /((A * A+Y) * * 0.5 *(B * B+Y) * * 0.5 *(C * C+Y) * * 1.5)$
RETURN
40 FUN $=1.0 /\left(\left(A^{*} A+Y\right) * * 0.5 *(B * B+Y) * * 1.5 *(C * C+Y) * * 1.5\right)$
RETURN
50 FUN $=1.0 /((A * A+Y) * * 1.5 *(B * B+Y) * * 0.5 *(C * C+Y) * * 1.5)$ RETURN
60 FUN $=1.0 /((A * A+Y) * * 1.5 *(B * B+Y) * * 1.5 *(C * C+Y) * * 0.5)$
RETURN
70 FUN $=Y /((A * A+Y) * * 0.5 *(B * B+Y) * * 1.5 *(C * C+Y) * * 1.5)$
80 FUN $=Y /((A * A+Y) * * 1.5 *(B * B+Y) * * 0.5 *(C * C+Y) * * 1.5)$ RETURN
$90 \mathcal{F} \mathrm{CN}=Y /((A * A+Y) * * 1.5 *(B * B+Y) * * 1.5 *(C * C+Y) * * 0.5)$ RETURN
END

## Results:

PROTEIN 1, 0.1 DEG. ABSOLUTE ERROR
110NS, 100 PTS STREAMS

FUNCTION VALUUE ON EXIT IS 000399962998
$A / B=1.48309 \quad A+=.070458845275 \quad A==.048831534073$
FUNCTION VALUE ON EXIT IS . 00399962998
$A / B=1.48309 \quad A+=.070458881237 \quad A==.048831534081$
$\begin{aligned} \text { BEST LEAST SQUARES } & \left.\begin{array}{rl}\text { VALUE } & =0000399962998 \\ A B & =1.48309 \\ A+ & =0707 \\ A- & =0488\end{array}\right)\end{aligned}$

Appendix VI Use of $M_{r}, \bar{v}$ and $s$ to detarmine $k_{s}$

Rowe (1977) has shown that

$$
M_{r}=N_{A}\left[\frac{6 \pi n_{0} s}{\left(1-\bar{v} \rho_{0}\right)}\right]^{3 / 2} \cdot\left[\left(\frac{3 \bar{v}}{4 \pi}\right)\left(\frac{k_{s}}{2 \bar{v}}-\frac{\bar{v}_{s}}{\bar{v}}\right)\right]^{1 / 2}
$$

This can be rearranged to give

$$
k_{s}=2 \bar{v}\left[\frac{4 \pi}{3 \bar{v}} \cdot \frac{m_{r}^{2}}{N_{A}^{2}}\left(\frac{1-\bar{v} \rho_{0}}{6 \pi \eta_{0} s}\right)^{3}+\frac{\bar{v}_{s}}{\bar{v}}\right]
$$

An estimate for $\bar{v}_{s} / \bar{v}$ is required, thus this equation would normally be used as a check for internal consistency between values for sedimentation and viscosity parameters, since $\bar{v}_{s} / \bar{v}=k_{n} / k_{s}$ 。

Appendix VII Comparison of the radius of gyration for a sphere of uniform mass with that for a sphere of the same mass but with a spherical cavity

The radius of gyration, $R_{G}$ of a sphere of uniform mass and radius $R$ is given by:

$$
\begin{equation*}
R_{G}^{2}=\int_{0}^{R} 4 \pi r^{4} d r / \int_{0}^{R} 4 \pi r^{2} d r=\frac{3}{5} R^{2} \tag{i}
\end{equation*}
$$

(Tanford, p 306, 1961). The radius of gyration of a spherical shell of uniform mass with radius $R_{2}$ and with a centrally placed spherical cavity of radius $R_{1}$ is given by:

$$
\begin{equation*}
R_{G}^{2}=\int_{R_{1}}^{R_{2}} 4 \pi r^{4} d r / \int_{R_{1}}^{R_{2}} 4 \pi r^{2} d r=\frac{3}{5}\left(\frac{R_{2}^{5}-R_{1}^{5}}{R_{2}^{3}-R_{1}^{3}}\right) \tag{ii}
\end{equation*}
$$

