Behavioural Genetic Analysis of Biorhythms in the melanogaster Subgroup of Drosophila

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

Matheos Christaki Demetriades

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U096268
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
"... nothing in biology makes sense, except in the light of evolution."

- Theodosius Dobzhansky

ACKNOWLEDGEMENTS

There are few people whom I would like to thank for their help during my Ph.D. Martin Couchman, was particularly helpful with his computer wizardry and creation of macros for locomotor activity. I would like to thank Phanos, a 3rd Engineering student at Leicester University, for helping me out to scan and print all spectral analysis graphs, as well as all the colour prints, using his equipment time and time again, without complaining. I am grateful to Ezio, Alberto and Suzannah, the Italian trio in our lab, for their friendship. I should not forget Elky for her moral support and frequent discussions about the Cyprus and Midde Eastern problems our respective countries are facing, sitting in front of the computer. In addition, I would like to thank all the rest of the members of lab 136, and the department for their help and advice.

I am indebted to my supervisor Professor Bambos Kyriacou, for not only his moral support, help and confidence in me, but also his snide 'remarks' that spurred me on.

I would also like express my gratitude to my sister Oriana and brother-in-law Harry, auntie Kyproulla and uncle Stelios, my granny Andriana, cousins Cleopas, Andri, auntie Kyproulla Jr, and friends Lakis, Zoe, Astero, Harry, and Joanna without whose encouraging phone-calls from home I would have given up long time ago. I would also like to thank my cousins, Penny and Costas, for providing me with a roof over my head in London and generally being there for me whatever the circumstances.

Finally, I am eternally grateful and indebted to my parents, Chris and Helen, for their provision of both moral and most importantly financial support throughout my years of studying in the United Kingdom.

Abbreviations

BD	Burst Duration
bp	base pairs
cm	centimetres
${ }^{0} \mathrm{C}$	degrees centigrades
CT	Circadian Time
D:D	dark/dark
DNA	deoxyribonucleic acid
g	grams
hrs	hours
IBI	Interburst Interval
IPF	Intrapulse Frequency
IPI	Interpulse Interval
kb	kilobase pairs
l	litre
L:D	light/dark
mm	millimetres
mins	minutes
mRNA	messenger RNA
ms	milliseconds
o/n	overnight
RNA	ribonucleic acid
s	seconds
SSF	Sine Song Frequency
ZT	Zeitgeber Time

Abstract

Differences in Drosophila courtship song components are considered to play an important role in species sexual isolation, because of the observed lack of variation within individuals of a species, and the relatively large differences between closely related species. When a male courts a female, a song is produced, usually consisting of a hum song and trains of pulses. Song recordings from the 8 members of the D. melanogaster subgroup, as well as from several types of interspecific hybrid crosses reveal that the Interpulse Intervals (IPIs) oscillate rhythmically about their mean, in a species-specific fashion, as courtship progresses. Various other song components, such as Intrapulse Frequency (IPF), Sine Song Frequency (SSF), Cycles per Pulses (CPP), Mean Burst Duration (MBD), and Mean Interburst Interval (MIBI) which are also thought to contribute to the maintainance of species-specific differences, thus sustaining species barriers were also studied in different species. Hybridisation between species gave evidence for possible X-linked factors in song rhythms, but generally, autosomal factors appear to be involved in controlling the other song characters. Another behavioural trait that may contribute to the species isolation of the members of the melanogaster subgroup is the circadian locomotor activity patterns. Locomotor activity profiles in constant darkness conditions revealed speciesspecific differences between the species in the period of their circadian oscillator, while locomotor activity profiles in light/dark cycles demonstrated phenotypic differences between the various species of the melanogaster subgroup. Hybridisations were used to assess the relative contribution of maternal and paternal factors. The overall species pattern of activity appeared to be determined by the sex-chromosomes, whereas other characteristics were primarily autosomally controlled. The implication of these findings on song and circadian behavioural cycles with respect to the current molecular analysis of circadian clock genes is discussed.

CONTENTS

ACKNOWLEDGEMENTS i
ABBREVIATIONS ii
ABSTRACT iii
CONTENTS iv
CHAPTER 1: Introduction 1
Genetic dissection of Drosophila courtship behaviour 2
Species-specific differences in courtship songs 10
CHAPTER 2: Materials and Methods
2.1 Stocks 27
2.2 Stock maintenance 27
2.3.1 Fly collection 27
2.3.2 Interspecific crosses 28
2.3.3 Female wing amputation 28
2.4.1 Song recording 29
2.4.2 Song analysis 30
2.4.3 Statistical analysis of song cycles 30
2.4.4 Other song characteristics 31
2.4.5 Determination of the mean burst duration and mean interburst interval 32
2.4.6 Clack versus Thud pulses in D. yakuba songs 33
2.4.7 Statistical analysis 33
2.5.1 Locomotor activity experiments 33
2.5.2 Standardisation of the data in DD conditions 36
2.5.3 Collection of Locomotor activity data in LD conditions 36
CHAPTER 3: General characteristics of D. melanogaster, D. simulans and D.yakuba songs. Can song rhythms be detected?
3.0 Introduction 38
3.1 Reanalysis of Kyriacou and Hall's original data. 39
$3.2 \quad$ D. melanogaster (Brigton) and D. simulans (Florida) songs 42
3.3 Do IPI rhythms exist in D. melanogaster (Brighton) and D. simulans (Florida) songs? 44
3.4 D. yakuba song 48
3.5 Do song rhythms exist in D. yakuba? 56
3.6 Discussion 62
CHAPTER 4: \quad Can songs rhythms be detected in the other members of the D. melanogaster subgroup?
4.0 Introduction 65
4.1 D. melanogaster Complex 65
4.2 Do song rhythms exist in D. mauriana and D. sechellia? 70
4.3 D. yakuba Complex 75
4.4 Do song rhythms exist in D. teissieri, D. orena and D. erecta? 79
4.5 Discussion 85
CHAPTER 5: Characteristics of interspecific hybrid songs between the members of the melanogaster subgroup?
5.0 Introduction 90
5.1 Interspecific Hybrids: D. yakuba (f) x D. mauritiana (m) hybrid song. 91
Song rhythms? 94
5.2 Hybrids from the reciprocal D. mauritiana(f) \times D. yakuba(f) cross: 96
Song rhythms? 99
5.3 D. yakuba, D. teissieri, and their hybrids 101
Song rhythms? 103
5.4 D. simulans, D. mauritiana and their interspecific hybrids 104
Song rhythms? 106
5.5 D. teissieri, D. mauritiana and their interspecific hybrids 107
Song rhythms? 109
5.6 D. erecta, D. orena and their interspecific hybrids 111
5.7 Discussion 112
CHAPTER 6: Short-term temporal changes in song characters. 115
6.1 D. melanogaster Complex 115
6.2 D. yakuba Complex 117
6.3 Interspecific Hybrid Crosses 120
6.4 Burst Duration and Interburst Interval over time 122
6.5 \% of courtship vigour index 126
6.6 Discussion 130
CHAPTER 7: Locomotor Activity rhythms in the melanogaster subgroup
in constant darkness (DD). 134
7.1 Locomotor activity of the members of the D. melanogaster subgroup and their interspecific hybrids 135
7.2 Locomotor activity profiles of the different members of the melanogaster subgroup, various D. mauritiana and D. yakuba strains, and the interspecific hybrids 138
D. melanogaster complex 138
D. yakuba complex 139
D. mauritiana strains 140
D. yakuba strains 140
Different species and their interspecific hybrids 141
7.4 Discussion 143

CHAPTER 8: Locomotor Activity patterns of the the different members of the melanogaster subgroup and their interspecific hybrids in a light/dark regime (LD).
8.1 Overall patterns of LD activity 147
D. melanogaster complex 147
D. yakuba complex 148
8.2 Locomotor activity in Light/Dark cycles of the different
D. mauritiana strains 150
8.3 Locomotor activity in Light/Dark cycles of the different
D. yakuba strains 151
8.4 Locomotor activity in Light/Dark cycles of the different interspecific hybrids 153
8.5 Discussion 160
CHAPTER 9: General Discussion 165
9.1 Courtship song 165
9.2 Locomotor activity 171
9.3 Future lines of investigation 173
9.4 Conclusion 174
CHAPTER 10: Appendices 175
CHAPTER 11: References 220

INTRODUCTION

CHAPTER 1

INTRODUCTION:

The goal of communication amongst most animals, like the ultimate aim of animal behaviour on the whole, is reproduction (Gould, 1982). Most animals are solitary, implying that they must actively seek their mating partners; and since most animals have no chance to learn where to look for the opposite sex of their species or how to recognise a suitable mate once there, much of the behaviour associated with mating is innate (Bonner, 1969). A good understanding of the manner in which mating associations between individuals develop is essential for generating a comprehensive model of social interactions (Bonner, 1969). Male-female patterns of interactions are generally based on the males' interest in maximizing the number of matings, they achieve with females (Bonner, 1969).

Darwin proposed his theory of 'Sexual Selection' to explain certain characteristics of organisms not explicable in terms of survival or natural selection (Darwin, 1859). However, Galton (1865) was probably the first to affirm that behaviour might be subject to the 'Sexual Selection'. Sexually dimorphic attributes in insects play a prominent role in the development of Darwin's ideas on sexual selection. Sexual reproduction is a ubiquitous feature in the life cycle of almost every higher animal, so finding a suitable mating partner is of utmost importance. The female of a species, is the one mostly involved in reproduction, and caring for her offspring (Halliday, 1978). It has been argued that this preoccupation of the female leads to selection for males to mate without taking care of partners or offsprings, whereas females are much more particular about choosing their mating partners (Bateman, 1948). Parental investment patterns in insects vary; in the vast majority of insects, there is no paternal contribution beyond what is placed in the gametes. As the number of gametes and subsequent progeny that a female can produce decreases as a result of increased maternal investment per gamete or offspring, the female should be selected to show greater discrimination of mating partners, because her potential reproductive success becomes more and more dependent on the genetic contribution of the male and/or on male care.

Genetic dissection of Drosophila courtship behaviour

Males of many species go to inordinate lengths in order to persuade females to mate with them, often performing complex rituals and displays. Elaborate courtship behaviours which constitute sexual reproduction are experienced from fruit flies to humans. Courtship, in Drosophila, is generally considered as a stimulus-response chain of events which leads to the sexual act, with each action step by one sex releasing the next action by the other sex. Various signals or cues have been developed by either or both sexes, in order to attract potential conspecific mates. These include sexually dimorphic 'olfactory signatures', produced mainly by females (Vernard and Jallon, 1980; Tompkins, 1980; Anthony and Jallon, 1982), contact pheromones, or tactile stimuli (Tompkins, 1984), or visual cues such as wing vibration (Tompkins et al., 1982). These various modalities have been dissected with the use of single gene mutations in D. melanogaster.

Evidence that visual stimuli are important in courtship is provided by blind no-receptor-potentialA (lacking light-elicited photoreceptor potentials) and glass (lacking photoreceptors and having reduced compound eyes) mutants, which are seen to be unable to orient themselves in relation to the female, thus spending less time courting than normal males (Tompkins, 1984). Optomotor-blind (defective optomotor responses) males are not sensitive to horizontal moving stimuli, and behave as if they are totally blind during courtship, implying that movement of the female is also a visual stimulus to the courting male (Tompkins et al., 1982). Smellblind (poor responses to a variety of volatile compounds) and olfactory C (poor responses to acetates and some alcohols) mutants also court poorly, suggesting that they do not respond to female pheromones, implying that female flies are producing volatile substances that stimulate males to court (Tompkins et al., 1980; Tompkins and Hall, 1981). If only visual and olfactory cues, provided by the females, were responsible for triggering courtship by the males, then males that can neither see or smell would not court females. Yet, doubly mutant smellblind;glass males are observed to court females, if they touch them, implying that males also respond to tactile cues and begin to court (Tompkins, 1984). From the preceeding observations, it would not be unreasonable to infer that the visual, olfactory and tactile stimuli that females
provide are sex-specific, since females evoke vigorous courtship and mature males do not (Tompkins, 1984).

Wing display forms a habitual element in the courtship behaviour within the genus of Drosophila (Spieth, 1952). In many species, it involves the production of acoustic stimuli, collectively known as courtship song, generated by the male fly vibrating its wings (Bennet-Clark and Ewing, 1969; Burnet and Connolly, 1974; Schilcher, 1976a). The complete mating ritual typically involves circling of the female by the male, the orientation of the male in relation to the female (Cook, 1980), the male tapping the female with his foretarsi, and vibrating either/or both his wings producing a species-specific courtship love song. The male proceeds then to lick the genitalia of the female, followed by numerous attempts to copulate (Bastock and Manning, 1955). If the female is sexually mature and she has been sufficiently stimulated by the male's courtship, she opens her vaginal plates in response to one of the male's copulation attempts and coital engagement ensues (see Figure 1.1).

In the D. virilis group of species, Suvanto et al. (1994) discovered that the males generate a stimulatory courtship song for females, as well as an inhibitory song to discourage other males, which has different acoustic characteristics to the former song. Satokangas et al. (1994) discovered that not only males, but also females vibrate their wings during courtship, generating either pulses or sine song. The males' reactions to female songs range from licking and singing (eliciting courtship) to arresting courtship altogether. Furthermore, Boarke and Hoikkala (1995) reported that rather than being the passive observers to the male displays, females of D. silvestris are actively involved in courtship by flying away from the male, thereby arresting courtship momentarily, but often returning back to the male, while waving their wings (females). Moreover, females of many Drosophila species are seen to spread their wings apart prior to copulation, which has special significance in species of the D. virilis group of species; by spreading her wings the female provokes as well as making the male aware of her readiness (acceptance signal) to copulate (Spieth, 1952; Vuoristo et al., 1996). Grossfield (1966) argued that in D. occidentalis and D. guttifera (species of the D. guinaria-group), the failure to mate in the dark was due to the fact that the males could not perceive these visual acceptance cues.

Figure 1.1: The principal elements of courtship in D. melanogaster.

Original drawings by Dr. Barrie Burnet.

Similarly, D. auraria (D. auraria-group) males were observed to court wingless females (Grossfield, 1968), but the courtship ceased short of copulation due to the impossibility of the female producing an 'acceptance signal'. Males of the D. virilis-group species are able to mate in the dark (Hoikkala, 1988; Liimatainen, 1993), suggesting that female wing spreading is not such a critical visual acceptance stimulus. The accompanying spreading of the female genitalia (Spieth, 1952), conveys contact pheromones to the male (Anthony et al., 1985). In D. melanogaster, courtship proceeds more slowly in the dark (e.g., Kyriacou, 1981), but there is little evidence for any visual acceptance signals from the females.

The D. melanogaster courtship song consists of two elements, hum or sine song and a pulse song (see Figure 1.2). The former is comprised of a sinusoidal hum with a frequency (SSF) of about 160 Hz (von Schilcher, 1976a), while the latter consists of a train of pulses, with an interpulse interval (IPI) ranging from between $\sim 30-40 \mathrm{~ms}$ (Ewing and Bennet-Clark, 1968), in D. melanogaster. Tomaru and Oguma (1994) reported that the males of the species of the D. auraria complex only produce a pulse song which consists of bi- and tricyclic pulses, whose wave form remains invariant throughout the courtship. Even though, the wave pattern of courtship song changes together with male behaviour in other species (Ikeda et al., 1980; Crossley, 1986; Cobb et al., 1989), this was not observed in species of the D. auraria complex (Tomaru and Oguma, 1994). Furthermore, it was observed that males produced more courtship song during copulation rather than before copulation (Tomaru and Oguma, 1994), whereas in the D. melanogaster subgroup, males produce the bulk of their courtship prior to copulation (Clark-Bennet and Ewing, 1968; Schilcher, 1975; Kyriacou and Hall, 1980; Cowling and Burnet, 1981; Cobb et al., 1989). Moreover, males of species of the D. repleta group of species are observed to produce a short and long song type, with no sine song being produced during courtship (Ewing and Miyan, 1986).

The need to know more about what constitutes sexual behaviour and to identify the various genes that govern it, led various experimenters using single-gene mutations and other genetic techniques to disrupt the fly's ability to court or elicit courtship, and determine the reasons why these behaviours are sex-specific, if indeed they

Figure 1.2: Burst of \boldsymbol{D}. melanogaster courtship song, including hum and pulse components

PULSE SONG

are. Both very young males and females behave similarly, in that they elicit courtship, but they do not themselves court. Yet, when they are 1-2 days old, the males' behaviour changes, in that they begin to court females, and they themselves become relatively less attractive to other males (Tompkins, 1984). Therefore, mature females become more attractive to males, i.e., able to evoke courtship while being unable to court themselves, whilst mature males become less attractive to other males and are able to court females (Tompkins, 1984).

Like other aspects of sexual differentiation, sexual behaviour is dictated by a cascade of sex-determining regulatory genes (reviewed McKeown, 1994-see Figure 1.3). In summary, the presence of two X chromosomes in diploid individuals indoctrinates female development by activating the Sex-lethal (Sxl) gene (Sinchez, 1982; Cline, 1984; Tompkins, 1984; 1985). Using temperature sensitive diplo-X mutants (Sxl ${ }^{\text {M\#1,fm\#3/3/ }}$ $S x l^{\text {fint }} \mathrm{M} \# 1$) , which externally looked like males, it was shown that the $S x l$ gene must function normally during the pupal period or the first few days of adult life for a fly to elicit vigorous courtship (Tompkins, 1984; 1985), suggesting that at least one femalespecific $S x l$ transcripts is essential for the production of the female pheromone, 7,11heptacosadiene (HCD) (Tompkins et al., 1980; Tompkins et al., 1981; Jallon et al., 1987; Ferveur and Sureau, 1996; Ferveur et al., 1996), and the repression of the male inhibitory pheromone, 7-tricosene (7T) synthesis (Jallon, 1984; Jallon et al., 1987; Ferveur and Sureau, 1996; Ferveur et al., 1996-see Figure 1.3). In the males the converse holds true (Baker and Ridge, 1980).

The answer to how female-specific $S x l$ transcripts control the production of pheromones in diplo-X flies, or conversely, how the lack of $S x l$ activity regulates pheromone production in haplo-X flies, comes from analysing mutations in the intersex (ix), transformer (tra), transformer-2 (tra-2) and doublesex (dsx) genes, which are under the control of Sxl (Baker and Ridge, 1980) (see Figure 1.3). The Sxl gene by autoregulating its own pre-mRNA splicing (several transcripts) in turn, activates the tra genes by regulating their mRNA splicing. The tra and the tra-2 gene products, in turn, regulate the splicing of the $d s x$ gene, leading to the production of a female-specific dsx protein (McRobert and Tompkins, 1985). In contrast, tra and tra-2 mutant diplo-X flies,

```
FEMALE DEVELOPMENT
```

MALE DEVELOPMENT

Figure 1.3: Genetic control of sex pheromone synthesis and courtship behaviour in Drosophila females and males.
which look and behave like males (Baker and Ridge, 1980), are unattractive to normal males (Baker and Ridge, 1980; McRobert and Tompkins, 1985), suggesting that the normal production of the female pheromone (HCD) has been arrested (Tompkins et al., 1980; Tompkins et al., 1981; Jallon et al., 1986; 1987) and in its place, these mutant flies are producing the male pheromone (7T) instead (Jallon,1984; Scott, 1986; Scott et al., 1988; Scott and Jackson, 1988). ix mutations transform females into flies which look like intersexes (hermaphrodites, Baker and Ridge, 1980), and have a slight effect on the flies' sex- appeal (Jallon and Hotta, 1979; Hall, 1979; Tompkins, 1984). Diplo-X dsx mutant flies are phenotypically similar to intersexes (Baker and Ridge, 1980), being not as attractive as normal females, although they are able to elicit more courtship than males (McRobert and Tompkins,1985). As is the case for Sxl, it is reasonable to assume that these genes (tra, $d s x$ and $f r u$) exercise their effects on the synthesis of pheromones in the tissues that should be diplo-X for sex-appeal (Jallon and Hotta, 1979; Tompkins, 1984), since mutations in any of these genes affect the fly's appearance in a cell-autonomous manner (Baker and Ridge, 1980).

The sexual orientation of Drosophila also has a complex neural basis. Using the feminizing transgene UAS-tra under the control of various P-GAL4 enhancer-trap lines (Brand and Perrimon, 1993), Ferveur et al. (1995) produced transformed male flies that exhibited a bisexual orientation. These males were shown to express the tra gene in areas of the antennal lobes, or mushroom bodies, or both, regions which are known to receive or process olfactory input (Barinaga, 1995). Extending this work, Ferveur et al. (1997) were able to express the UAS-tra gene (under the control of a heat-shock promoter) at different developmental stages, and more particularly, in a group of subcuticular abdominal cells known as the oenocytes (Miller, 1950; Romer, 1991). These transgenic male flies had an unaltered sexual orientation, but they now expressed a predominantly female pheromonal profile, causing other males to respond to them as though they were female. Mosaic studies had previously restricted the source of pheromonal sexual dimorphism to the fly abdomen (Nissani, 1977; Jallon and Hotta, 1979; Coyne and Oyama, 1995).

In males, where the $S x l$ and $t r a$ gene products are non-fuctional, splicing the $d s x$ pre-mRNA in its default pattern, results in a male-specific dsx protein, which differs
from the female form at its carboxy-terminus (Burtis and Baker, 1989-see Figure 1.3); these proteins take up the role of sex-specific transcription factors that coordinate many aspects of sexual differentiation, including the external morphologies of both sexes (see Figure 1.3). Mutations in the $i x$ gene, in haplo-X flies, have no effect on the flies. Therefore one might expect these males to be unattractive to other males (Baker and Ridge, 1980). Surprisingly, these mutants are able to evoke more courtship than normal males, even though they are not as attractive as females, implying there might either be some HCD production in these flies or not enough 7-tricosene synthesis (inhibitory pheromone) as in normal males (McRobert and Tompkins, 1985; Jallon, 1984; Scott, 1986; Scott et al., 1988; Scott and Jackson, 1988). Nevertheless, $d s x$ haplo-X mutant flies, which look like intersexes, do not evoke much courtship, i.e., have a reduced willingness to court females and have certain elements of the courtship song, e.g., sine song absent (Villela and Hall, 1996). tra haplo-X mutants, phenotypically normal males, are also unattractive to other males. The above observations suggest that the $i x$ gene is in control of some aspect of pheromone synthesis in normal males, perhaps by acting in tissues that should be haplo-X for a fly to be unattractive.
$d s x$ does not control all aspects of somatic sexual differentiation, as Sxl, tra and tra-2 genes do (reviewed by Burtis, 1993); for example, the tra and tra-2 genes, but not $d s x$, control the development of a male-specific abdominal muscle known as Muscle of Lawrence (MOL; Lawrence and Johnston,1986; Taylor, 1992-see Figure 1.3). Lawrence and Johnston (1986), using mosaics, were able to suggest that the development of the MOL depended on the sex of the neurons that connect to it. Furthermore, constitutive expression of the male form of the dsx protein transforms females into morphologically wild-type males, but these flies were found to be unable to court (Taylor et al., 1994), suggesting that there exists some other route downstream of tra and tra-2, which controls MOL development and other aspects of male sexual behaviour.

Even though, many genes are seen to affect the courtship of Drosophila males, fruitless (fru) is one of the very few that appears to affect male courtship specifically (reviewed by Hall, 1994; Taylor et al., 1994-see Figure 1.3). fru mutant males are observed to be unable to perform normally the later stages of the courtship ritual, from
singing through to copulation (Hall, 1978; Gailey and Hall, 1989), and are sterile. The most dramatic reproductive anomaly associated with fruitless is that the fru mutant male courts other males just as vigorously and indiscriminately as he does a female. Furthermore, groups of fru males are also observed to form "courtship chains" in which most individuals are simultaneously courting and being courted (Gill, 1963; Gailey and Hall, 1989). An additional fru phenotype is that the male-specific MOL is either incompletely formed or completely absent (Gailey et al., 1991; Taylor and Knittel, 1995). Since no phenotypic effects of fru have been observed in females (reviewed by Hall, 1994), fru is a promising candidate gene functioning in the new proposed route downstream of the tra genes. This notion has being validated by Ryner et al. (1996) and Ito et al. (1996), whose findings suggest the function of fru is to specify the sex-specific fate and activities of neurons, including cells in the antennal lobe, that command the coordination of the complex array of steps that comprise male courtship behavioural rituals. Thus, sexual orientation in flies is controlled by the same hierarchy of genes that governs all other aspects of sex.

The fact that the FRU protein shows similarities to BTB-ZF family of transcription factors (Albagli et al., 1995), raises the possibility that fru, like $d s x$, is the final regulatory gene in its branch of its cascade, and therefore it would be directly controlling the expression of downstream genes, which might be responsible for dictating the sex-specific Muscle of Lawrence (MOL) development, sexual orientation and the behaviours that constitute male courtship. The neurons that are expressing sex-specific fru transcripts are not only found in the Central Nervous System (CNS)-where cells responsible for particular male courtship steps are situated (reviewed by Greenspan, 1995), but in addition are associated with higher order neuropils (Heisenberg, 1994).

Various regions of the central nervous system (CNS) of the fly have been identified that play a role in performing specific steps of the male courtship ritual (reviewed by Greenspan, 1995). In brief, using gynandromorphs, various researchers were able to roughly define the various parts of the brain that are required to be either male or female in order for a particular step in the courtship ritual to be achieved (Hotta and Benzer, 1976; von Schilcher, 1977; Nissani, 1977; Hall, 1977 and 1978a; von

Schilcher and Hall, 1979; Tompkins and Hall, 1983). It was found that in order to produce the early steps of courtship behaviour, such as tapping, following the females and wing extension, the posterior dorsal brain, on at least one side, must be haplo-X (Hall, 1979). Fate-mapping was also used to discover the control site of the courtship songs in Drosophila. Some male-female mosaics, with male brain tissue, followed females and extended their wings at them (Schilcher and Hall, 1979). Normal pulse song production has been found to be closely associated with male tissue in the ventral thoracic ganglia, and more specifically the mesothoracic neuromere (Schilcher and Hall, 1979). Mapping of the sine song did not lead to the location of a definite focus, but particular regions of the brain and thoracic ganglia needed to be of a certain genotype for the sine song to be produced. Licking (proboscis extension) is also found to be the same focus, but is submissive, i.e., male tissue has to be present in both the right and left dorsal brain (Hall, 1979). Attempted copulation, especially coital engagement, has its focus in the thoracic ganglia, but not in any specific region (Hall, 1979); copulation attempts, in mosaics with gravid abdomens, can be observed and may be correlated with the presence of sex combs (Hall, 1979).

Hall and Tompkins (1983), using sex mosaics were able to show that a group of cells in the dorsal anterior brain had to be female, so that females could become sufficiently receptive to copulation. Yet, the neuronal connections that underlie the courtship behaviour and the developmental processes needed to organize these circuits, still remain an enigma. Modified sexual orientation has been correlated with feminising of certain brain regions (see above) and, strangely the misexpression of the white (w)gene in the brain, also leads to homosexual behaviour, because these atypical males ectopically express the w gene (Zhang and Odenwald, 1995; Hing and Carlson,1996). Behavioural analysis of Drosophila mutants has shown genetic lesions that knock out single genes often have pleiotropic effects that disturb normal courtship behaviours (Hall, 1994). The apparent male-specific behavioural change imposed on the males by the w misexpression resembles that exhibited by the autosomal recessive fru mutants (Gill, 1963; Hall, 1978; Ito et al., 1996; Ryner et al., 1996).

Several defective song mutants have been isolated, which could eventually lead to a deeper insight into the neurogenetic basis of acoustic stimuli in mating. cacophony (cac) shows a mutant phenotype with respect to the pattern of individual pulses as well as IPIs (Schilcher, 1977; Kulkarni and Hall, 1987). The dissonance (diss) mutant, now known as nonA ${ }^{d i s s}$, mutant shows errant pulses within song phrases (Kulkarni et al., 1988; Stanewsky et al., 1996), croaker (cro) mutants also show pulse song defects as well as an apparent decrement in male-mating success accompanied with subnormal flight patterns (Yamamoto et al., 1993- reviewed in Hall, 1994), while fruitless (fru) exhibits several courtship behavioural defects, including abnormal song pulses (Hall, 1978; Gailey and Hall,1989). Wheeler et al. (1989) showed that cac and nonA diss mutants produce polycyclic pulses, with IPF and SSF in the wild-type range in the former, and a defect in sine wave of the 'hum' song for the latter. Eventually, it will be possible to clarify the actions of genes, such as cac (Peixoto et al., 1997;) and nonA ${ }^{\text {diss }}$ (Kulkarni et al., 1988; Stanewsky et al., 1996), which have both been isolated and cloned, and specify products that influence the development or physiology of the song-controlling 'circuit'. Furthermore, Villella and Hall (1996) reported that $d s x$ mutants lack the sine song component from their courtship song repertoire, making this the first mutation that affects the male acoustic output, but leaves the pulse song unaffected.

Species-specific differences in courtship songs

Interspecific differences are considered to be of great importance, for recognition of conspecific flies and maintainance of sexual isolation between the mating partners of the various species. Cowling and Burnet (1981) studied the courtship songs of six sibling species in the D. melanogaster subgroup, namely, D. melanogaster, D. mauritiana, D. simulans, D. yakuba, D. teissieri and D. erecta. They also were able to produce a few interspecific hybrids, as well as reciprocal interspecific hybrids between these species, where it was feasible, and analyse the lovesongs of these hybrids. Their results suggested that the genes controlling IPI variation were located on autosomes and that the "hum" or sine song was controlled by one or more sex-linked genes. Moreover,
they found clearcut differences between the songs of five of the species, with the only exception being that of D. mauritiana which showed ambivalent song characteristics, in that its mean SSF and intrapulse frequency (IPF) are closer to D. simulans, while its modal IPI lies much closer to D. melanogaster (Cowling and Burnet, 1981).

It is clear, that sexual isolation mechanisms should be strongest, when two species have the potential to interbreed, i.e., when they live in sympatry (Welbergen et al., 1987). Being endemic to the island of Mauritius, where no other members of the D. melanogaster subgroup are found, the chance of D. mauritiana interbreeding with other species of the D. melanogaster subgroup is highly unlikely. Thus, the rules for sexual isolation for this species are more relaxed. On the contrary, sympatric species such as D. melanogaster and D. simulans produce more distinct songs. Cowling and Burnet (1981) found that D. simulans produces a pulse song with a mean IPI of $\sim 55 \mathrm{~ms}$, whereas other workers (Ewing and Bennet-Clark, 1968) reported that a strain of D. simulans showed a mean IPI value of $\sim 48 \mathrm{~ms}$. Kawanishi and Watanabe (1979) found that the IPIs of strains of D. simulans gave a much more variable pattern than strains of D. melanogaster. This was confirmed by Kyriacou and Hall (1986). The same variability in mean IPI is observed for D. mauritiana strains, Robertson (1983) reporting mean IPI values of $\sim 45-55 \mathrm{~ms}$. Cobb et al. (1989) characterised D. sechellia song and reported that it only consists of phrases of pulses with no audible sine song, and a mean IPI of $\sim 85 \mathrm{~ms}$.

Cowling and Burnet (1981) also discovered that the D. yakuba males produce only trains of pulses, with a mean IPI of $\sim 96 \mathrm{~ms}$, but no hum song. Thackeray (1989), extending the characterisation of the D. yakuba song, observed that the D. yakuba pulses consisted of two distinctly different sound types. By using wingless ('mute') D. yakuba virgin females, and simultaneous observation and acoustic monitoring of these songs, Thackeray (1989) confirmed that both types of pulses were produced by the males only. It was clear from simple visual inspection, that the two pulse types had very different waveforms, and were given the names of "clack" and "thud" according to the auditory impression these pulses projected (Thackeray,1989).

Further audio-visual examination of the D. yakuba courtship song (Thackeray, 1989), revealed that each pulse type had a distinct part to play during different behavioural phases of the courtship itself. Moreover, Thackeray (1989) observed that each pulse type was produced by a different physical mode of wing vibration, e.g., clack pulses are produced by the wings only slightly outstretched from the abdomen and by apparent simultaneous vibration of both wings, which might explain its double-pulse nature seen in Figure 3.4.2a. The Thud pulses (see Figure 3.4.2b), on the other hand, are produced by one wing only, usually the wing closest to the female's head, at an angle of between 60° and 90° to the male's midline. Furthermore, Thackeray (1989) observed that Clack occurred when the male was oriented towards the female, but at a distance from her, whereas Thud was found to be most frequent when the male is attempting to lick the female genitalia or orientated quite near the female. The two types of D. yakuba are reminiscent of von Schilcher's (1976b) suggestion, that the hum and pulse song types of D. melanogaster might be acting as a prestimulator of females, and a "trigger" to mating, respectively.

Cowling and Burnet (1981) also reported that the songs of D. teissieri and D. erecta consisted of both a 'hum' and a pulse song. D. teissieri was shown to have the shortest IPI ($\sim 20 \mathrm{~ms}$) of the subgroup, and was composed of primary and secondary pulses which were 180° out of phase with each other. D. teissieri also showed the lowest SSF $(\sim 105 \mathrm{~Hz})$ of all the six species that were included in the study. D. erecta gave a mean IPI pulse song of $\sim 40 \mathrm{~ms}$, which was close to that of D. melanogaster, and Ewing (1977) pointed out the pulse song of this species was polycyclic. Cowling and Burnet (1981) also found that the D. erecta sine song had a higher $\operatorname{SSF}(\sim 245 \mathrm{~Hz})$ than the corresponding IPF. Cobb et al. (1989) reported that in D. orena the sine song constituted the majority of the song. The mean IPI of this species was found to be $\sim 40 \mathrm{~ms}$, which is very similarly close to the value of both D. melanogaster and D. erecta pulse songs (see above), but the SSF was $\sim 320 \mathrm{~Hz}$, representing the highest sine song frequency seen amongst the members of the D. melanogaster subgroup.

Kyriacou and Hall (1980), discovered a novel feature of D. melanogaster and D. simulans songs. The interpulse intervals (IPIs) oscillated sinusoidally around
values of about $\sim 30-40 \mathrm{~ms}$, giving an ultradian rhythm with a period of between $50-60 \mathrm{~s}$, in D. melanogaster, and 35-40s in D. simulans (Kyriacou and Hall, 1980; 1986) . This was shown by dividing the song into 10 s bins and calculating a mean IPI for each 10 s-bin. When these values were plotted against time, the means followed a typical rhythmic pattern (see Figure 1.4). Konopka and Benzer (1971) induced three mutations in a screen, involving circadian 24 h eclosion and locomotor activity rhythms in D. melanogaster. The mutations shortened the cycle to 19 h , increased it to 29 h , or obliterated rhythmicity altogether. The mutations were found to be alleles of the same gene, situated on the Xchromosome, and given the name period (per). The mutants individually became known as $\operatorname{per}^{\mathrm{S}}$ (short), $\mathrm{per}^{\mathrm{L}}$ (long) and per 01 (arrhythmic) (Konopka and Benzer, 1971). The courtship love song of D. melanogaster per-mutants was also found to be affected (Kyriacou and Hall, 1980). The per ${ }^{\text {L1 }}$ mutant was found to have a song rhythm period of $\sim 80 \mathrm{~s}$, the per^{s} mutant was found to have a song rhythm period of $\sim 40 \mathrm{~s}$, whereas the per^{01} male seemed to be arrhythmic. These effects on the ultradian courtship song rhythm seem to be in parallel to the effects shown on the eclosion and locomotor activity rhythms. Kyriacou and Hall also found that the sibling species D. simulans had a shorter $\sim 35-40$ s cycle (Kyriacou and Hall, 1980; 1986). D. yakuba has been reported to have a song cycle of $\sim 70-80$ s (Thackeray, 1989).

Kyriacou and Hall's finding of song cycles in D. melanogaster and D. simulans (1980) sparked off a contentious debate. Crossley (1988) and Ewing (1988) claimed they could neither replicate the original finding of song cycles in wild-type, nor of altered cycles in per mutants and contested the effects of per mutations on the song rhythm. They concluded that the statistical methods used by Kyriacou and Hall (1980) to detect song cycles were inappropriate. Kyriacou and colleagues (1988, 1989, 1990a and 1990b) reexamined both their own original data as well as Crossley's and Ewing's data in great detail, and scrutinized the statistical methods.

It was clear from the onset that rhythm detection, in Drosophila songs, requires experience, diligence, skill and common sense. Moreover, there are a few parameters that are needed to be handled with care before and during recording of flies, such as not rearing male flies in solitude-which may influence the flies' courtship vigour

Figure 1.4: Diagrammatic representation of how a courtship song rhythm is obtained. The mean IPIs of every 10s of courtship song are computed and plotted, giving the "song rhythm".

Paper record	0	60 sec.	12
of courtship		梱- H	

(Hall and Kyriacou, 1990b), or using recording equipment of sufficient quality, which could minimize background noises-which was one of the problem encountered in Ewing's recordings (1988). Kyriacou and colleagues pinpointed several key differences between the different experiments, which began to shed some light at the sources of disagreement (Kyriacou and Hall, 1989 and 1990). These were several, namely:

1) Ewing (1988) had used smaller than usual mating chambers, which might have been the source for obscuring any innate rhythmicity of the male's song (Kyriacou and Hall, 1988). When Kyriacou and Hall (1989) used the tiny chambers that Ewing had used (1988), they observed a number of unusual behaviours that had not been observed when recording flies in more roomy chambers. In addition, there was an increase in the extraneous noise levels due to aggressive interactions between the flies, and the male not being able to fully extend its wings during vibration.
2) Ewing (1988) and Crossley (1988) had filled 'empty' time bins with mean IPI values averaged from the preceeding and subsequent bin. This was unnecessary, as there exist spectral methods that deal with missing data points (Roberts et al., 1987; Van den Berg, 1989).

Kyriacou and Hall (1989) were able to show how Crossley's use of inserting missing data points could prejudice the outcome of song analysis. To press home the point, Kyriacou and Hall (1989) showed how in those songs that did not have missing data, Crossley found $\approx 60 \mathrm{~s}$ cycles in almost all of them. The probability of rhythmicity resulting by chance in Crossley's data was 40 in 10^{-6}. The debate was finally put to rest by Alt et al. (1997), where by employing related spectral methods, they showed that $\approx 60 \mathrm{~s}$ song rhythmicity is present in the wild type and is altered in per-mutants, as claimed by Kyriacou and Hall (1980). They also observed that per ${ }^{01}$ flies had periods in the range of $20-30$ s, as claimed by Kyriacou and colleagues (1989, 1990). Thus the song rhythm controversy seems to have finally been resolved.

The physiological pathways mediating the song cycle were investigated by using two temperature-sensitive mutations of the nervous system: nap ${ }^{\text {ts }}$ (non-action
potential) and para ${ }^{\text {ls }}$ (paralytic) which were immobilised at $>35^{\circ}$ and 29°, respectively. This defect is due to the blocking of neural membrane sodium channels at restrictive temperatures (Kyriacou and Hall, 1985). Courting nap ${ }^{\text {ts }}$ or para ${ }^{\text {ts }}$ males were subjected to short heat pulses which temporarily 'shut-down' the males' nervous system. The males were then allowed to continue courting females, after recovery, and any phase-shifts in the song after the heat shock treatment were recorded. Wild-type males given brief heat pulses, or $n a p^{15}$ or parals flies which were simply removed from the females and then replaced, sung in virtually identical phases before and after these control treatments. However, nap ${ }^{\text {ts }}$ and para ${ }^{\text {ts }}$ flies treated with the heat pulse, gave delays in the phase of the song, approximately corresponding to the length of the shut-down in their nervous system (Kyriacou ang Hall, 1985). These results demonstrate clearly that the clock producing the song rhythm is neurally mediated. Konopka et al. (1997) produced genetic mosaics for the per^{s} and per $^{+}$alleles. Those which had a per ${ }^{s}$ brain and a per thoracic ganglion showed short circadian activity cycles and a normal 55 s song rhythm, whereas flies with a per ${ }^{+}$brain and per ${ }^{5}$ thoracic ganglion showed a normal 24 h activity rhythm and a short song cycle, implying the existence of two separate pacemakers, one for the courtship song rhythm in the thorax, and one for the locomotor activity rhythm in the head.

In the wild, courtships may occur over a brief period of time. Ewing and Ewing (1987) argued that it is highly questionable that female flies would have enough time to summate the IPI cycles. However, Kyriacou and Hall (1982), suggested that perhaps the rate of change of IPI that may be important, or even that males might 'scan' female IPI preferences. It is not inconceivable then that females may recognise the first derivative changes of IPI about a certain value and that the oscillation period is a way in which male flies could accomplish a continuous IPI 'gradient'. Indeed, Alt et al. (1997) have recently suggested that females may recognise the 'nature' of a cycle from the IPIs generated in less than a complete 60 s rhythm. Alternatively, under the scanning hypothesis, individual female flies may have their own preferred IPI value, and thus consequently, males singing with a constant IPI may stimulate fewer females than males which generate many different IPIs. By singing rhythmically, a male fly can vary the IPI repertoire it produces; therefore by increasing his repertoire is able to stimulate a larger number of females.

A character that has an important role in sexual isolation should be speciesspecific. In the D. auraria-group species for example, females of the different species use IPIs as a species-discriminator (Tomaru and Oguma, 1994). Not surprisingly, amongst the D. auraria complex, a strong premating isolation is observed, indicating perhaps that no two species share gene pools (Tomaru and Oguma, 1994). Species' differences in courtship songs can be characterised by one or more components, such as IPI, fluctuation of the interpulse intervals, intrapulse frequency (IPF), sine song frequency (SSF), number of pulses per burst (PB), burst duration (BD) and number of cycles per pulse (CPP) (Bennet-Clark and Ewing, 1969; Kyriacou and Hall, 1980; Crossley, 1986; Hoikkala and Lumme, 1987; Wheeler et al., 1988). One or more song parameters may exhibit speciesspecificity depending on the species, but playback experiments are required to examine whether any species differences are used as disciminating cues by females.

Schilcher (1976a \& b) artificially pre-stimulated females with "hum" song before introducing them to males. The time to copulation of these pre-stimulated females was significantly shorter compared to females which had not been pre-stimulated. However, when female flies were pre-stimulated with a constant 34 ms IPI pulse song, the effect was not observed. Females also mated faster with wingless ('mute') males in the presence of the conspecific 34 ms song than with the 48 ms song (Bennet-Clark and Ewing, 1969). Further experiments by von Schilcher (1977) indicated that females showed some preferences to conspecific IPI values, but the effects were marginal at best (Hall and Kyriacou, 1990). Further playback experiments by Tomaru et al. (1995), using female flies from the D. auraria group in the presence of wingless males, revealed that females would more readily mate with the wingless males, after having been stimulated by conspecific artificially generated song, rather than being stimulated by either heterospecific or intermediate songs, which further supports the notion that females discriminate against non-conspecific song.