The results of electron microscopy and x-ray diffraction (Harrison, 1959, Farrant, 1954, Kuff \& Dalton, 1957, Labaw \& Wycoff, 1957) suggest that apofarritin consists of twenty four sub-units, each of molecular weight 20,000 , arranged in the form of a spherical shell of diameter 109 \&. If we take the radius of the hollow to be $18.5 \AA$, and the outer radius of the shell to be $54.5 \AA, R_{G}$ is calculated using formula (ii) to bs 43.0 . The radius of gyration, had the same mass been concentrated into a uniform sphere of density identical to the shell would have been 41.6 \& , using formula (i); i.e. a discrepancy of $\sim 3.4 \%$

```
Alexander, A.E. and Johnson, P. (1949)
'Colloid Science', Volume 2, Oxford University Press
Alpert, S.S. and Banks, G. (1976)
Biophysical Chem. 4, 287
Baghurst, P.A., Nichol, L.W., Ogston, A.G., Winzor, D.J. (1975)
Biochem. J. 147, 575
Ballinger, K.W.A. and Jennings, B.R. (1979)
Nature 282, 699
Batchelor, G.K. (1967)
'An Introduction to Fluid Mechanics', Cambridge University Press
Batchelor, G.K. (1970)
J. Fluid Mech. 41, 545
Batchelor, G.K. and Green, J.T. (1972)
J. Fluid Mech. 56, 375
Beeman, W.W., Koesberg, P., Anderegg, J.U. and Uebb, M.B. (1957)
in 'Handbuck der Physik', (Flugge, S. ed.), 32, 321, Springer-Verlagg
(Berlin)
Benoit, H. (1951)
Ann. Physik. G, 561
```

```
Berne, P.J. and Pecora, R. (1974)
Ann. Rev. Phys. Chem. 25, 233
Blake, C.C.F. (1975)
Essays in Biochem. II, 37
Blake, C.C.F., Geisow, M.J. and Datley, S.J. (1978)
J. Mol. Biol. 121, }33
```

Blake, C.C.F., Koenig, D.F., Mair, G.A., North, A.C.T., Phillips, D.C.
and Sarma, V.R. (1965)
Nature 206, 757
Bloompield, V.A., Dalton, W.O. and Van Holde, K.E. (1967)
Biopolymers 5, 135
Bresler and Talmud (1944)
CR Acad. Sci. URSS, 43, 310
Brinkman, H.C., Hermans, J.J., Oosterhopf, L.J., Overbeek, J. Th. G.,
Polder, D., Staverman, A.J. and Wiebenga, E.H. (1949)
Proc. Int. Rheol. Congress (Schveningen) II, 77
Brenner, H. (1970)
J. Coll. Int. Sci. 32, 141

Brenner, H. (1972a)
Chem. Eng. Sci. 27, 1069

Brenner, H. (1972b)
Progr. Heat and Mass Transfer 5, 93

Cantor, C.R. and Tao, T. (1971)
Proc. Nucl. Acid Res. 2, 31

Cerf, R. and Scheraga, H.A. (1952)
Chem. Revs. 51, 185

Chapman, P.F. (1913)
Phil. Mag. 25, 475

Cheng, P.Y. and Schachman, H.K. (1955)
J. Polymer Sci. 16, 19

Chu, B. (1974)
'Laser Light Scattering', Academic, New York

Chwang, A.T. (1975)
J. Fluid Mech. 72, 17

Clenshaw, C.W. and Curtis, A.R. (1960)
Num. Math. 2, 197

```
Creeth, J.M. and Knight, C.G. (1965)
Biochim. Biophys. Acta 102, 549
Cummings, H.Z. and Pike, E.R. (1973)
(eds.) 'Photon Correlation and Light Beating Spectroscopy', Plenum,
New York
Dickerson, R.E. and Geiss, I. (1969)
'The Structure and Action of Proteins', Benjamin, California
Dougherty, J. and Kreiger, I.M. (1972)
in Kreiger, Adv. Colloid Sci. 3, 111
Edsall, J.T. (1953)
in 'The Proteins' (Neurath, H. and Bailey, K. eds) 1B, Chapter 7,
Academic, New York
Edwardes, D. (1892)
Quart. J. Math. 26, 70
Einstein, A. (1905)
Ann. Physik 17, 549
Einstein, A. (1906)
Ann. Physik 34, 591
Einstein, A. (1911)
Ann Physik 34, 591
```