In von Schilcher's experiments, the IPIs were produced at a constant 34 or 48 ms . However, IPIs fluctuate rhythmically throughout the entirety of a courtship song, with a period of $\sim 55 \mathrm{~s}$ in D. melanogaster and $\sim 35 \mathrm{~s}$ in D. simulans (Kyriacou and Hall,

1980; 1989). Having discovered this new dimension in the the courtship song, Kyriacou and Hall (1982) investigated the function of the song rhythm by performing playback experiments. They played artificially generated songs, which incorporated all possible combinations of a 35 ms IPI, a 48 ms IPI, a 55 s and a 35 s oscillation periods to D. melanogaster and D. simulans females. They found that D. melanogaster females showed preferences to the song with 'melanogaster-like' characteristics- a 55 s rhythm with a superimposed 34 ms IPI. Likewise, D. simulans females "preferred" a 'simulans-like' song, with a 35 s rhythm and a 48 ms IPI.

Greenacre et al. (1993) extended these observations to show that wild-type females did not prefer the 55 s song cycle to the 35 s 'simulans-like' cycles, but they discriminated against the heterospecific song, in that a song with an 80 s cycle was just as effective as 55 s . Thus females seemed to be actively rejecting the D. simulans song. Greenacre (1990) also artificially selected females that preferred either constant 40 ms or 30 ms IPI pulse song in the presence of wingless males, and used the females that mated fastest to produce both 'high' and 'low' IPI preference lines. After 2 generations the different lines were observed to respond better to their selected pulse song. Unfortunately, this result could not be upheld, and by generation 6 females from both lines mated so quickly that any effect of the different IPIs were completely overshadowed. Even when 'indiscriminate' females, females that mated extremely rapidly, were removed in a rerun of the selection procedure the early positive results could still not be sustained (Greenacre, 1990). Therefore, whether an individual female matches up the cycle to some internal rhythm template or whether she simply prefers some IPIs over others is unknown.

The IPI length has been argued to be involved in sexual selection, as it tends to be highly variable among species, thus potentially contributing to the maintenance of species barriers (Ewing and Bennet-Clark, 1968; Cowling and Burnet, 1981; Ritchie and Gleason, 1995). Yet, Noor and Aquadro (submitted) suggest that ecological pressures may potentially modify the mean IPI, rather than sexual selection, and could account for the differences observed in the courtship song of different D. pseudoobscura and D. persimilis populations. Occasional matings between D. pseudoobscura males and D. persimilis females revealed no differences in song characteristics between those D.
pseudoobscura males that did hybridize and those that did not (Noor and Aquadro, submitted). Moreover, Ritchie et al. (1994) investigating the genetic variability across European D. melanogaster populations, reported that there were no significant differences in the mean IPI, yet the differences in mean IPI across the populations were similar in magnitude, as those reported by Noor and Aquadro (submitted). An explanation that could account for the lack of significant differences within a species or among populations for the male IPI song, is stabilizing selection, possibly through female discrimination. An alternative explanation could be that variation does exist within species, but remains undetected due to the high levels of IPI variation within and between an individual song, and which could partially be explained by the periodicity in IPI. Furthermore, Noor and Aquadro (submitted) suggest that these differences, even between closely related species, may be just by-products of adaptation to different environments coupled with an absence of the homogenizing effect of gene flow, which is also observed in at least some Drosophila species (Coyne and Milstead, 1987; Schaeffer and Miller, 1992).

Experiments that measured the female's receptivity to copulation attempts by wingless ('mute') males were shown to be enhanced, when the females had been exposed to simulated artificial songs (Kyriacou and Hall, 1984). Genetically normal females, which had been pre-stimulated for two minutes with artificially-generated cycling pulse song, are observed to show enhanced mating kinetics, when mixed with intact males (Kyriacou and Hall, 1984). The 'memory' of such sensitization is 'short-term', lasting a few minutes in normal females (Kyriacou and Hall, 1984). When such experiments were performed on dunce, rutabaga and amnesiac females (e.g., Tully and Quinn, 1985), very brief or even non-existent after-effects of prestimulation are exhibited (Kyriacou and Hall, 1984). Consequently, it appears that 'acoustic priming' (pre-stimulation) of the mating behaviour involves complex interactions between information, storage and retrieving mechanisms. Experiments by Tully and Quinn (1985), and Dudai (1985) suggest that the fly's abilities to learn and remember in a sexual context, is of adaptive significance. Sensitization to certain auditory stimuli produced by courting males seems to be a 'simple' learning process. Griffith et al. (1993), using both cycling IPI and hum song as a prestimulator, were able to show stronger after-effects in wild-type females than when using either pulse or sine song alone (Kyriacou and Hall, 1984). Females carrying a calcium/calmodulin-
dependent protein kinase (CamK) peptide inhibitor transgene under the control of a heatshock promoter, which produce learning and memory defects in proportion to the amount of transgene inhibition in sexual situations (Siegel and Hall, 1979), also showed defective acoustic priming (Griffiths et al., 1993). Thus, playback experiments on song function have served both evolutionary and neurogenetic purposes.

Signals that function to bring potential mates together are components of a sexual signal-receiver system. Since both sexes must be able to recognize each other, the characters of this system must be co-adapted, and it is possible that they would be likely candidates for stabilizing selection. Even though co-adaptation suggests that the sexual signal-receiver system is resistant to change (Paterson, 1985), it does not imply that it can not evolve. Therefore the evolution of this sort of system would depend on the extent of genetic variation in male and female components and their genetic control. Charalambous et al. (1994) used artificial selection to test for the presence of genetic variation in the male signal (syllable length), and in the female preference for this particular signal in the common field grasshopper, Chorthippus brunneus. In just one generation of selection, of a two generation selection experiment on the male calling song, a response occurred, resulting in a significant difference between the two divergent lines. Selection on the female preference to artificially-generated male calling song, resulted in an immediate and significant response to selection (Charalambous et al., 1994), which, unlike the experiments of Greenacre et al. (1991), was stabilized in later generations. These results suggest the presence of additive genetic variation in the female preference for the syllable length of the male song; however, the female preference to differing syllable lengths has not yet been tested.

Piñeiro et al. (1993) selected for high and low receptivity (mating speeds) in D. melanogaster females collected from the wild. Selection was achieved in both directions, which is in agreement with Carracedo et al. (1991), whereby a large amount of genetic variation for female receptivity in the base population, as well as a large proportion of additive genetic variation, was observed. Yet, only a slight dominance component in another D. melanogaster population was detected. Their results suggest that female receptivity in D. melanogaster was not under any directional selection pressure
in the wild. The lack of directional dominance for female receptivity was also apparent in selected lines after selection was relaxed for 42 generations. Piēeiro et al. (1993) also yielded a line with diminished receptivity from selection of unmated females. Furthermore, it was found that lines selected for high receptivity had an increased probability of hybridising with D. simulans males, whereas in the case of the low receptivity line the converse was true. This is in line with the results of Izquierdo et al. (1992), in which selection for increasing hybridisation, between D. melanogaster and D. simulans, was associated with an increase in receptivity. Bearing all this in mind, a fine balance between natural selection for increasing (risking hybridisation with subsequent fitness impairment for females that hybridise), and diminishing (risking individual genetic extinction) receptivity, could explain the large additive variation for receptivity observed in this study and that of Casares et al. (1992).

Kyriacou and Hall (1986) also examined the mating preferences of hybrid F_{1} melanogaster/simulans females, by artificially stimulating these females with various combinations of parental or intermediate IPI means and rhythm periods. They found that the latency to mating was shortest with a hybrid song with a 45 s rhythm superimposed on an intermediate mean IPI of 41 ms , suggesting that the genes controlling the speciesspecific receptivity to male songs, acted additively in these hybrid females. It was impossible to carry the analysis beyond the F_{1}. Kyriacou and Hall (1986) also analysed courtship songs in reciprocal D. melanogaster/D. simulans interspecific hybrid males. Even though, the mean IPI of such hybrids is intermediate between the means of the parent species, indicating autosomal control of this song character, the period of their IPI oscillation was dependent upon the origin of their X chromosome. In other words, hybrids with an $X^{\text {sim }} / \mathrm{Y}^{\text {mel }}$ genotype produce a 'simulans-like' cycle of $\sim 40 \mathrm{~s}$, whereas an $\mathrm{X}^{\mathrm{mel}} / \mathrm{Y}^{\text {sim }}$ hybrid produces IPIs of $\sim 55 \mathrm{~s}$ oscillation period, typical of D. melanogaster. Since per is carried on the X chromosome, their finding is consistent with per being the cause of this species-specific difference in the song period between D. melanogaster and D. simulans. These experiments supported the notion that genes generating the speciesspecificity of the male song may include the sex-linked per locus, but say nothing about the genes involved in the female preference.

Greenacre et al. (1993) examined the mating speed of females, carrying homozygous per mutant alleles (per L and $p e r^{s}$), when these flies were artificially stimulated with mutant song rhythms (80 s and 40 s , respectively), and compared them to congenic per ${ }^{+}$females. It was observed that these mutant females did not show any preference for their corresponding mutant song cycles, but instead showed the usual wild-type female discrimination against a ~ 40 s song cycle (Kyriacou and Hall, 1980; 1986). Clearly the per gene is not involved in influencing female preferences. However, per 01 female flies which lack a functional Per protein (Yu et al., 1987a; Baylies et al., 1987), mated very rapidly and were less discrimatory against the 40s cycle. Greenacre et al. (1993) extended this line of experimentation by testing the female preferences of a per mutant line, from an established laboratory stock maintained for over 20 years. The females, from this 'old stock', showed an enhanced response to the mutant 40 s song cycle. As congenic per ${ }^{+}$ and $p e r^{5}$ females both show enhanced discrimination against a 40s cycle, it is probable that this preference for the 40s cycle had 'evolved' by a secondary selection at other loci. (e.g., see Bastock, 1956). Such coevolution was proposed by von Helversen and von Helversen (1975) with the signalling system of Chorthippus biggutulus and Ch. mollis, which in essence means that if a genetic change in a male character occurs, this change would instigate the selection at other loci for an appropriate change in the female character, or vice versa.

It is clear that genetic coupling as described by Alexander (1962) is not operating in this case, in that per affects the male courtship signals, but not the female receptivity to these signals. Thus, the species-specific correlation between male and female preferences must be achieved by the co-evolution of different genes controlling each characteristic. Genetic coupling is a tantalizing hypothesis in that a new mutation that would affect male output and female input characters simultaneously could bring about rapid speciation. Conversely, the coevolution hypothesis furnishes a much slower alternative, whereby a change in one sex brings about a change in the other. Most experiments carried out in order to dichotomize between the coevolution and genetic coupling hypotheses, e.g., in crickets (Hoy et al., 1977; Doherty and Hoy, 1985), and tree frogs (Doherty and Gerhardt, 1984), have been unsuccessful because of the difficulties in
obtaining F_{2} hybrid female progeny, and thereby looking for segregation of the male and female characters.

As mentioned earlier Konopka and Benzer (1971) identified the per mutations which affect eclosion and locomotor cycles. per was cloned by two separate groups, idependently (reviewed in Hall, 1995; Kyriacou et al., 1996). All three per mutations have been mapped to single amino acid substitutions (Baylies et al., 1987; Yu et al., 1987a). The most striking feature of the per gene is the central coding region which encodes for a run of alternating threonine-glycine (Thr-Gly) residues (Jackson et al., 1986; Citri et al., 1987), which is found to show length polymorphism, in both natural and laboratory populations of D. melanogaster (Yu et al., 1987b; Costa et al., 1991), with the number of Thr-Gly repeats ranging from 14 to 24 (Rosato et al., 1996).

Deletion of the Thr-Gly region, together with a few flanking amino acids, to create the $\Delta \mathrm{TG}$ transgene (Yu et al., 1987b), produced a $\sim 40 \mathrm{~s}$ male courtship song rhythm. The circadian locomotor activity pattern was observed to be unaffected, at $25^{\circ} \mathrm{C}$ (Ewer et al., 1990). Hence, the courtship song cycle appeared to be more sensitive to Thr-Gly alterations than the circadian cycle. As the species-specific differences between D. melanogaster and D. simulans per genes mapped to the X chromosome (Kyriacou and Hall, 1986), could per be a reservoir for species-specific song cycles?

In follow-up experiments performed by Wheeler et al. (1991), the molecular transfer of a species-specific behaviour was demonstrated using D. simulans and D. melanogaster per genes. A number of transgenic constructs, where the Thr-Gly repeats together with some flanking sequences of per, were interchanged between D. simulans and D. melanogaster, were created, and these chimeric constructs were used to transform per ${ }^{01}$ flies. The resultant transgenic flies carried the D. melanogaster per gene, but a D. simulans Thr-Gly region. The flies were found to sing with a simulans-like ($\sim 40 \mathrm{~s}$) song cycle. Transformed per ${ }^{01}$ host flies carrying the reciprocal construct (D. simulans per with D. melanogaster Thr-Gly repeat), sang with a melanogaster-like ($\sim 60 \mathrm{~s}$) song cycle (Wheeler et al., 1991). Therefore, it was revealed that the observed species-specific difference in behaviour mapped to the small 700 bp fragment of DNA in per which had
been swapped between the two species. This 700 bp DNA fragment encodes for eight species-specific amino-acid differences (Wheeler et al., 1991) and thus any one (or all) of these species-specific differences could account for the differences observed in the species rhythms. If we disregard the small difference in Thr-Gly length between the two swapped fragments (a difference of four Thr-Gly pairs), four species-specific amino acid substitutions are found downstream of the repeat, and thus by deduction, one or more of these changes could most likely account for the species-specific song rhythm (Wheeler et al., 1991).

The per gene has been cloned and sequenced in a number of Drosophila species (reviewed by Hall, 1995; Kyriacou et al., 1996). Strains of the sibling species of D. simulans shows a similar length polymorphism, ranging from 23 to 25 Thr-Gly pairs (Wheeler et al., 1991; Peixoto et al., 1993, Rosato, et al., 1994). One strain of D. yakuba revealed the presence of 15 Thr-Gly pairs (Thackeray and Kyriacou, 1990). D. mauritiana was shown to have 25 Thr-Gly pairs, while D. sechellia had 20 Thr-Gly pairs (Peixoto et al., 1992). D. teissieri appeared to encode for 14 Thr-Gly pairs, while D. erecta had 14 Thr-Gly pairs plus two more that had the glycine residue changed into aspartic acid and arginine, respectively (Peixoto et al., 1992). D. orena was shown to encode for 19 Thr-Gly repeats plus three more pairs that had their glycine residue changed into aspartic acid, glutamine and arginine (Peixoto et al., 1992). This specific fragment could potentially control song rhythmicity in each of the other species of the D. melanogaster subgroup. Moreover, the different amino acids substitutions, downstream the Thr-Gly repeat, which were apportioned by Wheeler et al. (1991) as playing a critical role in the song rhythmicity of D. melanogaster and D. simulans are observed to be different among the different species of the D. melanogaster subgroup. Specifically, D. melanogaster has an alanine and lysine residues at positions 102 and 107 (Peixoto et al., 1992), as compared to D. simulans that has threonine and arginine residues at these positions, respectively. The other species in the subgroup have various amino acid substitutions in these positions (Peixoto et al., 1992), and we might speculate that if these sustitutions are the crucial ones for song rhythmicity (as opposed to the two found further downstream- Wheeler et al., 1991), then these could indicate species-specificity of song cycles in the other member species of the D. melanogaster subgroup.

Ritchie and Kyriacou (1994) carried out a series of female preference experiments, allowing D. melanogaster females to be courted by D. melanogaster transformant males, generated by Wheeler et al. (1991), which carried either the melanogaster- or simulans-per gene. Surprisingly, transformants expressing D. simulans per, were at least as successful as the conspecific per transformants, implying that the females did not discriminate between the different song cycles in these males, which seem to be at odds with the results of Kyriacou and Hall (1982; 1986). However, the song rhythms in these male transformants are not as robust as in the wild-type D. melanogaster and D. simulans males (Wheeler et al., 1991). Thus, in order to properly assess whether song rhythms in male transformants are differentially detected by D. melanogaster and D. simulans females, a large number of independent transgenic constructs must be made and tested in order to alleviate the 'position effects', that are consistently observed with transformation experiments (Ashburner, 1989). Despite their shortcomings, future larger scale experiments using many transformed lines for each per transgene could provide a more definite answer to the question of whether per is indeed a 'speciation gene' by way of its effects on mating behaviour.

The per orthologues from D. pseudoobscura and D. virilis, distantly related species to D. melanogaster, have also been cloned and sequenced by Colot et al. (1988). Petersen et al. (1988) reported that species-specific circadian locomotor activity instructions are transferred by the D. pseudoobscura per coding region, when this was used to transform per ${ }^{01}$ D. melanogaster mutants. The resultant transformants showed one predominant evening peak, characteristic of D. pseudoobscura in light:dark (LD) conditions. This species-specific circadian locomotor activity pattern has been mapped to the N -terminal half of per using interspecific chimeric genes between D. melanogaster and D. pseudoobscura (J.M. Hennessey and C.P. Kyriacou, pers. comm.). If a species is active in the mornings, it will be behaviourally isolated from another species which may be active in the evenings, and so locomotor activity patterns could be significant in sustaining sexual isolation. This type of isolating mechanism could potentially play an even more potent role in maintaining barriers to interspecific matings than sexual selection for
species-specific courtship attributes. In this regard, Coyne (1992) has called per a potential 'speciation gene'.

If per is a 'speciation gene', it may show the signature of past selective events, in its putative role in sexual isolation. Kliman and Hey (1993) sequenced a number of per alleles in D. melanogaster and three of its sibling species. They performed various neutrality tests (Hudson et al., 1987; Tajima, 1989) on a 1.9 kb region, upstream of the Thr-Gly region, and found no evidence of any excess or dearth of nucleotide variation that could be taken as evidence for balancing selection or selective sweeps. This finding was in agreement with Begun and Aquadro's (1991) study, which also provded no evidence for selection at the per locus in D. melanogaster and D. simulans. Nonetheless, Rosato et al. $(1994 ; 1997)$ extended the analysis to the Thr-Gly region, in D. simulans and D. melanogaster respectively. Using various statistical analyses, a pattern of nucleotide variation consistent with weak selection was observed in both species. These differences between the two sets of studies may be due to the fact that the Thr-Gly domain, because of its repetitive nature, does not obey the same evolutionary rules as the upstream nonrepetitive sequences analysed by Kliman and Hey (1993) and Begun and Aquadro (1991).

The evolutionary dynamics that play on the Thr-Gly domain could be due either to the fact that this region may control the species-specific song cycle, or to the recent observation that the domain plays a pivotal role in temperature compensation of the Drosophila clock (Sawyer et al., submitted; Peixoto et al., submitted; Peixoto et al., 1993; Nielsen et al., 1994). Phylogenetic relationships between semispecies of D. athabasca, based on mitochondrial DNA data, suggest that the patterns of sympatry and allopatry strongly implicate the action of selection in the rapid evolution of behavioural isolation for this complex (Yoon, 1991; Yoon and Aquadro, 1994). However, Ford et al. (1994), studying the nucleotide variation at the per locus of the species in the D. athabasca complex, suggested that per may not play a role in the mating isolation between these groups (Yoon and Aquadro (1994). Consequently, the evolutionary analyses of nucleotide sequences within per appear to center on the Thr-Gly domain, as a focus for natural selection, whereas other regions of the per molecule do not reveal such intriguing patterns.

Aim of the project

The male courtship song and locomotor activity patterns are of interest to speciation biologists, because changes in either could lead to sexual isolation. In light of the controversy about the existence of song rhythms in the D. melanogaster courtship song (Kyriacou and Hall, 1980; 1989; Crossley, 1988; Ewing, 1988; Alt et al., 1997), and the recent evidence furnished by Noor and Aquadro (submitted) for the existence of short song cycles in D. persimilis (distantly related to the D. melanogaster subgroup) Chapter 3 attempts to confirm the original findings of Kyriacou and Hall (1980), and extend the song rhythm analysis to D. yakuba rhythms. Chapter 4 investigates the possible existence of song rhythms in the courtship songs of the other members of the melanogaster subgroup. Chapter 5 offers a further insight into the inheritance of song components such as the presence or absence of sine song (SSF), intrapulse frequency (IPF), interpulse interval (IPI), and song rhythms. Byrne and Kyriacou (pers. comm.) have reported, in simulator experiments, that the song burst duration, may play an important role in the conspecific recognition between D. mojavensis and D. arizonae. Chapter 6 attempts to shed some light on any short-term temporal changes that may occur during the duration of a song burst, and tries to identify any species-specific differences in the D. melanogaster subgroup of species. In addition, chapter 6 investigates the grosser temporal changes such as the burst duration and interburst interval, and hybrids are generated to examine the inheritance of any species-specific song components.

As mentioned earlier, per has also been found to change the speciesspecific pattern of locomotor activity (Petersen et al., 1988). Chapter 7 investigates the freerunning activity patterns of the members of the melanogaster subgroup and their interspecific hybrids in constant darkness (D:D). Chapter 8 examines the activity patterns during 12:12 LD cycles for both the melanogaster subgroup members and their interspecific hybrids. Are there any species-specific aspects to these phenotypes? If so, could these be relevant to sexual selection between the D. melanogaster subgroup species? In endeavouring to answer these questions, further insights might be furnished, not only into biological rhythmicity, but also into the possible impact of behavioural rhythms on evolution.

MATERIALS \& METHODS

CHAPTER 2

2.1 STOCKS

D. melanogaster (Brighton) was provided by Prof. Linda Partridge. D. simulans (Florida) and D. yakuba (Lamto3) were provided by Dr Barrie Burnet (Sheffield University,UK), and had been maintained in the laboratory for at least six years. D. erecta Sheffield (both light and dark body females), D.orena Sheffield and D. mauritiana (MG-71 and MG-17) were also provided by Dr Barrie Burnet. D. teissieri (SwedenUMEA), D. yakuba (Ivory Coast) and D. mauritiana (Sweden-UMEA) were provided by the Drosophila Stock Center, Umeå, Sweden. D. mauritiana 1014, together with all the Isofemale lines were all provided by the Drosophila Stock Center, Bowling Green (Indiana State University, Indiana, USA). D. orena France and D. erecta France were provided by Dr Matthew Cobb (France) and D. sechellia was provided by Prof. M. Ashburner's group (Cambridge-U.K.).

2.2 STOCK MAINTENANCE

Fly stocks were reared on sugar/agar medium (65 g of sugar, 115 g of yeast, 10 g of agar and 2 g Nipagen in 11 of water), in either one-third pint milk bottles or glass vials ($10 \mathrm{~cm} \times 2.2 \mathrm{~cm}$). The flies were kept in controlled temperature rooms at either 18 or $25(\pm 1)^{\circ} \mathrm{C}$ and entrained in light-dark cycles of 12 hours (LD 12:12) with lights on/off at 09:00/21:00 h . Parents of flies which were used for experiments were removed from the bottle after 5-6 days to avoid overcrowding the progeny. The fly strains and species used in this work are described in the relevant chapters.

2.3.1 FLY COLLECTION

For all song recordings and genetic crosses, virgin females up to 10 hours old were collected. Flies eclosing overnight were discarded and collections were made every 2 h thereafter until late in the afternoon. Flies were collected under CO_{2} anaesthesia and kept in vials at a density of 3 female flies per vial and one male fly per vial. Vials containing female flies were carefully checked before either any recording experiment or
setting up crosses, to guarantee that no larvae were present, and hence that the flies were indeed virgins. If any females were found not to be virgins, the vials were discarded. All the flies that were collected for the subsequent experiments were stored at $25^{\circ} \mathrm{C}$, unless stated otherwise.

2.3.2 INTERSPECIFIC CROSSES

As stated above, male flies were reared in solitude, which increases their sexual vigour, giving a higher possibility for a successful mating (von Schilcher, 1976b; Hall \& Kyriacou, 1990). However, D. mauritiana males were kept, not only in solitude at $25^{\circ} \mathrm{C}$, but also under constant light conditions (LL), as the male mating capability was discovered to be maximised under constant light conditions, since its courtship behaviour is very light-dependent (Robertson, 1983). Two-day old female flies and three-day old males were then placed in a new food vial and left for five days. If no larvae were observed, the vials were discarded. If, on the other hand, larvae were visible, then males and females were placed over into fresh vials, thus perpetuating the cross.

2.3.3 FEMALE WING AMPUTATION

During song recording, it was observed that D. mauritiana females could violently reject males, by pushing them away forcibly, using both their wings. I decided to amputate the wings from the female flies in order to see whether this 'amputation' might increase the chances of producing hybrid progeny (see Chapter 5). Furthermore, as D. mauritiana mating behaviour is light-dependent (Robertson, 1983) and since light increases sexual vigour (Robertson, 1983), I decided to reverse the mauritiana rearing conditions, described by Robertson. Instead of keeping D. mauritiana female virgins under constant light conditions, as in the regime for rearing male flies, the females were kept under a 12:12 LD light regime, in an attempt to decrease their aggressiveness; the removal of their wings rendered the female flies incapable of violently rejecting any courting males. After many unsuccessful attempts to generate hybrid larvae with D. mauritiana females and D yakuba males, hybrid larvae were eventually produced, when D. mauritiana females (with amputated wings) were used. To my knowledge, it is the first time, that hybrid flies have been produced in this cross. D. mauritiana has only previously
been used as the paternal participant in interspecific crosses (Cowling and Burnet, 1981). The same procedure was used when D. mauritiana females were crossed with D. simulans and D. teissieri males.

Removing the wings of female flies involved anaesthetizing the flies under CO_{2}. A pair of tweezers was used to pin down the fly and spread the wings of the fly flat onto a substrate dish, which was constantly supplied with CO_{2}. Using a sharp needle, the wing was carefully removed, and the whole operation was executed under a dissecting microscope.

2.4.1 SONG RECORDING

Male flies whose courtship song was to be analysed were collected within one day of eclosion and stored in vials at $25^{\circ} \mathrm{C}$, in a $12: 12 \mathrm{LD}$ cycle with the exception of the D. mauritiana strains (see above). All males were stored singly in vials, as this can increase the amount of song production, except for D. melanogaster males which were kept at a density of two per vial (Hall \& Kyriacou, 1990). Females were kept five to a vial. The song was recorded when the male was 4 or 5 days old.

The recording equipment consisted of a small, rectangular perspex cell, with a mesh underside into which one male and two females were introduced without anaesthesia, using a mouth-sucking device. The cell used for recording songs had dimensions of 19 mm length $\times 12 \mathrm{~mm}$ width $\times 8 \mathrm{~mm}$ height. The females used in these recordings were one or two days old. The cell was placed in a foam lined box with its mesh underside over a condenser microphone-(an Insectavox from Brandeis University, U.S.A- Gorzyca and Hall, 1987)-see Figure 2.1. Courtship songs were recorded on a Revox reel-to-reel tape recorder. Depending on the species, the duration of the songs ranges from ~ 180 s (D. melanogaster) to 1200s (D. yakuba). A graphic representation of the song was obtained by tracing the recording through a band pass filter (EF5-20 Power Unit and EF5-03 LP/HP Filter, Barr and Stroud, Cambridge, U.K.) (high pass, 100 Hz , low pass 1000 Hz - to remove extraneous noise) and in a CED 1401 A-to-D converter. The song was displayed on the monitor of Tandon 486 computer, using Spike 2 software,

Figure 2.1: Schematic diagram cross-section through Insectavox (after Thackeray, 1989)

The mating cell used for courtship song recording is shown within the Insectavox unit (Gorczyca and Hall, 1987), postioned over a condenser microphone.

Version 4.70 (C.E.D. Ltd-Cambridge, U.K.). The song patterns were then printed onto dot matrix printer paper using the 'oscillograph' program, written by Dr Mike Ritchie.

2.4.2 SONG ANALYSIS

The Spike 2 Version 4.70 software is a suite of programs for the CED 1401IBM PC compatible-Converter, designed to capture and process both events and waveform data. The concept behind the analysis program is to make it as simple as possible for anyone to display and process raw data. Analysis of data can either be done manually from the monitor or automatically. In the course of this present study song editing was performed manually, in order to minimize error.

In order to investigate the presence or absence of songs cycles (Kyriacou and Hall, 1980), after obtaining a printed profile of the songs on dot matrix computer paper, songs were divided into 10 s 'bins' and the IPI's measured within each 10 s time window with a ruler. The upper and lower cut-off values were adjusted according to the value of the mean IPI of individual courtship songs and according to the different species, under investigation. Bins with less than 10 IPIs were not included in the analysis, unless eight or nine pulses constituted a burst. Courtship songs with more than one third of the mean IPI points missing were discarded. To analyse overall mean IPI, and other song parameters, the Spike 2 programmes Events.Txt and IPI.TXT were used to compute the appropriate statistics.

2.4.3 STATISTICAL ANALYSIS OF SONG CYCLES

Two methods of assessing the statistical significance of song rhythms were employed; one which uses the CLEAN algorith (Roberts et al., 1987; Kyriacou and Hall, 1989) and another which was a modification of a standard Fourier analysis written by Marc van den Berg (Van den Berg, 1989; Kyriacou and Hall, 1989 and Kyriacou et al., 1990).

The CLEAN spectral analysis estimates missing data points by a procedure approximating to a least squares interpolation. The highest peak or frequency from the
spectral analysis (or spectrogram) is taken as the cycle length or period; sometimes the second highest peak of the spectrogram is used, when the first peak gives a value of more than half the duration of a song recording. This occurs most frequently when the mean IPI of a song rises systematically during the course of the courtship. Songs with this characteristic are known as 'climbers'. This long cycle represents the upward trend in the data, which may be considered to be part of a very slow oscillating sine wave. The second peak value is also used when a period of between 20-22s is obtained. This is the 'Nyquist' value, i.e., twice the value of a bin length of 10 s . An artefact of spectral analyses is that they will occasionally find the highest frequency in the spectrogram to be around twice the sampling frequency.

The Van den Berg (VdB) program is a basic Fourier analysis, but differs from CLEAN in that any missing data points are omitted from the analysis and are not estimated. However, the phase of the data points is maintained (Kyriacou et al., 1990). As with CLEAN, the value of the second peak of the spectrogram is taken as the true cycle length, when the first peak gives a value of ≈ 20 s or a value of more than half the duration of the song recording.

The VdB analysis also takes the highest peak in the spectrogram and uses this in a least squares curve fitting procedure, to find a new period via regression. An associated F-ratio for goodness of fit is given. Using Monte-Carlo simulations, Kyriacou and Hall (1989) found that these F-ratios are, under certain circumstances, useful statistics for describing the 'signal-to-noise' ratio. F-tables were also used by Kyriacou and Hall (1980) to operationally define "weaker" rhythms, i.e, songs with a small F-ratio, from "stronger" ones. This allowed them to separate per^{01} songs which have much weaker cycles from the other per- variants (Kyriacou and Hall, 1989). Consequently, F-tables give a reasonable indication of the strength of a rhythm, but are only occasionally used in this work.

2.4.4 OTHER SONG CHARACTERISTICS

For examining the Cycles per Pulse (CPP), Intrapulse Frequency (IPF) and Interpulse Interval (IPI) song components, a minimum of the ten longest bursts were
chosen from each song. The IPI, CPP, and IPF was computed for each sequential pulse position in the burst, in order that regressions could be carried out to look for trends in the data. IPI's were calculated from paper records of song traces, CPP, IPF and Sine Song Frequency (SSF) were calculated from the Spike 2 facilities on the monitor. The FLY.TXT program in the Spike 2 package was used to count CPP in a pulse. They were then scored manually for further statistical analysis. This was done as follows:

The song baseline was used as the reference start line for counting the cycles within the pulse under consideration. One cycle was considered to be one complete oscillation (see Figure 2.4.3, below).

Figure 2.4.4.1: Cycles per Pulse, (CPP)

It was possible to record the IPF by taking the reciprocal of the time duration for a complete pulse. In addition, the SSF was determined, by placing the cursors from the beginning to the end of a sine burst song, calculating the number of complete cycles, dividing the total time of the burst by the number of cycles and using the reciprocal as the SSF.

2.4.5 Determination of the Mean Burst Duration and Mean Interburst Interval

The burst duration (bd) and mean interburst interval (ibi) were also calculated manually from dot-matrix paper. Different cut-off points were used to describe a 'burst', depending on the species (see Chapters 3, 4 and 5). Burst duration was measured from the beginning of the first pulse in a burst to the end of the last pulse of the burst in question. Then, a mean was calculated for the entire song, and for each of the
two separate halves of the song. The ibi was measured from the end of the last pulse of the previous burst, until the beginning of the first pulse of the following burst, taking into account the maximum IPI that was accepted for each species. A mean ibi was determined for the entire song, and for the two separate halves.

2.4.6 Clack versus Thud pulses in D. yakuba songs

Thackeray (1989) discovered that within a D. yakuba song two distinctly different types of pulses were present. These two different types of pulses were marked on the dot-matrix oscillograph paper, prior to analysis. This was done by simultaneously listening to the recorded songs, while observing the waveform of each burst of pulse song on the oscilloscope. The song was then analysed by dividing the analysis into 'clack' and 'thud' to give two independent sets of data. In the majority of songs examined, thud pulse-type predominates with the clack pulse-type making little or no difference to combined overall mean IPI (see Chapter 3-Tables: 3.4.2a \& b).

2.4.7 Statistical Analysis

All formal statistical analyses were performed by using the Minitab Statistical Software, Release 8.2-(Minitab Inc., 3081, Enterprise Drive, State College, PA 168013008), and the Statistica Microsoft for Windows- (StatSoft, Inc., 2325 East 13th Street, Tulsa, Oklahoma 74104, U.S.A.). The former statistical package was used primarily for further statistical analysis of courtship songs, and locomotor activity data, while the latter package was principally used for the two-way ANOVA.

2.5.1 LOCOMOTOR ACTIVITY EXPERIMENTS

The locomotor activity experiments were carried out using a locomotor activity event recorder produced by BIODATA Ltd. (Manchester, U.K.). Each fly was loaded into a cylindrical glass tube ($8 \times 0.3 \mathrm{~cm}$) containing 2 to 3 cm of sugar/agar medium at one end, sealed with cling film, so that the food would not dry out. Some cotton wool was used to seal the other end. Each tube was placed between an infra-red light emitter and detector, which recorded an event every time the fly crossed the light
beam. Infra-red wavelengths were used because flies are insensitive to this region of spectrum (Bertholf, 1932; Kyriacou and Burnet, 1979). The number of events registered in every half-hour time window (bin) was then fed directly into Tandon PC-386 computer.

Before analysis, the data was edited in the following ways: Flies which died during the experiment before the end of the 5th day of data collection were excluded from analysis. Furthermore, flies from channels which were considered to be hypersensitive, that is, which exhibited from 500 to 1000 events in many half-hour bins, were excluded from the analysis. Flies which died within the last two days of data collection were included in the analysis after deleting from the activity record the last 12 hours of data before the fly died. Occasionally an otherwise 'normal' record showed an isolated bin with very high counts. For example, in one case a bin with 834 events was observed for a fly which showed for its entire record less than 70 events per bin during its peak activity phase. This apparently 'deceptive' data point was corrected by simple interpolation, that is, by replacing the value of that bin with the average value of its two neighbouring bins. As a rule any bin with more than 150 events, which also gave 10 times more events than its interpolated estimate was corrected in this way. Similar problems have been described for other activity monitors by Hamblen-Coyle et al., (1992).

The periodicity in the locomotor activity is sometimes evident in the raw data or can be visualised by inspection of the 'actogram'. In an actogram, the data is doubleplotted so that the events of day one and day 2 are plotted in real time on the first horizontal line. Below this line are plotted the events from day 2 and 3 , and below this the data from days 3 and 4 and so on. A rough estimate of the period can be obtained by tracing a straight line to connect the times of activity 'onset' or 'offset'. However this is quite often misleading and more precise ways to detect rhythmicity use statistical techniques such as autocorrelation or spectral analysis (Dowse and Ringo, 1989). In this present work, the periodicity of locomotor activity, in DD conditions, for each fly was determined by using autocorrelation analysis (Diggle, 1990) available in the SPSS/PC+ Version 5.0 software package (SPSS Inc., 444 N . Michigan Avenue, Chicago, Illinois 60611, USA).

Briefly, the number of events obtained at two time points separated by a certain time lag are correlated. Thus with a lag of one time bin, bin 1 data is correlated with bin 2 , bin 2 with bin 3 , etc. If there is a 24 h cycle in the data, bin 1 and bin 49 , bin 2 and bin 50, bin 3 and bin 51, etc, should produce the highest correlation coefficient, as the data in each time bin represents the total activity from a half-hour segment. The correlation coefficients are then plotted against each 'lag' ($1,2,3 \ldots$ etc.) in a correlogram which extends to 116 lags (58 h). This represents an extremely conservative and robust estimation of rhythmicity (Chatfield, 1980). The 95% confidence limits ($2 \sqrt{ } \mathrm{~N}$; where N is the number of bins) were used to assess whether a given record was rhythmic. The highest peak in the correlogram within the range of $15-40 \mathrm{~h}$ was taken as the period, so long as its peak was greater than the 95% confidence limit. The decision to consider a fly rhythmic or not was also made by considering the overall pattern of its correlogram, which in a rhythmic fly will be sinusoidal.

A spectral analysis on locomotor activity data was also carried out using the CLEAN algorith (Roberts et al., 1987; Kyriacou and Hall, 1989). The spectrogram gives the frequencies which best describe the signal, and their power plotted is on the Y -axis (modulus). The highest relevant peak was taken as the period. However, if a large peak was found in the 12 h domain this period was doubled to give the period, which nearly always agreed with the circadian period observed in the correlogram.

The data for each fly was randomised and the spectral analysis repeated. This was originally done 1000 times, and the modulus values for each run at each frequency were ordered from lowest to highest. The 950th and 990th values in ascending order represent the approximate 95 and 99% confidence limits, based on this Monte Carlo simulation of random data (see also song analysis). To be judged 'significant' a peak had to be greater than the 99% confidence limit. This procedure was very expensive on computer time, so the data were randomised 100 times only. The 95 and 99% confidence limits were a little more liberal than those produced by a 1000 random trials and so that is why the 99% confidence limit is used. A similar procedure to one employed for assessing the significance of song cycles, for both the CLEAN and VdB analyses (see chapter 3), was also used to assess the significance of the spectral analyses. The circadian periods of the flies were entered in a Statistica Microsoft or Minitab speadsheet for ensuing statistical
analysis. Only flies which were rhythmic for both their spectral and autocorrelation analyses were considered as rhythmic.

2.5.2 Standardisation of the data in DD conditions.

Males used in the locomotor activity experiments were raised at $25^{\circ} \mathrm{C}$ entrained for 3 days in light/dark cycles (LD conditions), with lights on/off at 09:00/21:00. Data collection began at circadian time CT21, where the last lights-off was at CT12. The standardisation procedure that was followed, manipulated the data into the same number of bins for all flies. Briefly, after the data from the individual flies have been 'wrapped', using the autocorrelation-determined periods, 48 equidistant points are interpolated over the data. So, each bin no longer represents a fixed amount of time. For example, if a dataset has been wrapped over 49 bins (corresponding to a period of 24.5 h), the 49 points are plotted on a graph, and these points are joined by straight lines. 48 new values are then interpolated.

2.5.3 Collection of Lococomotor activity data in LD conditions.

Entrainment for flies used in the light/dark cycles (LD) experiments was the same as above. Virgin females were occasionally used. The experiments were run for five to seven days using the following procedure: Two days before data collection was to begin, flies one to three days old were loaded in the tubes and placed in an incubator which was set to the desired temperature $\left(25^{\circ} \mathrm{C}\right)$ and the same light/dark cycle in which the flies had been raised. On the following day the incubator was set automatically to darkness, beginning from 21:00 h and 9 hours later (at 06:00h), data collection began for a period of 5-7 days. The data were 'wrapped', that is, a mean activity for each of the $48,30 \mathrm{~min}$ bins across the seven days was determined by superimposing the data for each day, giving a representation of an average days' mean activity for each fly. The mean activity was then calculated for each bin. Data recording commenced at 6 am (ZT21), with lights-on at ZT0 and lights-off at ZT12.

A number of behavioural indices were calculated in chapter 8, which reflect various aspects of the locomotor activity profile. Specifically, 2h (4 bins, ZT0-

ZT2) after lights-on (Startle-On, STON) and 2h (4 bins, ZT10-ZT12) just before lights-off (Anticipation-Off, ANTOFF), and 2h (4 bins, ZT22-ZT24) just before lightson (Anticipation-On, ANTON) and 2 h (4 bins, ZT12-ZT14) just after lights-off (Startle-Off, STOFF) were divided by the total amount of day activity (DA), and total amount of night activity (NA) respectively (see Appendix 8.0). Moreover, the night activity (NA) was divided by the day activity (DA), and the resultant proportion was then transformed into arcsine (see Appendix 8.0). Furthermore, night and day activities were divided by the overall total activity (TA), thus converting these values into a proportion of the total activity and then transformed into arcsine. These latter transformed proportions are no longer absolutely independent since they represent a proportion of the total activity.

General characteristics of \boldsymbol{D}. melanogaster, \boldsymbol{D}. simulans and D. yakuba songs. Can song rhythms be detected?

Chapter 3

3. General characteristics of D. melanogaster, D. simulans and D. yakuba songs. Can song rhythms be detected?

The courtship songs of all the eight members in the D. melanogaster subgroup have been previously studied (Manning, 1959; Bennet-Clark and Ewing, 1968; Ewing, 1970; von Schilcher, 1976b; Cowling and Burnet, 1981; Cobb et al., 1988). The genetic control of particular song parameters was also investigated, by analysing interspecific hybrids (Cowling and Burnet, 1981). Kyriacou and Hall (1980; 1989), used a time-series analysis to describe the rhythmic variation of Drosophila courtship song interpulse intervals (IPIs); this analysis was carried out only for two members of the subgroup, namely, D. melanogaster and D. simulans. The existence of song rhythms sparked a contentious debate, some years after Kyriacou and Hall (1980) published their initial paper. Crossley (1988) and Ewing (1988) attacked these findings, because they claimed they could not replicate Kyriacou and Hall's results. Kyriacou and Hall (1989) and Kyriacou et al. (1990) re-examined both their own original data as well as those of Crossley's (1988) and Ewing's (1988), and managed to show that there were several sources of discrepancies between the investigations. More details about this debate can be read in chapter 1 . The matter has finally been laid to rest by an independent American group, who, by using completely different behavioural and statistical procedures, did show, nevertheless, the existence of per-determined song rhythms and thus fully supported Kyriacou and Hall's work (Alt et al., 1997).