Emes, C.H. (1977)
Ph. D. thesis, University of Leicester

Emes, C.H. and Rowe, A.J. (1978a)
Biochim. Biophys. Acta 537, 110

Emes, C.H. and Rowe, A.J. (1978b)
Biochim. Biophys. Acta 537, 125

Farrant, J.L. (1954)
Biochim. Biophys. Acta 13, 569

Feldman, R.J. (1976)
'Atlas of Macromolecular Structure on Microfiche', Traco Jitco Int., Rockville, Md. USA

Gans, R. (1928)
Ann. Physik 86, 628

Garcia Bernal, J.M. and Garcia de la Torre, J. (1980)
Biopolymers 19, 628

Garcia de la Torre, J. and Bloomfield, V.A. (1977a)
Biopolymers 16, 1747

Garcia de la Torre, J. and Bloomfield, V.A. (1977b)
Biopolymers 16, 1765

```
Garcia de la Torre, J. and Bloomfisld, V.A. (1977c)
Biopolymers 16, 1779
Garcia de la Torre, J. and Bloomfield, V.A. (1978)
Biopolymers 17, 1605
Gardner, D.G., Gardner, J.C., Laush, G. and Meinke, W.W. (1959)
J. Chem. Phys. 31, }97
Giesakus, H. (1962)
Rheo1. Acta 2, 50
Gill, P.E. and Murray, W. (1976)
Nat. Phys. Lab. report NAC 72
Gold, O. (1937)
Ph. D. thesis, University of Visnna
Goodwin, J.W. (1975)
Colloid Science 2 (Chemical Society), 246
Guoy, L.G. (1910)
J. Phys. Chem. 9, }45
Hall, C.E. and Slayter, H.S. (1959)
J. Biophys. Cytol. 5, 11
```

```
Harding, S.E. (1980a)
Biochem. J. 189 (in press)
Harding, S.E. (1980b)
mss. submitted to J. Phys. Chem.
Harrison, P.M. (1959)
J. Mol. Biol. 1, 69
Herzog, R.O., Illig, R. and Kudar, H. (1934)
Z. Phys. Chem. A167, }32
Holtzer, A. and Lowey, S. (1956)
J. Am. Chem. Soc. 78, }595
```

Jablonski, A. (1961)
Naturforsch 169, 1
Jefficy, G.B. (1922)
Proc. Roy. Soc. (London) A102, 476
Johnson, P. and Mihalyi, E. (1965)
Biochim. Biophys. Acta 102, 476
Jost, J.W. and O'Konski, C.T. (1978)
in 'Molecular Electro Optics' (0'Konski, C.T. ed.) Volums 2, 529

```
Kartha, G., Bello, J. and Harker, D. (1967)
Nature 213, 862
Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wycoff, H.
and Phillips, D.C. (1958)
Nature 181, }66
Kim, S.H. (1974)
in 'Biochemistry' (Stryer, L.) 653, Freeman, San Francisco
Kirkwood, J.G. (1967)
'Macromolecules' (Ausur, F.L. 8d.), Gordon and Breach
Koenig, S.H. (1975)
Biopolymers 14, 2421
Kratky, O., Leopold, H. and Stabinger, H. (1969)
Z. Angew. Phys. 27, 273
Kratky, O., Leopold, H. and Stabinger, H. (1969)
in 'Methods in Enzymology' (Hirs, C.H.W. and Timasheff, S.N. eds.),
27, 98, Academic, London
Krause, S. and O'Konski, C.T. (1959)
J. Am. Chem. Soc. 81, 5082
Kupf, E.J. and Dalton, A.L. (1957)
J. Ultrastructure Res. 1, 62
```

```
Kuhn, W. and Kuhn, H. (1945)
Helvetica Chimica Acta 38, 97
Kynch, G.J. (1956)
Proc. Roy. Soc. (London) A237, 90
Labaw, L.W. and Wycoff, R.W.G. (1957)
Biochim. Biophys. Acta 25, 263
Lauffer, M.A. (1942)
Chem. Rev. 31, 561
Laurent, T.C. and Killander, J. (1964)
J. Chromatog. 14,317
Lipscomb, W.N. (1971)
Proc. Robert A. Welch Found. Conf. Chem. Res. 15, }13
Lloyd, P.H. (1974)
'Optical Methods in Ultracentrifugation, Electrophoresis and Diffusion',
Clarendon Press, Oxford
Lucas, C.W. and Terrill, C.W. (1970)
Collected Algorithms from CACM, No. 404
Manley, R. and Mason, S. G. (1954)
Canad. J. Chem. 32, 763
```

```
Martin, R.B. (1964)
```