Although the pulse component was observed in all the songs of all the members of the D. melanogaster subgroup (Cowling and Burnet, 1981), the pattern of rhythmic (IPI) variation over an extended period of time, has not been explored and evaluated outside D. melanogaster and D. simulans. Consequently, a key question that needs to be addressed is whether there is any rhythmic variation of IPI in the songs of the other member species of the melanogaster subgroup, and if so, are the periods speciesspecific, as in D. melanogaster and D. simulans ? Addressing this question would provide useful information on the general evolutionary and functional significance of such behavioural rhythms in Drosophila.

This chapter introduces the analysis of song cycles in the melanogaster subgroup. As mentioned in Chapter 1, Thackeray (1989) discovered that the D. yakuba song contains two different and audibly distinguishable types of pulses, with a mean IPI ranging from $\sim 100-150 \mathrm{~ms}$, representing the longest IPI in the melanogaster subgroup (Cowling and Burnet, 1981). The problem that Thackeray (1989) encountered was that when the yakuba songs were divided up into adjacent real time 10s-bins (Kyriacou and Hall, 1980) they did not contain enough individual IPIs in any 10 s segment of time, to generate reliable IPI means for extensive rhythm analysis.

Bearing the controversy in mind and the possible problems that might arise in trying to detect the existence of song rhythms in species of the D. melanogaster subgroup, I initially set out to determine the existence of song cycles in D. melanogaster (Brightonstrain) and D. simulans (Florida-strain), and in several D. yakuba strains (see section 3.5). The aim of the ensuing work was an attempt to reproduce the preliminary results of Thackeray (1989) using several strains of D. yakuba, and try to find any evidence for song cycles. As a comparison, I examined song cycles in D. melanogaster (Brighton) and D. simulans (Florida) strains, and re-analysed the same per ${ }^{+}$- and per-mutant songs originally examined by Kyriacou and Hall (1980, Kyriacou and Hall, 1989 and 1990), using a new method for detecting significance in individual song cycles.

3.1 Reanalysis of Kyriacou and Hall's original data

In order to validate the Monte Carlo simulation applied to both the CLEAN and VdB spectral algoriths (see Methods- Chapter 2), I reanalysed Kyriacou and Hall's (1980) data as well as a few songs that had not been published before. Kyriacou and colleagues $(1989 ; 1990)$ reanalysed their 1980 data, which included songs from the three original per mutants (Konopka and Benzer, 1971). In brief, they examined several songs of each per genotype, whose duration ranged from $2-5$ mins long (depending on whether copulation had occurred or not). They then divided each song into 10 s-time bins and determined the mean IPI of each 10 s -bin (see Introduction-Figure 1.4). The periods were then determined by employing CLEAN and Van den Berg (VdB) spectral analyses and the original curvilinear regression used by Kyriacou and Hall (1980).

Using a Monte Carlo analysis, Kyriacou and Hall (1989) simulated 1000 songs composed of 30 random IPI's, representing the 30 mean IPI's (in 10 s bins), for a song of 300s duration. They used realistic IPI means and standard deviations and calculated the "signal-to-noise" (SN- or F-) ratio for each random song by fitting the best sine wave through the data, after the VdB spectral analysis had initially provided the best frequency. In this way, the best fit through the data was assured. They then arranged these F -values in an ascending order and took the 51 st highest value out of the 1000 , to indicate the 5% significance level. Thus, the significance of a song rhythm depends on a Monte Carlo simulation of 1000 random songs. Nearly all of the per $^{+}$, per 5 and per $^{\text {Lt }}$ had an F -value greater than the critical 5% significance level value, whereas nearly all the per ${ }^{01}$ songs had smaller F-ratios. The F-ratios required for significance in each range-per ${ }^{+}$($50-65$ s), per s ($35-$ 45 s) and per $^{\text {L1 }}$ (65-105s) (Kyriacou and Hall, 1989), were very similar to the critical F-values Kyriacou and Hall had used to assess significance in their original data (1980). Under more stringent criteria, where no a priori assumptions were made about the expected periods for each genotype, a higher critical F-value was required, but even under such conditions, the majority of the per $^{+}$, per $^{\text {s }}$ and per $^{\text {L1 }}$ songs were still significantly rhythmic (Kyriacou and Hall,1989), whereas the F-ratios from per ${ }^{01}$ derived songs were, in their majority, nonsignificant. This confirmed the authors' opinion that the short-cycle rhythms seen in this per(arrhythmic) mutation were weak at best (Kyriacou and Hall, 1980, 1989; Kyriacou et al., 1990; Zehring et al., 1984; Hamblen et al., 1986).

My task was to re-analyse Kyriacou and Hall's original data (1980), but the difference, this time, was to assess the significance of each individual song rather than base significance on 1000 random simulations as above. In short, I did this by randomising each song's binned mean IPI values 100 times, thereby generating 100 random songs, and then employing both CLEAN and VdB spectral analyses on each random song. I then found the 95% and 99% confidence limits, by taking the 5 th and the 2 nd highest spectral values at each frequency, respectively. F-ratios are also obtained from the VdB analysis, from an automatic fitting of the best sine wave through the data, after fitting the best VdB-generated spectral period. These F-ratios are based on a simple 'horizontal sine wave' and cannot be fitted to a 'climber' (see chapter 2). I reanalysed only those of Kyriacou and Hall's (1980) songs, which met the 50% full bin criterion (see table 3.1.1). In addition, I ignored the

Nyquist frequency of approximately twice the bin size, i.e., ~ 20 s (an artefact of spectral analysis), and long 'climbing' frequencies (see chapter 2).

Figures 3.1.1-3.1.4 illustrate examples of songs, from the different genotypes, originally analysed by Kyriacou and Hall (1980), analysed with both CLEAN and VdB and with Monte Carlo simulation applied. Figure 3.1.5 also shows a representative D. simulans song. D. simulans songs were not reanalysed spectrally by Kyriacou and colleagues (1989; 1990). In each figure the 95% and 99% confidence limits are shown. Each figure includes three graphs, Graph (A) represents a plot of the mean IPI against time, with the most significant cycle through the data being defined by the VdB spectral analysis, and Graphs (B) and (C) depict the CLEAN and VdB spectrograms, with their corresponding periods, for each particular song, respectively. The 95 and 99% confidence limits, defined by Monte Carlo simulations are also shown (see chapter 2). For the results of the individual songs reanalysed from the original Kyriacou and Hall' data (1980), see Appendix 3.1.

Table 3.1.1 and Figure 3.1.6 (below) shows the periods of those songs which gave significant rhythms ($\mathrm{p}<0.05$, defined by Monte Carlo) with both VdB and CLEAN spectral analyses. This new method gives very similar results in terms of significance to Kyriacou and Hall (1989) and Kyriacou et al. (1990), but has the additional advantage that each song acts as its own control. Thus significance can be gauged for each individual song, representing a considerable improvement on the analysis of song rhythms, and avoiding the use of S / N - and F-ratios.

Table 3.1.1: The song periods for different genotypes calculated with CLEAN and VdB spectral Analyses for data reanalysed by Kyriacou and Hall (1980,1989).

Genotype	Number of songs analysed	$\begin{gathered} \hline \text { Clean }(s) \pm \\ \text { sem } \end{gathered}$	Significance (Monte Carlo/ Clean)			$\begin{gathered} \hline \mathrm{VdB}(\mathrm{~s}) \pm \\ \text { sem } \end{gathered}$	Significance (Monte Carlo/ VdB)		
			n.s	5\%	1\%		n.s	5\%	1\%
simulans	7	38.09 ± 4.17	-	1	6	39.28 ± 4.70	1	\bullet	6
Oregon	12	57.51 ± 2.73	-	3	9	55.74 ± 1.51	\bullet	1	11
Canton-S	18	57.13 ± 1.63	\bullet	3	15	56.47 ± 1.16	-	-	18
per*	11	42.73 ± 1.23	3	2	6	41.80 ± 1.19	-	-	11
per ${ }^{\text {r }}$	11	83.42 ± 3.43	-	2	9	83.82 ± 3.92	-	1	10
per ${ }^{\text {of }}$	10	$\mathbf{3 5 . 2 3} \pm 9.96$	4	5	1	43.64 ± 7.55	1	-	9

Figure 3.1.1:
D. melanogaster (Canton-S) courtship song (csy4) reanalysed-see Appendix
3.1-(Kyriacou and Hall, 1980), using the 65 \& 15 ms cut-off points.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure. Note even though a robust period is observed, the F-ratio is non-signicant.
b) and c) show the CLEAN and $V(B 13$ spectrograms of this song respectively, each indicating the corresponding periods song. The significant periods are shown. Note that the CUEAN analysis shows a 53.30 s primary period ($\mathrm{p}<0.05$). Furthermore, note that the VdB analysis shows a 54.42 s primary period ($p<0.01$), as well as a weaker secondary 30.19 s period ($\mathrm{p}<0.05$). The $95 \& 99 \%$ confidence limits are defined by Monte Carlo simulations (see Chapter 2).
(B) 53.30 s

(C) 54.42 s .30 .19 s

VdB

Figure 3.1.2:
D. melanogaster (per ${ }^{01}$) courtship song (arrb3) reanalysed-see Appendix 3.1-(Kyriacou and Hall, 1980), using the $65 \& 15 \mathrm{~ms}$ cut-off points. a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods song. The $95 \& 99 \%$ confidence limits are defined by Monte Carlo simulations (see Chapter 2). Note the significant period near the Nyquist frequency.

(C) 21.00

(A) period= $43.5 \mathrm{~s}, \mathrm{~F}=7.722, \mathrm{df}=3,24$

Figure 3.1.3:

D. melanogaster (pers) courtship song (shortb3) reanalysed-sec Appendix 3.1-(Kyriacou and Hall, 1980), using the $65 \& 15 \mathrm{~ms}$ cut-off points.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods song. The $95 \& 99 \%$ confidence limits are defined by Monte Carlo simulations (see Chapter 2).
(B) 43.91

CLEAN

(C) 43.96 s

VdB

(C) 94,12

VdB

Out of $12 \mathrm{per}^{01}$ songs, 2 did not satisfy the 50% bins filled criterion, 4 were non-significant, 5 were significant at the 5% and 1 was significant at the 1% significance levels, respectively, using CLEAN. The period, in table 3.1.1, represents the mean of the 6 significant songs. The VdB analysis gave 9 significant per ${ }^{01}$ songs, by my analysis, but their periods, like those from CLEAN, vary from 20-84s, giving them large sem's; the great majority of the periods of these songs lie between 20-30s (see Figure 3.1.6), which is in agreement with the original Kyriacou and Hall observations $(1980,1989)$ and more recently those of Alt et al. (1997). The VdB analysis gives similar results to CLEAN for the other genotypes

Figure 3.1.6: The distribution of the periods of songs (CLEAN) from Kyriacou and Hall's (1980) original data, reanalysed.

$N=$ Number of Observations, Red Line= Expected Nomal Distribution
3.2 D. melanogaster (Brighton) and D. simulans (Florida) song:

The courtship songs of 5 D . melanogaster (Brighton) and 5 D. simulans (Florida) males were recorded (as described in chapter 2) and are considered in this section below.

The wing display of the D. melanogaster males was quite restricted in that 'rowing' was never observed during recording, while 'scissoring' was infrequently seen (Cowling and Burnet, 1981). The majority of the wing display consisted of extending one wing at an angle of about 90° and vibrating it (Cowling and Burnet, 1981). The IPIs appear to be normally distributed in all the Brighton songs analysed with a mean IPI ranging from $\sim 32-38 \mathrm{~ms}$. Figure 3.2.1 (see below), shows the distribution of IPIs in one of the D. melanogaster Brighton song, whose modal IPI lies between $27-30 \mathrm{~ms}$.

The D. simulans (Florida) males produced courtship songs where, at the beginning of a burst, the pulses had long IPI's, which progressively become shorter and more constant in value, which is in agreement with Cowling and Burnet's observations (1981). The males did not readily court their conspecific females, which is a quite dissimilar behaviour to that of the melanogaster males and hence fewer IPI's were measured than in D. melanogaster songs (Cowling and Burnet,1981; Kyriacou and Hall, 1980). 'Scissoring' of both wings formed the greatest part of the wing display, while 'rowing' was never observed. The mean IPI's of the 5 D . simulans males recorded ranged from $\sim 39-57 \mathrm{~ms}$; this is in close agreement to Watanabe's (1977) and Kyriacou and Hall's (1986) observations, who observed that the mean IPI range of this species is wider than that of D. melanogaster. Figure 3.2.1 also shows the distribution of a D. simulans (Florida) song whose modal IPI is between $\sim 42-45 \mathrm{~ms}$ (see below):

Figure 3.2.1: Distribution of IPIs of a melanogaster (Brighton) and simulans (Florida) song.

The mean and modal IPI of each song, were scored, summed and averaged in order to determine the overall species values. Furthermore, the mean Intrapulse Frequency (IPF) and Sine Song Frequency (SSF) were determined, as described in the appropriate section of Chapter 2, and the overall species (strain) mean IPF and mean SSF are shown in table 3.2.1, which for comparison includes the results from Cowling and Burnet's (1981) study.

Table 3.2.1: Song Characters for D. melanogaster and D. simulans.

SPECIES/ STRAIN	Number of songs recorded	IPI(ms) MEAN \pm sem	IPI (ms) MODE	SSF(Hz) MEAN \pm sem	IPF(Hz) MEAN \pm sem
D. melanogaster(Brighton)	5	35.60 ± 0.71	33.00	162.75 ± 4.35	286.70 ± 2.53
		35.80 ± 0.40	30.00	169.90 ± 2.10	282.20 ± 6.20
D. simulans(Florida)	5	53.34 ± 5.74	36.17	205.75 ± 6.21	408.01 ± 3.55
		55.20 ± 1.70	47.50	196.80 ± 2.30	483.00 ± 7.20

KEY : Bold: Results from Present Study
Italics : Results from Colwing \& Burnet(1981)

As it can be observed from the above table 3.2.1, the results of this present study and those of Cowling and Burnet (1981) are quite similar; any differences may stem from the fact that different strains were used in the two studies and/or from the different ways of scoring the values of the different parameters.

3.3 Do IPI rhythms exist in D. melanogaster (Brighton) and D. simulans (Florida)

 songs?
3.3a D. melanogaster

Before applying the spectral analysis methods to the data, certain preliminary procedures had to be followed. Briefly, all songs were divided into 10s bins (based on Kyriacou and Hall, 1980); any 10s-bin containing less than 10 individual IPIs was considered to be empty (see appropriate section in Chapter 2). Moreover, during scoring of the individual IPIs, care was taken to (a) avoid the omission of real pulses which may amalgamate into a sine song 'phrase' (Wheeler et al., 1988; Wheeler, 1989) and may partially obscure them, and, (b) avoid the inclusion, in the IPI scoring, of some female "buzz" noises which often occur at the end of a train of male pulses, as a part of the female's "rejection" repertoire (Connolly and Cook,1973). With a little practise, by simultaneous
acoustic and visual monitoring, one becomes familiar with the sounds that should be excluded from the analysis (see Chapter 2). A song was only considered for rhythm analysis if 50% or more of its 10 s time bins were 'filled'. The IPI means were analysed with the CLEAN and VdB spectral algorith (see Chapter 2).

Table 3.3.1 (Top half) shows the distribution of IPI periods using CLEAN and VdB analyses of D. melanogaster Brighton songs, using 65 ms (approximately twice the value of mean IPI, Kyriacou and Hall, 1980; 1986), as the upper IPI cut-off point and 15 ms , as the lower cut-off point. When the upper and lower cut-off points were changed to 80 and 15 ms , respectively, a completely different picture of the distribution of the song periods emerged (Table 3.3.1-bottom half).

Table 3.3.1: Spectral analysis of D. melanogaster Brighton individual songs using lower and higher cut-off points.

SPECTRAL ANALYSIS					
SPECIES	Clean		Van den Berg		
	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \end{gathered}$	$\begin{aligned} & \text { 2ND } \\ & \text { PEAK } \end{aligned}$	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \end{gathered}$	$\begin{aligned} & \text { 2ND } \\ & \text { PEAK } \end{aligned}$	BINS FILLED
melanogaster	CUT-Off POINTS : $65 \& 15 \mathrm{~ms}$				
Mb1	55.56	x	21.62	54.79	17/17
Mb2	43.72	X	30.53	42.78	18/18
Mb3	65.69	x	65.57	24.17	$20 / 20$
Mb4	54.60	x	57.55	x	21/21
Mb5	52.29	109.59	51.95	112.68	18/18
CUT-Off POINTS : $80 \& 15 \mathrm{~ms}$					
Mb1	x	x	222.22	x	17/17
Mb2	40.61	x	40.40	21.86	18/18
Mb3	x	x	29.96	x	$20 / 20$
Mb4	X	x	119.40	x	21/21
Mb5	89.89	30.08	94.12	X	18/18

The most striking difference in Table 3.3.1 (Lower half) is that when using 80 and 15 ms cut-off points, the rhythmicity of several songs is completely 'masked', e.g., Mbl, Mb 3 and Mb 4 . The period values in table 3.3.1-above represent only those significant at least at the 95% confidence level. Only the primary (the most significant period-99\%) and the secondary (the next most significant period-95\%) peaks are shown, respectively (see for example Figure 3.1.1c). An ' X ' in the table means that there are neither primary nor secondary significant peaks ($>95 \%$). It can be clearly seen that usually the CLEAN and the corresponding VdB values for each individual song, are similar. Any period of 30 s or less is assumed to represent arrhythmicity, unless a second significant peak is found in the spectrogram above the 95% confidence limit. This is because arrhythmic per-songs have
cycles ranging predominantly from $\sim 20-30$ s cycles (Kyriacou and Hall, 1989; Alt et al., 1997). For example, in Mbl and Mb 2 songs, the second significant peak value, in the VdB analysis, was taken to be the period because this value is similar to its corresponding primary one in the CLEAN analysis. The shaded-in values on the table are those have been used to determine the rhythm periods of each species/strain (see Table 3.3.1-above).

Figure 3.3.1a shows the appropriate results from a particular D. melanogaster Brighton song (mb4), when the 'higher' cut-off points ($80 \& 15 \mathrm{~ms}$) are used. As it can be seen from the Figure 3.3.1a, the rhythm is 'masked'. In the VdB spectrogam (Figure 3.3.1a), there is a significant primary peak of $119.40 \mathrm{~s}(\mathrm{p}<0.05)$ and a weaker secondary peak at ~ 50 s which does reach the 95% confidence level. These two peaks are seen to have corresponding counterparts in the CLEAN spectrogram (Figure 3.3.1a), which do not reach the 95% confidence level and consequently no peaks are registered for the CLEAN analysis. If these graphs are compared with those in Figure 3.3.2b, where the 'lower' cut-off points ($65 \& 15 \mathrm{~ms}$) are utilised from the same song, the period is revealed to be ~ 54.60 s and ~ 57.6 s from CLEAN and VdB analyses, respectively. The best fitting sine wave is generated by the VdB algorith and which is shown to the left-hand part of each figure. The iterative procedure 'smooths' the observed 57.6 s period to 57.4 s by a least squares procedure (see Chapter 2).

3.3b D. simulans

Table 3.3.2 (see below) shows the results of a similar analysis for song periods using D. simulans Florida songs, using the IPI cut-offs of 80 ms and 15 ms and 100 and 15 ms (see Table 3.3.2-upper and lower halves, respectively), for CLEAN and VdB analyses. Even though 5 songs were originally recorded, only 4 were analysed further, as one of these songs did not satisfy the $\geq 50 \%$ bins filled criterion. Note that the Sil song (see table 3.3.2Top half) has changed from being rhythmic when using 80 and 15 ms as cut-off points, to becoming arrhythmic when using the higher 100 and 15 ms cut-offs. Since the 'long-term' trends or 'climbers' are ignored (see chapter 2), the primary peak, in the CLEAN and VdB analyses, are disregarded; therefore the secondary peak, in the CLEAN analysis, which is
(A) period $=120.8 \mathrm{~s} F=2.585, \mathrm{df}=3,17$

Figure 3.3.1a:
D. melanogaster courtship song (mb4)-see table 3.3.1a-lower half and spectral analysis, using thehigher 80 \& 15 ms cut-off points.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods. The $95 \& 99 \%$ confidence limits are defined by Monte Carlo simulations (see chapter 2).
(B)

(C) 119.40 s

VdB

significant, is taken to the period of the song, even though there is no significant secondary peak in the VdB analysis.

Table 3.3.2: Spectral analysis of D. simulans Florida individual songs using lower and higher cut-off points.

SPECTRAL ANALYSIS					
SPECIES	Clean		Van den Berg		
	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \end{gathered}$	$\begin{aligned} & \text { 2ND } \\ & \text { PEAK } \end{aligned}$	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \end{gathered}$	$\begin{aligned} & \text { 2ND } \\ & \text { PEAK } \end{aligned}$	BINS FILLED
simulans	CUT-Off POINTS : $80 \& 15 \mathrm{~ms}$				
Sil	339.6	59.21	347.8	x	32/39
Si2	42.55	x	42.11	x	12/22
Si3	34.62	48.42	34.63	x	18/36
Si5	41.77	54.01	x	x	20/37
CUT-Off POINTS : $100 \& 15 \mathrm{~ms}$					
Sil	x	x	666.67	20.00	32/39
Si2	42.55	x	42.11	x	12/22
Si3	34.55	x	34.63	571.43	18/36
Si5	41.77	54.01	390.5	x	20/37

Figure 3.3.2a shows the spectral analyses graphs of a particular D. simulans Florida song (Sil), when the 'higher' cut-off points ($100 \& 15 \mathrm{~ms}$) are used. The raw data shows an almost significant periodicity of 35 s (peak slightly below the 95% confidence limitFigure 3.3.2a-Graph B). The VdB spectrogram shows the 20s Nyquist frequency plus the 'climbing' frequency of $\sim 667 \mathrm{~s}$. The VdB -derived regression period gives a nyquist frequency of 20s. When the 'lower' cut-off points ($80 \& 15 \mathrm{~ms}$) are used, the song period is revealed to be ~ 59.21 s for CLEAN analysis, but VdB analysis gives the climbing period of ~ 348 s, significant at the 99% confidence limit level; in addition, there is a second peak in the region of $\sim 60 \mathrm{~s}$ period that just misses the 95% confidence limit level. Therefore, this song (Si1) was considered to be rhythmic. Even though this particular D. simulans Florida song does not have the representative period for the D. simulans species ($\sim 40 \mathrm{~s}-\mathrm{Kyriacou}$ and Hall, 1980, 1989), it was chosen because it was the D. simulans song containing the most IPI data, and furthermore, it was the only song to show most graphically the effects on the song period, of using the 'different' cut-off points.

In general the different cut-offs of $80 \& 100 \mathrm{~ms}$ do not make as much of a difference in these D. simulans songs, as in the D.melanogaster songs. Table 3.3 .3 shows a synopsis of the song periods, based on the results shown in Table 3.3.1 and 3.3.2.

 by Monte Carlo simulations (see Chapter 2).

Table 3.3.3: Synopsis of song rhythm data.

Species/Strain	Cut-off points (ms)	Number of songs analysed	Number of rhythmic songs	Period (s) \pm sem
D. melanogaster	$\mathbf{6 5 - 1 5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5 4 . 3 7} \pm \mathbf{3 . 5 2}$
	$80-15$	5	2	65.25 ± 24.64
D. simulans	$\mathbf{8 0 - 1 5}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4 7 . 9 9} \pm \mathbf{4 . 0 2}$
	$100-15$	4	3	39.62 ± 2.55

The results in Table 3.3.3 confirm those of Kyriacou and Hall (1980,1985, 1986 and 1989) and those of Wheeler et al. (1991). Furthermore, these results reinforce the existence of song rhythms and the precautions that have to be taken in order to detect them, particularly in the use of the appropriate cut-off points in D. melanogaster (Kyriacou and Hall, 1989; Kyriacou et al., 1990).

Since the existence of song cycles was re-affirmed (see also Alt et al., 1997), the next logical step was to examine D. yakuba songs recorded from several different strains, in an attempt to replicate Thackeray's (1989) preliminary findings.

3.4 D. yakuba song:

The D. yakuba courtship song has been described as a relatively simple song, consisting of trains of pulses only and completely missing the "hum" component of the song (Cowling and Burnet, 1981; Thackeray, 1989). Courtship songs of various strains of D. yakuba- 6 different strains (France, Edinburgh, Malawi, Lamto3, S.T. and Ivory Coast) and 4 different intraspecific hybrid crosses (Malawi(f) x S.T.(m), S.T.(f) x Lamto3(m), Lamto3(f) x S.T.(m) and Lamto3(f) x Ivory Coast(m)) were recorded, for a minimum of 300s to a maximum of 1200s, depending on the vigor of each particular song. New females were only introduced in the recordings, when copulation had occurred. The method used to discriminate between the two pulse types, during a D. yakuba courtship song, is described in detail in the corresponding section of Chapter 2. Briefly, three datasets were created, one
for Thud plus (+) Clack, one for Thud and another for the Clack pulse types. IPI's were measured, after the different types of pulses had been marked on dot matrix paper, while simultaneously listening and examining their waveform using the oscilloscope.

In these present recordings, the songs produced, from both parental strains and intraspecific hybrid crosses, have individual mean IPIs between $\sim 85-150 \mathrm{~ms}$, making them the longest in the subgroup. Cowling and Burnet (1981), found the D. yakuba species mean IPI to be $\sim 100 \mathrm{~ms}$, while Thackeray (1989) calculated individual song mean IPIs ranging from $\sim 90-150 \mathrm{~ms}$. However, he discovered that the D. yakuba song consisted of two distinct types of pulses, Clack and Thud (see Figure 3.4.1, a \& b), which he named after the auditory impression they produced. This impression is supported by the waveform produced by each type of song (see Figure 3.4.1 a \& b). Figure 3.4.1 shows the different pulse types produced during a yakuba courtship song. Figure 3.4.1a shows a train of Clack pulses, noting that the minimum distance between consecutive Clack pulses, within a burst, is $\sim 50 \mathrm{~ms}$. Figure 3.4.1b shows a train of Thud pulses, where the minimum distance between consecutive Thud pulses, within a burst, is $\sim 50 \mathrm{~ms}$. Furthermore, the Clack waveform is different from the Thud, as a Clack pulse has 1.5-2.5 cycles per pulse (CPP), whereas the CPP for Thud pulse range from 1-1.5 cycles (Figure 3.4.1b and see also Chapter 6). An interesting point worth mentioning is that the Thud pulse-type of D. yakuba, and D. melanogaster normal pulse waveforms, are very similar, but have different mean IPFs (see Table 3.4.1-see below and Table 3.2.1, respectively).

In the D. yakuba strains recorded, I observed anecdotally that the clack pulsetype predominates while the male is trying to orientate himself in relation to the female. Thud pulse-type is primarily audible, when the male has placed himself in the correct position to start courting, by rowing one wing, which verifies Thackeray's (1989) original data and observations. Figure 3.4.2 (below) shows the distribution of Thud + Clack IPIs to be unimodal, similar in shape to the D. melanogaster IPI distribution, but much broader with a modal IPI ranging between $95-100 \mathrm{~ms}$. The distribution of Thud IPIs is unimodal, but broader in shape than the Thud + Clack IPIs distribution, with a modal IPI ranging from 95100 ms . The distribution of Clack IPIs looks to be unimodal, but even broader in shape than the former two distributions, with a modal IPI ranging between $\sim 90-95 \mathrm{~ms}$, in this particular song:
(a) 1

THUD PULSE TYPE

Figure 3.4.1 : Oscillographs of D. yakuba courtship song
a) Two "clack" pulses.
b) Two "thud" pulses, showing their simpler waveform

Figure 3．4．2 ：Distribution of IPIs of a D ．yakuba song（Yy5），showing the IPI distributions of the different pulse types．

Table 3．4．1（see below）shows the mean IPF and IPI \pm sem for the three types of song present within a D ．yakuba courtship，for the six different strains and four intraspecific crosses，under investigation，in this study．The means refer to the mean of the means．

Table 3．4．1：Thud and Clack song Characteristics in various D．yakuba lines．

Species／Strains／ Intraspecific Hybrids	OVERALL MEAN IPI \pm sem（ms）	CLACK MEAN IPI \pm sem（ms）	THUD MEAN IPI \pm sem（ms）	OVERALL MEAN IPF \pm $\operatorname{sem}(\mathrm{Hz})$	CLACK MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$	THUD MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$
SPECIES：YAKUBA						
STRAIN：						
FRANCE	124．61 ± 2.71	128．74 +3.66	122.79 ± 3.02	302．22 ± 3.17	330．81 ± 5.42	280.72 ± 3.43
EDINBURGH	126.01 ± 4.44	127.91 ± 4.46	126.13 ± 4.58	302．12 ± 3.09	328．44 ± 5.27	282.32 ± 3.37
MALAWI	124.80 ± 14.7	131.10 ± 16.2	103.79 ± 1.61	309.84 ± 3.34	364.58 ± 6.47	$\mathbf{2 8 0 . 3 6} \pm 2.82$
IVORY COAST	109.15 ± 8.60	114.22 ± 4.87	106.49 ± 6.83	365．99 ± 2.80	415.92 ± 4.92	338.71 ± 2.75
LAMTO3	127.60 ± 10.6	135.00 ± 10.6	119.17 ± 9.55	311．12 ± 2.58	323.15 ± 3.69	301．39 +3.52
S．T．	137.86 ± 5.88	142.07 ± 5.49	136.57 ± 6.03	327.18 ± 5.08	419.90 ± 8.00	281.44 ± 3.74
Parental Means	125.01 ± 3.76	129.84 ± 3.77	119.96 ± 5.04	319．74 ± 9.97	363.80 ± 18.1	294.16 ± 9.50
INTRASPECIFIC HYBRIDS						
TYPE：						
Malawi（f）xS．T．（m）	114.66 ± 4.95	128.76 ± 5.67	104．99＋8．75	402.58 ± 3.53	443.06 ± 4.66	372.36 ± 4.46
S．T．（f）xLamto3（m）	101.54 ± 0.90	115.16 ± 1.77	96.94 ± 1.06	384．25 ± 4.44	468.10 ± 5.43	314．65士3．16
Lamto3（f）xS．T．（m）	120.06 ± 7.01	127.67 ± 7.76	113.91 ± 9.76	383．96 ± 4.35	464.63 ± 5.51	317．01 ± 3.09
Lamto3（f）xI．C．（m）	120.17 ± 3.44	127.92 ± 3.01	112.24 ± 3.81	360．58 ± 3.80	436.28 ± 4.40	292．82 ± 2.52
Hybrid Means	114．18土4．38	124．88 +3.25	107.02 ± 3.88	382．84 ± 8.60	453．02土7．86	324．21 ± 16.95

Figure 3．4．3a depicts the mean IPF \pm sem＇s of the various D ．yakuba strains and intraspecific crosses examined in this study and the number songs analysed for each strain／intraspecific hybrid song for this characteristic．

Figure 3.4.3a: The overall mean \pm sem's for IPFs (Clack + Thud) of the songs of D. yakuba. The numbers inside each column represents the number of flies examined for each strain/ intraspecific cross.

From both table 3.4.1 and Figure 3.4.3a, it can be observed that Overall mean IPF's (Thud \& Clack) for the various D. yakuba strains range from between $\sim 300-370 \mathrm{~Hz}$. These results are similar to those found by Cowling and Burnet (1981). The Thud + Clack mean IPF's, for each individual strain/intraspecific cross (table 3.4.1-above) are also shown, with the Clack mean IPF being higher than its Thud counterpart, within each individual strain. This fits in nicely with and supports Thackeray's (1989) distinction of Thud and Clack pulse-types. When inspecting the Thud and Clack mean IPF's from the intraspecific crosses, it is observed that these have values higher than the parental strains. Furthermore, Clack has a higher IPF than Thud, in all genotypes.

Since the differences between the IPF means of the intraspecific hybrids and their parental counterparts are so obvious, no ANOVA analysis was required. The observed increase in IPF in the hybrids suggests hybrid vigour and implies that the parentals have undergone inbreeding depression. Moreover, it suggests that superior fitness could be associated with higher IPF (see discussion).

Figure 3.4.3b (below) depicts the overall (Clack + Thud) mean IPIs of the various D. yakuba strains and intraspecific crosses recorded and examined in this study, in addition to the number of songs analysed for IPI. Once again we see that the intraspecific crosses reveal a lower IPI than the parental strains, again implying inbreeding depression in the parents. Thus shorter IPIs are associated with higher IPFs.

Figure 3.4.3b: The overall mean \pm sem's for IPI songs of D. yakuba.The numbers inside each column represents the number of flies recorded and examined for each strain/intraspecific cross.

Table 3.4.2a reveals that in general the Thud-pulse type constitutes the majority of pulses in a song; out of the 23 different songs examined from six different parental strains, only five songs showed the Clack-pulse type to be the prevalent pulse type. One-way ANOVA was carried out on the Clack and Thud IPI, per song. Only 5 out of the 23 songs examined revealed a significant difference in IPI between the Thud- and Clack-pulse types (these 5 songs are marked with an asterisk in table 3.4.2a). Thus, in general the IPIs of Clack and Thud are similar within an individual courtship.

TABLE 3.4.2a: Clack and Thud Pulse Types in various Drosophila yakuba songs

Drosophila yakuba		Number of Clack pulses per song (A)	Number of Thud pulses per song (B)	Total number of pulses per song (C)	Clack Mean Interpulse Interval (ms) (D)	Thud Mean Interpulse Interval (ms) (E)	Overall Mean Interpulse Interval(ms)(Clack + Thud) (F)	\% of Clack pulse-type per song (G)
Strain	Song No.							
FRANCE	1	477	694	1171	145.41 ± 6.97	114.24 $\pm 7.53 *$	116.31 ± 5.46	40.73
FRANCE	2	643	1008	1651	126.83 ± 3.74	126.25 ± 2.12	126.35 ± 4.21	38.95
FRANCE	3	487	599	1086	135.23 ± 3.50	137.34 ± 3.71	136.65 ± 3.14	44.84
FRANCE	4	772	898	1670	116.77 ± 2.63	118.79 ± 3.00	117.06 ± 2.65	46.23
FRANCE	5	682	597	1279	119.32 ± 3.77	127.18 ± 5.37	124.31 ± 1.59	53.32
FRANCE	6	703	256	959	127.15 ± 3.66	119.03 ± 4.98	121.90 ± 3.57	73.31
FRANCE	7	470	159	629	130.49 ± 4.52	116.72 ± 4.53	129.71 ± 3.54	74.72
EDINBURGH	1	203	1123	1326	129.30 ± 5.07	120.78 ± 2.20	122.47 ± 1.93	15.31
EDINBURGH	2	133	735	868	129.30 ± 5.00	125.78 ± 2.33	126.70 ± 2.59	15.32
EDINBURGH	3	265	715	980	136.18 ± 3.45	139.12 ± 2.90	137.92 ± 2.18	27.04
EDINBURGE	4	458	936	1394	115.76 ± 2.06	118.70 ± 2.21	116.96 ± 1.74	32.86
LAMTO3	1	1002	791	1793	128.47 ± 3.72	121.48 ± 3.23	126.52 ± 2.68	55.88
LAMTO3	2	464	209	673	155.74 ± 5.88	134.58 ± 9.87	146.54 ± 6.32	68.95
LAMTO3	3	100	298	398	120.91 ± 6.79	101.70 $\pm 3.93 *$	109.81 ± 4.53	25.13
MALAWI	1	32	676	708	173.00 ± 13.9	$100.81 \pm 2.05^{* *}$	167.88 ± 6.83	4.52
Malawi	2	75	619	694	138.79 ± 2.26	101.28 $\pm 5.03 *$	119.62 ± 4.21	10.81
MALAWI	3	66	196	262	124.47 ± 6.51	107.23 ± 6.05	112.94 ± 3.92	25.19
Malawi	4	123	619	742	113.58 ± 3.58	105.83 $\pm 2.83 *$	107.88 ± 2.51	16.58
S.T.	1	195	298	496	134.74 ± 3.11	128.29 ± 2.88	129.60 ± 3.14	39.31
S.T.	2	153	309	462	138.65 ± 2.58	133.12 ± 2.67	134.75 ± 3.01	33.17
S.T.	3	161	249	410	152.81 ± 2.89	148.29 ± 2.11	149.23 ± 2.31	39.27
IVORY COAST	1	235	576	811	109.35 ± 3.54	99.67 ± 3.15	100.55 ± 3.23	28.98
IVORY COAST	2	234	483	717	119.10 ± 5.53	113.32 ± 4.05	117.76 ± 3.84	32.64

KEY: One-way analysis of variance of Clack- vs Thud-pulse type IPI per song
p<0.05 - *
p < 0.01 - **

TABLE 3.4.2b: Clack and Thud Pulse Types in various D. yakuba intraspcific genotypes

GenotypeIntraspecific Hybrids		Number of Clack pulses per song (A)	Number of Thud Pulses per song (B)	Total number of pulses per song (C)	Clack MeanInterpulse Interval$(\mathrm{ms})(\mathrm{D})$	Thud Mean Interpulse Interval (ms) (E)	Overall Mean Interpulse Interval(ms) (Clack + Thud) (F)	\% of Clack pulse-type per song (G)
MALAWI(f)xS.T.(m)	1	528	576	1104	123.08 ± 2.89	113.74 ± 3.00 *	119.61 ± 2.27	47.83
MALAWI(f)xS .T(m)	2	275	635	910	134.43 ± 4.07	$96.23 \pm 2.54 * *$	109.71 ± 3.26	30.22
S.T.(f)xLAMTO3(m)	1	496	921	1417	106.17 ± 2.75	$94.62 \pm 2.36^{* *}$	98.22 ± 1.98	35.00
S.T.(f)xLAMTO3(m)	2	160	655	815	116.51 ± 6.10	101.65 $\pm 2.72^{*}$	105.19 ± 2.91	19.63
S.T.(f)xLAMTO3(m)	3	649	1154	1803	114.47 ± 2.18	$97.97 \pm 1.94^{* *}$	103.21 ± 1.50	36.00
S.T.(f)xLAMTO3(m)	4	368	735	1103	115.01 ± 2.79	$94.16 \pm 3.07 * *$	102.85 ± 2.07	33.36
S.T.(f)xLAMTO3(m)	5	96	337	433	115.19 ± 7.25	$91.13 \pm 1.84^{* *}$	97.72 ± 2.64	22.17
S.T.(f)xLAMTO3(m)	6	372	707	1079	115.19 ± 3.81	$96.50 \pm 3.03^{* *}$	102.85 ± 2.07	34.48
S.T.()xLAMTO3(m)	7	6	654	660	112.57 ± 0.00	$105.70 \pm 3.41 *$	105.62 ± 3.40	0.009
S.T.()XLAMTO3(m)	8	112	330	442	111.19 ± 6.05	$93.90 \pm 2.15^{* *}$	99.76 ± 3.34	25.34
S.T.(f)xLAMTO3(m)	9	437	703	1140	111.43 ± 3.23	$100.23 \pm 2.64 * *$	103.35 ± 2.23	38.33
S.T.(f)xLAMTO3(m)	10	165	302	467	107.41 ± 6.09	$91.64 \pm 2.63 * *$	95.56 ± 2.84	35.33
S.T.(f)xLAMTO3(m)	11	90	459	549	128.29 ± 11.8	98.28 $\pm 4.02 * *$	101.51 ± 3.77	16.39
S.T.(f)xLAMTO3(m)	12	112	330	442	122.88 ± 3.00	$95.94 \pm 3.48^{* *}$	99.76 ± 3.74	25.34
S.T.(f)xLAMTO3(m)	13	1123	476	1599	117.03 ± 4.80	$99.04 \pm 1.56 * *$	107.25 ± 1.37	70.23
S.T.(f)xLAMTO3(m)	14	143	736	879	118.85 ± 7.85	$96.42 \pm 2.13^{* *}$	98.78 ± 2.34	16.27
LAMTO3(f)xS.T.(m)	1	250	653	903	131.82 ± 7.48	$118.04 \pm 2.45 * *$	121.17 ± 2.09	27.69
LAMTO3(f)xS.T.(m)	2	117	280	397	112.65 ± 4.57	$95.32 \pm 1.93 * *$	107.40 ± 2.15	29.47
LAMTO3(f)xS.T.(m)	3	195	317	512	138.54 ± 2.74	$128.36 \pm 2.45 * *$	131.62 ± 1.94	38.09
LAMT03(f)xI.C.(m)	1	276	427	703	113.75 ± 4.62	$100.57 \pm 2.63^{*}$	106.14 ± 2.76	25.47
LAMTO3(f)xI.C.(m)	2	163	569	732	127.30 ± 4.43	$112.93 \pm 3.70^{*}$	118.80 ± 3.36	44.91
LAMTO3(f)xI.C.(m)	3	619	818	1437	138.16 ± 3.84	$126.78 \pm 2.86 *$	130.96 ± 2.16	43.08
LAMTO3(f)xI.C.(m)	4	1095	199	1294	134.50 ± 2.30	$117.64 \pm 3.99 * *$	132.08 ± 2.33	84.60
LAMTO3(f)xI.C.(m)	5	319	319	638	124.71 ± 4.66	$98.16 \pm 3.31^{* *}$	114.66 ± 2.90	50.00
LAMTO3(f)xI.C.(m)	6	250	660	910	131.61 ± 7.18	118.08 $\pm 2.51^{*}$	121.17 ± 2.09	27.47
LAMTO3(f)xI.C.(m)	7	536	689	1225	125.40 ± 3.51	$111.54 \pm 2.49^{* *}$	117.31 ± 2.41	43.75

KEY: One-way analysis of variance of Clack- vs Thud-pulse type IPI per song

$$
\begin{aligned}
& \mathbf{p}<0.05-* \\
& \mathbf{p}<0.01-* *
\end{aligned}
$$

Table 3.4.2b reveals that in general the Thud-pulse type constitutes the majority of pulses in a song, for the intraspecific genotypes; out of the 26 different songs examined from the various intraspecific genotypes, only two songs showed the Clack-pulse type to be the prevelant pulse type and one song to have equal numbers of the two pulsetypes. Inspecting the p-values of each individual intraspecific hybrid song, after one-way ANOVA was applied to the IPIs for Clack and Thud per hybrid genotype, all of the 26 songs examined show significant differences between the Thud- and Clack-pulse types (marked by an asterisk $\left(^{*}\right.$) in Table 3.4.2b). In all the songs, the Clack and Thud IPI means are significantly different, and always the Clack mean IPI is greater than the Thud mean. Two-way ANOVA for mean IPI per song was performed on the pulse types (Clack and Thud) and strains (Parental and Intraspecific crosses).

Table 3.4.3: Two-way ANOVA of Clack and Thud IPI for the parental strains and their intraspecific genotypes

GENERAL MANOVA	1-STRAIN; 2-PULSE TYPES					
Effect	df Effect	MS Effect	df Error	Ms Error	F-level	
Genotypes (10)	9	1007.355	78	102.3303	9.84415	0.0000
Pulse Type (2)	1	3509.751	78	102.3303	34.29825	0.0000
Strain x Pulse Type	9	187.168	78	102.3303	1.82906	0.076007

Significant differences between different genotypes and pulse types are observed. The Clack IPIs are higher than those of Thud (see Figure 3.4.4), with no significant interaction between pulse type and genotype (see Table:-3.4.3 and Figure 3.4.4below).

2-way interaction
 $\mathrm{F}(9,78)=1,83 ; \mathrm{p}<, 0760$

Newman-Keuls' a posteriori test revealed that within intraspecific crosses, the Malawi Clack IPI is different from Malawi Thud ($\mathrm{p}<0.01$), the S.T. Thud and Clack were significantly different from their Malawi counterparts ($\mathrm{p}<0.01$). The Malawi Clack and S.T. Thud were found to be significantly different from their intraspecific hybrid counterparts ($\mathrm{p}<0.01$). The test also revealed the S.T. Clack and Thud means were significantly different from the S.T.(f) x Lamto3(m) Clack and Thud ($\mathrm{p}<0.01$), respectively. These results can be revealed in the lower part of Figure 3.4.4.

Tables 3.4.2a and 3.4.2b also show the numbers of Clack-(Column A) and Thud-(Column B) pulse types, as well as the overall number of pulses (Column C) found in each song, respectively. The \% of Clack song was determined (table 3.4.2a Column G) and converted to arcsin. Using these arcsin-transformed data, one-way ANOVA was employed, in order to see whether there were any differences in the Clack \% content between any of the parental and intraspecific lines. A significant F-ratio ($\mathrm{F}=2.93, \mathrm{p}=0.001$, $\mathrm{df}=9,37$) revealed that indeed there were significant differences. Table 3.4.5 (below) shows the mean $\%$ of Clack \pm s.e.m. present in any song. Clack pulse-type represents only $\sim 30 \%$ of all the pulses present in the parental D. yakuba songs.

Table 3.4.5: The Clack pulse-type arcsin-corrected percentage for D. yakuba strains

D.yakuba Strain	Mean \% of clack-pulses (arcsin)
FRANCE	46.94 ± 3.35
EDINBURGH	28.00 ± 3.10
LAMTO 3	45.10 ± 7.54
MALAWI	21.67 ± 3.64
S.T.	37.43 ± 1.17
IVORY COAST	33.85 ± 1.25
Clack \% (arcsin)-real	27.32
Intraspecific cross-D. yakuba	Mean \% of clack-pulses (arcsin)
Malawi(f) \times S.T.(m)	38.55 ± 5.35
S.T.(f) \times Lamto 3(m)	31.13 ± 3.26
Lamto 3(f) \times S.T.(m)	34.40 ± 1.89
Lamto 3(f) \times Ivory Coast(m)	42.61 ± 4.59

Inspecting of the arcsin-corrected percentages (table 3.4.5-above), the various parental strains could be placed in a descending order of their Clack content:

3.5 Do song rhythms exist in D. yakuba?

Both D. yakuba parental strains and intraspecific hybrids were investigated for the possible existence of song rhythms. The analysis of D. yakuba courtship song data proceeded as follows:

The two spectral methods (CLEAN and VdB) were applied to each of the 37 songs and the peak of the spectrogram was taken as the song period. If the two analyses disagreed as to the peak period, then if the same period was the peak in one analysis, but the second highest spectrogram peak in the second analysis, then the 'consensus' value was taken as the song period, e.g., see song Yk1t112 in table 3.5.1a. An example of song rhythms is illustrated in Figures 3.5.1a, b and c, which give the overall Clack + Thud, Thud and Clack cycles. The highlighted CLEAN analysis values in table 3.5.1a are those that have been used to determine the rhythm periods of each species/strain songs (see Table 3.5.1a - below). The corresponding VdB values are also highlighted. As it can be seen in song Yk1, in table 3.5.1a, the highlighted value in the 'Overall' song, is the second highest peak in the CLEAN which has a corresponding primary peak in the VdB spectrogram. Once again, I used two sets of upper IPI cut-off points:
a) 250 and 50 ms - see Figure 3.5.1, a, b \& c ;
b) 350 and 50 ms .

Because the data is so extensive for each song, I have taken a sample of 5 songs out of the 37 songs that were analysed, to present in the chapter as tables 3.5.1a \& b ; for the entire tables see Appendix 3.2. As it can be seen from these two tables (3.5.1a \& b), the different cut-off points do not make much difference to the detection of rhythms; the only thing that is apparent is that in some instances the number of empty bins (bins containing <10 IPI) increases, when the more stringent cut-off points ($250 \& 50 \mathrm{~ms}$) were used.

(B) $34.92 \mathrm{~s}, 85.77 \mathrm{~s}$

CLEAN

(C) $87.91 \mathrm{~s} \quad \mathrm{VdB}$

(B) 66.12 s

CLEAN

(C) 66.12s $\quad \mathrm{VdB}$

(\wedge) period: $=57.6 \mathrm{os} \mathrm{l}=7.155, \mathrm{df}=3,18$

Figure 3.5.1c:
The same 1). fakula courtship song (Clack pulse type)(ykllll2) -sec table $3.5 .1 a$, using 250) \& 50 ms as cut-off points.
a) A plot of the mean IPI against time. The dotted line represents the strongest eyele in the the data, initiallydefined by VdB spectal analysis and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. The $95 \& 99 \%$ confidence limits are defined by Monte Carlo simulations (see chapter 2).

(C) 57.97 s

VII

Fiequency

Table 3.5.1a: Spectral analysis of D. yakuba songs using lower IPI cut-off points.
'Overall' refers to Clack + Thud song.

SPECTRAL ANALYSIS						
CUT Off POINTS : 250 \& 50 ms						
YAKUBA		Clean		VdB		Observations
Song	Pulse Type	$\begin{aligned} & \text { 1st } \\ & \text { Peak } \end{aligned}$	2nd Peak	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	Bins Filled
Yk1	Overall	34.92	85.77	87.91	50.63	36/43
	Thud	66.12	x	66.12	x	22/39
	Clack	57.58	x	57.97	x	22/43
Yk2	Overall	75.42	45.15	76.92	x	43/56
	Thud	31.18	70.13	31.25	x	$28 / 56$
	Clack	23.52	21.82	23.67	21.86	$26 / 51$
Yk3	Overall	33.01	54.31	33.20	x	35/36
	Thud	34.07	21.17	34.04	21.16	20/36
	Clack	53.50	26.37	54.79	37.21	18/35
Y9	Overall	90.91	30.98	91.95	28.37	37/38
	Thud	95.74	23.87	97.56	x	36/36
	Clack	22.73	62.50	22.60	37.56	24/38
Yy10	Overall	102.89	24.26	24.24	103.90	$50 / 59$
	Thud	92.59	24.20	24.46	93.02	28/57
	Clack	30.82	24.11	31.01	x	22/52

Table 3.5.1b: Spectral analysis of D. yakuba songs using higher IPI cut-off points.
(b) Higher cut-off points:

SPECTRAL ANALYSIS						
CUT Off POINTS : 350 \& 50 ms						
YAKUBA		Clean		VdB		Observations
Song	Pulse Type	1st Peak	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
Yk1	Overall	34.92	85.77	87.91	50.63	36/43
	Thud	66.12	x	66.12	52.29	22/39
	Clack	57.58	x	57.97	x	22/43
Yk2	Overall	75.42	45.08	76.92	22.22	43/56
	Thud	31.18	69.77	31.25	x	25/51
	Clack	23.52	21.82	23.67	21.86	26/56
Yk3	Overall	33.01	54.31	33.20	x	34/37
	Thud	34.07	21.17	34.04	21.16	20/37
	Clack	53.50	26.37	54.79	37.21	16/35
Y9	Overall	91.03	28.08	91.95	x	37/38
	Thud	96.26	23.87	23.87	97.56	36/38
	Clack	22.73	62.50	22.66	37.56	24/38
Yy 10	Overall	102.89	24.26	24.24	103.90	50/59
	Thud	92.59	24.20	24.46	93.02	28/57
	Clack	30.82	24.11	31.01	x	22/52

It can be clearly seen that the CLEAN/Monte Carlo and the corresponding VdB values, for each individual song, are approximately similar. Any period of 30 s or less was assumed to reflect arrhythmicity, if a second significant peak in the spectrogram was not found. This is because arrhythmic per ${ }^{01}$-songs have cycles ranging predominantly from ~ 20 30s (Kyriacou and Hall, 1989; Alt et al., 1997).

Thackeray (1989) scored only two sets of data for a D. yakuba song, one set for the Thud pulse-type and one set of data for the Clack pulse-type, but he did not calculate a third dataset where Thud and Clack pulse types were amalgamated. Hence, Thud was

Thackeray (1989) scored only two sets of data for a D. yakuba song, one set for the Thud pulse-type and one set of data for the Clack pulse-type, but he did not calculate a third dataset where Thud and Clack pulse types were amalgamated. Hence, Thud was found to give a rhythm with a period of $\sim 78.1 \mathrm{~s} \pm 5.3$ and Clack was found to be $\sim 79.2 \mathrm{~s} \pm 4.2$ (\pm sem) (Thackeray, 1989).

In this present study, all three datasets were calculated for parental strains plus F_{1} intraspecific hybrids, and the periods are shown in Figure 3.5 .2 which gives the distribution of the CLEAN-derived periods of D. yakuba songs from $250 \& 50 \mathrm{~ms}$ cut-off points, with the short periods (>30 s) included. The mean periods were found to be ~ 63.2 ± 4.85 for Clack \& Thud, $\sim 67.0 \pm 5.81$ for Thud and $\sim 57.3 \pm 2.82$ for Clack (\pm sem).

Figure 3.5.2: The distribution of the periods of D. yakuba songs.

Note that in the distributions above, the 'shoulder' in the Overall Clack + Thud song (Top Graph) and Thud song (Bottom left) of the periods between 20-40s are included. If I remove these short periods, which probably reflect arrhythmic songs, the mean period increases to $72.02(\mathrm{~s}) \pm 4.73$ and $75.95(\mathrm{~s}) \pm 5.37$, for Thud + Clack and Thud songs, respectively, which are very similar to those found by Thackeray (1989). Unfortunately,

ANOVA between the various strains and intraspecific hybrids could not be carried out, since a number of these genotype groups only had one or two valid song representatives for rhythm analysis. Moreover, several of the parental strains, did not have long enough songs with adequate number of data points. Thus, ANOVAs are restricted to a species group analysis.

Table 3.5.2 (see below) shows the periods of the different genotypes determined by CLEAN and VdB spectral analyses from this present study. Out of the 5 D. melanogaster Brighton songs examined, all of them show significant spectral rhythms. From the five D. simulans Florida songs examined, one did not satisfy the 50% bins filled criterion, whereas the other 4 showed significant spectral peaks at least at the 5% significance level.

Table 3.5.2:- The song periods of the different species.

Genotype/Song Type	$\begin{gathered} \text { Number of } \\ \text { songs } \\ \text { examined } \\ >50 \% \text { bins } \\ \text { filled } \end{gathered}$	Number of rhythmic songs	Periods obtained using the significant Clean values(s)	CLEAN (Level of Significance)			Periods obtained using the significant VdB values(s)	VdB(Level of Significance)		
				n.s	5\%	1\%		n.s	5\%	1\%
simulans (Florida)	4	4	47.99 ± 4.07	0	4	0	38.37 ± 3.74	2	2	0
melanogaster (Brighton)	5	5	54.37 ± 3.52	0	2	3	54.53 ± 3.71	0	2	3
yakuba (Clack+ Thud)	37	26	63.18 ± 4.85	11	19	7	68.55 ± 5.01	11	18	8
yakuba (Thud)	35	24	66.99 ± 5.81	11	18	6	64.92 ± 4.85	11	21	3
yakuba (Clack)	24	7	57.256 ± 2.82	17	4	3	59.13 ± 5.70	17	4	3

NOTE:- Nyquist Frequencies or long term 'trend'frequencies are excluded

The majority of Thud + Clack song (26/37) and Thud song (24/35) gave significant primary or secondary peaks, in their respective CLEAN and VdB spectrograms (see chapter 2), but only a minority (7/24) of the Clack songs revealed rhythmic profiles (see table 3.5.2-above). Figure 3.5.3 (see below) depicts the distribution of the periods of songs for D. melanogaster Brighton, D. simulans Florida and D. yakuba (various strains \& intraspecific crosses), recorded for this study.

$N=$ Numbor of Observaions, Red Line $=$ Expected Nomal

Figure 3.5.3: The distribution of the periods of songs the various species examined in this present study.

One-way ANOVA was employed on the CLEAN periods in order to test whether there were any differences between the periods of the various species. D. melanogaster per ${ }^{+}$-periods (see table 3.1.1- Oregon, Canton-S and Brighton, together), per $^{\text {S }}$, per ${ }^{\text {L }}$ were compared to D. simulans and the two D. yakuba songs (Clack and Thud). A significant F -ratio ($\mathrm{F}=12.49, \mathrm{df}=6,97, \mathrm{p}=0.000$) was detected. The Newman-Keuls a posteriori test was employed and revealed that the D. melanogaster periods are significantly different, at least at $\mathrm{p}<0.05$, from the periods of D. simulans and D. yakuba Thud song, but showed no significant differences to D. yakuba Clack song. In addition, the test revealed that there are significant differences between the different per genotypes, which is in agreement with Kyriacou and Hall's (1989), Kyriacou et al. (1990) and most recently with Alt et al's (1997) observations.

A χ^{2}-test, was also applied on the periods for the different species (omitting $p e r^{\mathrm{S}}$ - and $p e r^{\mathrm{L}}$-mutants- see Table 3.5.4-below).

Table 3.5.4: Frequency table of the periods of the different genotypes, for the χ^{2}-test.

	GROUP PERIODS OF SONGS (s)					
Genotype	$30-45$	$45-60$	$60-75$	$75-90$	$90+$	TOTAL
per +	2	24	7	2	-	35
simulans	8	2	1	-	-	11
yakuba (Clack)	-	4	3	-	-	7
yakuba (Thud)	7	2	8	3	4	24

KEY: The short periods (nyquist frequencies) are excluded

The χ^{2}-value is 39.424 ($\mathrm{p}<0.01$), again revealing species differences in song rhythms.

3.6 Discussion:

The D. melanogaster song is composed of hum (sine) and pulse song, with the sine song having a low carrier frequency (von Schilcher, 1976b), and constituting the majority of a courtship song (S . Campesan, pers. comm.). It has been suggested that the sine song may act as a prestimulator to the female (von Schilcher, 1976b), whereas the pulse song is a species-specific trigger for mating. However, Kyriacou and Hall (1984) showed that a cycling IPI also acts as a prestimulator. D. yakuba song has been found to consist of two types of pulses (Thackeray, 1989), a low frequency Thud song, which generally constitutes the majority of pulses present in a courtship, and a high frequency Clack (see tables 3.4.2a \& b). It is therefore feasible that Thud is homologous to 'sine' song and Clack may represent melanogaster pulse song. Without any simulator experiments, such as those experiments performed by Kyriacou and $\operatorname{Hall}(1982,1986)$ and Greenacre et al. (1993), to test the effects of the different types of signal on D. yakuba females, this remains just speculation.

The mean IPIs and IPFs, and mode of IPI for the different species are found to be in close agreement with Cowling and Burnet's observations (1981). Furthermore, their IPI distributions (see Figures 3.2.1 and 3.4.2) are unimodal in shape, but varying in the broadness of their respective distributions, as opposed to D. mojavensis and D. arizonae songs, for example, where the IPI distributions are bimodal (C. Byrne and C.P. Kyriacou, pers. comm.).

Inspecting the results for the different pulse-types within a D. yakuba courtship, it was confirmed that they are two distinctly different types of pulses (Thackeray, 1989), with different mean IPI's; the Clack song has a higher IPI than Thud. The mean IPF's for Clack song of the various D. yakuba strains are higher than those for Thud song. In addition, as mentioned above, in the majority of the songs, Thud constitutes the majority pulse-type present.

When comparing the song characters of a particular intraspecific genotype and their corresponding parental counterparts, it can be observed that Thud \& Clack IPF's
and IPI's of the intraspecific genotypes are higher and lower, respectively, than the parental ones. This increase in the mean IPFs and decrease in the mean IPIs in the intraspecific hybrids (Figure 3.4.3 a and b, respectively, and table 3.4.1) are suggestive of hybrid vigour (Crow, 1948; Robertson, 1952; Sheridan, 1981), implying that the parental strains had undergone inbreeding depression (Reeve, 1955a; Roberts, 1960). Moreover, it suggests that superior fitness could be associated with higher IPFs and shorter IPIs (Crow, 1952; Falconer, 1971; Haymer and Hartl, 1982; 1983). Thus, a more vigorous and energetic male may vibrate his wings faster giving higher IPFs and shorter IPIs. Thus, the association between lower IPIs and higher IPFs makes mechanical sense.

Given the controversy that had surrounded the existence of song cycles, my initial task was to reanalyse Kyriacou and Hall's original data and attempt to replicate Thackeray's results with D. yakuba (1989), using a new method to analyse the significance of spectral analysis on each individual song. The results were similar to those of Kyriacou and Hall (1989) and Kyriacou et al. (1990), but the new method had the additional advantage that each individual song was acting as its own control. Konopka et al. (1997) have also recently used this new method, to analyse the songs of per mosaic flies. The results of my study support Kyriacou and Hall's original (1980) observations on song rhythms, with D. melanogaster and D. simulans, and Thackeray's (1989), preliminary observations on song cycles in D. yakuba .

The choice of the appropriate upper IPI cut-out points for rhythm analysis (Crossley, 1988; Ewing, 1988; Kyriacou and Hall,1980,1989 and Kyriacou et al., 1990) was further emphasized in this study with D. melanogaster. Section 3.3, Figures 3.3.1a and 3.3.2a (for D. melanogaster and D. simulans, respectively) aptly demonstrates what happens when 'inappropriate' cut-off points are used; a complete 'masking' of a potential song rhythm is observed. When the different cut-off points are employed, as shown in Figures 3.3.1b and 3.3.2b, an unveiling of a song rhythm occurs. When D. yakuba songs were analysed (see Appendices $3.2 \mathrm{a} \& \mathrm{~b}$), there was not such a striking 'masking' of song cycles with different IPI cut-offs.

In the case of D. melanogaster, all songs that satisfied the 50% bins filled criterion, showed significant peaks in their CLEAN and VdB spectrograms, with periods
between $\sim 43-65$ s. In D. simulans, most songs also showed significant peaks with shorter periods than D. melanogaster, confirming the results of Kyriacou and Hall $(1980 ; 1986)$ and Wheeler et al. (1991). In the case of D. yakuba, the songs recorded during courtship were treated as three different datasets (Clack + Thud, Thud and Clack). The majority of Clack + Thud (26/37) and Thud (24/35) song types were found to have significant peaks at either the 5% or 1% level of significance. Most of the Clack songs were found to be arrhythmic (17/24); but 7 datasets were found to be rhythmic (see Appendix 3.2a \& b). Moreover, ANOVA and χ^{2}-test revealed that there are species-specific differences in song periods between D. yakuba, D. melanogaster and D. simulans. The mean periods of Clack + Thud and Thud songs of D. yakuba, are found to be longer than those of D. melanogaster. As far as the Clack song's period is concerned, it is similar to that for D. melanogaster. In addition to the determination of the song cycles in D. yakuba, the basic analysis of pulse song IPI and IPF confirmed and extended Thackeray's (1989) work.

Since the spectral analyses proved useful in validating Kyriacou and Hall's (1980) data and since the existence of song cycles in D. melanogaster, D. simulans and D. yakuba have been further supported by the results presented in this study; the next logical step was to apply these spectral methods to the other members of the melanogaster subgroup (chapter 4) and to their interspecific genotypes (chapter 5) in order to determine whether the song cycles are a ubiquitous feature within the melanogaster subgroup and their interspecific hybrids.

Can song rhythms be detected in the other of the members of the D. melanogaster subgroup?

Chapter 4

4. Can song rhythms be detected in the other of the members of the D. melanogaster subgroup?

In this chapter an attempt is made to extend the analysis of song rhythms to the other species of the melanogaster subgroup, D. mauritiana, D. sechellia (D. melanogaster complex) and D. teissieri, D. erecta and D. orena (D. yakuba complex). Previous attempts by Thackeray (1989) to obtain robust song recordings, i.e., recordings with an adequate number of individual IPIs, per unit time, in order to permit IPI rhythm analysis for D. mauritiana, D. sechellia and D. orena, were unsuccessful. Here, I describe my efforts to obtain robust recordings of all species.

4.1 D. melanogaster complex:

D. mauritiana song-(various strains):
D. mauritiana flies produce a similar song to that generated by both D. melanogaster and D. simulans. The songs contain pulse and sine song components (Cowling and Burnet,1981). Through systematic and empirical alteration of the experimental conditions (the age of both male and female flies, time of the recording, rearing conditions), it has been possible to obtain some songs that had sufficient IPIs, for rhythm analysis.

According to Robertson (1983), the D. mauritiana courtship is much more light-dependent than that of D. melanogaster and D. simulans, so I decided that the males were to be reared in a constant light incubator $\left(25^{\circ} \mathrm{C}\right)$ and in solitude, one per vial. Rearing males in solitude increases their sexual vigour (von Schilcher,1976b, C.P. Kyriacou, pers. comm.). Virgin females were maintained at the same temperature, but two females per vial, under light/dark conditions. Evidently, the D. mauritiana courtship depends considerably on light stimuli for mating, since ostensibly blind white eye D. mauritiana mutant males were never observed to court females (Robertson,1983).
D. mauritiana males were observed to perform the 'scissoring' wing motion (Robertson, 1983). One wing vibration style that is also observed, the so-called 'rowing', is a wing motion which involves simultaneous arching and replacing of one wing and extension
of the abdomen during copulation attempts, first described by Robertson (1983). In D. melanogaster courtship 'rowing' was never observed; thus superficially, at least, the D. mauritiana song is close to that of D. simulans (Cowling and Burnet, 1981; Robertson, 1983). The only obvious difference between D. mauritiana and D. simulans males, during courtship, is that the D. mauritiana male flies are swifter in their copulation attempts (Robertson, 1983).

While collecting males and females for recording, using CO_{2} anaesthesia under a light microscope (see Chapter 2), certain morphological differences were observed, in both sexes, amongst the different strains. For example, in certain strains such as D. mauritiana Isofemale 102, the males have longer and more pointed abdominal ends than the D. mauritiana Sweden males.

During recording of D. mauritiana songs, I anecdotally observed that sine song was heard when the male was near the female, but at some distance from her, which is in agreement with Robertson's observations (1983). The female fly is seen to brush her wings against her abdomen, perhaps to exude the necessary pheromones in order to excite the male enough to initiate courtship (Jallon et al., 1984; Jallon and David, 1987; Cobb and Jallon, 1990). The song consists of phrases of sine song generated by low amplitude vibration with the wing held horizontally to the body (Cowling and Burnet, 1981; Robertson, 1983) and trains of pulses (involving high amplitude vibration with the posterior margin of the wing lowered) mixed together, in no particular order (Robertson, 1983). Within a train of pulses, the interpulse intervals change, in magnitude, giving rise to three distinct types of phrases (Robertson, 1983):

1) Type A: Irregular and widely spaced IPI's becoming more regular as courtship progresses;
2) Type B: More regular than the first type with regularly decreasing IPI's;
3) Type C: Constant short IPI's.

I also observed these three types of IPI's. At the beginning of a burst, the IPIs are long, but become more regular and constant as a burst progresses; towards the end of the burst the IPIs begin to decrease in length, in a regular and constant fashion until the male stops vibrating his wing .

Figure 4.1.1 (below) shows the IPI distribution of a D. mauritiana Sweden (red columns), Indiana (blue columns) and France (yellow columns) song. The distribution of IPI for the D. mauritiana strains is clearly unimodal, but broader, in shape, than the IPI distribution of the D. melanogaster Brighton song and narrower than the D. simulans Florida song (see section 3.2- Figure 3.2.1). Modal IPIs in these 3 examples lie between 30 $35 \mathrm{~ms}, 30-35 \mathrm{~ms}$ and $35-40 \mathrm{~ms}$, respectively. Note that the IPI distribution of the former two strains is slightly narrower than the latter one.

Figure 4.1.1: The IPI distribution of D. mauritiana songs - Each strain is represented by one typical song.

Figure 4.1.2 (below) shows the mean IPIs of the various strains that were recorded, but only D. mauritiana Sweden, France and Indiana produced robust songs that could be used for rhythm analysis (see section 4.2). The overall mean IPI of the D. mauritiana songs of several strains, recorded here, ranged from $\sim 32-61 \mathrm{~ms}$. The wide range was due to the longer IPIs of the the three strains with poorer courtship (MG17, MG71 and Isofemale 102). One-way ANOVA of IPI's from all the strains recorded, revealed a significant strain effect ($\mathrm{F}=5.50, \mathrm{df}=5,39, \mathrm{p}=0.001$). Unfortunately, it had not been possible to obtain any intraspecific hybrids, as all the intraspecific male hybrids died before reaching the age of 3 days. Since the one-way ANOVA of the mean IPIs between the 'principle' strains of D. mauritiana, that were eventually to be used in rhythm analysis, namely D. mauritiana Sweden, France and Indiana, did not show any significant differences
$(p=0.320)$, these strains were treated as one overall species. Table 4.1.1 (below) shows a summary of the mean IPI, mean IPF, mean SSF and modal IPI for the three D. mauritiana strains, that were used for rhythm analysis (see section 4.2). IPF and SSF measurements were taken from between 2-4 flies for each strain.

Figure 4.1.2: Mean IPIs of various D. mauritiana strains. The number of songs, together with mean IPI \pm sem are also shown.

Table 4.1.1: Summary of the mean IPI, mean IPF, mean SSF and mode of IPI for D. mauritiana strains

SPECIES/STRAINS	IPI MEAN $(\mathrm{ms}) \pm$ sem	IPI MODE (ms)	SSF MEAN $(\mathbf{H z}) \pm$ sem	IPF MEAN $(\mathrm{Hz}) \pm$ sem
D. mauritiana Sweden	$\mathbf{4 1 . 8 1} \pm \mathbf{2 . 2 3}$	$\mathbf{2 7 . 3 1}$	$\mathbf{1 9 0 . 6 4} \pm \mathbf{5 . 4 9}$	$\mathbf{2 4 7 . 7 5} \pm 1.31$
D. mauritiana France	$\mathbf{3 8 . 5 0} \pm \mathbf{1 . 5 3}$	$\mathbf{3 2 . 3 3}$	$\mathbf{1 7 5 . 8 0} \pm 4.44$	$\mathbf{2 5 4 . 3 1} \pm \mathbf{1 . 1 7}$
D. mauritiana Indiana	$\mathbf{3 9 . 7 4} \pm \mathbf{2 . 1 6}$	$\mathbf{3 0 . 5 0}$	$\mathbf{2 0 0 . 2 0} \pm \mathbf{1 7 . 3}$	$\mathbf{2 6 9 . 0 2} \pm 3.64$

In summary, the IPI distribution, mean IPI, IPF and SSF results of the D. mauritiana strains, presented in this study, are in agreement with Cowling and Burnet's (1981) and Robertson's (1983) observations.
D. sechellia (Cambridge) song:

This song mainly consists of trains of pulses. Contrary to Cobb et al. (1989), I found that the D. sechellia song does contain some sine song which was not found in every D. sechellia song- the sine song was present in 5 out of the 12 D . sechellia songs recorded (see Figure 4.1.3-below). Since all the species of the D. melanogaster complex are
morphologically similar to one another, the only reliable distinguishing characteristic for their identification are the male genitalia, where the process of the genital arch (epandrium) has a species-distinguishing shape (Coyne, 1983; Lemeunier, 1986). Therefore, an examination of the male genitalia of the four member species of the D. melanogaster complex was warranted in order to exclude any possibility of cross-contamination that might had occurred to the D. sechellia line, with either of the other three species, which could have given rise to the sine song observed. D. sechellia was observed to have a genital arch, under light-microscopy [magnification x 60], with an 'elongated curving' expansion, which was slightly enlarged at its apex. This shape was different from the 'trapezoid' expansion seen in D. melanogaster, the large 'semicircular' expansion seen in D. simulans, and the 'narrow finger-like' expansion seen in D. mauritiana. These observations agreed with Coyne's (1983) and Lemeunier's (1986) observations. Hence this excluded the possibility of cross-contamination of the D. sechellia line with any of the other three species. Furthermore, D. sechellia song is similar, at least, acoustically, to the D. mauritiana song in so far as the production of a sine song and the irregularity of IPI's at the beginning of courtship.

SINE SONG

PULSES

Figure 4.1.3: The song components of D. sechellia.

Figure 4.1.4 (see below) shows the IPI distribution of a D. sechellia Cambridge song. Here again, the IPI distribution is unimodal, with a mode IPI varying between 60 65 ms . However, there is a much broader IPI distribution than in the rest of the members of the D. melanogaster complex:

Figure 4.1.4: The IPI distribution of a D. sechellia Cambridge (Se8) song.

The mean IPI of D. sechellia songs so far examined range from $\sim 53-89 \mathrm{~ms}$, which are in close agreement to the results found by Cobb et al. (1989). The wing display repertoire is observed to be limited to 'scissoring' only (Cobb, 1989). The IPI and modal IPI measurements were taken from 12 flies, the SSF measurements were taken from the 5 flies that produce the hum song, whereas the IPF measurements were taken from 4 flies. Table 4.1.2 shows the mean IPI, mean IPF, mean SSF and mode of IPI for D. sechellia:

Table 4.1.2: Summary of the mean IPI, mean IPF, mean SSF and mode of IPI for D. sechellia Cambridge

SPECIES/STRAIN	IPI MEAN $(\mathrm{ms}) \pm$ sem	IPI MODE (ms)	SSF MEAN $(H z) \pm$ sem	IPF MEAN $(H z) \pm$ sem
D. sechellia Cambridge	71.93 ± 2.39	57.33	154.80 ± 21.6	352.89 ± 2.90
	86.30 ± 5.60	$76-80$	-	252.00 ± 7.20

KEY : Bold - Results from Present Study Italics - Results from Cobb et al. (1989)

4.2 Do song rhythms exist in D. mauritiana and D. sechellia?

Before applying the spectral analysis methods to the data, the usual preliminary procedures were followed. A song was only considered for rhythm analysis, if more than 50% of its bins were filled. Then the IPI means were analysed with the CLEAN

Figure 4.1.4: The IPI distribution of a D. sechellia Cambridge (Se8) song.

The mean IPI of D. sechellia songs so far examined range from $\sim 53-89 \mathrm{~ms}$, which are in close agreement to the results found by Cobb et al. (1989). The wing display repertoire is observed to be limited to 'scissoring' only (Cobb, 1989). The IPI and modal IPI measurements were taken from 12 flies, the SSF measurements were taken from the 5 flies that produce the hum song, whereas the IPF measurements were taken from 4 flies. Table 4.1.2 shows the mean IPI, mean IPF, mean SSF and mode of IPI for D. sechellia:

Table 4.1.2: Summary of the mean IPI, mean IPF, mean SSF and mode of IPI for D. sechellia Cambridge

SPECIES/STRAIN	IPI MEAN $(\mathbf{m s}) \pm$ sem	IPI MODE (ms)	SSF MEAN $(H z) \pm$ sem	IPF MEAN $(H z) \pm$ sem
D. sechellia Cambridge	71.93 ± 2.39	$\mathbf{5 7 . 3 3}$	$\mathbf{1 5 4 . 8 0} \pm 21.6$	$\mathbf{3 5 2 . 8 9} \pm 2.90$
	86.30 ± 5.60	$76-80$	-	252.00 ± 7.20

KEY : Bold - Results from Present Study Italics - Results from Cobb et al. (1989)

4.2 Do song rhythms exist in D. mauritiana and D. sechellia?

Before applying the spectral analysis methods to the data, the usual preliminary procedures were followed. A song was only considered for rhythm analysis, if more than 50% of its bins were filled. Then the IPI means were analysed with the CLEAN
and VdB analyses together with the Monte Carlo simulations, and the results for the various strains of D. mauritiana are shown on Table 4.2 .1 (below), using different IPI cut-off points. After examining the distributions of the IPIs, for the various strains of D. mauritiana, the cut-off points that were eventually employed for the spectral analyses were 75 and 15 ms or 80 and 15 ms .

Table 4.2.1: Spectral analyses of the songs from the three principle strains of D. mauritiana, using lower and higher cut-off points

SPECTRAL ANALYSIS					
SPECIES	Clean		Van den Berg.		Observations
	1st Peak	2nd Peak	1st Peak	2nd Peak	$\begin{array}{r} \text { Bins } \\ \text { Filled } \end{array}$
mauritiana	CUT Off POINTS : 75 \& 15 ms				
Ma5t1011	31.20	128.57	125.00	x	29/38
Maslt13r	173.91	x	181.82	26.85	31/42
Mas 1t612	30.43	53.91	25.24	x	11/14
Maslt6rl	30.39	54.03	30.53	x	33/55
Mau2t812	20.04	63.55	64.52	444.44	26/42
Mau3t812	30.30	x	30.30	27.49	33/38
Mau3t81rl	39.41	x	26.14	83.33	36/48
Mhlt1412	54.31	35.71	54.79	x	25/31
Mi3t1311	30.30	x	67.23	x	25/30
Mi4t10r1	39.52	x	40.00	800.00	51/51
Mi5t10r1	192.31	x	x	x	17/27
Mi6t10r1	47.41	196.43	205.13	47.90	32/46
SPECTRAL ANALYSIS					
SPECIES		lean		n Berg	Observations
	1st Peak	2nd Peak	1st Peak	2nd Peak	Bins Filled
mauritiana	CUT Off POINTS : 80 \& 15 ms				
Ma5t1011	32.32	24.66	123.08	x	31/38
Mas1t13r	176.99	24.81	24.77	x	31/42
Mas1t612	25.42	x	25.40	x	12/14
Maslt6r1	30.39	54.03	30.53	54.05	33/55
Mau2t812	20.04	63.33	64.00	444.44	26/42
Mau3t812	30.30	27.32	30.30	27.49	34/38
Mau3t81r 1	x	x	26.14	83.33	39/48
Mhlt1412	54.31	35.71	54.79	x	25/31
Mi3t1311	x	x	67.23	x	27/30
Mi4t10rl	39.52	x	40.00	800.00	51/51
Mi5t10rl	x	x	x	x	18/27
Mi6t10rl	47.41	196.43	205.13	47.90	32/47

Any 30s cycle or less is assumed to be arrhythmic, unless a second significant peak in the spectrogram was found. For example, in the 75 \& 15 ms section of table 4.2.1a for the Mau2t812 song, the second significant peak value, in the CLEAN analysis, was taken to be the period because this value is similar to the corresponding primary one in the VdB analysis. Even when the slightly higher cut-off points of $80 \& 15 \mathrm{~ms}$ were employed,
several striking changes occurred to the periods of several songs; for example, songs like Mas1t612, Mau3t8rl and Mi3t1311 become arrhythmic.

The highlighted values in table 4.2.1 (see above) are the values that have been used to determine the rhythm periods of each song. It can clearly be seen that the CLEAN and the corresponding VdB values, for each individual song, are approximately similar. Song Mi3t1311 gives a 30.35 s period with CLEAN, but a 67.23 s period with VdB, and is the only one which is problematic. This song becomes arrhythmic with the 80 ms upper cutoffs with CLEAN, so it clearly has a fragile cycle.

Figure 4.2.1 (below) shows the distribution of the significant periods of the D. mauritiana songs that were determined with the CLEAN spectral analysis, using the lower cut-off points of $75 \& 15 \mathrm{~ms}$. The overall species period for D. mauritiana is $39.69(\mathrm{~s}) \pm$ 3.74. If the higher $80 \& 15 \mathrm{~ms}$ cut-off points were used the overall species period becomes $42.51 \mathrm{~s} \pm 4.89$. The overall species song period for D. mauritiana determined here, is in close agreement with Kyriacou's preliminary investigations into the song periods of this species (C.P. Kyriacou, pers. comm.).

Cut-off Points:- 75 \& 15 ms
 Mean Period: 39.69(s) ± 3.74 (sem)

Figure 4.2.1: The distributions of the periods of D. mauritiana songs, using the lower cut-off points, after the Clean spectral analysis had been employed. The mean period \pm sem is also shown.
Out of the 12 D . mauritiana used for rhythm analysis, 2 were found to be arrhythmic. The majority of the rhythmic D. mauritiana songs demonstrated periods
between $30-40 \mathrm{~s}$. Figures $4.2 .2-4.2 .4$ show the results of representative D. mauritiana songs. In all the Figures, graph (a) depicts the regression found initially on the period from the VdB analysis, together with its corresponding F-ratio and degrees of freedom, and (b) and (c) show the spectrograms of the song with the CLEAN and VdB procedures. In Figure 4.2.2a, $\mathrm{a} \sim 120 \mathrm{~s}$ cycle can be seen, on which a period of 32 s is superimposed. This 32 s cycle is significant with CLEAN, but not quite significant with VdB. Figures 4.2.3 and 4.2.4 show unambiguous 30-40s cycles in both spectral analyses.
D. sechellia is the last member of the D. melanogaster complex to be examined for the existence of song rhythms. The same preliminary data manipulations, described in section 3.3 and at the beginning of this present section, were carried out. The results for D. sechellia are shown on Table 4.2.2 (below), using different cut-off points. After examining the distributions of the IPIs of D. sechellia, the cut-off points that were eventually employed for the spectral analyses were, $100 \& 20 \mathrm{~ms}$ and $120 \& 20 \mathrm{~ms}$ (approximately twice the mean IPI). When 80 ms was considered as the upper cut-off point, almost a sixth of the IPIs were discarded, therefore this cut-off point was rejected. Any periods of 30s or less are assumed to be arrhythmic, unless a secondary significant peak in the spectrogram was found.

Table 4.2.2: Spectral analyses of D. sechellia songs, using lower and higher cut-off points.

SPECIES	Clean		Van den Berg		Observations
	1st Peak	2nd Peak	1st Peak	2nd Peak	Bins Filled
sechellia	CUT Off POINTS : $100 \& 20 \mathrm{~ms}$				
Sele6s21	52.63	283.02	23.05	36.70	17/43
Se2SIIrl	169.06	24.89	25.08	x	34/49
Se5s11r1	232.95	x	235.29	106.67	$29 / 43$
Se6s 11 l 1	500.00	x	137.93	106.67	35/50
Se7s11r2	196.00	31.01	666.67	25.00	24/39
Se8se10r	50.46	103.29	51.61	103.90	33/47
Se8s11r2	52.11	x	51.95	29.96	34/47
Sellsill	26.36	x	21.51	x	35/37
Sel2silr	43.57	158.73	44.94	22.92	40/42
sechellia	CUT Off POINTS : $120 \& 20 \mathrm{~ms}$				
Sele6s2l	52.63	X	23.05	36.70	17/32
Se2s11r1	169.06	40.38	41.18	25.08	35/49
Se5s11rl	232.95	x	235.29	106.67	$29 / 43$
Se6s11r1	500.00	70.29	137.93	68.97	37/50
Se7s11r2	42.36+	24.85	666.67	25.00	25/39
Se8sel0r	51.40	25.17	51.61	103.90	33/47
Se8s11r2	51.89	x	51.95	29.96	35/47
Sellsilr	34.31+	26.36	21.51	34.52	36/37
Sel2s11r	43.57	158.73	41.94	22.92	40/42

(A) period $=123.3 \mathrm{~s}$ F=4.062, $\mathrm{df}=3,25$

(B) $31.20 \mathrm{~s}, 128.57 \mathrm{~s}$

(C) 125.00 s

Frequency

Figure 4.2.2:
D. mauritiana Sweden courtship song (Ma5t1011)analysed-see table 4.2.1 (upper half), using the lower $75 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure. Note that on a ~ 120-s cycle, $\mathrm{a} \sim 32 \mathrm{~s}$ period is superimposed.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of $31.20 \mathrm{~s}(\mathrm{p}<0.01)$, as well as a weaker secondary peak of 128.57 s ($\mathrm{p}<0.01$), with the CLEAN analysis. Also note that there is a significant primary peak of 125 s ($\mathrm{p}<0.01$), as well as a weak peak at $\sim 30 \mathrm{~s}$ that does reach the 5% confidence limit, with the VdB analysis. The 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).
(B) 30.30 s

CLEAN

Figure 4.2.3:
D. mauritiana France courtship song (Mau3t812) analysed-see table 4.2.1 (upper half), using the lower 75 \& 15 ms cut-off points, and spectral analysis. a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 30.30 s (<0.05), with the CLEAN analysis. In addition, note there is the highest peak of 30.30 s ($\mathrm{p}<0.01$) as well as a high secondary peak of 27.49 s ($\mathrm{p}<0.01$), with the VdB analysis. The 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).
(A) period $=39.8 \mathrm{~s} F=8.182, \mathrm{df}=3,47$

Figure 4.2.4:

D. mauritiana Indiana courtship song (Mi4t10rl) analysed-see table 4.2.1 (upper half), using the lower 75 \& 15 ms cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 39.52 s ($\mathrm{p}<0.01$), with the CLEAN analysis. Also note a significant primary peak of 40 s , as well as a weaker secondary peak of 800 s ('climber' range) ($\mathrm{p}<0.01$) with the VdB analysis. The 95 and 99% confidence
(B) 39.52 s

 limits are defined by Monte Carlo simulations (see chaper 2).