'Introduction to Biophysical Chemistry' Chap. 11, MeGraw-Hill, New York
McCammon, J.A., Deutch, J.M. and Bloomfield, V.A. (1975)
Biopolymers 14, 2479
Mehl, J.W., Oncley, J.L. and Simha, R. (1940)
Science 92, 132
Mendelson, R. and Hartt, J. (1980)
EMBO Workshop on Muscle Contraction, Alpbach Conf. Austria
Mihalyi, E. and Godfrey, J. (1963)
Biochim. Biophys. Acta 67, 90
Memming, R. (1961)
Z. Physik. Chem. (Frankfurt) 28, 169
Mooney, M. (1951)
J. Coll. Sci. 6, 162
Mooney, M. (1957)
J. Coll. Sci. 12, 575
Munro, I., Pecht, I. and Stryer, L. (1979)
Proc. Nat. Acad. Sci. (USA) 76, 56

Nichol, L.W., Jeffrey, P.D., Turner, D.R. and Winzor, D.J. (1977)
J. Phys. Chem. 81, 776

Nisihara, T. and Doty, P. (1958)
Proc. Nat. Acad. Sci. (USA) 44, 411

Oberbeck, A. (1876)
J. reine. angew. Math. 81, 62

O'Connor, D.V., Ware, W.R. and Andre, J.C. (1979)
J. Phys. Chem. 83, 1333

Offer, G., Moos, C. and Starr, R. (1973)
J. Mol. Biol. 74, 653

O'Hara and Smith (1968)
Comp. Journal 11, 213

O'Konski, C.T. and Haltner, A.J. (1956)
J. Am. Chem. Soc. 78, 3604

Oliver, J. (1972)
Comp. Journal 15, 141

Oncley, J.L. (1940)
J. Phys. Chem. 44, 1103

Oncley, J.L. (1941)
Ann. New York Acad. Sci. 41, 121

Paradine, C.G. and Rivett, B.H.P. (1960)
'Statistical Methods for Technologists', English Universities Press, London

Pearce, T.C., Rowe, A.J. and Turnock, G. (1975)
J. Mol. Biol. 97, 193

Perrin, F. (1934)
J. Phys. Radium 5, 497

Perrin, F. (1936)
J. Phys. Radium 7, 1

Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G. and North, A.C.T. (1960)

Nature 185, 416

Powell, D.R. and MacDonald, J.R. (1972)
Comp. Journal 15, 148

Pytkowickz, R.M. and O'Konski, C.T. (1959) $^{\prime}$
J. Am. Chem. Soc. 81, 5082

Rallison, J.M. (1978)
J. Fluid Mech. 84, 237

```
Riddiford, C.L. and Jennings, B.R. (1967)
Biopolymers 5,757
Ridgeway, D. (1966)
J. Am. Chem. Soc. 88, }110
Ridgsway, D. (1968)
J. Am. Chem. Soc. 90, 18
Rowe, A.J. (1977)
Biopolymers 16, 2595
Rowe, A.J. (1978)
Techniques in Protein and Enzyme Biochem. B105a, 1
Saito, N. (1951)
J. Phys. Soc. (Japan) 6, 297
Scheraga, H.A. (1955)
J. Chem. Phys. 23, }152
Scheraga, H.A. (1961)
'Protein Structure', Academic, New York
Scheraga, H.A. and Mandelkern, L. (1953)
J. Am. Chem. Soc. 79, 179
```