In the $120 \& 20 \mathrm{~ms}$ section of table 4.2.2, the Se2s11rl song has a primary peak of 169.06 s , with the CLEAN analysis, which represents a 'climber', but in addition, it shows a second significant peak of 40.38 s and a corresponding primary peak of 41.18 s , with the VdB analysis, which is taken to be the period of this song. The Se6s11r1 shows a primary peak, in the 'climber' range, but also has a significant secondary peak of 70.29 s, which is also present as a significant secondary peak of $\sim 69 \mathrm{~s}$, with the VdB analysis. In the cases of Se8se10r, Se8s11r2, Sel1s11r and Se12s11r, there are significant primary or secondary peaks of similar value, with both spectral analyses. With Sele6s2l and Se7s11r2, there are significant primary peaks of 52.63 s and 42.36 s , respectively, with CLEAN, but the former song has a 36.7 s secondary period with VdB and the latter shows only a climbing frequency with VdB. Finally, Se5s11rl shows a long-term trend ('climber'), with both of spectral analyses and was therefore considered arrhythmic.

Several D. sechellia songs in table 4.2 .2 are marked with the $(+)$ sign to indicate changes in period with different cut-offs. Figure 4.2 .5 (below) shows the distribution of the periods of the D. sechellia songs determined with CLEAN. When using the higher cut-off points ($120 \& 20 \mathrm{~ms}$) the overall species period for D. sechellia is $48.35(\mathrm{~s}) \pm 3.87(\mathrm{n}=8)$. When the lower cut-off points were employed the overall species period changes slightly to $45.96 \mathrm{~s} \pm 4.07$ ($\mathrm{n}=5$)-see Figure 4.2.5.

Cut-off Points:- $120 \& 20 \mathrm{~ms}$ Mean Period: 48.35(s) ± 3.87 (sem)

Cut-off Points:- $100 \& 20 \mathrm{~ms}$ Mean Period: $45.96(\mathrm{~s}) \pm 4.07$ (sem)

$$
\mathrm{N}=\text { Number of Observations, Red Line }=\text { Expected Normal }
$$

Figure 4.2.5: The distributions of the periods of D. sechellia songs, using the different cut-off points, with CLEAN. The mean periods \pm sem are also shown.

Out of the 9 D. sechellia songs employed for rhythm analysis, one was found to be arrhythmic, using the upper IPI cut-offs of 120 ms . From the 8 rhythmic songs, 6 songs had periods between $40-52 \mathrm{~s}$, one had a period between $30-40 \mathrm{~s}$ and one had a period of $\sim 70 \mathrm{~s}$. Figure 4.2.6 illustrates the results of a D. sechellia song.

4.3 The D. yakuba complex: D. teissieri, D. orena and D. erecta.

D. teissieri (Sweden) song:
D. teissieri, unlike D. yakuba, produces both sine (see Figure 4.3.1a) and pulse song components. Cowling and Burnet (1981), found that the D. teissieri song has a very short mean IPI $\sim 20 \mathrm{~ms}$. During recording, I observed that the male seems to come to a complete standstill for an instant, before it resumes running around the recording chamber, while trying to track the female. It is not certain whether this has any behavioural significance, i.e., being some sort of ritual before courtship begins in earnest, but it was observed in almost all the D. teissieri songs recorded. Another observation that was almost universal to the songs recorded was that the D. teissieri male vibrates both wings in a horizontal orientation and does not track and orientate at the correct position in relation to the female in order to initiate courtship, as observed in the D. melanogaster courtship (Bennet-Clark and Ewing, 1968; Ewing, 1970; Tsacas, 1971; Cowling and Burnet, 1981). Furthermore, the males were observed to vary their wing vibration repertoire, by changing from 'scissoring' to 'rowing' with one or both wings, which is in agreement with Cowling and Burnet's observations (1981). The 'rowing' movement seems to involve the extension of the wings at roughly 90° to the body axis, followed then by raising the wings at an almost vertical position before being re-folded (Cowling and Burnet,1981). The D. teissieri females spend most of their time stationary, contrary to any of the other females of the species within the melanogaster subgroup (Cowling and Burnet,1981).

Extreme care was taken when analysing these songs, as the amplitude of the primary and secondary peaks in each "pulse" alter in relation to each other during most song bursts; this means that the "primary" and "secondary" peaks alternate as high and low

PULSES

a)

D. teissieri Sweden
b)

D. orena France

D. erecta France

Figure 4.3.1 : The principle song elements produced by members of the D. yakuba complex.
amplitude parts of subsequent pulses (see Figure 4.3.2). The IPIs are defined as being the distance between each "primary" peak, even if this 'primary' peak is lower in amplitude than some of the "secondary" pulses later on in the course of a burst.

Figure 4.3.2: The primary and secondary peaks of teissieri pulse.

The mean IPI of individual songs ranged from $\sim 20-45 \mathrm{~ms}$. The IPI and modal IPI measurement were taken from 20 flies recorded, whereas the IPF and SSF measurents were taken from 5 flies. For the overall species mean IPI, mean IPF, mean SSF and modal IPI, see table 4.3.1 at the end of this section.
D. orena (France) song:
D. orena males produce both pulse and sine song elements (see Figure 4.3.1b). Audibly, the sine song has a high frequency, but not as high as that produced by D. erecta (see below) which differs from Cobb et al. (1989). The pulse trains, sound like songs produced by certain species of the D. montana subgroup species (Hoikkala,1990). The sine song was observed to be produced by a horizontal slow movement of a single wing, which barely rises above the body axis, and in addition constitutes the majority of song; these aforementioned findings are in agreement with Cobb's observations (1989). On the contrary, the pulses are produced by vibrating both wings (Cobb,1989). The individual mean IPIs in this study, range from $\sim 37-60 \mathrm{~ms}$. The IPI and modal IPI measurements were taken from

11 flies recorded, whereas the IPF and SSF measurents were taken from 4 flies. The overall species mean IPI, mean IPF and mode of IPI is given in table 4.3.1 (below). Once again, the sine song alternates with trains of pulses during the progression of the courtship without any apparent order. The lack of vigour of the courtship songs meant that certain measures had to be taken in order to obtain songs with an adequate number of individual IPIs, that could be used for subsequent song rhythm analysis. By trial-and-error, it was found that rearing both the females and the males in solitude, seemed to increase courtship intensity and thus generating more vigorous courtship.
D. erecta (France-light-bodied female) song:
D. erecta males also produce the two discrete song types during courtship, a very high frequency sine song (Cowling and Burnet, 1981), the highest in the subgroup, and a pulse song (see Figure. 4.3.1c) with individual songs' mean IPI's ranging from $\sim 40-60 \mathrm{~ms}$. The IPI and modal IPI measurements were taken from 21 flies recorded, whereas the IPF and SSF measurents were taken from 5 flies. For the overal mean IPI, mean IPF and mode of IPI see table 4.3.1.

The wing display repertoire observed during courtship is quite different from that seen in the other species. This is comprised of a combination of single wing or simultaneous vibration of both wings (Cowling and Burnet, 1981). The single wing movement looks like a 'scissoring' movement, but is different from that observed in D. simulans and D. mauritiana. When both wings are used, the vibration is seen to be at 90° to the body axis (Cowling and Burnet,1981). The sine song is observed to be generated by vibrating both wings, whereas the pulse song is produced by the single wing (Cowling and Burnet, 1981). Furthermore, Ewing (1977) noted that the song of this species contains a pulse song which is polycyclic. This is confirmed by the results in this study (see Chapter 6). It was extremely difficult to obtain vigorous songs, so once again the males of the species were reared in solitude, in order to increase their courtship vigour.

Table 4.3.1: The mean IPI, mean IPF and the mode of IPI of D. teissieri, D. orena and D. erecta.

SPECIES/STRAINS	IPI (ms) MEAN \pm sem	MODE OF IPI(ms)	SSF (Hz) MEAN \pm sem	IPF (Hz) MEAN \pm sem
D. teissieri (Sweden)	28.02 ± 1.28	21.20	231.5 ± 4.35	432.66 ± 4.01
	20.00 ± 0.40	20.00	105.40 ± 0.90	316.50 ± 7.00
D. orena (France)	48.44 ± 1.78	32.89	183.16 ± 1.28	285.23 ± 3.42
	40.00 ± 1.80	$30-36$	320.0 ± 2.60	322.60 ± 7.30
D. erecta (France)	47.01 ± 1.28	34.78	274.10 ± 11.9	291.93 ± 2.56
	40.90 ± 0.70	35.00	246.20 ± 4.00	327.60 ± 7.30

KEY : Bold - Results from Present Study Italics - Results from Cowling \& Burnet (1981) Shaded-in values - Results from Cobb et al (1989)

Table 4.3.1 shows the species/strains mean IPI, mean IPF, mean SSF and mode of IPI for D. teissieri, D. orena and D. erecta, from the present study (Bold), from the Cowling and Burnet study (Italics), and from Cobb et al. (Shaded-in). Figure 4.3.3 (below) shows the distribution of IPIs of a D. teissieri song (black bars). The distribution is unimodal in shape, as are all the distributions of IPIs of the species/strains examined so far, but here the distribution is much narrower than any other, with a modal IPI between ~ 24 27 ms . The red bars represent the distribution of IPIs for a D. orena song which is unimodal (mode $42-45 \mathrm{~ms}$) and much broader than the one depicted by the black columns of D. teissieri. The yellow bars, in Figure 4.3.3, illustrate the distribution of IPIs of a representative Drosophila erecta (light bodied female strain) France song. The distribution of the IPIs is unimodal in shape, broader than the D. teissieri IPI distribution, but narrower than the IPI distribution than that seen for the D. orena song.

Figure 4.3.3: The IPI distribution of a D. teissieri Sweden (Teilt1211), D. orena France (Or3t11ra) and D. erecta France (El1t1311).

4.4 Do song rhythms exist in D. teissieri, D. orena and D. erecta?

D. teissieri Sweden:

After examining the histograms of the distributions of IPIs of the D. teissieri, the cut-off points of $60 \& 10 \mathrm{~ms}$ were deemed as 'appropriate'-(approximately twice the IPI mean)- see table 4.4.1, upper part-below. When $55 \& 10 \mathrm{~ms}$ were employed (see Appendix 4.1), the two sets of data looked very similar, so I decided to adopt the former cut-off, as in some songs there was a significant number of IPIs in the range of $\sim 50-56 \mathrm{~ms}$. Since the distance between the primary and secondary peaks (see Figure 4.3.2) in a pulse lies between $\sim 5-10 \mathrm{~ms}, 10 \mathrm{~ms}$ were used as the lower cut-off.

Table 4.4.1: Spectral analysis of D. teissieri songs using $60 \& 10 \mathrm{~ms}$ cut-off points.

SPECTRAL ANALYSIS:					
SPECIES	Clean		Van den Berg		Observations
	1st Peak	$\begin{aligned} & \hline \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	1st Peak	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \end{aligned}$	Bins Filled
Teissieri	CUT Off POINTS : $60 \& 10 \mathrm{~ms}$				
Telt1212	31.18	22.50	31.13	36.87	$29 / 57$
Te2t1111	87.61	40.67	90.91	50.96	$27 / 47$
Te2t11r1	24.46	x	23.05	x	14/20
Te2t6r 1	37.14	32.44	148.15	x	30/60
Te3tllr	21.23	71.22	71.43	26.94	41/79
Teilt6r2	61.98	23.10	62.50	89.89	35/47
Tei2t6r2	85.33	21.64	86.02	21.68	$30 / 59$
Tei2t7r	125.81	47.10	125.00	46.78	21/41
Tei3t7rl	69.71	92.31	70.80	87.91	$62 \pi 8$
Tei3r1t7	40.97	32.61	40.61	32.92	23/44
Tei3t1111	258.62	92.34	320.00	112.68	17134
Tei6t6r2	88.24	x	97.56	x	14/19

Any 30s periods or less were assumed to be arrhythmic, unless a second significant peak in the spectrogram was found. Song Te2t11r1 has no significant secondary peaks, and was judged to be arrhythmic (see table 4.4.1). If the two spectral analyses disagreed as to the peak period, then if the same period was the peak in one analysis, but the second highest peak in the second, then the 'consensus' value was taken as the song period, e.g., Te3t11r song, even though it has a significant peak in the 'arrhythmic' range, it also has a second significant peak value in the CLEAN analysis and a corresponding significant value in the VdB analysis. A song, Tei3t1111 shows a long-term trend as the primary significant peak, but has, in addition, a significant secondary peak for both CLEAN and VdB analysis; therefore that secondary peak was included in the calculations for the overall mean period for the species.

When the lower cut-off points of $55 \& 10 \mathrm{~ms}$, for D. teissieri were employed one song, Tei1t6r2 became arrhythmic (see Appendix 4.1). The highlighted values in Table 4.4.1 (see above) are the values that have been used to determine the rhythm periods of the species, and it can clearly be seen that the CLEAN and the corresponding VdB values, are approximately similar for each individual song.

Out of the 12 D. teissieri songs used for rhythm analysis, one was found to be arrhythmic (Te2t11r1-see table 4.4.1). From the 11 rhythmic songs, two had periods between $30-40 \mathrm{~s}$, Telt1212 and Te2t6r1, the latter having only a CLEAN period, one had a period between $40-50 \mathrm{~s}$ and one had a period between 120-130s. The majority (7) of the rhythmic D. teissieri songs had periods between 60-90s.

Cut-off points: $60 \& 10 \mathrm{~ms}$
Mean Period : 71.96(s) ± 8.50 (sem)

$N=$ Number of Observations, Red Line= Expected Nomal Distnbution
Figure 4.4.1: The distribution of the significant periods for the D. teissieri, using $60 \& 10 \mathrm{~ms}$ cut-off points after CLEAN spectral analysis had been employed. The overall mean period \pm sem are also shown.

From Figure 4.4.1, the overall species period for D. teissieri is $71.96(\mathrm{~s}) \pm 8.50$ (sem)-shown in Figure 4.4.1, which included all significant periods. A similar value of $78.39(\mathrm{~s}) \pm 11.62$ (sem) was obtained, using the lower 55 ms cut-offs (see Appendix 4.1). Figure 4.4.2 illustrates the results of a representative Drosophila teissieri Sweden song.
(A) period $=70.1 \mathrm{~s} F=2.362, \mathrm{df}=3,43$

Figure 4.4.2:
D. teissieri Sweden courtship song (Tei3t7r1) analysed-see table 4.4.1, using the higher $60 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, defined by VdB spectral analysis, and fitted to the data by non-linear regression.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 69.71 s ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 92.31 s ($\mathrm{p}<0.01$), with the CLEAN analysis. Also, note that there is a significant primary peak of 70.80 s ($\mathrm{p}<0.05$), as well as a weaker secondary peak of 87.91 s ($\mathrm{p}<0.05$), with the VdB analysis. The horizontal lines present the 95 and 99% confidence limits defined by Monte Carlo simulations (see chapter 2)
(B) $69.71 \mathrm{~s}, 92.31 \mathrm{~s}$

CLEAN

D. orena France:

After examining the histograms of the distributions of IPIs for D. orena, few IPIs were found to be longer than 75 ms or less than 15 ms . Therefore the cut-offs of 75 \& 15 ms and $80 \& 15 \mathrm{~ms}$ were employed. The usual rules guided the determination of the periods (see chapters 2 and 3). Table 4.4.2 (below) shows that 6 songs, namely, O1se10r2, O5se10r2, Orlt12l1, Or1t13r2, Or3t11ra and Or5t11r2 have no significant spectrogram peaks between the $>30 \mathrm{~s}$ and $<100 \mathrm{~s}$ range and were therefore judged to be arrhythmic. Song Or4t1212, even though it has a significant peak of $\sim 137 \mathrm{~s}$ in the CLEAN analysis, its corresponding VdB value shows a 'long-term trend', so these values were ignored and the second significant peak, for CLEAN analysis was taken as the period, since it has a very similar corresponding VdB secondary value.

Table 4.4.2: Spectral analysis of D. orena, $75 \& 15 \mathrm{~ms}$ cut-off points.

SPECTRAL ANALYSIS:					
SPECIES	Clean		Van den Berg		Observations Bins Filled
	1st Peak	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	1st Peak	2nd Peak	
Orena	CUT Off POINTS : 75 \& 15 ms				
Olse10r2	21.48	x	28.78	x	32/34
O2se10r2	46.82	22.29	22.10	x	20/31
O3se10r2	36.75	162.79	73.39	x	26/30
O4sel0r2	66.39	326.53	95.24	67.23	33/34
O5se10r2	23.74	x	23.95	x	27/34
O6se10r2	39.07	24.15	39.41	x	$29 / 33$
O7se11la	39.27	32.33	38.83	32.79	29/33
O8se10r2	42.24	20.93	42.78	21.11	38/45
Orltllra	37.41	74.44	195.12	37.21	31/57
Orlt1211	416.67	x	47059	x	38/52
Orlt13r2	156.36	x	203.69	x	11/14
Or2t11r2	42.57	343.75	43.48	275.86	33/57
Or211211	34.58	23.57	34.33	23.67	26/45
Or3tlira	28.21	x	28.37	25.64	30/60
Or3t1211	52.56	x	52.98	23.39	28/42
Or4t1211	51.25	21.94	50.96	133.33	5877
Or4t1212	137.06	72.97	615.38	71.43	58/74
Or5t11r2	28.69	x	28.88	x	23/30

Out of the 18 D. orena songs employed for rhythm analysis, 6 were found to be arrhythmic. From the 12 rhythmic songs, 8 songs had periods between $35-47$ s, two had a periods between $50-60 \mathrm{~s}$, one had a period of $\sim 66 \mathrm{~s}$ and one had a period of $\sim 72 \mathrm{~s}$. Figure 4.4.3 shows the distribution of the CLEAN periods of the D. orena songs. The overall species period for D. orena is $46.82 \mathrm{~s} \pm 3.50$ (see Figure 4.4.3-below).

Figure 4.4.3: The distribution of the significant periods for the D. orena, using CLEAN.

Figure 4.4.4 illustrates the results from a representative Drosophila orena France song.

Figure 4.4.4 illustrates the results from a Drosophila orena France song.
D. erecta France:

The same preliminary procedures that had been described and mentioned previously, were also applied to the D. erecta songs. The results are shown on Table 4.4.3, using different cut-off points, $80 \& 15 \mathrm{~ms}$ and $100 \& 15 \mathrm{~ms}$ (approximately twice the mean). Modifying the IPI cut-off points, gave significant changes. The highlighted values on table 4.4.3 (see below- upper half) are the values that have been used to determine the rhythm periods of the species, which are shown in Figure 4.4 .5 (see below). It can, again, clearly be seen that the CLEAN and the corresponding VdB values, for each individual song, are approximately similar.
(A) period=38.8s $\mathrm{F}=3.622, \mathrm{df}=3,25$

Figure 4.4.4:
D. orena France courtship song (O7sel 1la) analysed-see table 4.4.2, using the lower $75 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 39.27 s ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 32.33 s ($\mathrm{p}<0.05$), with the CLEAN analysis. Also note that there is a primary peak of 38.83 s ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 32.79 s ($\mathrm{p}<0.05$), with the VdB analysis. The 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).

(C) $38.83 \mathrm{~s}, 32.79 \mathrm{~s} \quad \mathrm{VdB}$

Table 4.4.3: Spectral analysis of D. erecta songs, using different cut-off points.

SPECTRAL ANALYSIS					
SPECIES	Clean		Van den Berg		Observations
	1st Peak	2nd Peak	Ist Peak	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \end{aligned}$	Bins Filled
D. erecta	CUT Off POINTS : 80 \& 15 ms				
Editl212	\times	x	22.10	x	11/17
Ellt1311	47.92	72.43	48.19	75.47	21/33
Ellti3r2	\times	x	235.29	X	13/26
El2t12l1	45.62	91.15	46.02	93.02	19/37
E1201311	43.18	189.02	43.48	200.00	23/34
El3e2s2m	49.56	26.10	49.69	26.32	27/47
El3t1211	37.45	x	37.56	21.28	52/64
El4e2s2m	49.14	22.83	22.79	49.09	22/44
D. erecta	CUT Off POINTS : 100 \& 15 ms				
Edicl2l?	x	x	21.86	35.71	11/17
Ellill 311	72.43	x	75.47	48.19	22/33
Ellil3r2	x	x	285.71	x	13/26
El2t12l1	142.28	X	145.45	33.47	$20 / 37$
El2t1311	43.66	x	45.20	216.22	24/34
El3e2s2m	292.21	60.16	60.61	296.30	$27 / 47$
El3t1211	37.45	X	37.56	21.28	52/64
El4e2s2m	22.83	49.14	22.79	49.09	24/44

The different cut-offs do change the results in a number of songs, with the higher cut-offs resulting in longer periods, particularly with song El2tl2ll which has a period of 142.28 s with CLEAN, and 145.45 s with VdB ('climber'). Figure 4.4 .5 (below) shows the distribution of the periods of the D. erecta songs that had been determined from the CLEAN spectral analysis.

$\mathrm{N}=$ Number of Observations, Red line= Expected Nomal Distribution
Figure 4.4.5: The distribution of the song periods for D. erecta.

When using the lower cut-off points ($80 \& 15 \mathrm{~ms}$) the overall species period for D. erecta is 45.47 (s) ± 1.88. Moreover, Figure 4.4 .5 also shows the distribution of the periods of the D. erecta songs, when using the higher cut-off points ($100 \& 15 \mathrm{~ms}$). In this instant, the overall species period for D. erecta changes to 67.52 (s) ± 15.8, mainly due to the presence of the 'climber' song (El2t12l1). If the period of this 'climber' is excluded, a mean period of 52.57 (s$) \pm 6.21$ is obtained, which is similar to the periods found using the 80 \& 15 ms cut-offs. Figure 4.4 .6 shows the results of a Drosophila erecta France song.

One-way ANOVA was employed in order to determine whether there were any differences in the periods between the different species of D. melanogaster subgroup. The analysis revealed that there were significant differences ($\mathrm{F}=3.61, \mathrm{df}=8,78, \mathrm{p}=0.001$), in the periods, between the different species. Newman-Keuls a posteriori test revealed that the D. yakuba Thud periods are significantly different, at least at $\mathrm{p}<0.05$, from the periods of D. simulans, D. mauritiana, D. sechellia, D. orena and D. erecta. The test also revealed that the D. teissieri periods are significantly different, at least at $\mathrm{p}<0.05$, from the periods of D. simulans, D. mauritiana, D. sechellia, D. orena and D. erecta. Figure 4.4.7 shows the histograms of the species periods. As seen from the histograms the members of the D. melanogaster complex show a narrower distribution of periods, with D. melanogaster having the majority of song rhythms within the $45-60$ s range, and with D. simulans, D. mauritiana and D. sechellia song periods falling within the $30-45 \mathrm{~s}$ range. However, the distribution of the song periods, of the members of the D. yakuba complex, is broader than that observed in the D. melanogaster complex. The majority of D. teissieri and D. erecta song periods fall in the 60-90s and 45-60s range, respectively, while the majority of D. orena song periods falling in the 45-60s range. The distribution of the D. yakuba Thud cycles is the broadest of the D. yakuba complex, ranging from 30120s with the majority of the song periods falling in the $75-90$ s range, whereas the D. yakuba Clack periods are shorter than those of Thud, with the majority of Clack rhythms predominantly falling in the 45-60s range.
(A) period $=37.4 \mathrm{~s} F=4.097, \mathrm{df}=3,45$

Figure 4.4.6:
D. erecta courtship song (El3t12l1) analysed-see table 4.4.3, using the lower $80 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 37.45 s ($\mathrm{p}<0.05$), with the CLEAN analysis. Also note that there is a significant primary peak of 37.56 s ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 21.28 s ($\mathrm{p}<0.05$ - 'arrhythmic' range), with the VdB. The
(B) 37.45 s

CLEAN

(C) $37.56 \mathrm{~s}, 21.28 \mathrm{~s} \quad \mathrm{VdB}$
 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).

GROUP PERIODS OF SONGS (s)
Figure 4.4.7: The distributions of the periods of the various species/song types of the melanogaster subgroup

4.5 Discussion:

The songs of all the species examined in this chapter have both song components in their courtship repertoire; a low carrier frequency sine (hum) song and a higher frequency pulse song (see tables 4.1.1, 4.1.2 and 4.3.1). As it was mentioned in the previous chapter, in D. melanogaster courtship, the sine song seems to constitute the prevalent song type during courtship. In addition, the possible role of the sine and pulse songs has also been discussed in chapter 3; therefore, it is conceivable that this notion holds true for all the members of the melanogaster subgroup.

The audible similarities of the D. sechellia song to those of D. mauritiana are not surprising, given the fact that these two species have been found to have homosequential polytene chromosomes. Based on Nei's genetic distance, these two species, together with D. simulans, diverged from one another, from a common ancestor, about 1.9 million years ago (Cariou, 1987). On the contrary, in the songs of the members of the D. yakuba complex, such auditory similarities are not apparent, which is not surprising, given the fact that its various members diverged from a common ancestor over 4 million years ago (Cariou, 1987). The members of the D. melanogaster complex are thus more closely related to one another (Eisses et al., 1979; Cowling and Burnet, 1981; Ohnishi et al., 1983; Lemeunier and Ashburner, 1984; Cobb et al., 1986; Coyne and Kreitman, 1986; Lachaise et al., 1986; Lemeunier et al., 1986; Solignac and Monnerot, 1986; Jallon and David, 1987; Lee and Watanabe, 1987; Cobb et al., 1989). Similar sine song frequencies, wing display repertoires and mean IPIs are shared compared to the members of the D. yakuba complex (Lee and Watanabe, 1987). On a purely morphological note, the only obvious distinction among the members of the D. melanogaster complex is in the shape of the posterior process of the male genital arch (Coyne, 1983).

On the contrary, D. yakuba songs have no hum component (Cowling and Burnet, 1981), but have two different song pulse-types (Thackery, 1989), while the other three members of the D. yakuba complex, include a sine song with more variable frequencies than those of the D. melanogaster complex. Thus, the differences in the mean IPIs between these species are seen to be greater than those seen between the
members of the D. melanogaster complex, reflecting perhaps their phylogeny (see Chapter 9).

Further evidence is offered in this chapter towards the existence of song cycles in the other members of the melanogaster subgroup. D. mauritiana and D. orena provide the most convincing evidence of the existence of short song rhythms. D. erecta and D. sechellia provide strong evidence that song rhythms exist within the same range of D. melanogaster, whereas D. teissieri provides evidence of the existence of long periods in the same range as D. yakuba Thud, which is in agreement with Thackeray's preliminary observations (Thackeray, 1989).

Figure 4.5.1: The frequency distributions of the periods of the members of the melanogaster subgroup.

Figure 4.5.1 and Table 4.5.1 illustrate an overall view of all the song periods examined in Chapters 3 and 4. Figure 4.5.1 differs from Figure 4.4.7 in that it includes all the songs reanalysed, songs recorded and analysed by me as well as a few D. yakuba and D. teissieri analysed by Thackeray (1989). Thackeray (1989) found six rhythmic D. teissieri songs, with periods ranging from $\sim 50-130$ s. Furthermore, Thackeray analysed 12 D. yakuba songs, where Clack was the predominant pulse-type;

11 out of the 12 songs were found to be rhythmic with periods ranging from $\sim 40-120 \mathrm{~s}$. In addition, Thackeray analysed 12 D. yakuba songs, where Thud was the predominant pulse-type; 11 out of the 12 songs were found to be rhythmic with periods ranging from ~32-130s.

The majority of song periods of D. simulans, D. mauritiana and D. orena fall within the $30-45$ s range, while the majority of song periods of D. melanogaster, D. sechellia, D. erecta and D. yakuba Clack fall within the $45-60$ s range. In addition, D. teissieri and D. yakuba Thud have song periods falling within the broader range of 60-90s. The clustering of the song periods of the members of the D. melanogaster complex is narrower than that observed for the periods of the members of the D. yakuba complex. Thus, the members of the D. yakuba complex are more differentiated in terms of song period, possibly reflecting their greater time of divergence from their common ancestor. A phylogeny with song characters juxtaposed is presented in chapter 9. If IPI's were generated randomly, then the spectral analyses would show periods predominantly in the 20-30s range (Kyriacou and Hall, 1989; Kyriacou et al., 1990). If consistent periods are found away from the nyquist range, this indicates that a genuine underlying cyclicity exists in this group of songs. One-way ANOVA analysis showed that significant differences ($\mathrm{F}=4.88, \mathrm{df}=8,106, \mathrm{p}=0.000$) exist between the different species/song types, including Thackeray's data (1989) for D. yakuba Thud and Clack, and D. teissieri. Table 4.5.1 (below) shows the percentage of rhythmic songs, found in this study, together with their period range, giving an indication of the clustering of the periods for the various genotypes.

Table 4.5.1: The $\%$ of rhythmic songs and the period range in the D. melanogaster subgroup.

Species	\% of Rhythmic Songs	Majority Period Range
D. melanogaster Complex		
melanogaster	100.00	$(24 / 35)-45-60 \mathrm{~s}$
simulans	91.67	$(8 / 11)-30-45 \mathrm{~s}$
mauritiana	83.33	$(7 / 10)-30-45 \mathrm{~s}$
sechellia	$\mathbf{3 8 . 8 9}$	$(4 / 8)-30-45 \mathrm{~s}$
D. yakuba Complex		
teissieri	94.44	$(9 / 17)-60-90 \mathrm{~s}$
orena	66.67	$(7 / 12)-30-45 \mathrm{~s}$
erecta	75.00	$(4 / 6)-45-60 \mathrm{~s}$
yakuba (thud)	74.47	$(16 / 35)-60-90 \mathrm{~s}$
yakuba (clack)	50.00	$(9 / 18)-45-75 \mathrm{~s}$

What is the nature of a benefit that might be gained by a rhythmically ‘singing’ male? Kyriacou and Hall $(1982 ; 1989)$ proposed that a female has a preferred IPI value and so, a successful male would have to generate a variable band of IPI lengths around the overall species mean. Generating this rhythmic variability may just simply be the most efficient way of achieving this short-term goal. Why then, are the periods discovered or confirmed in this study, species-specific? The answer to this may be that the females of the different species need to summate a different number of IPIs at their 'preferred' length, before allowing copulation. According to this proposal, the different periods are produced because females of the various species require different numbers of the 'preferred' IPI(s) to be summated, before allowing copulation. Thus, a slower cycle will allow more IPI's to be generated at each IPI value. A faster cycle would suggest that fewer IPI's of each might be sufficient to trigger female acceptance.

To test this hypothesis of individual IPI preference Greenacre (1990) selected D. melanogaster females which either preferred 'high' IPIs (40ms) or 'low' IPIs (30 ms) in the presence of courting wingless males. The first females that copulated in either condition were used to produce the next generation, and their daughters were selected in the same way. After only two generations of selection, the females from the 'high' lines were observed to prefer the 40 ms IPI over the 30 ms IPI song, and the 'low' line females showed a greater response to the 'low' 30 ms IPIs song. Unfortunately, this result could not be sustained, and by the sixth generation, females from both sets mated extremely rapidly and indiscriminately. Clearly, it appeared that any possible significant subtle effects of the different IPIs were completely 'overshadowed' by the rapid female mating (a by-product of the selection procedure). Furthermore, Charalambous (1990), selecting for females that mated fastest with males, in the grasshopper Chorthippus brunneus, after being stimulated by an artificially-generated male calling with a particular mean length syllable, reported that the apparent response could not be maintained due to the higher responsiveness amongst selected females, after just one generation of selection.

Hence, at present, it can not be stated unequivocally whether the mating effects observed with cycling pulse songs are due to some internal rhythm template within each female or whether the females just simply prefer different IPIs, and
consequently, rhythmically varying IPIs are a more 'powerful' tool in stimulating more females. Therefore with shorter cycles, as in D. melanogaster complex, it is conceivable that a female could pick up the relevant IPI's, even after just a few seconds of hearing a song, which in turn implies that females of the different species, within this complex might be more receptive.

Since the spectral analyses proved useful in illustrating the existence of song cycles in D. mauritiana, D. sechellia, D. teissieri, D. orena and D. erecta, the next logical step is to apply these spectral methods to their interspecific genotypes (chapter 5) in order to initiate a genetic analysis similar to that performed by Kyriacou and Hall (1986).

Characteristics of interspecific hybrid songs between the members of the D. melanogaster subgroup

CHAPTER 5

5. Characteristics of interspecific hybrid songs between members of the D. melanogaster subgroup

Hybridisation is possible to varying degrees, between species of the D. melanogaster subgroup. The first to be achieved was between D. melanogaster females and D. simulans males, the resulting progeny being females only (Sturtevant, 1920), whereas the reciprocal cross resulted in males only (David, 1974). Other combinations of species hybridisation have been possible under laboratory conditions (von Schilcher, 1976a; Watanabe and Kawanishi,1979; Cowling and Burnet, 1981; Lachaise et al., 1986; Lee and Watanabe, 1987; Cobb et al., 1990) which are highly unlikely to occur in the wild, e.g., D. melanogaster or D. simulans males or females mated with D. mauritiana females or males, respectively. D. melanogaster and D. simulans are cosmopolitan species, whereas D. mauritiana is endemic to a few islands of the Seychellian Archipelago, where D. melanogaster is absent (Ashburner and Tsacas, 1981).

When the hybrid progeny produced is of both sexes, the hybrid females are usually found to be fertile, whereas the hybrid males are found to be sterile. This phenomenon is called 'Haldane's Rule (Haldane, 1922) and, has stimulated much debate within the speciation community (Muller, 1940; Hennig,1985; Coyne and Orr, 1989; Orr, 1993; Virdee,1993; Wu, 1993; Coyne, 1994; Migeon, 1994; Orr,1995; Turelli and Orr, 1995). As mentioned above, all male hybrids from these species were found to be sterile (David et al., 1976; Lachaise et al.,1986; Coyne, 1989). This male sterility condition was found to be reversible, if the hybrid females were backcrossed with males of the parental species (David et al., 1974). This fertility reaches a plateau, where thereafter, there is no further rescue of fertility (David et al.,1974). Recently, Davis et al. (1996) have isolated a strain of D. simulans that produces fertile females in crosses with D. melanogaster, which promises to pinpoint some of the genetic components involved in both pre- and postreproductive isolation in these species.

The first part of each ensuing section of this chapter will be concerned with the setting up of various interspecific hybrid crosses and the analysis of IPI distribution. In this present sudy some novel interspecific hybrid crosses are reported. In some of these, namely from crosses involving D. mauritiana female x D. yakuba male, the only way to obtain any hybrid progeny was to 'amputate' the wings of the females. The later
part of each section of this chapter describes my various attempts in trying to detect any possible hybrid song rhythms.

Interspecific Hybrid Genotypes

Table 5.1 illustrates the results of hybridisations giving progeny. It is clear, by examining table 5.1 , that obtaining viable hybrids is quite difficult. Figure $5.1 \mathrm{a} \& \mathrm{~b}$ depict the mean IPIs of various parental strains and their interspecific hybrids.

5.1 D. yakuba (f) x D. mauritiana (m) hybrid song:

Several previous attemps to hybridize D. yakuba with various other members of the melanogaster subgroup have been unsuccessful, except when D. mauritiana (Cowling and Burnet, 1981) was used as the paternal parent. Since D. mauritiana song differs qualitatively, from the $D . y a k u b a$ one, with respect to the presence of sine song (hum song), the interspecific hybrids could provide at least some preliminary information on the mode of inheritance of this acoustic element.

Preliminary crosses were set up using D. yakuba female flies with their wings intact and a second set of female flies with the wings 'amputated'; only vials containing females with their wings intact produced any progeny at all (see Table 5.1). It is, thus, conceivable that the D. mauritiana male needs more than just light as a stimulus, to initiate courtship (Robertson, 1983). The female, by brushing her wings against her abdomen, may be exuding the necessary pheromones for courtship initiation (Jallon et al., 1984; Jallon et al., 1987). This 'brushing' behaviour was also observed in all courtships recorded and examined, whether these were of the parental species or of the interspecific hybrids. This is in agreement with the notion that non-visual stimuli also have an important role to play in courtship (Robertson, 1983).

These hybrid males were reared under constant light as their paternal D. mauritiana species had been. Externally, the hybrid females of the progeny were observed to be very similar, in body shape, to D. yakuba maternal strains, while the hybrid male's genitalia resembled D. mauritiana in morphology.

Table 5.1 : Types of interspecific crosses, Total number of crosses set up and percentages of vials giving progeny

Type of Interspecific Cross	1	2	3	4	5	6	7	8	9	10	11	12
Total Number of Crosses set up (vials with females with intact wings)	300	227	176	163	250	80	78	61	52	48	10	10
Number of crosses set up with females with amputated wings	-	-	101	101	\bullet	-	-	\bullet	-	-	-	\bullet
Number of crosses giving rise to progeny	194	156	43	47	143	0	52	0	36	0	0	0
\% crosses giving rise to progeny	64.66	69.60	42.57*	46.53*	57.20	0	66.66	0	69.23	0	0	0
Percentage of successful crosses giving rise to single sex progeny (\%)	63.40	67.09	72.09*	80.85*	61.54	0	65.38	0	75.00	0	0	0
Percentage of successful crosses giving rise to two-sex progeny (\%)	36.60	32.91	27.91*	19.15*	38.46	0	34.15	0	25.00	0	0	0

Interspecific Crosses:

France(f) x D. mauritiana France(m)	7. D. simulans Florida(f) \times D. mauritiana Sweden(m)
2. D. yakuba Malawi(f) \times D. mauritiana Sweden(m)	8. D. mauritiana Sweden(f) \times D. simulams Florida(m)
3. D.mauritiana Sweden(f) \times D. yakuba Ivory Coast(m)	9. D. teissieri Sweden(f) \times D. mauritiana Sweden(m)
4. D. mauritiana Sweden(f) \times D. yakuba Lamto 3(m)	10. D. mauritiana Sweden(f) \times D. teissieri Sweden(m)
5. D. yakuba France(f) \times D. teissieri Sweden(m)	11. D. erecta France(f) \times D. orena France(m)
6. D. teissieri Sweden(f) \times D. yakuba France(m)	12. D. orena France(f) x D. erecta France(m)

*- Females with 'amputated' wings

(a)

Fiqure 5.1a: Mean IPIs of various D. watuba and D. mauritiana strates and their interspectic hybrids.

Flpure 5.1b: Mean IPIs of D. yakuba, D. mauritiana, D. teissieri and D. simulans strains and their materspecific hybrids. NOTE: Number of males recorded and sem's are also shown.

KEX: $\quad A=D$. yakuba France
B = D. yekuba Ivery Coast
C $=$ D. yetueba Lamto3
D = D. yekuba Malawi
$\mathrm{E}=$ D. manritiand Sweden
F = D. mawridiana France
$\mathbf{G}=$ D. mewritiara Indlana
$\mathrm{H}=\mathrm{D}$ mamitiana MG-17
H-D. тамиітіла MG-17
I = D. vakuba France(n) D. mewuritiana France(mn) $J=$ D. yatuba Malawl(I) D. mauritiana S weden(m)
 $L=$ D. yakuba $\operatorname{Lamta3}(\mathrm{n})$ D. mauritiara Indiana(m)

$\mathrm{N}=$ D. mawritiona $\mathrm{Sweden}(\mathrm{f}) \times$ D. yakuba $\operatorname{Lamt} 03(\mathrm{~m})$ $0=D$. mawritiana Sweden(\cap. . yotube Ivory Const (m)

KEY: $\quad A=D$. vakuba France
B = D. mauritiane Sweden
C = D. teivieri Sweden
D = D. simulans Florlda
$E=$ D. yelkuba France(1) I D. teissieri Sweden(m)
$F=$ D. teissievi $\operatorname{Sweden}(\boldsymbol{\Pi})$ D. mawritiana Sweden(m)
$\mathbf{G}=$ D. simulans Florida(!) \mathbb{D}. mauritiana $\mathrm{Sweden}(\mathrm{m})$

In both crosses $1 \& 2$ (see Table: 5.1), the percentages of vials set up giving any kind of progeny (either single sex or two-sex progeny) is 64.66% and 69.60% respectively. From these crosses, the percentages of interspecific crosses that produced two-sex progeny is 36.60% (cross 1) and 32.91% (cross 2), respectively. It is apparent that obtaining viable hybrid two-sex progeny is problematic. During recording of the courtship songs of these hybrid males, no sine song was audible (see Table 5.1.1-below). Hybrid males use both wings for 'scissoring'. 'Rowing' was also observed. Both wing displays are characteristic of the mauritiana species. In waveform, the IPIs were seen to be short, sharp and irregular at the beginning of the burst (mauritiana-like), with a mixture of high frequency, high amplitude Clack-like pulses or lower frequency Thud-like pulses. In between consecutive trains of pulses, there were long periods of silence observed. Figure 5.1a shows the mean IPIs of the parental strains participating in these particular interspecific hybrid crosses, and of their interspecific hybrid males. The mean IPIs, for the individual songs of the various interspecific genotypes, range from $\sim 49-93 \mathrm{~ms}$ (IPI and modal IPI measurememts were taken from 24 flies recorded, whereas IPF measurements were taken from 3 flies), and $\sim 50-87 \mathrm{~ms}$ (IPI and modal IPI measurememts were taken from 25 flies recorded, whereas IPF measurements were taken from 3 flies), respectively (see Figure 5.1a:- I \& J - K, L \& M are the same type of Interspecific cross, using different yakuba and mauritiana parental strains). The mean IPI, IPF and SSF of these IPI genotypes are given in Table 5.1.1.

Table 5.1.1: Song characteristics of D. yakuba and D. mauritiana, and their interspecific hybrids.

SPECIES/ STRAINS	$\begin{gathered} \text { OVERALL MEAN } \\ \text { IPI } \pm \text { sem }(\mathrm{ms}) \\ \hline \end{gathered}$	MODAL $\mathrm{IPI}(\mathrm{ms})$	$\begin{gathered} \text { MEAN } \\ \text { SSF } \pm \operatorname{sem}(\mathrm{Hz}) \\ \hline \end{gathered}$	OVERALL MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$
yakuba STRAIN:				
FRANCE	124.61 ± 2.71	95.50	X	302.22 ± 3.17
MALAWI	124.80 ± 14.7	96.50	X	309.84 ± 3.34
mauritiana STRAIN:				
SWEDEN	41.81 ± 2.23	$27 . .31$	190.64 ± 5.49	247.75 ± 1.31
FRANCE	38.50 ± 1.53	32.33	175.80 ± 8.76	254.31 ± 1.17
STRAINS:	INTERSPECIFIC (EENOTYPES			
yakuba France(f) x mauritiana France(m)	70.40 ± 9.07	51.30	X	402.46 ± 3.46
yakuba Malawi (f) x mauritiana Sweden(m)	68.80 ± 12.7	53.00	X	409.67 ± 3.44

Figure 5.1 .2 (see below) shows the IPI distributions of a D. yakuba France(f) x D. mauritiana France(m)- hybrid male (red columns), and a D. yakuba Malawi(f) x D. mauritiana Sweden(m)-hybrid male (black columns). The distribution is unimodal in shape, in both cases, broader than the one depicted for the D. mauritiana (see Figure 4.1.2), but narrower than the one depicted for D. yakuba parents (see Figure 3.4.2). The modal values fall between $50-60 \mathrm{~ms}$ and mean IPIs are generally intermediate between the two parental specis and is consistent with autosomal inheritance of IPI (Cowling and Burnet, 1981; Kyriacou and Hall, 1980).

The fact that no hum song is produced by the hybrid male, indicates X chromosome involvement (Schilcher, 1975; Cowling and Burnet, 1981; Kyriacou and Hall, 1980), as the X chromosome is donated by D. yakuba which does not produce sine song (Cowling and Burnet, 1981; Thackeray, 1989). As in Chapter 3 (section 3.4-Table 3.4.1), the mean IPFs of the interspecific hybrids are observed to be higher than their respective parentals ones, suggesting hybrid vigour.

Figure 5.1.2: The distribution of IPI of hybrid males for D. yakuba (f) \times D. maurtiana (m).

Song rhythms?

The usual preliminary procedures were followed (see Chapter 2). A song was only considered for rhythm analysis, if more than 50% of its bins were filled, and IPI means were analysed with the CLEAN and VdB analyses. The results are shown on Table 5.1.2, using different cut-off points (approximately twice the mean), for each interspecific genotype, which had been decided after individual IPI histograms had been examined.

The highlighted values on Table 5.1.2 (see below) are the values that have been used to determine the rhythm periods of this interspecific genotype. It can clearly be seen that the CLEAN and the corresponding VdB values, for each individual song, are approximately similar. Table 5.1.2 (lower part) shows the results when the lower cut-off points were employed. Any periods of 30 s or less were assumed to be arrthyhmic, unless a second significant peak in the spectrogram was found.

Table 5.1.2: Spectral analysis of the $D . y a k u b a(f) \times D$. mauritiana (m) interspecific hybrids, using different cut-off points.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van den Berg		Observations
	$\begin{aligned} & \hline 15 T \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1ST } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { Bins } \\ & \text { Filled } \end{aligned}$
INTERSPECIFIC HYBRIDS					
yakuba(f xmauritiana(m)	CUT Off POINTS : 150 \& 20 ms				
Hybrid	4.54 .55	89.69	500.00	29.52	32/42
Hym2smr	120.00	x	119.40	x	25/26
Hym2t101	34.39	X	34.93	23.12	22/28
Hym2t.5r2	256.10	36.21	36.36	275.86	24/47
Hyin2t6l1	590.91	24.16	727.27	235.29	$29 / 43$
Hym3t511	385.96	93.62	380.95	x	46/46
Hym 31612	23.67	2.5.18	23.81	25.24	38/61
Hym4t101	250.00	x	266.67	133.33	55/58
Hym4t512	372.34	x	363.64	67.80	35/37
Hym4t5rl	50.00	136.90	50.00	x	23/25
Hymst5r2	743.24	x	1000	33.33	33/57
Hymst6il	43.73	56.18	43.24	57.97	24/33
Hym6t5r2	84.14	25.62	85.11	133.33	37/61
Hym7tis 2	107.34	31.99	103.90	x	23/41
Hyin7tir 2	540.54	23.58	571.43	47.62	30/42
Hym8t.511	63.06	28.75	28.88	x	30/30
yakuba(n xmauritiana(m)	CUT Off POINTS : $120 \& 20 \mathrm{~ms}$				
Hybrid	454.55	89.69	500.00	29.52	32/42
Hym2smr	120.00	X	119.40	x	25/26
Hym2t10l	34.39	X	34.93	23.12	22/28
Hym21.5r2	260.10	36.02	61.07	36.04	21/47
Hym2t6)	590.91	24.16	727.27	235.29	$29 / 43$
Hym3ts.1	38.96	93.62	380.95	x	46/46
Hym3 ${ }^{\text {a }}$ (2	23.67	2.5 .18	23.81	25.24	38/61
Hym4tiol	250.00	x	266.67	133.33	55/58
Hymmt 512	364.5	X	363.64	67.80	35/37
Hym415r1	49.78	136.90)	49.38	X	23/25
Hymst5r2	74.734	x	1000	33.33	33/57
Hymst6II	43.73	56.18	43.24	57.97	24/33
Hymbisr2	98.21	x	135.50	87.91	36/61
Hym71.5r2	20.04	104.40	101.20	x	22/41
Hym7tor2	54().54	23.58	571.43	47.62	30/42
Hym8tsII	28.99	x	28.99	x	30/30

Five out of 16 songs showed periods in the 'climber' range and one song (Hym3t612) showed periods in the arrhythmic (<30 s) range, and therefore were considered arrhythmic (see Table 5.1.2-upper part). Furthermore, it can be seen that the rhythmic songs showed very variable periods. Songs Hym2t5r2, Hym3t5l1 and Hym7t6r2 (see Table 5.1.2-upper part-CLEAN analysis) showed significant primary peaks in the 'climber' range, so the second significant peaks were taken to be the periods of these songs. Song Hym8t5ll becomes arrhythmic, while songs like Hym4t5rl and Hym2t5r2 have their periods only slightly changed, when the lower $120 \& 20 \mathrm{~ms}$ cut-off points are employed (see Table 5.1.2 -lower part).

Figure 5.1 .3 shows the CLEAN-determined distribution of periods of D. yakuba (f) x D. mauritiana (m)-interspecific hybrids, whose values were highlighted in Table 5.1 .2 (upper part), together with their corresponding mean periods \pm sem. Out of the 16 D. yakuba (f) x D. mauritiana (m) songs examined 6 were found to arrhythmic with CLEAN, and the majority of songs $(11 / 16)$ were found to be rhythmic with VdB. From the 10 CLEAN-determined rhythmic songs, 6 had periods greater than 60 s. If all the rhythmic songs are to be included in the determination of the overall mean period for this genotype, the period is 72.20 (s) ± 9.74 ($\mathrm{n}=10$-see Figure 5.1.3). This mean period is more yakubalike than mauritiana-like, suggesting the involvement of the X chromosome.

D. yakuba (f) x D. masuritiana (m) CLEAN-Cut-off Points:- 150 \& 20ms

Mean Period: 72.22 (s) ± 9.34

$\mathrm{N}=$ Number of Observations, Red Line $=$ Expected Normal Distribution
Figure 5.1.3: The distribution of the periods of songs of the D. yakuba (f) \times D. mauritiana (m) interspecific genotype. The overall mean period \pm sem and cut-off points are given.

Figure 5.1.4 shows the results of a D. yakuba France(f) x D. mauritiana France(m) interspecific hybrid song, after the two different spectral analyses had been employed. It can be seen that there is a ~ 300 s cycle on which a ~ 90 s period is being superimposed. This is significant for CLEAN, giving a period of $\sim 92.63 \mathrm{~s}$ (see Figure 5.1.4b), but not significant for VdB (see Figure 5.1.4c). Figure 5.1 .5 shows the results of a D. yakuba Malawi(f) x D. mauritiana Sweden(m) interspecific hybrid song, after the two different spectral analyses had been employed, both of which give significant 50 s cycles.

5.2 Hybrids from the reciprocal D. mauritiana (f) x D. yakuba (m) cross:

Since all previous attempts to obtain any hybrid progeny, from this reciprocal cross were unsuccessful (Lemeunier, 1979; Lee \& Watanabe, 1987), a change in the rearing regime of D. mauritiana flies was applied, involving the removal of the wings of the females, as described in Chapter 2. This minimized the possibility of the females violently rejecting the males, a behaviour observed during recording of D. mauritiana songs. Wingless females in D. virilis-group species are mounted less willingly by conspecific males (Vuoristo et al., 1995), primarily because the wings provide a visual acceptance and readiness cue, to the male. Amputating the wings of the D. mauritiana females did not seem to impede D. yakuba males in attempting to mount the females, clearly showing that this visual cue is not as important in this species. This is also experienced in the cases of D. ezoana and D. novomexicana (Ewing, 1983; Liimatainen, 1993). Rearing the virgin D. mauritiana females in light/dark conditions at $25^{\circ} \mathrm{C}$, instead of constant light, also seemed to reduce their aggressiveness. The D. yakuba flies were reared in solitude at $25^{\circ} \mathrm{C}$ in light/dark conditions. In order to find out whether removing the wings of the females improved the success of this cross, vials containing one D. yakuba male with four wingless D. mauritiana females, or containing the same number of male and intact female flies, were set up. Male and female progeny were produced, but only in the vials where the wings of the female flies had been removed (see Table: 5.1). As can be seen from Table 5.1, the percentages of vials set up giving rise to any progeny (whether single-sex and two-sex progeny) was reduced to 42.57% and 46.53%, respectively. The percentages of the interspecific crosses producing two-sex progeny is also further reduced to 27.91% and 19.15%, respectively.

Figure 5.1.4:
D. yakuba France(f) x D. mauritiana France(m)-Interspecific hybrid song (Hym3t511) analysed-see table 5.1.2-upper half, using the higher 150 \& 20 ms cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure. Note that there is a ~ 350 s sine wave, on which a ~ 94 s period is being superimposed.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 385.98 s ($\mathrm{p}<0.01$ - 'climber' range), as well as a weaker secondary peak of $93.62 \mathrm{~s}(\mathrm{p}<0.05)$, with the CLEAN analysis. Also, note that there is a significant primary peak of 380.95 s ($\mathrm{p}<0.01$ - 'climber' range); in addition, note that there is a weak secondary peak at $\sim 90 \mathrm{~s}$, which does not reach the 5% confidence limit, with the VdB analysis. The individual lines are the 95 and 99% confidence limits defined by Monte Carlo simulations (see chapter 2).
(B) $385.96 \mathrm{~s}, 93.62 \mathrm{~s}$

(C) 380.95 s

(A) period $=49.9 \mathrm{~s} \quad \mathrm{~F}=3.335, \mathrm{df}=3,19$

(B) $50.00 \mathrm{~s}, 136.90 \mathrm{~s}$

Figure 5.1.5:
D. yakuba Malawi(f) \times D. mauritiana Sweden(m)-Interspecific hybrid song (Hym4t5rl) analysed- see table 5.1.2-upper half, using the higher $150 \& 20 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure
b) and c) show the CLEAN and $V \mathrm{VB}$ spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 50 s ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 136.90 s ($p<0.05$), with the CLEAN analysis. Also, note that there is a significant primary peak of $50 \mathrm{~s}(\mathrm{p}<001)$, with the VdB analysis. The horizontal lines represent 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).
(C) $\quad 50.00 \mathrm{~s}$

VdB

Anecdotal observations of the behaviour of these hybrid males revealed that swift copulations attempts were also encountered, which are characteristic of the D. mauritiana species (Robertson, 1983). Wing display repertoire included two types, 'scissoring' (von Schilcher, 1976b) and 'rowing' (Cowling and Burnet, 1981), which were also seen in the two parental species. 'Scissoring' was never observed in D. yakuba, only 'rowing' (Cowling and Burnet, 1981). Furthermore, males were seen to continue singing even if they were not in the correct orientation to the female.

The mean IPIs of D. mauritiana Sweden(f) x D. vakuba Lamto3(m) and D. mauritiana Sweden(m) x D. yakuba Ivory Coast(m) are shown in Figure 5.1a (Columns:- O \& N). The IPI and modal IPI measurements were taken from 27 and 10 flies respectively, whereas the IPF and SSF measurements were taken from 4 and 3 flies respectively. These interspecific males produced both principle acoustic song components. The sine song is clearly audibly (Table 5.2.1 and Figure 5.2.1), which is to be expected, since the presence of sine song is thought to be determined by the X-chromosome (von Schilcher, 1975; Cowling and Burnet, 1981), and which had been donated in this cross by D. mauritiana.

Table 5.2.1: Song characters of $D . y a k u b a, D$. mauritiana and their interspecific hybrids.

SPECIES/ STRAINS	$\begin{aligned} & \text { OVERALL MEAN } \\ & \text { IPI } \pm \text { sem (ms) } \end{aligned}$	$\begin{aligned} & \hline \text { MODAL } \\ & \text { IPI }(\mathrm{ms}) \\ & \hline \end{aligned}$	MEAN $S S F \pm \operatorname{sem}(H z)$	OVERALL MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$
yakuba STRAIN:				
IVORY COAST	109.15 ± 8.60	85.50	X	365.99 ± 2.80
LAMTO3	127.60 ± 10.6	88.50	X	311.12 ± 2.58
mauritiana STRAIN:				
SWEDEN	41.81 ± 2.23	27.31	190.64 ± 5.49	247.75 ± 1.31
STRAINS:	INTESPECIFIC GENOTYPES			
mauritiana Sweden(f) x yakuba Lamto3(m)	80.70 ± 4.63	74.01	207.00 ± 12.0	394.64土3.44
mauritiana Sweden (f) x yakuba Ivory Coast(m)	69.58土6.98	63.48	176.00 ± 4.00	395.00 ± 3.52

Both the modal and mean IPI values are observed to be generally intermediate between the two parental species, which is consistent with autosomal inheritance of IPI (Kyriacou and Hall, 1980; Cowling and Burnet, 1981). Furthermore, the mean IPF of the interspecific hybrids are seeen to be higher than their respective parental ones which suggests hybrid vigour.

Figure 5.2.1: The principle song components of hybrid males from D. mauritiana $(\mathrm{f}) \times$. yakuba (m) crosses.
(b)

The mean IPIs, for individual songs range from $\sim 49-93 \mathrm{~ms}$ and from ~ 46 84 ms , respectively (see Figure $5.1 \mathrm{a}: \mathrm{N} \& \mathrm{O}$). At the beginning of the courtship, IPIs are irregular and pulses are short and sharp, reminiscent of D. mauritiana males. In the course of courtship low frequency Thud-like pulses (not shown in Figure 5.2.1) and high frequency, high amplitude Clack-like pulses, reminiscent of D. yakuba pulses, were audible. Figure 5.2 .2 (see below) depicts the distribution of hybrid male IPIs, from the two crosses involving D. mauritiana females. The IPI distributions in both cases, have a unimodal shape. Their modal IPIs are between $\sim 60-65$ and $\sim 70-75 \mathrm{~ms}$, respectively.

Figure 5.2.2: IPI distribution of hybrid males from crosses between D. mauritiana Sweden females $\mathbf{x} D$. yakuba males.

IPI (ms)

Song rhythms?

All the preliminary procedures and spectral analyses and rules that had been applied in Chapter 3 and 4, and the previous section, have also been followed here. The highlighted values on table 5.2.2 (see below) are the values that have been used to determine the rhythm periods in these male hybrids. It can clearly be seen that the CLEAN and the corresponding VdB values, for each individual song, are approximately similar. Table 5.2.2 shows the results from the two spectral analyses, when different cut-off points were employed.

Song Myltl5rl has a significant Nyquist value with CLEAN, of 20.08s (see table 5.2 .2 -below), which is within the range of the arrhythmic songs (Kyriacou and Hall,1989; Alt et al., 1997), but in addition it has a second significant CLEAN peak at 30.74 s . This was taken to be the period of the song, because it has a corresponding primary 'consensus' value for VdB analysis. My9 11511 shows a significcant primary peak in the 'climber' range, for both CLEAN and VdB analyses. In addition, it has a significant secondary peaks of 60.32 s and 25.81 s (see table 5.2 .2-below), with CLEAN and VdB, respectively. Since the CLEAN values have been subsequently used to calculate the mean period of the genotype, 60.32 s with CLEAN, is taken to be the period of this particular song.

Table 5.2.2: Spectral analysis of D. mauritiana $(\mathrm{f}) \times$ D. yakuba (m) interspecific hybrids, using different cut-off points.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van den Berg		Observations
	$\begin{aligned} & \text { IST } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \end{aligned}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
INTERSPECIFIC HYBRIDS					
Maurisiana($\mathrm{n} \times$ Yakuba(m)	CUT Off POINTS : 120 \& 20 ms				
Mylth5rl	20.08	30.74	31.37	x	14/23
My211511	23.13	47.89	444.44	47.90	33/56
My4115r2	46.02	26.29	45.98	26.23	$39 / 56$
My41612	x	x	2.5 .48	31.37	15/18
My 5115 r 2	25.88	x	21.05	26.14	$19 / 24$
My6t15r1	291.67	x	307.69	x	24/29
My8t15rl	77.84	x	77.67	x	18/27
My9t151]	562.50	60.32	560.31	25.81	43/47
Mauritiana($\mathrm{n} \times \mathrm{Yakuba(m)}$	CUT Off P(OINTS : 150 \& 20 ms				
Myltisrl	20.08	30.74	31.37	x	14/23
My211511	354.55	x	380.95	47.90	34/57
My4il5r2	26.26	45.86	45.98	26.23	40/57
My 411612	x	x	25.48	31.37	15/18
My.515 ${ }^{\text {2 }}$	2.5 .88	X	21.05	26.14	19/24
My6t15r1	294.12	X	250.00	x	24/29
My8ilisr	79.86	X	78.43	x	18/27
My9t1511	562.50	59.32	560.31	25.81	43/47

Figure 5.2.3 shows the distribution of periods of hybrid songs from the D. mauritiana(f) \times D. yakuba (m) crosses, whose values were highlighted in Table 5.2.2, together with their corresponding mean period \pm sem. Of the 8 D . mauritiana (f) $\mathrm{x} D$. yakuba (m) songs examined, 3 songs were found to be arrhythmic, one had a period between $\sim 30-40$ s, two had a period between $\sim 40-50$ s, one had a period between $\sim 60-70$ s and one had a period between $\sim 70-80$ s. If all the rhythmic songs were to be included in the determination of the overall mean period for this genotype, the period would be $52.53(\mathrm{~s}) \pm$ $7.88, n=5$ (Figure 5.2.3), which is slightly nearer the D. mauritiana value of ≈ 40 s than the D. yakuba Thud value. Also, the distribution of periods in the hybrids is similar to D. mauritiana, in that the clustering of the period in Figure 5.2 .3 is reminiscent of the D. mauritiana clustering of periods seen in Figure 4.2 .1 (see chapter 4), where the majority of periods lay between $30-40$ s, and several between $50-70$ s.

Figure 5.2.3: The distribution of the periods of hybrid songs from the D. mauritiana $(\mathrm{f}) \times D . y a k u b a(m)$ crosses.

Figure 5.2 .4 shows the results of a D. mauritiana Sweden(f) x D. yakuba Lamto3(m) hybrid song, after the two different spectral analyses had been employed, both of which give significant $\approx 46 \mathrm{~s}$ cycles. Figure 5.2 .5 shows the results of another hybrid song. Significant 'climbing' frequencies are seen with a significant 60s period in CLEAN, and 25.281 and 59.70 s in VdB.
(A) period $=45.8 \mathrm{~s} F=4.164, \mathrm{~d} F=3,32$

Figure 5.2.4:
D. mauritiana Siweden(f) x I). yakuba Lamto3(m)-Interspeciefic hybrid courtship song (My4t| Srl) analysed-see table 5.2.2-uuper half, using the lower 120 \& 20ms cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by Vdi3 spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of $46.02 \mathrm{~s}(\mathrm{p}<0.01)$, a second significant peak of 69.52 s ($p<0.01$), a third significant peak of 26.29s ($p<0.01$) ('arrhythmic' range), as well as a fouth significant peak of $216,67 \mathrm{~s}$ ('climber' range') $(p<0.05)$, with the CLEAN analysis. Also note that there is a significant primary peak of $45.98 \mathrm{~s}(\mathrm{p}<0.01)$, as well as a second significant peak of 26.23 s ($\mathrm{p}<0.01$), with the VdB analysis. The individual lines represent the 95 and 99% confidence limits defined by Monte Carlo simulations (see Chapter 2)
(13) 46.02s, 69.52s, 26.29s, $216.67 \mathrm{~s} \quad$ (.I.I.AN

(C) $\mathbf{4 5 . 9 8 \mathrm { s } , 2 6 . 2 3 \mathrm { s } , 6 8 . 9 7 \mathrm { s }}$

Vdl3

Figure 5.2.5:
D. mauritiana Sweden(f) \times D. yakuba Ivory Coast(m)-Interspecific hybrid song (My9t1511) analysed-see table 5.2.2-upper half, using the lower 120 \& 20 ms cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 562.50 s ('climber' range) ($\mathrm{p}<0.01$), as well as a weaker secondary peak of 60.32 s (<0.05), with the CLEAN analysis. Also note that there are two significant peaks of 560.31 s and 25.81 s ($\mathrm{p}<0.01$)('climber' and arrhythmic range) respectively, as well as a weaker tertiary peak of 59.70 s ($\mathrm{p}<0.05$), with the VdB analysis. This is taken to be the correct period, because
 it has a similar value to its CLEAN-derived counterpart.The individual lines are the 95 and 99% confidence limits defined by Monte Carlo simulations (see Chapter 2).

One-way ANOVA between the periods of the parental strains and the reciprocal hybrids showed significant differences ($\mathrm{F}=3.63$, $\mathrm{df}=3,47, \mathrm{p}=0.020$). NewmanKeuls a posteriori test showed significant differences, at least at $\mathrm{p}<0.05$, between the periods of D. mauritiana and the D. yakuba $(\mathrm{f}) \times D$. mauritiana (m) hybrids, but no significant differences were observed between these hybrids and D. yakuba. The test also revealed that there were no significant differences between the periods of the D. mauritiana(f) x D. yakuba (m) hybrids and D. mauritiana (for ANOVA and Newman-Keuls a posteriori test results see Appendix 5.2.1). Therefore, the mean periods for the hybrid crosses suggest X chromosome involvement, which is in agreement with Kyriacou and Hall (1980, 1986).

5.3 D. yakuba, D. teissieri and their hybrids:

Both reciprocal crosses have been attempted. After persistent attempts, it was possible to obtain two-sex progeny by using D. yakuba females as the maternal participant in the cross. The integral role of non-visual stimuli in the courtship ritual (Bennet-Clark and Ewing, 1969; Schilcher, 1976a; 1976b) was further demonstrated, since when 'mute' D. yakuba females (females with their wings removed) were courted by D. teissieri males, no progeny was produced (Table 5.1). The percentage of vials set up, giving rise to any progeny is down to 57.20%, while the percentage of the interspecific cross producing both male and female offspring is 38.46%. The reciprocal cross, involving teissieri females, was unsuccessful in producing any progeny. Since D. teissieri song differs qualitatively from D. yakuba with respect to the presence of sine song (hum song), the interspecific hybrids could provide further information on the mode of inheritance of this acoustic element. The IPI and modal IPI measurements were taken from 6 flies, whereas the IPF measurements were taken from 3 flies.

Table 5.3.1: Song characters of D. yakuba, D. teissieri and their interspecific hybrids.

SPECIES/ STRAINS	()VERAL.L MEAN IPI \pm sem (ms)	MOI)AL IPI(ms)	$\begin{gathered} \text { MEAN } \\ \text { SSF } \pm \operatorname{sem}(\mathrm{Hz}) \\ \hline \end{gathered}$	OVERALL MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$
yakuba STRAIN:				
FRANCE	124.61 ± 2.71	95.50	X	302.22 ± 3.17
teissieri STRAIN:				
SWEDEN	28.02 ± 1.28	21.20	231.5 ± 4.35	432.66 ± 4.01
STRAINS:	INTERSPECIFIC GENOTYPE			
yakuba France (f) x teissieri Sweden(m)	64.76 ± 6.00	60.07	X	411.77 ± 3.58

The mean IPI for the individual songs in this hybrid genotype ranges from $\sim 44-95 \mathrm{~ms}$, intermediate between the parental values (see Figure 5.1b:-E), and suggesting autosomal inheritance (Cowling and Burnet, 1981; Kyriacou and Hall, 1980). This is confirmed with the overall mean IPI and modal IPI's of the hybrids, which are also intermediate between the parental values. The mean IPF of the hybrids is more teissierilike, suggesting dominance of D. teissieri autosomal genes.

Figure 5.3.1: The principle song component of a D. yakuba France(f) x D. teissieri Sweden(m) song.

Figure 5.3.1 illustrates some song pulses. At certain instances in the course of the courtship song, pulses were sharp, with high amplitudes, reminiscent of the Clack-type pulses, and at other instances, the pulses were dense, with lower amplitude, resembling the D. teissieri pulses. Figure 5.3 .2 (see below) shows the distribution of IPI of a D. yakuba France $(\mathrm{f}) \times$. teissieri $\operatorname{Sweden}(\mathrm{m})$ interspecific hybrid. The distribution is unimodal in shape, as all the distributions examined so far with a modal IPI of $\sim 60-65 \mathrm{~ms}$.

Figure 5.3.2: The distribution of IPI of a D. yakuba France(f) \times D. teissieri Sweden(m) interspecific male (Hyb6t7ll).

Song rhythms?

The highlighted values on table 5.3.2 (see below) are the values that have been used to determine the rhythm periods of this interspecific genotype, using different IPI cutoff points. It can clearly be seen that the CLEAN and the corresponding VdB values, for cach individual song, are quite similar. Song Hyt9t612 has a significant primary peak in the 'climber’ range, but also shows a second significant peak of 34.68s (CLEAN), with a very similar significant primary peak VdB value of 34.63s. Songs, Hyt6t6l2 and Hyt9t6l2, become arrhythmic with CLEAN, when the lower $90 \& 15 \mathrm{~ms}$ cut-offs are used (see Table 5.3 .2 -lower part). The reason for choosing 90 ms instead 120 ms , as the 'alternative' upper cut-off was that in the majority of this type of interspecific genotype, no IPIs were found to be over 100 ms .

Table 5.3.2: Spectral analysis of D. yakuba France(f) x D. teissieri Sweden(m) interspecific hybrid, using different cut-off points.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van den Berg		Observations
	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2ND } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1ST } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
INTERSPECIFIC HYBRIDS					
yakuba($\mathrm{n} \times$ teissieri(m)	CUT Off POINTS : 100 \& 15 mm				
Hyt4t711	24.12	199.28	24.17	205.13	36/57
Hytht6l2	39.55	x	26.49	40.00	24/30
Hyt6t711	87.46	X	86.96	50.63	31/61
Hyt8t612	65.98	25.18	66.67	25.81	23/30
Hyt9t612	283.51	34.68	34.63	250.00	$39 / 58$
yakuba(f)xeissieri(m)	CUT Off POINTS : $90 \& 15 \mathrm{~ms}$				
Hyt4t711	24.12	199.28	24.17	205.13	36/57
Hyt6t612	29.41	x	45.71	142.86	22/30
Hyt6t711	88.04	x	87.91	275.86	31/61
Hyt8t612	25.71	66.18	66.67	25.72	22/30
Hyt91612	20.45	x	20.67	x	36/58

Of the five D. yakuba France(f) x D. teissieri Sweden(m) songs examined, one was found to be arrhythmic. The periods are quite variable, with two longer than 60 s and two shorter (see Table 5.3.2). Both parental species have long rhythms (see chapter 3, section 3.5- $\sim 63 \mathrm{~s}$ for D. yakuba Thud+Clack, $\sim 67 \mathrm{~s}$ for D. yakuba Thud and $\sim 57 \mathrm{~s}$ for D. yakuba Clack, and chapter 4, section 4.4-~72s for D. teissieri), and so, the overall mean of $\sim 57 \mathrm{~s}$ is slightly shorter than the parental values. One-way ANOVA between the parental species (D. teissieri and D. yakuba Thud + Clack) and the hybrids showed no significant differences $(\mathrm{F}=0.67, \mathrm{p}=0.52, \mathrm{df}=2,38)$. The small sample size and low vigour of the courtships (the \% of filled bins is quite low) have not helped the analysis. It is,
however, encouraging that the hybrid rhythms are not significantly different from those of the parents. Figure 5.3 .3 shows one of these hybrid songs with a period of $\approx 87 \mathrm{~s}$.

5.4 D. simulans, D. mauritiana and their interspecific hybrids:

The cross, involving D. simulans females, was achieved with comparative ease (David et al.,1974), although, it has not been possible to obtain any progeny from the reciprocal cross, involving D. mauritiana females, in this present study. The percentage of vials set up producing any kind of offsprings is 66.66% (either single-sex or two-sex progeny), while the percentage of interspecific crosses, with D. simulans females (see table 5.1:-Column 7) giving rise to two-sex progeny is 34.15%. The reciprocal cross, with D. mauritiana females (see table 5.1:-Column 8) was completely unsuccessful, even when D. mauritiana females with 'amputated' wings were used.

During the recording of these songs, both basic components of a courtship song, sine and pulse songs (see Figure 5.4.1-below) were present. It was often obesrved that at the beginning of a burst the pulses had irregularly long IPIs, which became more uniform in shape as the burst progressed, which was reminiscent of the mauritiana pulses.

Figure 5.4.1: The principle song components of a D. simulans Florida(f) x D. mauritiana Sweden(m) song.

The mean IPI of individual songs for this genotype ranges from $\sim 36-61 \mathrm{~ms}$ (see Figure 5.1b:- G). The IPI and modal IPI measurements were taken from 7 flies, whereas the IPF and SSF measurements were taken from 3 flies. Table 5.4.1 gives the values for the major song characters.

(B) 87.46 s

CLEAN

Figure 5.3.3:
D. yakuba France $(\mathrm{f}) \times$ D. teissieri Sweden(m)-Interspecific hybrid courtship song (Hyt6t711)-see table 5.3.2-upper half, using the higher $100 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 87.46 s ($\mathrm{p}<0.05$), with the CLEAN analysis. Also note that there is a significant primary peak of 86.96 s ($\mathrm{p}<0.01$), as well as a weaker
 secondary peak of 50.63 s ($\mathrm{p}<0.05$), with the VdB analysis. The individual lines are the 95 and 99% confidence limits defined by Monte Carlo simulations (see chapter 2).

Table 5.4.1: Song characters of D. simulans, D. mauritiana and their hybrids.

The mean IPI of these hybrids are intermediate to the parental values, suggesting autosomal control. One-way ANOVA showed significant differences between the parental species and these hybrids ($\mathrm{F}=3.48, \mathrm{p}=0.048$ and $\mathrm{df}=2$, 23-see Appendix 5.4.1). Newman-Keuls a posteriori test revealed significant differences, at least at $\mathrm{p}<0.05$, between D. mauritiana and D. simulans. The test also revealed no significant differences between D. simulans and D. mauritiana, and these hybrids (see Appendix 5.4.1). The modal IPI of the hybrids are slightly more mauritiana-like, suggesting the presence of dominant D. mauritiana autosomal factors. One-way ANOVA of the modal IPI values between the parental species and these hybrids showed no significant differences $(\mathrm{F}=1.69, \mathrm{df}=2,23$, $\mathrm{p}=0.21$). The mean SSF is more simulans-like, suggesting either X chromosome involvement, or autosomal dominant factors for D. simulans. One-way ANOVA between the parental species and these hybrids revealed significant differences $(\mathrm{F}=5.42, \mathrm{df}=2,8$, $\mathrm{p}=0.038$-see Appendix 5.4.2). Newman-Keuls a posteriori test revealed significant differences, at least at $\mathrm{p}<0.05$, between D. mauritiana, and D. simulans and these hybrids. The test also revealed no significant differences between D. simulans and these hybrids (see Appendix 5.4.2). The IPF of these hybrids is higher than both the parental values, suggesting hybrid vigour. Figure 5.4 .2 (below) shows the distribution of IPI of a D. simulans Florida(f) x D. mauritiana Sweden(m) interspecific hybrid song. The distribution is unimodal in shape, broader than the distribution of D. mauritiana Sweden (see Figure 4.1.2-red columns) and of D. simulans Florida (see Figure 3.2.1), with a modal IPI between ~27-30ms.

Figure 5.4.2: The distribution of IPI of hybrid male from the D. simulans Florida(f$) \times \mathrm{D}$. mauritiana Sweden(m) cross(SM1t1711).

Song rhythms?

The results are shown on Table 5.4.2, using different cut-off points (approximately twice the mean), which had been decided after the individual IPI histograms had been examined. The highlighted values in table 5.4 .2 (see below) are the values that have been used to determine the rhythm periods of this interspecific genotype. As seen, the CLEAN and the corresponding VdB values, for each individual song, are approximately similar. However, the songs are not very robust, in two cases only just passing the 50\% bins filled criterion. The most vigorous song (Sm3e2s2m, 29/37 bins filled) has a 45s cycle.

Table 5.4.2: Spectral analysis of the D. simulans Florida(f) x D. mauritiana Sweden(m) hybrid genotype, using different cut-off points.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van den Berg		Observations
	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \hline \text { 2ND } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & \text { Bins } \\ & \text { Fllied } \\ & \hline \end{aligned}$
INTERSPECIFIC HYBRIDS					
slmulant(1) \times maxuridana(m)	CUT Off PONTS : 80 \& 15 ms				
Smlt1711	63.60	22.47	65.04	x	19/38
Sm3e2s2m	45.34	24.07	24.24	X	29/37
Sm4e2s2m	68.44	23.44	23.46	68.97	28/53
simalams(f)xmawridana(m)	CUT Off POINTS : 75 \& 15 ms				
Smlt1711	63.60	22.47	65.04	X	19/37
Sm3e2s2m	26.04	44.32	20.57	222.22	28/37
Sm4e2s2m	68.44	23.44	23.46	68.97	28/53

Out of the three D. simulans (f) x D. mauritiana (m) songs examined, all of them were found to be rhythmic with periods between $\sim 45-70 \mathrm{~s}$. The overall mean period for this genotype is 59.13 (s) $\pm 7.03, \mathrm{n}=3$ (see Figure 5.4.3-below), which is longer than both parental values. One-way ANOVA between the periods of the parental species and the hybrids showed no significant differences ($\mathrm{F}=3.24, \mathrm{p}=0.07$, $\mathrm{df}=2,14$). However, the small sample size and poor vigour of these hybrids means that little confidence can be placed in the data, even though the statistical analysis gives no significant differences between the parents and the hybrids, which is what it would be expected from the parental values.

Figure 5.4 .3 shows a hybrid song which just reach the 50% bins filled criterion. The missing data points make this song presentation ambiguous, as can be observed in Figure 5.4.3a. In Figure 5.4.3b, a secondary peak of $\sim 34 \mathrm{~s}$ is also significant, a reflection of the gaps in the data series, because gaps will also allow shorter cycles to be compressed within the data.

5.5 D. teissieri, D. mauritiana and their interspecific hybrids:

The percentage of vials set up, involving teissieri females, giving rise to either single-sex or two-sex progeny is 69.23%; only 25% of these vials set up produced viable two-sex progeny (see Table 5.1). The reciprocal cross, involving D. mauritiana females, was unsuccessful; even when 'mute' D. mauritiana females (females with their wings removed), were set up with D. teissieri males, no viable progeny were produced.

Both principal acoustic components were observed to be present in the songs of this genotype (see Figure 5.5.1- below). When the hybrid courtship songs from the D. teissieri Sweden(f) x D. mauritiana Sweden(m) cross were printed on dot matrix computer paper, it was observed that in some instances, the pulses (irregular in shape and value) resembled the D. mauritiana pulses and at other instances, in the course of the song, the pulses became dense, reminiscent D. teissieri.
(A) period $=63.9 \mathrm{~s} \mathrm{~F}=2.503, \mathrm{df}=3,14$

Figure 5.4.3:
D. simulans Florida(f) x D. mauritiana Sweden(m)-Interspecific hybrid courtship song (Sm1t1711) analysed-see table 5.4.2-upper half, using the higher $80 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and VdB spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of $63.60 \mathrm{~s}(\mathrm{p}<0.05)$, as well as two weaker secondary and tertiary peaks of 22.47 s (arrhythmic range) and of 34.62 s ($\mathrm{p}<0.05$),
 respectively, with the CLEAN analysis. Also note that there is a significant primary peak of 65.04 s ($\mathrm{p}<0.05$), with VdB . The individual lines are the 95 and 99% confidence limits defined by Monte Carlo simulations (see Chapter 2).

Figure 5.5.1: The principle song components of a D. teissieri Sweden(f) x D. mauritiana Sweden(m) song.

> SINE SONG

PULSES

The mean IPI, of the individual songs, for this genotype ranges from $\sim 36-59 \mathrm{~ms}$ (see Figure 5.1 b :- F, and table 5.5.1). The IPI and modal IPI measurements were taken from 10 flies, whereas the IPF and SSF measurements were taken from 3 flies.

Table 5.5.1: Song characteristics for D. teissieri, D. mauritiana and their interspecific hybrids.

SPECIES/ STRAINS	OVERALL MEAN IPI \pm sem (ms)	$\begin{gathered} \hline \text { MODAL } \\ \text { IPI(ms) } \\ \hline \end{gathered}$	$\begin{gathered} \text { MEAN } \\ \text { SSF } \pm \operatorname{sem}(\mathrm{Hz}) \end{gathered}$	OVERALL MEAN IPF $\pm \operatorname{sem}(\mathrm{Hz})$
teissieri STRAIN:				
SWEDEN	28.02 ± 1.28	21.20	231.50 ± 4.35	432.66 ± 4.01
mauritiana STRAIN:				
SWEDEN	41.81 ± 2.23	27.31	194.64土5.49	247.75 ± 1.31
STRAINS:	INTERSPECIFIC GENOTYPE			
teissieri Sweden(f) x mauritiana Sweden(m)	$\mathbf{3 4 . 7 0} \pm 1.59$	31.00	219.76 ± 2.89	537.42 ± 7.53

The table 5.5 .1 shows that the mean IPI of these hybrids are intermediate between the parental values, which is suggestive of autosomal control for this character. One-way ANOVA revealed significant differences between the parental species and these hybrids ($\mathrm{F}=18.58, \mathrm{df}=2,40, \mathrm{p}=0.000$-see Appendix 5.5.1). Newman-Keuls a posteriori test revealed significant differences, at least at $\mathrm{p}<0.05$, between the parental species and the hybrids, as well as differences between the IPIs of the parental species (see Appendix 5.5.1). The modal IPI (for ANOVA and Newman-Keuls a posteriori test results see Appendix 5.5.2), and mean IPF are seen to be higher than both the parental values, which suggests hybrid vigour. The SSF is observed to be more teissieri-like which suggests X chromosome involvement. One-way ANOVA between the parental species and these
hybrids revealed significant differences $(\mathrm{F}=42.75, \mathrm{df}=2,8, \mathrm{p}=0.000$-see Appendix 5.5.3). Newman-Keuls a posteriori test revealed significant differences, at least at $\mathrm{p}<0.05$, between D. mauritiana, and D. teissieri and these hybrids. The test also showed that there were no significant differences between D. teissieri and these hybrids (see Appendix 5.5.3).

Figure 5.5.2 (see below) shows the distribution of IPIs of a representative hybrid male which is unimodal, but broader than the distributions of both the parental strains (see Figure 4.3.3-black columns and Figure 4.1.2).

Figure 5.5.2.: The distribution of IPI of a hybrid male from the D. teissieri Sweden(f) \times D. mauritiana Sweden(m) cross-(Tm3se2slm2).

Song rhythms?

The results are shown on Table 5.5.2, using different cut-off points (approximately twice the mean), which had been decided after the individual song histograms had been examined. The highlighted values in table 5.5.2 (see below) are the values that have been used to determine the rhythm periods of interspecific genotype. It can clearly be seen that the CLEAN and the corresponding VdB values, for each individual song, are approximately similar.

Table 5.5.2: Spectral analysis of hybrid songs from the D. teissieri Sweden(f) x D. mauritiana Sweden (m) cross.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van den Berg		Observations
	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2ND } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1ST } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2ND } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
INTERSPECIFIC HYBRIDS					
Teissieriin \times Mauritiana(m)	CUT Off POINTS : 80 \& 15 ms				
Tmle2sim	50.62	22.18	44.94	24.96	56/86
Tmle2sml	45.15	40.00	90.91	75.47	33/46
Tm3e2sim	283.33	62.35	307.69	1000	48/54
Tm4e2sim	73.72	x	26.58	x	$19 / 37$
Tm. 5 2sm2	92.39	65.22	94.12	65.04	$39 / 54$
Tm6e2s2m	66.67	54.05	24.39	65.57	40/49
Tm7e2sim	27.31	x	22.28	26.94	28/31
Tm8e2s2m	52.25	40.73	25.56	51.95	41/82
Tm9e2s 2 m	107.42	36.47	35.89	800.00	43/66
Teissieri($\mathrm{x} \times \mathrm{Mauritiana(m)}$	CUT Off POINTS : 75 \& 15 ms				
Tinle2s m	22.18	50.18	50.31	33.06	56/86
Tmle 2 sml	43.12	24.63	45.71	x	32/46
Tm3e2sim	289.77	62.35	307.69	1000	46/54
Tm4e2sim	x	x	26.49	22.99	17/37
Tm. 5 e 2 sm 2	64.79	x	94.12	75.47	$38 / 54$
Tm6e2s2m	x	x	65.57	20.62	38/49
Tm7e2sim	29.77	x	26.76	22.16	26/31
Tm8e2s2m	41.20	x	25.56	51.95	40/82
Tm9e2s2m	878.79	23.60	30.30	800.00	42/66

Songs Tm6e 2 s 2 m and Tm 9 e 2 s 2 m become arrhythmic, while songs Tm3e2s1m, Tm5e 2 sm 2 and Tm 8 e 2 s 2 m lengthen their periods when the lower 75 \& 15 ms cut-offs are used (table 5.5.2). Figure 5.5 .3 shows the distribution of periods of D. teissieri Sweden (f) x D. mauritiana Sweden (m)-interspecific hybrids, whose values were highlighted in Table 5.5 .2 , together with their corresponding mean period of $\approx 60 \mathrm{~s}$. Out of the 9 hybrid songs examined, one song was found to arrhythmic. 6 of the remaining 8 songs had periods $>50 \mathrm{~s}$. These periods fall much closer to the D. teissieri value of ≈ 70 s, than those of D. mauritiana ones, suggesting X chromosome determination of the song period. One-way ANOVA between the periods of the parental species and the hybrids revealed significant differences $(\mathrm{F}=6.29, \mathrm{df}=2,26, \mathrm{p}=0.006)$. Newman-Keuls a posteriori test showed significant differences between D. mauritiana and, D. teissieri and the hybrids, whilst no significant differences were observed between D. teissieri and the hybrids (see Appendix 5.5.4). This suggests X chromosome involvement, which is in agreement with Kyriacou and Hall (1980; 1986). Of the various hybrids examined in this chapter, these by far generate the most vigorous courtships, and therefore more confidence can be placed in the results.