Simha, R. (1940)
J. Phys. Chem. 44, 25

Simha, R. (1952)
J. Appl. Phys. 23, 1020

Shaw, D.J. (1970)
'Introduction to Colloid and Surface Chamistry' (2nd edn.), Butterworths

Small, E. W. and Isenberg, I. (1977)
Biopolymers 16, 1907

Sorenson, N.A. (1930)
CR Lab. Carlsberg 18, No. 5

Squire, P.G. (1970)
Biochim. Biophys. Acta 221, 425

Squire, P.G. (1978)
in 'Molecular Electro Optics' (0'Konski, C.T. ed.) Volume 2, 565

Squire, P.G., Moser, L. and D'Konski, C.T. (1968)
Biochemistry 7, 4261

Stacey, K.A. (1956)
'Light Scattering in Physical Chemistry', Butterworths, London

Stokes, Sir G. (1851)
Trans. Cambridge Phil. Soc. 9, 8

Stokes, Sir G. (1880)
'Mathematical and Physical Papers', Cambridge University Press

Svedberg, T. and Pedersen, K.O. (1940)
'The Ultracentrifuge', Oxford University Press

Tanford, C. (1955)
J. Phys. Chem. 59, 798

Tanford, C. (1961)
'Physical Chemistry of Macromolecules', Wiley, New York

Theorell, H. (1934)
Biochem. Z. 268, 46

Vand, V. (1948)
J. Phys. Coll. Chem. 52, 277

Van de Hulst, H.C. (1957)
'Light Scattering by Small Particles', Wiley, New York

Van Holde, K.E. (1971)
'Physical Biochemistry', Prentice Hall, New Jersey

Wahl, P. (1966)
Compt. Rend. Acad. Sci. (Paris) 263D 1525

Wales, M. and Van Holde, K.E. (1954)
J. Polymer Sci. 14, 81

Wilde, D.J. (1964)
'Optimum Seeking Methods', Prentice Hall, New Jersey

Williams, R.C., Ham, W.T. and Uright, A.K. (1976)
Anal. Biochem. 73, 52

Wilson, R.W. and Bloomfield, V.A. (1979a)
Biopolymers 18, 1205

Wilson, R.W. and Bloomfisld, V.A. (1979b)
Biopolymers 18, 1543

Yang, J.T. (1961)
Adv. Protein Chem. 16, 323

Zimm, B.H. (1948)
J. Chem. Phys. 16, 1093

Zimm, B.H. (1956)
J. Chem. Phys. 24, 269

Hydrodynamic shape functions for modelling biological macromolecules in solution in terms of an ellipsoid of revolution model are reviewed. Several new, hitherto unpublished shape functions whose experimental determination does not require knouledge of the swollen molecular volume in solution, are given. The limitations and inadequacies of this model are explained. The viscosity increment $v$ for a dilute dispersion of triaxial ellipsoids of semi-axes $a>b>c$, under dominant Brownian motion is derived and an explicit expression in terms of $a, b$ and $c$ is given. Knowledge of the viscosity increment alone is not sufficient to uniquely determine the axial ratios ( $a / b, b / c$ ) because (i) in order to determine $v$, knowledge of the swollen volume in solution is required and (ii) a particular value for $v$ has a line solution of possible values for ( $a / b$, $b / c$ ). (i) is dealt with by combining $v$ with the tri-axial frictional ratio function $P$ to give the tri-axial $R$ function and (ii) by combining graphically the $R$ line solution with $\delta_{+}$and $\delta_{-}$swelling independent line solutions. The experimental determination of $\delta_{+}$and $\delta_{-}$requires the resolution of a 2-term electric birefringerice decay into its component relaxation times; current data analysis techniques are however not satisfactory for resolving close relaxation times (as for globular proteins) with the current experimental precision. It is however shown by exhaustive computer simulation that using a new R-constrained nonlinear least squares iterative analysis this is now possible. It is thus concluded that the general tri-axial ellipsoid as a model for the gross conformation of biological macromolecules in solution can now be employed.


[^0]:    THESIS
    61239

[^1]:    * For the equations describing a more general flow see Batchelor (1967).