D. teissieri(f) x D. mauritiana(m)

CLEAN-Cut-off Points: 80 \& 15ms

Mean Period: 59.95 (s) ± 6.28

Figure 5.5.3: The distribution of the periods of hybrid songs from the D. teissieri Sweden $(\mathrm{f}) \times D$. mauritiana Sweden (m) cross.

Figure 5.5 .4 shows a hybrid song with an approximate 90 s cycle.
5.6 D. erecta, D. orena and their interspecific hybrids:

Both types of hybrid crosses failed to produce any progeny.
(A) period $=92.8 \mathrm{~s}$ F $=3.562, \mathrm{df}=3,36$

(B) $92.39 \mathrm{~s}, 64.72 \mathrm{~s}$

Figure 5.5.4:
D. teissieri Sweden(f) x D. mauritiana Sweden(m)-Interspecific hybrid courtship song (Tm 5 e 2 sm 2) analysed-see table 5.5.2-upper half, using the higher $80 \& 15 \mathrm{~ms}$ cut-off points, and spectral analysis.
a) A plot of the mean IPI against time. The dotted line represents the strongest cycle in the data, initially defined by VdB spectral analysis, and then fitted to the data by non-linear regression, using a least squares procedure.
b) and c) show the CLEAN and $V d B$ spectrograms of this song respectively, each indicating the corresponding periods. Note that there is a significant primary peak of 92.39 s ($\mathrm{p}<0.05$), as well as a weaker secondary peak of $64.72 \mathrm{~s}(\mathrm{p}<0.05)$, with the CLEAN analysis. Also note that there is a significant primary peak of 94.12 s ($\mathrm{p}<0.05$), as well as a weaker secondary peak of 65.04 s
 ($\mathrm{p}<0.05$), with the VdB analysis. The 95 and 99% confidence limits are defined by Monte Carlo simulations (see chapter 2).

5.7 Discussion:

A number of different song characteristics have been studied in hybrids. Several conclusions can be drawn:

1) The mean and modal IPI seem to be autosomally determined, since the mean IPI value of the interspecific hybrids is approximately intermediate between the two parental strains' values. This observation reconfirms the original von Schilcher (1976a), Cowling and Burnet (1981) and Kyriacou and Hall (1986) observations;
2) As in the case of the $D . y a k u b a$ intraspecific hybrids (see chapter 3), the mean IPF is seen to be usually higher than the parental values, which is suggestive of hybrid vigour implying that the parents have undergone inbreeding depression, which may suggest that superior fitness may be associated with higher IPFs. However, the mean IPF in the hybrid males involving D. teissieri (D. yakuba France(f) x D. teissieri Sweden(m)), tend to be teissieri-like, suggesting dominant autosomal teissieri factors (table 5.3.1). Clearly, the genetic control of IPF is more complex than originally perceived by Cowling and Burnet (1981);
3) The presence or absence of sine song was observed to depend on which species was the maternal participant in the cross. In interspecific hybrid crosses where the maternal participant was D. yakuba (known not to produce a sine song-Cowling and Burnet (1981) and Thackeray (1989)), no sine song was produced by those interspecific hybrid males. When D. yakuba is the paternal participant, as in the case of D. mauritiana Sweden(f) x D. yakuba Ivory $\operatorname{Coast}(\mathrm{m})$ and D. mauritiana Sweden(f) x D. yakuba Lamto3(m) (Table 5.2.1), sine song is present, suggesting X chromosome inheritance, and reconfirming the observations by Cowling and Burnet (1981). Moreover, the SSF in hybrid males involving D. simulans and D. teissieri, as the maternal parent, tend to be closer to the maternal values, suggesting again X chromosome involvement (tables 5.4.1 and 5.5.1) for this acoustic component;
4) As far as song rhythms are concerned, some hybrid males generated very little song. Consequently, the results can not be considered to be reliable (D. yakuba France(f) x D. teissieri Sweden(m) and D. simulans (f) x D. mauritiana (m)). However, the D.
yakuba France(f) x D. mauritiana France(m) and D. yakuba Malawi(f) x D. mauritiana Sweden(m) interspecific males were quite vigorous (see section 5.1), and the majority of song rhythm periods were >60 s, reflecting the maternal species value of D. yakuba. In the reciprocal crosses to the above (D. mauritiana Sweden(f) x D. yakuba Ivory Coast(m) and D. mauritiana Sweden(f) x D. yakuba Lamto3(m)), song periods (see Figure 5.2.3) appeared to lie closer to the mean period of D. mauritiana than D. yakuba, suggesting that there is X chromosome involvement in the song rhythm, which is in agreement with Kyriacou and Hall's (1986) original observations with D. melanogaster and D. simulans. In D. teissieri Sweden(f) x D. mauritiana Sweden (m) cross, the majority of the periods are $>50 \mathrm{~s}$. These periods fall much closer to the D. teissieri mean period value of ≈ 70 s than that of D. mauritiana, which again suggests X chromosome determination of the song period. However, additional autosomal factor association cannot be ruled out. Indeed, some autosomal gene involvement has been implicated in Kyriacou and Hall's (1986) study in D. melanogaster/D. simulans hybrids.

The contribution of the X chromosome, in the species-specificity of the male song cycles has been carried to the molecular level by Wheeler et al. (1991). D. melanogaster per ${ }^{01}$ males, transformed with the per gene of D. simulans, sang with a characteristic D. simulans 40 s cycle. Moreover, transformed D. melanogaster males, carrying a D. simulans-Thr-Gly encoding fragment in an otherwise D. melanogaster per background, were also found to sing with a typical 40 s D. simulans song cycle. In addition, male flies carrying the reciprocal hybrid constructs, were found to behave in a characteristic D. melanogaster fashion. This small fragment ($\approx 700 \mathrm{bp}$) of the per gene, that was interchanged between the two species per genes, has been found to be particularly variable in the D. melanogaster subgroup (Peixoto et al., 1992). Moreover, the amino acids substitutions encoded within this fragment, which were assigned by Wheeler et al. (1991) as being critical in the song rhythmicity of D. melanogaster and D. simulans are observed to be unique among the different members of the D. melanogaster subgroup (Peixoto et al., 1992). We can therefore imagine that the 'key' gene for the male song cycle in all these species is per. Consequently, since the orthologues of D. melanogaster per, in one other member of the D. melanogaster subgroup species, D. yakuba, has been cloned (e.g., Thackeray and Kyriacou, 1990), it is possible to transform per genes from the different species of the D. melanogaster subgroup, similar to those
constructed by Wheeler et al. (1991), into per ${ }^{01}$ D. melanogaster hosts. This should determine whether per is the species-specific cycle gene within the D. melanogaster subgroup.

Since the existence of X -linked species-specific song rhythms was further supported, my attention now turned to short-term temporal changes in song characters, which are dealt in the ensuing Chapter 6 .

Short-term temporal changes in song characters

CHAPTER 6

6. Short-term temporal changes in song characters

I have shown that song rhythms exist in the courtship songs of members of the melanogaster subgroup, over the $30-100$ s time scale. However, I have not examined any changes within the various courtship song components, namely IPI, IPF and CPP over much shorter time scales, such as song bursts. Ewing (1983) provided some anecdotal evidence that IPI's get longer over the course of a burst in D. melanogaster. I therefore chose at least ten of the longest bursts within a song, and using criteria discussed below, examined temporal changes.

The determination of all three song components, IPI, IPF and CPP, was carried out manually and details of how this was done, are described in Chapter 2. Briefly, once a song was traced onto dot-matrix paper, I inspected the entire song, choosing the ten longest bursts. Changes in a character over a burst were plotted, against the pulse sequence order within the burst. Regression was used to examine the relationship, by taking a mean value at each pulse number. For each individual song, the regression lines were determined for each acoustic component under examination, and a graph was constructed. For the overall species trend in a particular characteristic, all the bursts of all the songs of a species were stacked together, and the various genotype/species regression equations and lines were determined from mean column values. Figures 6.1-6.17 show the results for all the species/strain/intraspecific genotypes examined in this study. Table 6.1 gives an overall synopsis of the results. (For all species/intra- and interspecific hybrid results and individual song regressions see Appendices 6.1, 6.2 and 6.3.).

6.1 D. melanogaster complex:

Figure 6.1 A illustrates the D. melanogaster IPF values, which appear to oscillate every 7-8 pulses, before becoming irregular towards the end of the burst, as fewer and fewer values contribute. The middle section of the figure gives the regression based on 12 pulses, taken from a minimum of ten bursts which had at least 12 pulses per burst. An asterisk $\left({ }^{*}\right)$ represents a significant ($\mathrm{p}<0.05$) regression. The oscillation in IPF can be seen in the first 7 pulses. The top right-hand panel shows the individual song

COLOUR KEX: BILUE $=$ FI. Y_{1}
$\mathrm{RED}=\mathrm{FL}, \mathrm{Y}_{2}$ IIGHT (GREEN $=\mathrm{FLY}_{3}$

Figure 6.1 : Drosophila melanogaster Brighton : Song elements versus pulse position in burst.
TOP ROW : A = INTRAPULSE FREQUENCY (IPF)
MIDDILE ROW : \mathbb{B} - CYCLLES PER PUISE (CPP) BOTTOM ROW : C - INTERPULSE INTERVAL, (IPI)

COLUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDDLE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELLEMENT IN INDIVIDUAI, SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).
regressions that make up the central figure. All 3 songs show a negative slope. The cycles per pulse (CPP) show a significant positive slope with pulse number (Figure 6.1B: middle panel), which is also observed in all 3 individual songs (Figure 6.1B: right-hand panel). Thus increased CPP, later in a burst, is associated with lower IPF, possibly suggesting a fatigue effect. Figure 6.1C shows that the mean IPI shows a slight increase over the course of a burst, which is reflected in all 3 individual songs (Figure 6.1C: bottom right-hand panel). However, all individual slopes fail to reach significance.

In Figure 6.2A (top left-hand panel) the D. simulans IPF values behave very similarly to their D. melanogaster counterparts, showing an overall species decrease (slight) over the 10 pulses, with the IPF's of two individual songs increasing and two decreasing (Figure 6.2A-middle and right-hand panels, respectively). The CPPs show an increase (Figure 6.2B-left panel)-note how the sem's get larger as fewer pulses contribute to the score as the bursts progress. The overall species value shows a slight nonsignificant increase over the 10 pulses (Figure 6.2B-middle panel), which is reflected in the behaviour of the regressions of all 4 individuals (Figure 6.2B-right-hand panel). The sem's of the IPI's fluctuate enormously, (bottom left), as fewer pulses contribute to the latter pulse positions. The overall species value gives a non-significant increase in IPI (Figure 6.2C, bottom middle panel), over the 9 pulses, with two individual songs increasing and two songs decreasing (bottom right-hand panel). However, none of these slopes are significant. In conclusion, CPP and IPI increase, whereas IPF decreases in both D. melanogaster and D. simulans.

In Figure 6.3, D. mauritiana Sweden IPF and IPI values show a significant decreasing pattern, which is supported in both regressions, for individual songs and overall strain values (Figure 6.3A and C-middle panels, respectively). The top- and bottom- right-hand panels show the individual song regressions that make up the central figure, and five out of six show significant negative slopes (top and bottom right-hand panels for IPF and IPI, respectively). Conversely, CPP gives a consistent increasing profile (Figure 6.3B), with a significant regression, which is reflected in two out of the three individual songs (right-hand panel). In D. mauritiana France and Indiana (Figures 6.4 and 6.5, respectively), however, the mean IPF's do not show a consistent pattern

COLOUR KEY: BL.UE $=$ FI. \mathbf{Y}_{1} $R E D=F 1 . Y_{2}$ IIGGT GREEN = FIIY3 DARK REID $=$ FI.Y

Figure 6.2 : Drosophila simulans Florida : Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE FREQUENCY (IPF)
MIDIILE ROW : B - CYCLES PER PUISE (CPP)
MIDDIE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW : C INTERPULSE INTERVAI, (IPI)
Column: left - mean of element versus pulse number
MIDDLE: - SPECIES REGRESSION FOR EI.EMENT MEAN
right - regreision for bligmint in inilividual. song
ASTERISKS DENOTE SIGNIFICANT REGRESSION (SEE APPENDICES 6.1, 6.2 \& 6.3).

COLOUR KEY
HLUE $=$ FLY Y_{1}
$\mathbf{R E D}=\mathbf{F I} \mathbf{Y}_{2}$ I.IGHT GREEN = FLY

Figure 6.3 : Drosophila mauritiana Sweden: Song elements versus pulse position in burst

> TOP ROW : A - INTRAPULSE FREQUENCY (IPF)
> MIIDEE ROW : B - CYCLLES PER PULSE (CPP')
> BOTTOM ROW : C I INTERPULSE INTERVAL, (IPI)

COLUMN: 1,EFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDDIE - SPECIFS REGRESSION FOR ELAMENT MEAN
RIGHT - REGRESSION FOR ELEMENT IN INDIVIIDUAI, SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENIDICES 6.1, 6.2 \& 6.3).

Figure 6.4 : Drosophila mauritiana France : Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE FREQUENCY (IPF
BOTTOM ROW: C - INTERPULSE INTERVAL (IPI)
COLUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDDLE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INIDIVIIUUAI, SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).

Figure 6.5 : Drosophila mauritiana Indiana: Song elements versus pulse position in burst
TOP ROW: A - INTRAPUISE FREOUENCY (IPF)
MIDIDLE ROW: B . CYCLES PER PULSE (CPP) BOTTOM ROW : C - INTERPULSE INTERVAI,(IPI)

COIUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDIDE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIYIDUAI SONG
ASTERISKS DENOTE SIGNIFICANTT REGRELSIONS (SEE APIPENDICES 6.1, 6.2 \& 6.3),
either at the level of the individual songs, or the overall strain pattern compared to D. mauritiana Sweden (Figure 6.3). However, the CPP's and IPI's (Figures $6.4 \& 6.5-\mathrm{B}$ \& C: middle and bottom left) give a characteristic D. mauritiana pattern over a burst.

In D. sechellia (Figure 6.6), the CPP's and IPI's give the mauritiana-like pattern, but the IPF's decrease over the 10 pulses analysed, which is reflected in all 4 songs.

Summing up, the values of D. mauritiana CPP increase and IPI decrease over a burst. This is also found in D. sechellia. This can be contrasted with D. melanogaster and D. simulans, where IPI increases but non-significantly. Nonetheless, the IPF patterns are more variable within the D. mauritiana strains. However, without other D. melanogaster, D. simulans and D. sechellia strains, it is difficult to speculate whether the IPF trends are species-specific.

6.2 D. yakuba complex:

In D. teissieiri (see Figure 6.7A, B \& C), the various characters do not show much consistency, when the individual songs are examined. The overall regressions for all three elements (top-, second row- and bottom middle panels, respectively) show an increase in the course of the burst, even though these components behave differently in different individual flies (top-, middle- and bottom right-hand graphs, respectively). In D. orena France, the results are more consistent between songs with significant decreases in IPF and IPI, and a significant increase in CPP (Figure 6.8A, C \& B-top-, middle- and bottom-left panels). In D. erecta France, a reasonably consistent picture also emerges in songs with CPP and IPF showing little change, but IPI showing a significant decrease (Figure 6.9B, A \& C, respectively).

Since D. yakuba has two types of pulses-Thud and Clack, two sets of data were determined-(bursts examined, here, were either containing Thud or Clack pulses exclusively). In D. yakuba France, the Thud and Clack IPF decrease consistently over the course of a burst (Figure 6.10: top row). The Thud and Clack CPP give consistent increasing patterns in the two songs examined, whereas the Thud songs change only

COLOURKEY:

BLUE $=$ FLSY
REID $=\mathrm{FL} \mathrm{Y}_{2}$ LIGHT GREEN = FI.Y DARK RED $=$ FIS

Figure 6.6 : Drosophila sechellia Cambridge: Song elements versus pulse position in burst
TOP ROW: A - INTRAPULSE FREOUENCY (IPF)
MIDIDE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW:C - INTERPULSE INTERVAL (IPI)
Column: left = mean of element versus pulas number
MidDIE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL SONG,
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENIDICES 6.1, 6.2 \& 6.3).

Figure 6.7 : Drosophila teissieri Sweden : Song elements versus pulse position in burst
TOP KOW : A - INTRAPUISE FREQUENCY (IPF)
MIDIILE ROW : B - CYCLES PER PULSE (CPP) BOTTOM ROW:C - INTERPUISE INTERVAL, (IPI)

COLUMN: LEFT - MEAN OF ELEMENT YERSUS PUISE NUMBER
AIDIIE - SPECIES REGRESSION FOR ELEMENT MEAN
RIGHT - REGRESSION FOREIEMENT IN INIDIVIDUAL SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).

COLOUR KEX:
BLUE: $=$ FLI \mathbf{Y}_{1}
$\mathbf{R E D}=\mathrm{FL}_{\mathbf{Y}}$
LIIGHT GREEN = FI, \mathbf{Y}_{3}
DARK RED $=$ FLY Y_{4}
LIGHT BLUE $=$ FLI, \mathbf{Y}_{5}

COLOUR KEY
BL.UE $=$ FI. \mathbf{Y}_{1}
$\mathrm{REI})=\mathrm{H}, \mathrm{Y}_{2}$
I, IGHT GREEN = FI.Y
DARK RED $=\mathrm{FT}, \mathrm{Y}_{4}$

Figure 6.8 : Drosophila orena France: Song elements versus pulse position in burst
OP ROW: A - INTRAPULSE FREQUENCY (IPF)
MIDDLE ROW: B - CYCLES PER PULSE (CPP)
BOTTOM ROW: C • INTERPULSE INTERVAL (IPI)
COLUMN: L.EFT - MEAN OF ELEMENT VERSUS PUISE NUMBER
MIDILE - SPECIES REGRESSION FOR ELEMENT MEANS
kight - regression for eldement in inidividual song
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).

COLOUR KEX: BLUE $=\mathbf{F L} \mathbf{Y}_{1}$ $\mathbf{R E D}=\boldsymbol{H} \mathbf{L} \mathbf{Y}_{2}$ IIGHT GREEN $=$ FI, Y_{3} DARK RED $=$ FLT. $\mathbf{Y}_{\text {。 }}$ IJGHT BLUE = FI, \mathbf{Y}_{5}

Figure 6.9 : Drosophila erecta France: Song elements versus pulse position in burst
TOP ROW: A - INTRAPULSE PREOURNCY (IPF)
MIDDLE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW: C - INTERPULSE INTERVAL, (IPI)
COLUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDILE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL, SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENIDICES 6.1, 6.2 \& 6.3),

COLOUR KEY EED-CLACK LLOHT CREEN - TMUD DABK RED - CLACK,

Figure 6.10 : Drospplila yatuba France: Song elementa versues pulse poition in burst

TOP ROW : A - INTRAPULSE PREQUENCY (PPD
MIDDLE ROW: : CYCLES PER PULSE (CPP)
BOTTOM ROW : C - INTERPISEE INTERVAL IIF

COLUMN: LEFT - THLD PRLSE-TYPE
ECOND LEET - CLACK PULSE-TYFE

UCHT - CLACK AND THUD RECREMSON JOR ELEMENT IN INDIVIDUAL SONG
RIGHT - CLACK AND THUD RECRESBION FOR ELEMENT IN INDIVIDLAL SONG
OOTTE LNE CLACK PYOPESION INE
SOLID LINE- THED REGRESSION
slightly in this character (row B). Overall IPI values (row C), for Thud and Clack decrease, but only in Thud songs are the patterns consistent. In D. yakuba Ivory Coast (Figure 6.11), CPP show a consistent increase, for Thud and Clack. Again Thud IPI gives a decrease, as does Thud IPF (bottom-left). Clack is inconsistent for IPF and IPI. In D. yakuba Lamto3 (Figure 6.12), Thud gives a consistent decrease in IPF and an increase in IPI, while CPP for both song types are inconsistent, and Clack IPIs show some inconsistency (middle left and middle second left panels, respectively). D. yakuba Malawi (Figure 6.13), gives a strikingly consistent decreasing pattern in IPI, while the IPF, for both song types, show a slight decrease, and CPP show a significant increase, for Clack, and a less pronouced increase for Thud (top and middle rows, respectively). In D. yakuba S.T. (Figure 6.14), Thud IPI decreases, increases in CPP, while Thud IPF is stable. In Clack songs, for all three characters, a decrease ranging from slight in IPF, to a noticeable in CPP, to a significant more pronounced decrease in IPI is observed.

In all five D. yakuba strains, the IPF for Thud and Clack appears to be decreasing over the course of the burst, with the exception of S.T. Thud IPF, and D. yakuba Ivory Coast and Lamto3, which are increasing during the progression of a burst. With the exception of D. yakuba S.T., the Clack CPP are observed to increase in all the other strains, whereas the Thud CPP increase in most strains, except Lamto3. In all strains except D. yakuba Lamto3, the IPI for Thud decreases, and the Clack IPI is consistently decreasing over the course of a burst. Upon inspection of the data for intraspecific crosses (Figures 6.15-6.17), the Thud IPF falls slightly, the Thud CPP is seen to be generally increasing and Thud IPI usually falls, except in D. yakuba Malawi(f) x D. yakuba S.T.(m). The Clack CPP consistently rises, Clack IPF decreases, except in D. yakuba Lamto3(f) x D. yakuba Ivory Coast(m), and Clack IPI decreases, except in D. yakuba Malawi(f) x D. yakuba S.T.(m). Table 6.1 (below) shows a synopsis of the temporal changes in IPF, CPP and IPI for all the subgroup species-(for individual song results see Appendix 6.4).

The table 6.1, upon examination, reveals that of the members of the D. melanogaster complex, all of them show CPP increases as the burst develops. The IPI, in the D. mauritiana strains and D. sechellia are consistently decreasing, while in the
APr (H2)

BLUE $=$ THUD $_{1}$
RED $=$ CLACK $_{1}$ LIGHT GREEN = THUI, DARK RED) $=$ ClaACK $_{2}$
$\stackrel{\text { © }}{\mathbf{C P P}}$

position

postrion

postrion

Figure 6.11 : Drosophila yakuba Ivory Coust: Song elements versus pulse position in burst
TOP ROW: A - INTRAPULSE FREQUENCY (IPF)
MIMBIE: ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW: - INTERPUISE INTERVAI. (IPI)

COILMA: I.EFT - THUDPLISETTYE
SECOND LeFt - Clack pllagetypk
THIRI LEFT - SPECIES REGRESSION OF CLACK AND THUD FOR ELEMENT VERSUS POSITION OF PULSE IN BURST
right - Clack anid thud regiression for bilement in indivilual, song
asterisks dencte significant resiressions (see appendices 6.1, 6.2 \& 6.3
COLII LINE, THUD REGRESSION

Figure 6.12 : Drosophila yakuba Lamto3: Song elements versus pulse pesition in burst
TOP ROW: A - INTRAPUISE FREQUENCY (IPP)
MHBLEE ROW: B - CYCLES PER PULSE (CPP)
MOTTOM ROW: C - INTERPUISE INTERVAI. (IPP)

COLUMN: LEFT - THUDPLLSE-TYPE
SECOND IEFFT - CLACK PCLSE-TYPE
thirid Left - species regression of clack and thud for element versus position of puise in burst
RIGHT - Clack and thud reigression for element in individual. song
esterisks denote significant regiressions (SEE APPENDICES $6.1,6.2 \& 6.3$
OTTED LINE CLACK REGRLSSION LINE
SOLID LINE. THUD REGRESSION

TOP ROW: A - InTRAPLLSE F REQUENCY (IPF)
AHDLE ROW: B - CYCLES PER PULSE (CPP)
BotTOM ROW: C - INTERPULSE INTERVAL (IPI)
COLIMN: LEFT - THUD PLISETYPE
SECOND LEFT - CLACK PULSETYPE
third left - species retiression of clack and thud for element versus position of pulse in burst
right - Clack and thud regression for el.ement in individual song
ASTERISKS DENOTE SHGNIFICANT REGRESSIONS(SEE APPENDICES G. 0.2 \& 6.3)
OTTED LINE CLACK REGREXSION LINE
SOLID LINE- THUD REGRESSION
Pr (iiz)

$\underset{\text { U }}{\text { C }}$

Figure 6.14 : Drosophila yakuba S.T.: Song elements versus pulse in position in burst
OP ROW: A - INTRAPULSE YREQUENCY (IPF)
HOMIE ROW: B - CYCLLESPER PULSE (CPP)
GOTTOM ROW: C - INTERPULSE INTERVAI, (IPI)

COLUMN: LEFT - THCDPULSETYPE
second lert - Chack pelse-type
third left - species regression of Clack and thud for element versus position of pulse in burs
RIGHT - CLACK AND THUD REGRESSION FOR ELEMENT IN INDIVIUUAL SONG
ASTERISKS DENOTE SIGNIFICANT REGRLESIIONS (SEE APPENDICES 6.1. $6.2 \&$ 6.3).
DOTTED LIEE=CLACK REGRESSION LINE
SOLID IINE-THUD REGRESSION

Figure 6.15 : D. yakuba Malawi(f) x D. yakuba S.T.(m)-Hybrid: Song elements versus pulse position in burst
TOP ROW: A - INTRAPCLSE FREQUENCY (IPF)
MIDILE ROW: B - CYCLES PER PUISE (CPP)

COLUMN: LEFT - THLD PULSE-TYPE
SCOND IEET - CIACK PULSETYPE
thirin left - species rlgression of clack and thud for bi.ement versus position of pulas in burst
RIGHT - CLACK AND THUD REGRESSION FOR ELEMENT IN INDIVIDUAL SONG
LSTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3)
OOTTEID LINF= CLACK REGRFSSION IINE
SOL.ED LINE. THUD REGRESSION

Figure 6.16 : D. yelmba S.T.(1) I D. yetwhe Lamto3(m)-Hybrid: Song etements versus pule position in burst

TOP KOW : A - INTRAPULSE FRGCQUENCY (IPH) MIDDLE ROW : B - CYCLSS PER PULE (CPP)
BOTTOM ROW : C- INTERPULSE INTERVAL (IPD

COLUMN: LEET - THUDPULEETYPE
seondiert - CLCE PYRSM TYPE
 RIGHT - CLACK AND THUD REGRESHION FOR ELEMENT IN INDIVIDUAL SONG ASTERISKS DENOTE SIGNLFICANT REGRESSIONS (BEE APPENDICES A1, 6.2 \& 6.3).
OOTTED LINE- CLACK REGRESSION LINE
SOLID LINE THED REGRESSION

TOP ROW: A-INTRAPULER FREQUENCY APD

COLUMN: LETT - TRLD PULEETMPE
EECOND LETT - CLACK PULER TVPE

RIGAT - CLACE AND THED REGREMION FOR ELEMMNT IN INDIVDUNL SONG
DOTTED LNNE-CLACK REGRESSION LNE
SOLDD LINE THUD RECHESSHON
cases of D．melanogaster and D．simulans are constantly increasing，in the course of a burst．The IPF shows a more variable pattern．

Table 6．1：Synopsis of the temporal changes in IPF，CPP and IPI．

Species／Strain	Intrapulse Frequency （IPF）	Cycles per Pulse （CPP）	Interpulse Interval （IPI）
	Overall	Overall	Overall
melanogaster（Brighton）	\downarrow＊	†＊	\uparrow
simulans（Florida）	Slight \downarrow	\uparrow	\uparrow
mauritiana（Sweden）	\downarrow＊	†＊	\downarrow＊
mauritiana（France）	Slight \uparrow	\uparrow	\downarrow＊
mauritiana（Indiana）	†＊	\uparrow	\downarrow＊
sechellia（Cambridge）	\downarrow＊	†＊	\downarrow
teissieri（Sweden）	\uparrow	\uparrow	个＊
orena（France）	\downarrow＊	$\uparrow *$	\downarrow＊
erecta（France）	\downarrow	\uparrow	\downarrow＊
yakuba Strains	Thud Clack	Thud Clack	Thud Clack
France	\downarrow＊\downarrow＊	\uparrow ¢ $\uparrow *$	\downarrow 位 \downarrow
Ivory Coast	\downarrow	¢＊${ }_{\text {¢ }}$	$\downarrow * *$
Lamto3	\downarrow 佼	\downarrow $\uparrow *$	\downarrow \downarrow
Malawi	\downarrow \downarrow	\uparrow 个 \uparrow＊	$\downarrow^{*} \quad \downarrow^{*}$
S．T．	\uparrow \downarrow	\uparrow ¢ \downarrow	$\downarrow^{*} \quad \downarrow^{*}$
yakuba Intraspecific Hybrids			
Malawi（f）xS．T．（m）	\downarrow \downarrow	\uparrow $\uparrow *$	\uparrow \uparrow
S．T．（f）\times Lamto3（m）	\downarrow 洔	\uparrow \uparrow	\downarrow \downarrow
L．amto3（f）x Ivory Coast（m）	$\downarrow^{*} \quad \uparrow^{*}$	$\uparrow *$	\downarrow 位 \downarrow

KEY：$\uparrow=$ Increase，$\downarrow=$ Decrease，$*=$ Significant Regressions

On inspection of the members of the D ．yakuba complex，from Table 6．1， more variable patterns are observed．In all the 5 D．yakuba strains，as well as the 3 intraspecific hybrids，the Clack and Thud song IPI consistently decrease over a burst， except one；the CPP of the Clack and Thud songs show a consistent increase over a burst with one exception．Generally，the IPF for both Clack and Thud songs decrease，except in two and one，respectively．The D．orena and D．erecta IPF and IPI generally decrease and CPP increases，while in D．teissieri all three characters consistently increase．The behaviour of the D．teissieri IPF and IPI song components is unique and opposite to the other species of the D．yakuba complex．

6.3 Interspecific Hybrid Crosses:

The graphs of the individual types of interspecific genotypes, examined in this study, are shown in Appendix 6.5. Table 6.1.2 gives a synopsis of the temporal changes in IPF, CPP and IPI over the course of burst-(for all individual song trends see Appendix 6.6).

Table 6.2: Synopsis of the temporal changes in IPF, CPP and IPI of the interspecific genotypes

Interspecific genotypes	Intrapulse Frequency (IPF)	Cycles per Pulse (CPP)	Interpulse Interval (IPI)
	Overall	Overall	Overall
vakuba Framce($\mathrm{f} \times$ mauritiana France(m)	\downarrow	\uparrow	† *
rakubu Malawi(f)x muatritiana Sweden(m)	\downarrow	† *	\downarrow
vakuba France(f) x teissieri Sweden(m)	\uparrow	\downarrow	\downarrow
mauritiana Sweden(f) x yakuba Ivory Coast(Im)	\downarrow	\downarrow	\uparrow
mauritiana Sweden(f) x yakuba Lamto3(m)	\downarrow	\uparrow	\uparrow
simulans Florida(f) x mauritiana Sweden(m)	\downarrow *	\uparrow	¢*
teissieri Sweden(f) x muuritiana Sweden(m)	\downarrow	\uparrow	\downarrow

KEY: $\uparrow=$ Increase, $\downarrow=$ Decrease, ${ }^{*}=$ Significant Regressions

IPF:

In all interspecific crosses except one, the IPF shows a consistent decrease over the course of a burst. The IPF's in D. yakuba Malawi(f) x D. mauritiana Sweden(m), D. mauritiana Sweden(f) x D. yakuba Ivory Coast(m), D. mauritiana Sweden(f) x D. yakuba Lamto3(m), and D. simulans Florida(f) x D. mauritiana Sweden(m) show the same patterns as the parental strains (not informative). In D. yakuba France(f) x D. mauritiana France(m), IPF exhibits a yakuba-like pattern, suggesting either X chromosome influence or autosomal dominant yakuba factors, whereas in D. yakuba France(f) x D. teissieri Sweden(m), and D. teissieri Sweden(f) x D. mauritiana Sweden(m), the IPF's exhibit a teissieri-like and mauritiana-like patterns, respectively, implying the involvement of dominant D. teissieri and D. mauritiana autosomal factors, respectively.

CPP :

In the majority of the interspecific crosses the CPP consistently increases over the course of a burst, except in D. yakuba France(f) x D. teissieri Sweden(m) and D. mauritiana Sweden(f) x D. yakuba Ivory Coast(m). The CPP, except in the above mentioned interspecific crosses, exhibit the same patterns as their corresponding parental strains (not informative). Perhaps the decrease in the CPP, observed in D. yakuba
 Coast(m) may be a reflection of these hybrids being unfit (Haldane, 1922).

IPI :
In the majority of interspecific crosses, the IPI pattern consistently increase as a burst progresses, except in D. yakuba Malawi(f) x D. mauritiana Sweden(m), D. yakuba(f) x D. teissieri(m), and D. teissieri(f$) \times$. mauritiana (m). In D. yakuba
 the IPI patterns show a consistent increase over the course of a burst, which differ from their corresponding parental ones. Perhaps, the observed decrease in IPI in the parental strains may be a result of inbreeding depression. In D. yakuba France(f) x D. teissieri Sweden(m) and D. simulans Florida(f) x D. mauritiana Sweden(m), the IPI exhibits a yakuba-like and simulans-like patterns, respectively, suggesting either X chromosome involvement or dominant maternal autosomes. In D. mauritiana Sweden(f) x D. yakuba Lamto3(m) and D. teissieri Sweden(f) x D. mauritiana Sweden(m), the IPI exhibits a yakuba-like and a mauritiana-like patterns, respectively, suggesting the influence of D. yakuba and D.mauritiana dominant autosomal factors respectively. In D. yakuba Malawi(f) x D. mauritiana Sweden(m), the IPI behaves in the same way as both parental strains (not informative).

In conclusion, it is clear that the mode of inheritance for the overall trends for all three song components, over the course of a burst, is complex. There is evidence for autosomal dominance and, perhaps X chromosome involvement, depending on the type of cross. When $D . y a k u b a$ or D. simulans females are used, the IPI might either be under the influence of the X chromosome or corresponding dominant autosomal factors, whereas when D. yakuba or D. mauritiana males are used, the IPI's behave in a way which is consistent with dominant autosomal factors. When D. teissieri or D.
mauritiana males are used, the CPP patterns imply dominant autosomal influence, whereas when D. mauritiana females are used, the CPP's show a pattern which is consistent with either X chromosome or D. mauritiana dominant autosomal involvement. When D. teissieri or D. mauritiana males are used, the IPF's exhibit a pattern which is consistent with dominant autosomal factors, whilst when D. yakuba females are used, the IPF behaviour is observed to be either under X chromosome influence or show D. yakuba dominant autosomal effects.

6.4 Burst Duration and Interburst Interval over time

Byrne and Kyriacou (pers. comm.) have observed, in simulator experiments, that the burst length difference between D. mojavensis and D. arizonae males is a cue which females use as a species-specific cue for enhanced conspecific mating. This observation stimulated the ensuing investigation of the grosser aspects of temporal changes in the songs, in order to uncover any possible species-specific patterns that could be used by females for selecting conspecific mating. The procedures that had been followed in order to determine the Mean Burst Duration (mbd) and Mean Interburst Interval (mibi) for an entire song, as well as for the first and second halves of the songs are described in detail in Chapter 2. Briefly, the procedure involved was as follows:- Each song was divided into two equal halves and the length of each burst (burst duration, bd) measured in ms, and the distance between consecutive bursts (interburst interval, ibi) was measured in secs (see chapter 2). The rationale behind this exercise was simply to see whether there were any time-dependent changes in courtship intensity.

Kolmogorov-Smirnov and Shapiro-Wilks' tests are well-known tests which are suitable for small and large samples, respectively, and were employed, in order to test the normality of the data. Raw data and $\log _{[x]}$-transformation were employed, but the two categories of data gave approximately similar results with the two tests. Only a few samples were non-normally distributed. Thus, it was decided that the Raw datasets should be used for any further statistical analysis. In order to obtain the overall picture for any individual species, the first and second half values, and the overall mean \pm sem for each component were determined. The different strains within a species were treated as one entity.

On examination of the different species, most species were shown to have a shorter overall mbd and mibi for the first half of the song (mbd \mathbf{m}_{1} and mibi $_{1}$, respectively), while having longer mbd and mibi in the course of the second half of the song ($\mathbf{m b d}_{\mathbf{2}}$ and mibi $_{2}$, respectively), with the exception of D. simulans songs, where the converse was true. Figure 6.4.1 depicts the mbd and mibi (\pm sem) results for the first and second halves of song. Appendices 6.7, 6.8 and 6.9 give the results and a brief discussion of the individual songs for all the species and interspecific hybrid songs examined.

Two-way ANOVA, for mbd between the different species and their interspecific hybrids, revealed that there are significant differences between the species ($\mathrm{F}=8.87, \mathrm{df}=12,129, \mathrm{p}=0.000$), but no significant differences between the first and second halves of song ($\mathrm{F}=1.04, \mathrm{df}=1,129, \mathrm{p}=0.309$), and no significant interaction between the species and the two halves of song $(\mathrm{F}=0.339, \mathrm{df}=12,129, \mathrm{p}=0.980$, see Figure 6.4.2, below). Newman-Keuls a posteriori test revealed significant differences, at least at the $\mathrm{p}<0.05$, between $D . y a k u b a$ and the rest of the species. The test also revealed significant differences, at least at $\mathrm{p}<0.05$, between D. yakuba and, D. yakuba(f$) \times D$. mauritiana(m) and D. yakuba(f) x D. teissieri(m) hybrids, and between D. mauritiana and D. mauritiana(f$) \times D$. yakuba (m), but no significant differences between the hybrids and the paternal parents, implying that the mbd may be influenced by Y chromosome or dominant autosomal factors, since the hybrid mean mbd's have values similar to their corresponding paternal parents (see Appendix 6.10). In addition, the test revealed no significant differences between D. yakuba(f) x D. mauritiana (m), and its reciprocal cross (see Appendix 6.10). Furthermore, the test revealed no significant differences between the D. $\operatorname{simulans}(\mathrm{f}) \times \mathrm{D}$. mauritiana (m) and D. teissieri $(\mathrm{f}) \times \operatorname{D}$. mauritiana (m) hybrids and their corresponding parents. The hybrid mean values are slightly higher than their corresponding parental ones, suggesting hybrid vigour.

Genotype Effect
$\mathrm{F}(\mathbf{1 2 , 1 2 9) = 8 . 8 7 ;} \mathbf{p}<.0000$


```
KEY: yfts \(=\) D. yakuba France( \(f\) ) \(\times\) D. teissieri Sweden(m) tsms \(=\) D. teissieri Sweden(f) \(\times\) D. mauritiana Sweden(m) sfms \(=D\). simulans Florida(f) \(\times\) D. mauritiana Sweden(m) ymhyb \(=\) D. yakuba(f) \(\times\) D. mauritiana \((\mathrm{m})\)
myhyb \(=\) D. mauritiana \((\mathrm{f}) \times\) D. yakuba \((\mathrm{m})\)
```

Figure 6.4.2: MBD for the first and second halves of song between the different species of the melanogaster subgroup and their interspecific hybrids.

Two-way ANOVA for mibi between the different species and their interspecific hybrids, showed that there are significant main effects for the different genotypes $(\mathrm{F}=6.16, \mathrm{df}=12,129, \mathrm{p}=0.000$, see Figure 6.4.3: Top right panel). In addition, significant differences between the first and second part of song ($\mathrm{F}=15.81, \mathrm{df}=1,129$, $\mathrm{p}=0.000$, see Figure 6.4.3: Top right panel), as well as a significant interaction between the different genotypes and the first and second halves of song were revealed ($\mathrm{F}=3.86$, $\mathrm{df}=12,129, \mathrm{p}=0.000$, see Figure 6.4.3: Bottom panel, below). Examining Figure 6.4.3 (Bottom panel), it can be observed that the significant interaction involves D. simulans (red), D. sechellia (pink), and my-hybrid (D. mauritiana(f) x D. yakuba(m) (yellow and black)), where the mibi's are observed to decrease in the second half of the song, contrary to the overall trend.

> 2-way interaction
> $F(12,129)=3.86 ; p<.0000$

KEY: yfts $=\boldsymbol{D}$. yakuba France $(f) \times D$. teissieri Sweden(m)
tsms $=$ D. teissieri $\operatorname{Sweden}(\mathrm{f}) \times$ D. mauritiana Sweden(m) sfms $=D$. simulans Florida(f) \times D. mauritiana Sweden(m)
ymhyb $=D$. yakuba $(\mathrm{f}) \times$ D. mauritiana (m)
myhyb $=$ D. mauritiana $(\mathrm{f}) \times$ D. yakuba (m)
Figure 6.4.3: MIBI for the first and second halves of song between the different species and their interspecific hybrids.

Newman-Keuls a posteriori test for the two ibi halves of song between the members of the melanogaster subgroup are given in Appendix 6.11. Several significant differences were revealed. The test revealed significant differences between the two halves of D. simulans song and the respective halves of the D. $\operatorname{simulans}(\mathrm{f}) \times D$. mauritiana(m) hybrids, and no significant differences between the D. mauritiana second
half of song and those of the hybrids. The hybrid values are lower than both parental ones, suggesting hybrid vigour. The D. mauritiana two ibi halves are significantly different, at least at $\mathrm{p}<0.05$, from those of the D. yakuba(f$) \times D$. mauritiana (m), and D. mauritiana(f) x D. yakuba(m) hybrids (see Appendix 6.11), but no significant differences between the two D. yakuba halves of song and the corresponding hybrid halves. The hybrid values are intermediate betwen the parental ones suggesting autosomal control for the former cross, whereas for the latter cross the hybrid values are lower than both parental values suggesting hybrid vigour. Likewise, the test revealed that there were significant differences, at least at $\mathrm{p}<0.05$, between the two D. yakuba(f) x D. teissieri(m) hybrid halves and the corresponding parental values (see Appendix 6.11). The hybrid values are higher than the parental ones which implies that the hybrids were unfit (Haldane, 1922). In addition, significant differences were also revealed, at least at $\mathrm{p}<0.05$, between the D. tessieri $(\mathrm{f}) \times \mathrm{D}$. mauritiana (m) hybrid song and their corresponding parental values (see Appendix 6.11), but the hybrid values are intermediate between the parental ones, implying autosomal control. Moreover, Newman-Keuls a posteriori test between the D. yakuba(f$) \times D$. mauritiana (m) and their reciprocal hybrids revealed no significant differences (see Appendix 6.11).

In general, the differences in mbd and mibi, between the members of the D. melanogaster complex and their respective ibi's are less pronounced, than those of the members of the D. yakuba complex. The results offer further evidence that both mbd and mibi song components may be under autosomal control.

6.5 \% of courtship vigour index

In order to validate the results for the above exercise in terms of what they might mean in courtship, a $\%$ courtship vigour index was calculated. Briefly, the mbd for the entire song $\left(\mathbf{m b d}_{\mathbf{e}}\right)$ of song was divided by $\mathbf{m b d}_{\mathbf{e}}+$ the mean ibi for the entire song (mibi $_{\mathbf{e}}$). This determined the courtship vigour index for the song (vige ${ }_{\mathbf{e}}$. The resultant values were converted into a percentage and arcsin-transformation was employed to transform the data. One-way ANOVA of the arcsin-corrected \% vigour indices of song between the different species and their hybrids revealed significant
differences $(\mathrm{F}=9.12, \mathrm{df}=12,129, \mathrm{p}=0.000$-see Figure 6.5.1, below). Figure 6.5.1 shows that both D. melanogaster and D. yakuba have the highest \% vigour.

GENOTYPE Effect

GENOTYPE

$$
\begin{aligned}
\text { KEY: yfts } & =D . \text { yakuba France }(f) \times D . \text { teissieri Sweden }(\mathrm{m}) \\
\text { tsms } & =\text { D. teissieri } \operatorname{Sweden}(\mathrm{f}) \times \mathrm{D} . \text { mauritiana } \operatorname{Sweden}(\mathrm{m}) \\
\text { sfms } & =D . \operatorname{simulans} \text { Florida }(\mathrm{f}) \times \text {. } \text {. mauritiana } \operatorname{Sweden}(\mathrm{m}) \\
\text { ymhyb } & =\text { D. yakuba }(f) \times D . \text { mauritiana }(\mathrm{m}) \\
\text { myhyb } & =\text { D. mauritiana }(\mathrm{f}) \times D . \text { yakuba }(\mathrm{m})
\end{aligned}
$$

Figure 6.5.1: Arcsin-corrected \% courtship vigour between the various members of the D. melanogaster subgroup and their interspecific hybrids.

Newman-Keuls a posteriori test revealed significant differences, at least at $\mathrm{p}<0.05$, between D. yakuba and the rest of the member species of the melanogaster subgroup, except D. orena and D. melanogaster. The test also revealed significant differences, at least at $\mathrm{p}<0.05$, between D. yakuba, and the D. yakuba(f) $\times D$. teissieri(m) and D. yakuba(f) x D. mauritiana(m) hybrids (see Appendix 6.12). In the case of the former cross, the results imply D. teissieri dominant autosomal effects (the hybrid value is closer to that of D. teissieri, see Figure 6.5.1, above, and Table 6.5.1, below), whereas in the case of the latter cross, it is observed that the hybrid value is intermediate between the two parental ones, suggesting autosomal control (see Figure 6.5.1, above and Table 6.5.1, below). In the case of the D. simulans(f) x D. mauritiana(m), Newman-Keuls a posteriori test showed no significant differences between the hybrids and the parental species, with the hybrid value being closer to that of D. mauritiana, implying D. mauritiana dominant autosomal effects (see Appendix 6.12, Figure 6.5.1, above and Table 6.5.1, below). In the case of the D. mauritiana(f) $\times D . y a k u b a(\mathrm{~m})$ hybrids, the test
revealed no significant differences between the parental values and those of the hybrids, with the hybrid value being closer to that of D. yakuba suggesting either D. yakuba dominant autosomal factor involvement or Y chromosome involvement (see Appendix 6.12, and Table 6.5.1, below). No significant differences were revealed between D. mauritiana(f) x $D . y a k u b a(\mathrm{~m})$ and their reciprocal cross (see Appendix 6.12). Furthermore, the test also revealed no significant differences between the parental and the hybrid values, in the case of the D. teissieri $(\mathrm{f}) \times D$. mauritiana (m) hybrids, with the hybrid value being higher than both parental ones, implying hybrid vigour (see Appendix 6.12, Figure 6.5.1, above, and Table 6.5.1, below).

Species/Strain	Mean \pm sem of arcsin-corrected \% vigour for the entire song
melanogaster (Brighton)	$\mathbf{0 . 2 0 1} \pm 0.020$
simulans (Florida)	0.044 ± 0.007
mauritiana (Various strains)	0.069 ± 0.012
sechellia (Cambridge)	0.147 ± 0.022
teissieri (Sweden)	0.045 ± 0.010
orena (Various strains)	0.181 ± 0.021
erecta (Various strains)	0.067 ± 0.010
yakuba (Various Strains)	0.324 ± 0.031
Intraspecific Hybrids	
D. yakuba (f) xD. mauritiana (m)	0.145 ± 0.032
D. mauritiana (f$) \times$ D. yakuba (m)	0.250 ± 0.030
D. yakuba (f) xD. teissieri (m)	0.063 ± 0.007
D. simulans (f) xD. mauritiana (m)	0.067 ± 0.030
D. teissieri (f) xD. mauritiana (m)	0.085 ± 0.011

Table 6.5.1: The mean \pm sem for the arcsin-corrected $\%$ vigour for the entire song.

Upon examination of Table 6.5.1, the overall picture that emerges is that D. melanogaster and D. sechellia have the highest \% courtship in the melanogaster complex, whereas D. yakuba and D. orena have the highest \% courtship in the yakuba complex. Summing up, it is clear that the mode of inheritance for this song element may involve polygenic autosomal partially dominant factors.

The question of how many IPIs are presented to a female, in an IPI cycle, can now be tackled. The mean IPI cycle for each species (see chapters 3,4 and 5), was divided by the [mbd + mibi] (see Appendices 6.7, 6.8 and 6.9 for individual song mbd and ibi). This gives the number of bursts (NBC) per cycle. This was then multiplied by the mbd of each particular genotype to give the amount of pure pulse song present in an entire cycle (PSC). The PSC was then divided by the species-specific mean IPI for each
species, to give the number of IPI's per cycle (NIC-see chapters 3, 4 and 5). Table 6.5 .2 shows (below) the results of this empirical analysis.

SPECIES	MBD(ms)	MIBI(s)	$\begin{aligned} & \text { MEAN } \\ & \text { PERIOD (s) } \end{aligned}$	MEAN IPI (ms)	Number of bursts per cycle (NBC)	Total amount of Pulse Song in Cycle (PSC)	IPI in a Cycle (NIC)
melanogaster	397.504	1.64726	54.37	35.60	26.6	10.57	297
simulans	632.898	14.57126	47.99	53.34	3.16	1.99	37.5
mauritiana	432.456	9.476	39.69	38.05	4.00	1.73	45.5
sechellia	1065.361	10.1714	48.35	71.93	4.00	4.26	59.2
yakuba	1768.646	5.5973	63.18	117.76	7.34	12.98	110.2
teissieri	215.394	4.2208	71.96	28.02	16.22	3.49	124.7
orena	730.361	3.9828	46.82	48.44	9.93	7.25	149.7
erecta	968.569	15.018	45.48	47.01	2.84	2.75	58.5
INTERSPECIFIC HYBRIDS							
$\text { yakuba(f) } \mathrm{x}$ mauritiana(m)	700.713	6.3938	72.22	69.60	10.18	7.13	102.5
mauritiana(f) \mathbf{x} yakuba(m)	1673.747	5.4638	52.53	75.14	7.36	12.32	163.9
yakuba(f) x teissieri(m)	582.894	9.4086	56.92	64.76	5.70	3.32	51.3
simulans(f) x mauritiana(m)	674.862	7.2891	59.13	46.15	7.42	5.01	108.5
teissieiri(f) \mathbf{x} mauritiana(m)	514.262	6.3499	59.95	34.70	9.44	4.85	139.9

Table 6.5.2: The mbd, mibi, mean period, mean IPI, NBC and IPIs in a Cycle of the different species of the melanogaster subgroup and their interspecific hybrids.

As it can be seen from Table 6.5 .2 (above), D. melanogaster males present the highest number of IPIs in one entire cycle, from any of the other member species of the melanogaster subgroup. Within the yakuba complex, D. orena is observed to produce the most IPI's in an entire song cycle. On inspection of the pulse song production of the different hybrids, it can be seen that in the case of the D. mauritiana $(\mathrm{f}) \times D . y a k u b a(\mathrm{~m})$, and D. simulans $(\mathrm{f}) \times$ x . mauritiana (m) hybrids, the hybrid pulse song production (number of IPIs in an entire cycle) is seen to be greater than both parental values. The D. yakuba(f) x D. teissieri(m) hybrids produced far fewer IPIs than both parents, which suggests hybrid unfitness (Haldane, 1922). Taking into consideration that the mode of inheritance for the IPI's is autosomal, and that the song rhythm cycle is under X chromosome influence and, mbd and mibi is autosomal, we cannot draw too many conclusions from the D. yakuba(f) x D. mauritiana (m), and D. teissieri(f) $\mathrm{x} D$. mauritiana (m) hybrids. My initial idea, however, that the number of IPI's in a cycle might be a constant between species however, is clearly incorrect.

6.6 Discussion:

Differences in the courtship song elements in Drosophila are considered to play an important role in species sexual isolation, for two reasons: a) the absence of significant variation within species (Ewing and Bennet-Clark, 1968; Hoikkala, 1985; Cobb et al, 1990, Ritchie et al., 1994), and b) the occasional large differences observed even between closely related species (Kyriacou and Hall, 1980; Cowling and Burnet, 1981; Hoikkala and Lumme, 1987; Lee and Watanabe, 1987; Thackeray et al., 1990). Different species show different short-term fluctuation of behaviour for the three acoustic characters, under investigation, i.e., IPF, CPP and IPI, respectively, within a burst. Trends in acoustic elements between individual songs within the species, may sometimes vary, i.e., within a species, some trends (regression lines), when examining a particular song component, may either show a positive or negative tendency. For example, three songs may give two regression lines with a slight decrease, whereas the third one may show a strong positive trend, and the resultant overall species trend may conform to a strong positive regression line, 'masking' the behaviour of the former two. Therefore, only the most consistent patterns within a species are given any attention in this discussion.

The IPI of D. melanogaster and D. simulans increases over a burst. This concurs with Ewing's (1983) observations. On the contrary, the IPI of D. mauritiana and D. sechellia decreases in the course of a burst, and therefore, the IPI trend seems to be species-specific. Simulator experiments, with decreasing or increasing IPI's over a burst, could be carried out in order to test if indeed IPI trend behaviour is species-specific among the different members of the subgroup. On inspection of the members of the D. yakuba complex more variable patterns are observed. These differences could be a reflection on the phylogenetic relationships between the members of the melanogaster subgroup, which concurs with Lee and Watanabe (1987) and Cobb et al.'s (1990) findings. The D. teissieri IPF and IPI characters increase over the course of a burst, and these differ from the other three species in the yakuba complex. Since, D. teissieri lives in sympatry with D. yakuba, in the Afrotropical region (Tsacas, 1971; Burla, 1954), it is possible the differences obseved in both IPI and IPF may represent a case of character displacement (Grant, 1984; Schluter and McPhail, 1992; Schluter, 1994), which is the
exaggeration of species markers such as courtship rituals or song characters, in sympatric populations. In this way, the species barriers are reinforced and maintained. In the intraspecific D. yakuba Malawi(f) x D. yakuba S.T.(m) hybrids, the IPI for Clack and Thud songs consistently increases, which differ from both parental trends. Perhaps, a decrease in IPI over a burst, for the parental D. yakuba strains may be a result of inbreeding depression.

Examination of the overall temporal trends, for all three song characters, in interspecific hybrids (see Table 6.2), gave a complex pattern of results which is difficult to interpret. In the case of IPF, it is observed that generally this character may be under the influence of the X chromosome, but dominant autosomal factors can not be excluded in some interspecific crosses. The same can be stated for both CPP and IPI trends. Thus, the mode of inheritance of these three characters may be complex interaction between the X chromosome and autosomal factors.

Results for mbd and mibi for the member species within the melanogaster subgroup and their interspecific hybrids, revealed significant differences between the species, for these two characters. D. sechellia was observed to have the longest mbd among the members of the D. melanogaster complex, and D. yakuba among the member species of the D. yakuba complex, which could be a reflection on their long mean IPI's, compared to the other member species of the subgroup. Byrne and Kyriacou (pers. comm.) reported, on the basis of simulator experiments, that the burst length differences between D. arizonae and D. mojavensis may be a species-specific cue, which the females might use for enhanced conspecific mating. Whether or not mbd is a species-specific cue for the females of the member species of the melanogaster subgroup remains to be tested. A more variable picture emerges from examining the members of the D. yakuba complex. D. erecta has the longest mibi of the complex, which suggests, bearing in mind its short IPI (see Chapter 4 -section 4.3), that D. erecta males are the least vigorous courters, which is further supported by the fact that they produce the least number of IPIs, in an entire cycle (see section 6.5.). The differences in both mbd and mibi are far more obvious among the members of the D. yakuba complex, which could reflect upon their comparatively distant evolutionary relationship. Examining the interspecific hybrids produced among the members of the melanogaster subgroup gave further evidence as to
the mode of inheritance for mbd and mibi song elements. The results suggest that these two song characters are under autosomal control, but Y chromosome involvement could not be excluded.

The empirical analysis for the number of IPIs produced in an entire IPI cycle, revealed large differences among the members of the melanogaster subgroup. Within the melanogaster complex, D. melanogaster males produce the largest number of IPI's in an entire cycle, than any other of its sibling species. In general, the members of the yakuba complex produce more IPIs in an entire cycle than the members of the melanogaster complex, except for D. melanogaster.

Within the D. yakuba complex, D. orena males are observed to produce the largest number of IPIs in an entire cycle. The courtship vigour analysis showed that within the melanogaster subgroup D. melanogaster produce most IPI's in a complete cycle of song, which could be attributed to their longer adaptation to the laboratory environment (stock over 10 years), while the rest of the member species of the D. melanogaster complex seem to be poorly adapted to laboratory conditions, especially D. sechellia which is known to breed exclusively on fallen fruits of the maritime rubiaceous shrub Morinda citrifolia (Tsacas and Bächli, 1981). Within the yakuba complex, D. yakuba seems to be most well-adapted, and D. erecta the least-adapted to laboratory conditions, whose major breeding site is the fallen fruit of the tree Pandanus candelabrum in equitorial West Africa (Tsacas and Lachaise, 1974). Examing the interspecific hybrids it is apparent that the mode of inheritance of courtship vigour is under autosomal control. The D. teissieri(f) x D. mauritiana(m) hybrids show higher \% courtship vigour than both their respective parental ones, suggesting hybrid vigour.

In conclusion, examination of all the song components from the interspecific hybrids, in this study, revealed complex modes of inheritance for all the song elements. Another avenue that could be explored is to carry out a detailed investigation into the contributions of the various individual song elements and mating success. This could be achieved, by producing hybrid progeny between the different member species of the D. melanogaster subgroup, and examining the patterns of these song elements in the backcross hybrids that are viable. This sort of study would investigate further the genetic
bases for the phenotypic cues that may form a foundation for species discrimination, and could possibly give a further insight into speciation.

Locomotor activity rhythms in the melanogaster subgroup in constant darkness (DD).

CHAPTER 7

7. Locomotor activity rhythms in the melanogaster subgroup in constant darkness

(DD).

The chapters 3 and 4, and 5 described attempts to investigate ultradian period rhythms in the courtship songs of the member species of the melanogaster subgroup, and some of their interspecific hybrids, respectively, with varying success. Another common behavioural character to be examined for the presence of rhythms is the locomotor activity of individual flies. This locomotor activity character has been studied in a great variety of species, one of earliest examples being the house cricket, Acheta domestica (Lutz,1932).

The two most commonly studied aspects of locomotor activity are either under constant darkness (DD or "free-run") or artificial light/dark regimes (LD); while the former conditions will uncover the period of the endogenous circadian oscillator which controls activity, the latter can allow the detailed pattern of activity throughout the day to be investigated under light entrainment. Aside from the free-running period of the circadian locomotor activity, the daily pattern of activity, including the absolute level of activity, may be another aspect of behaviour under the influence of per (Petersen et al.,1988). This latter aspect is being dealt with in detail in Chapter 8. Although the locomotor activity rhythms of several Drosophila species have been examined and documented (Saunders, 1982), most of the species dealt with in this chapter were not included. Here I report on 'free-run' experiments in DD for all the member species of the D. melanogaster subgroup, several strains, and their interspecific hybrids, and an attempt is made to investigate any speciesspecific differences.

Males from each species/strain and interspecific hybrid genotype were monitored as described in Chapter 2 for 5-7 days, in constant darkness (DD) at $25^{\circ} \mathrm{C}$. The flies had been previously entrained in light/dark cycles (LD12:12) for 3 days (see Chapter 2). Initially, the activity data from each fly was analysed for circardian rhythmicity by an autocorrelation procedure (Chatfield, 1984). Spectral analysis was employed in order to obtain a more precise measure of the endogenous period (see Chapter 2). A fly was
considered to be rhythmic, if both analyses gave a consensus of rhythmicity (see Chapter 2). If no consensus rhythmicity was observed, the fly was considered arrhythmic.

Table 7.1 shows the total number of flies examined that survived the duration of the experiments (Column A). From these, the number of flies that had revealed significant autocorrelation and spectral analyses (Column B), and the number of 'arrhythmic' flies (Column C) are shown. Thereafter, a percentage of rhythmicity was determined (Column D). A mean period \pm sem for all the species/strains and interspecific hybrids was then determined (Column E). It can be observed that with the exception of D. sechellia, all other mean periods range from 24 to 24.5 h . However, it was observed that individual fly's free-running periods differ quite markedly within each species, for example, a range of $21.10-26.78 \mathrm{~h}$ in D. orena, and a range of $22.57-25.00 \mathrm{~h}$ in D. teissieri was observed. This prevents an overall picture of the daily pattern of activity from being assembled from the activity data of all the animals of each species. One way to solve this problem is to examine the activity of all the flies under light/dark cycles entrainment. Under these artificial conditions (dealt in Chapter 8), with instantaneous light to dark transitions and vice versa rather than the more gradual transitions that would occur in nature, all participating flies would be entrained to a 24 h cycle, which would allow the construction of a single plot by superimposition, giving the pattern of daily activity within that circadian cycle (see Chapter 8). Another way is to superimpose that data for each species for only a subset that exhibits identical periods. This is discussed in section 7.2.

7.1 Locomotor activity of the members of the D. melanogaster subgroup and their interspecific hybrids.

One-way ANOVA for the spectrally-determined periods of the various members species of the melanogaster subgroup and their hybrids revealed significant differences (see Figure 7.1.1). Newman-Keuls a posteriori test for the spectrally-determined periods of the various species/strains and hybrids revealed significant differences, at least at $\mathrm{p}<0.05$, between D. sechellia (shorter mean period), and the rest of the species (see

TABLE 7.1: Locomotor Activity:- \% of rhythmic flies in DD and their mean periods.

SPECIES/STRALNS	No. of flies examined (A)	Rhythmic flies (B)	Arrhythmic flies (C)	$\%$ of rhythmic flies (D)	$\begin{gathered} \text { Mean Period(h) } \\ \pm \text { sem } \\ \text { (E) } \\ \hline \end{gathered}$
melanogaster (Brighton)	31	30	1	85.71	24.45 ± 0.112
simulans (Florida)	22	21	1	95.45	24.03 ± 0.092
mauritiana (France)	54	42	12	77.78	24.15 ± 0.097
mauritiana (Sweden)	19	14	5	73.68	23.96 ± 0.111
mauritiana (MG17)	8	8	-	100.00	24.53 ± 0.405
mauritiana (Isofemale 72)	7	6	1	85.71	24.48 ± 0.344
mauritiana (Isofemale 105)	3	3	-	100.00	23.34 ± 0.491
mauritiana (Isofemale 152)	4	4	-	100.00	24.31 ± 0.297
mauritiana (Isofemale 197)	3	3	-	100.00	24.19 ± 0.302
sechellia (Cambridge)	57	52	5	91.23	23.16 ± 0.077
teissieri (Sweden)	34	18	16	52.94	23.94 ± 0.170
orena (France)	35	23	12	65.71	24.21 ± 0.242
erecta (France)	35	19	16	54.29	23.97 ± 0.189
yakuba (France)	54	35	19	64.81	24.06 ± 0.104
yakuba (Malawi)	12	11	1	91.67	23.90 ± 0.126
yakuba (Ivory Coast)	7	6	1	85.71	24.57 ± 0.280
yakuba (Lamto3)	15	11	4	73.33	24.39 ± 0.179
yakuba (Subtaome)	11	11	-	100.00	24.40 ± 0.232
yakuba (Japan)	6	5	1	83.33	23.85 ± 0.485
INTERSPECIFIC HYBRIDS					
yakuba France(f) x mauritiana France(m)	106	90	16	84.91	24.09 ± 0.054
yakuba Malawi(f) x mauritiana Sweden(m)	10	5	5	50.00	24.91 ± 0.711
yakuba Lamto3(f) x mauritiana Isofemale72(m)	9	8	1	88.89	23.79 ± 0.131
yakuba France(f) x teissieri Sweden(m)	5	4	1	80.00	23.25 ± 0.469
simulans Florida(f) x mauritiana Sweden(m)	8	7	1	87.50	24.35 ± 0.156
mauritiana Sweden(f) x yakuba Lamto3(m)	17	13	4	76.47	24.16 ± 0.208

Appendix 7.1). The test also revealed significant differences ($\mathrm{p}<0.05$), between the D. yakuba(f) \times D.teissieri(m) hybrid, and their corresponding parental periods, with the hybrid periods being shorter than those of the parents (see Appendix 7.1). Furthermore, the test revealed no significant differences between the D. yakuba $(\mathrm{f}) \times D$. mauritiana $(\mathrm{m}), D$. mauritiana(f$) \times D . \operatorname{yakuba}(\mathrm{m})$, and $D . \operatorname{simulans}(\mathrm{f}) \times D . \operatorname{mauritiana}(\mathrm{m})$ hybrids, and their corresponding parental species (see Appendix 7.1), with hybrid mean period values being slightly shorter, intermediate and longer than their corresponding parents, respectively (see Table 7.1).

Figure 7.1.1: Results for the spectrally-determined mean periods of the different species of the melanogaster subgroup and their interspecific hybrids.

SPECIES Effect

KEY :
$\mathrm{ymhyb}=D . \operatorname{yakuba(\mathrm {f})\times D.\text {mauritiana}(\mathrm {m})}$
myhyb $=D$. mauritiana $(\mathrm{f}) \times D$. yakuba (f)
$\mathrm{ythyb}=D$. yakuba $(\mathrm{f}) \times D . \operatorname{teissieri}(\mathrm{m})$
smhyb $=D . \operatorname{simulans}(\mathrm{f}) \times D$. mauritiana (m)

The analysis above pools all the strains within a species, and hybrid types together. One-way ANOVA of the spectrally-determined periods of the various strains used in the crosses, and their respective hybrids only, also revealed significant differences (see Figure 7.1.2). Newman-Keuls a posteriori test revealed significant differences ($\mathrm{p}<0.05$),
between the D. yakuba France(f) x D. teissieri Sweden(m) (Column K), and D. yakuba Malawi(f) x D. mauritiana Sweden(m) (Column H) hybrids, and their corresponding parental strains (Columns A \& E, and M \& N, respectively), with the hybrid mean periods being shorter, and longer respectively (see Appendix 7.2). No significant differences were revealed between the D. yakuba France x D. mauritiana France (m) (Column G), D. yakuba Lamto3(f) x D. mauritiana Isofemale 72(m) (Column I), D. mauritiana Sweden(f) x D. yakuba Lamto3(m) (Column J), and D. simulans Florida(f) x D. mauritiana Sweden(m) hybrids (Column L), and their corresponding parental strains (Columns A \& D, C \& B, N \& C, and F \& M, respectively, see Appendix 7.2). It is observed that none of the other hybrids revealed significant differences from their respective parental strains.

GENOTYPE Effect
$F(13,271)=2.28 ; p<.0074$

KEY:

A = D. yakuba France	G = D. yakuba France(f) \times D.mauritiana France(m)
$\mathrm{B}=$ D. mauritiana Isofemale 72	$\mathbf{H}=$ D. yakuba Malawi(f) \times D. mauritiana $\operatorname{Sweden(m)~}$
C= D. yakuba Lamto 3	$\mathrm{I}=$ D. yakuba Lamto3(f) \times D. mauritiama Isofemale 72(m)
$\mathrm{D}=$ D. mauritiana France	J = D. mauritiana Sweden(f) x D. yakuba Lamto3(m)
$\mathrm{E}=$ D. .teissieri Sweden	K = D. yakuba France(f) x D. teissieri Sweden(m)
$\mathrm{F}=$ D. simulans Florida	$\mathbf{L}=$ D. simulans Florida (f) \times D. mauritiana $\operatorname{Sweden}(\mathrm{m})$
M = D. yakuba Malawi	
$\mathrm{N}=$ D. mauritiana Sweden	

Figure 7.1.2: Results for the spectrally-determined mean periods of the different parental strains and their corresponding interspecific hybrids.

One-way ANOVA for the spectrally-determined periods within the different D. yakuba and D. mauritiana strains also revealed no significant differences $(\mathrm{F}=1.777, \mathrm{df}=5,73$, $\mathrm{p}=0.128$, and $\mathrm{F}=1.452$, $\mathrm{df}=6,68, \mathrm{p}=0.207$, respectively). Summing up, D. sechellia gives a shorter period, but the hybrids do not shed any light as to the paternal or maternal contributions to the determination of the period, because the maternal and paternal values are so similar.

7.2 Locomotor activity profiles of the different members of the melanogaster subgroup, various D. mauritiana and D. yakuba strains, and their interspecific hybrids.

Since individual flies from the different species/strains and interspecific hybrids show a range of periods, a general overview of the locomotor activity profiles of the different genotypes and statistical analysis is difficult. If a significant number of flies showing the same period from all genotypes could be found, the data could be superimposed, thus allowing a detailed investigation of the DD activity profiles to proceed. Unfortunately, no one particular set of data with the same period provided adequate number of flies in order to carry out any meaningful statistical analysis. The only way to gain a general overview was to standardise the data in such a way, so that some sort of comparison could be achieved. How the data were standardised is described in more detail in Chapter 2. Briefly, the standardisation procedure allows the comparison of DD data which has been wrapped into different periods, but as the data is no longer independent, formal statistical analysis is not attempted. Data recording was initiated at CT21, 9 h after the last lights-off which was at CT12.

D. melanogaster complex:

D. melanogaster is characterised by a unimodal pattern activity, with the 'subjective morning'peak being maintained into the evening at CT24, with a slight fall in
activity during the day and night (see Figure 7.2.1: Top left panel). D. simulans shows a similar profile, with the evening slightly later at CT35, which is followed by a fall in activity during the night which gradually increases as daytime approaches (see Figure 7.2.1: Top second left panel). Furthermore, it shows an unusual short-lived burst of increased activity at CT30. D. sechellia is characterised by a strong 'subjective evening' peak (see Figure 7.2.1.: Top third left panel) at CT35, followed by a rapid fall in activity, which is sustained throughout the 'subjective night'; the 'subjective morning' peak is not pronounced at all, but a rather gradual increase in activity is seen, as seen in D. melanogaster. D. mauritiana is characterised by a more bimodal pattern of activity (see Figure 7.2.1: Top right panel), with slight morning (CT25) and evening (CT34-35) peaks, but with generally high activity levels during the day and low activity during the night. In addition, D. mauritiana is observed to be less active compared to the othe members of the melanogaster complex.

D. yakuba complex:

D. teissieri (see Figure 7.2.1: Bottom left panel) shows both strong 'subjective' morning (CT25-26) and evening (CT34) peaks, with reduced activity during the night. D. crecta (see Figure 7.2.1: Bottom second panel) reveals a more pronounced evening than morning peak at CT33-34 and CT22 respectively, which is followed by a fall in activity during the night, and a gradual increase of activity as daytime approaches. D. orena (see Figure 7.2.1: Bottom third left panel) also shows a bimodal profile, with a pronounced evening peak at CT33, followed by a sudden fall in activity which is sustained at low levels during the night. This is followed by a small increase of activity at CT24, which signifies the morning peak. D. yakuba (see Figure 7.2.1: Bottom right panel) shows less pronounced morning and evening peaks, high activity levels during the day and a fall in activity during the night. D. yakuba is the most active species within the D. yakuba complex.

In summing up, the D. melanogaster complex shows a unimodal pattern of locomotor activity, whereas the members of the D. yakuba complex exhibit bimodal activity profiles, except $D . y a k u b a$. D. yakuba has a broader evening peak, whereas the other sibling

Figure 7.2.1: Locomotor Activity Profiles of the members of the \boldsymbol{D}. melanogaster subgroup, in DD, after standardisation of the data
KEY:
The CT regime is shown below the graphs.
CT24 $=$ Lights -0 n
CT36 $=$ Lights-Of
CT21 = Data collection commencement
species in the yakuba complex exhibit sharper and more transitory evening peaks. In addition, D. melanogaster is seen to be the most active, whereas D. erecta and D. orena are the least active species.

D. mauritiana strains:

I also examined the different D. mauritiana strains in search of intraspecies heterogeneity. All the D. mauritiana strains show a slight bimodal pattern of locomotor activity (see Figure 7.2.2), with reduced activity during the night, and a small burst of activity around the subjective light transitions. As it can be seen from Figure 7.2.2, there is some heterogeneity in the activity levels. All the strains which had reasonable n's (≥ 8) showed levels of activity around the evening peak (CT36) that are higher than around the morning peak. Considerable variation in the free-running periods between different individuals within the Isofemale 152, 197 and David 105 strains, in conjunction with their small sample sizes may have contributed to the large sem's observed in these strains. However, D. mauritiana France, Sweden and Isofemale 72 exhibit almost identical patterns, with similar activity levels.

D. yakuba strains:

In general, all the D. yakuba strains (see Figure 7.2.3) are characterised by a broad peak of activity, with no strongly defined morning and evening peaks. The Malawi, Lamto3 and Ivory Coast strains (Figure 7.2.3: Top centre, Top right and Bottom left panels, respectively) show no pronounced morning and evening peaks, and varying levels of activity during the night and daytime. The Japan and Subtaome strains (Figure 7.2.3: Bottom centre and right panels, respectively) show some phase-delay of their morning activity levels at CT28-29 and CT28 respectively, and little activity during the night. It is clear that variation, apart from the slightly different levels of activity observed between the different strains, there not much heterogeneity in the activity profiles of the D. yakuba strains.

Figure 7.2.3: Locomotor Activity Profiles of the different D. yakuba strains, in DD, after standardisation of the data.
KEY:
The CT reigime is shown below the graphs.
CT24 = Lights-On
CT36 = Lights-Off
CT21 = Data collection commencement

Consequently in both D. mauritiana and D. yakuba, the general lack of intraspecific variation suggests that species-specific patterns of locomotor behaviour are reasonably robust.

Different species and their interspecific hybrids:

Figure 7.2.4 depicts the various parental strains (Top graph for the female and Bottom graph for the male parents) and their respective interspecific hybrids (Middle graphs).

The D. yakuba France(f) x D. mauritiana France(m) (Figure 7.2.4: Column A, Middle left panel) hybrids show an overall activity profile that is similar to both parents. The rise in activity at \approx CT30 resembles the paternal parent, as does the burst of morning activity around the time of the subjective transition to lights-on.

The D. yakuba Malawi(f) x D. mauritiana Sweden(m) hybrids (Figure 7.2.4: Column B, Middle second left panel) shows slightly higher levels of activity than both parental strains which may suggest hybrid vigour. The overall pattern of activity resembles the paternal pattern, with a definite evening peak. However, because the sample size of these hybrids is small, these results should be considered with some caution.

The D. yakuba Lamto3(f) x D. mauritiana Isofemale 72(m) hybrids (Figure 7.2.4: Column C, Mddle third left panel) shows an overall pattern of activity that resembles that of the paternal parent, as well as similar levels of activity, and having a pronounced evening peak at CT32-33 resembling that of the paternal participant, and a morning peak at CT25 also resembling the paternal parent.

The D. yakuba France(f) x D. teissieri Sweden(m) hybrids (Figure 7.2.4: Column D, Middle fourth left panel) show an overall pattern of activity that is different from those exhibited by both parents. There is a burst of an evening surge of activity which also

resembles the paternal parent. Because the hybrid sample size is small, these results must be treated with caution.

The D. simulans Florida(f) x D. mauritiana Sweden(m) hybrids (Figure 7.2.4: Column E, Middle fifth panel) show a typical simulans-like activity profile overall, with their evening peaks in phase with the maternal parent at CT33-34, and also exhibit a more pronounced fall in the activity during the night and a less pronounced morning peak resembling the maternal participant.

The D. mauritiana Sweden(f) x D. yakuba Lamto3(m) hybrids (Figure 7.2.4: Column F, Middle right) exhibit an overall activity profile, relative activity levels, relative fall in activity during the night, and pronounced evening peak at CT 35 (albeit slightly phasedelayed) similar to that of the maternal parent. However, the less pronounced morning peak resembles the paternal parent.

In short, the hybrid activity patterns, in their majority, tend to follow the paternal parent, particularly when D. mauritiana contributes the father. The D. mauritiana pattern appears to dominate that of D. yakuba (Columns A, B \& C). When D. mauritiana is the maternal participant, the hybrid pattern is similar to that of D. mauritiana (Column F). Consequently, the D. yakuba x D. mauritiana reciprocals (Columns A, B, C \& F) clearly reveal an autosomal control, with D. mauritiana carrying the dominant factors. Similarly, the D. teissieri pattern seems to be dominant to D. yakuba (Column D), whereas D. simulans is dominant to D. mauritiana (Column E). However, in other aspects of activity, such as the relative amounts of activities around the morning and evening peaks, maternal or paternal dominance is-, suggesting again probably autosomal involvement.

7.4 Discussion:

Not surprisingly, all eight species, various strains and interspecific hybrids revealed circadian rhythmicity during the free-run experiments. The maintenance of circadian behaviour, despite the lack of environmental cues, is a demonstration of the existence of an endogenous oscillator. With the exception of D. sechellia which has a period of $\sim 23 \mathrm{~h}$, the periods of the rest of the species of the melanogaster subgroup are close to 24 h . With the exception of the D. yakuba France(f) x D. teissieri Sweden(m) hybrids, which exhibit short periods of $\sim 23 \mathrm{~h}$, which are outside the range of both parents, all the other interspecific hybrids exhibited circadian periods of 24 h . The mean period value of the hybrid, was usually intermediate, and not significantly different from the parental values, suggesting autosomal control. This is surprising given the influence of the sex-linked per on the circadian period (Konopka and Benzer, 1971; Petersen et al., 1988). However, several autosomal genes are known to affect the circadian period (see below).

Another feature often observed in circadian rhythm studies, is that a proportion of individuals are arrhythmic. Species like D. teissieri, D. orena, and D. erecta are observed to have as many arrhythmic flies compared to rhythmic ones (see Table 7.1). A possible explanation for this could be that these individuals are the least active animals, with only a few events scored per bin, rendering the statistical analysis susceptible to small n's. However, this simplistic explanation is incorrect due to the fact the most of the arrhythmic animals are highly active. A more plausible explanation might involve the multioscillatory nature of rhythmicity (e.g., Saunders, 1982), whereby the oscillator spontaneously 'splits-up' into two or more independent components, with different periods during lengthy DD or LL (constant illumination) experiments. This was first described by Pittendrigh (1960) studying the activity patterns of the arctic rodent Spermophilus undulatus, during extended LL conditions. Therefore these hypothetical multioscillators could have become uncoupled in the arrhythmic flies generating the apparent arrhythmicity.

Although rigorous statistical analysis could not be carried out due to the standardising of the raw data, some useful information on the overall activity profiles of the different species and interspecific hybrids could be drawn. With the possible exception of D. mauritiana, all the other species in the melanogaster subgroup showed broad levels of activity during the daytime with no morning or evening peaks, as shown in LD (see Chapter 8, Startle responses). D. sechellia gives the most pronounced evening peak, amongst the subgroup. The patterns of activity of the D. yakuba complex are quite different with D. teissieri and D. erecta showing prominent morning and evening peaks, whereas D. yakuba has a more melanogaster-complex profile. Two species that live in sympatry in the Afrotropical region, D. teissieri and D. yakuba (Tsacas, 1971; Burla, 1954), show distinctly different patterns of locomotor activity behaviour. This may represent an example of character displacement caused by reinforcement, in order to prevent sterile interspecific hybridisation (Grant, 1984; Schluter and McPhail, 1992; Schluter, 1994, see Chapter 9). Examination of the various D. mauritiana and D. yakuba strains revealed little heterogeneity in the overall activity profiles of the different strains. Consequently, there is some justification in assuming that the patterns observed are species-specific.

A more detailed inspection of the interspecific hybrids and the corresponding parental strains gave some evidence as to the mode of inheritance of the locomotor activity patterns. When D. mauritiana was used as the paternal or maternal participant in crosses with D. yakuba (see Figure 7.2.4: Column F), the hybrid pattern of activity was mauritiana-like, which implies autosomal dominant genes in D. mauritiana. However, D. simulans was dominant to D. mauritiana, and although the D. simulans contributed the mother, the results from the D. yakuba x D. mauritiana reciprocal crosses could suggest that this may not be due to sex-linkage, but to dominant autosomal D. simulans factors.

Given the general lack of maternal influence in the hybrids, these results are not consistent with the sex-linked per locus having a significant influence over the activity patterns. This directly contradicts Petersen's (1988) and Hennessey's (pers. comm.) work on D. melanogaster and D. pseudoobscura patterns. In these experiments, the per gene of D.
pseudoobscura was transformed into D. melanogaster per ${ }^{0}$ hosts, with the transformed flies showing typical pseudoobsura activity profiles. So, what could have caused this discrepancy? A possibility could be that sex-linked genes may have evolved further than the autososomal ones, because the effective population size of the X is smaller than the autosomes, and as the X chromosome is hemizygous and lacks recombination in one sex accumulates some evolutionary changes faster than do the autosomes (Charlesworth et al., 1987; Coyne and Orr, 1989; Charlesworth, 1991). Thus, between distantly related species such as D. pseudoobscura and D. melanogaster sex-linked per locus variation may have gone to fixation earlier (in phylogenetic terms) than autosomal variation. Consequently, between more closely related species such as the species in the melanogaster subgroup, autosomal variation may reflect more recent divergence. Several autosomal loci are known to affect circadian length, such as psi-2, psi-3 and gate (Jackson, 1983), and timeless (Seghal et al., 1994). Any species-specific variation at these loci could conceivably generate the results observed here. An interesting line of investigation might be to examine the activity profiles of D. melanogaster transformants that carry the cloned tim gene (Gekakis et al., 1995; Myers et al., 1995) of the other species, as in the experiments performed by Petersen et al. (1988) and Wheeler et al. (1991). In this way the candidate loci could be identified.

A more detailed examination of the circadian locomotor activity patterns of the different species/strains and interspecific hybrids is provided in the ensuing Chapter 8, where the activity profiles are examined in light/dark (12:12 LD) conditions.

Locomotor activity patterns of the different members of the melanogaster subgroup and their interspecific hybrids.

CHAPTER 8

8. Locomotor activity patterns of the different members of the melanogaster subgroup and their interspecific hybrids.

Circadian rhythmicity exists in nature to anticipate daily environmental fluctuations. One of the most intensively investigated circadian systems is that of eclosion of D. pseudoobscura (Pittendrigh, 1960; 1974), and D. melanogaster (Konopka and Benzer, 1971). While the free-running conditions reveal the endogenous periods of the oscillators which control locomotor activity, artificial light/dark cycles (LD) provide an opportunity to identify any finer details in the patterns of activity throughout the day. Wild type D. melanogaster flies, in light:dark (LD) conditions demonstrate a bimodal pattern of activity, being most active at dawn and dusk, with morning and evening bursts of activity commencing a few hours before lights-on and lights-off respectively (Petersen et al., 1988; Hamblen-Coyle et al., 1992). Konopka and Benzer (1971) identified the period (per) locus in Drosophila, as being responsible for controlling the period of locomotor activity cycles in D. melanogaster. The effects of the per mutations on the locomotor activity patterns of D. melanogaster in LD conditions have been thoroughly studied. The per mutation is observed to delay the onset of the evening peak, while the $\mathrm{per}^{\mathrm{s}}$ mutation is seen to advance the evening peak in LD (Dushay et al., 1990; Hamblen-Coyle et al., 1992; Konopka et al., 1995). On the contrary, the morning peak seems relatively inert in these mutations. In addition, the original per^{01} arrhythmic allele tends to be more active during lights-on than lights-off, with activity changing in response to, rather than in anticipation of the light transitions (Petersen et al., 1988; Hamblen-Coyle et al., 1989).

Here, I report on the patterns of locomotor activity demonstrated by the various member species of the D. melanogaster subgroup, as well as by their interspecific hybrids, in LD conditions (see Chapter 2). Briefly, adult males from each of the eight species, various strains and interspecific hybrids were monitored for 5-7 days in a regime of 12 h light/ 12 h dark (LD12:12), at a constant $25^{\circ} \mathrm{C}$ (see chapter 2), and a synopsis of these is given in Appendix 8.0.

8.1 Overall patterns of LD activity

Figure 8.1.1 shows that although broadly similar in shape, with reduced activity during lights-off ('subjective night') compared to lights-on ('subjective day'), and the majority of activity around the two light/dark transitions ('subjective dusk and dawn'), some interesting differences are evident between the 8 panels, which depict the results from the different species. The various D. yakuba and D. mauritiana strains have been pooled. The 'evening' peaks are higher than the corresponding 'morning' peaks in D. melanogaster, D. simulans, D. erecta and D. orena, whereas in D. sechellia, D. mauritiana, D. yakuba and D. teissieri the converse is true . D. melanogaster is observed to be the most active of the species, while D. erecta is the least active species as shown by the mean number of recorded events per time bin.

D. melanogaster complex:

D. melanogaster is characterised by a bimodal pattern, with the 'morning' peak of activity present within 2 h , after lights-on, followed by a fall in activity through the middle part of the subjective day. Several hours before lights-off, the activity increases, in clear anticipation of the subsequent LD transition. Maximum activity includes the 'startle' response to the lights-off signal, and thereafter activity falls steadily throughout the night (Figure 8.1: Top left panel). D. simulans (Figure 8.1: Top second left panel) demonstrates the same bimodal pattern seen in D. melanogaster. Increased activity in anticipation of lights-on begins roughly $\sim 2 \mathrm{~h}$ before the lights-on signal, with activity reaching its maximum $\sim 30 \mathrm{mins}$ after lights-on. At ZT2, there is an abrupt drop in activity, which is maintained at a low level, before a sudden burst of increased activity at ZT10 anticipating lights-off, before activity falls to a low night level. D. sechellia (Figure 8.1: Top third left panel) shows more pronounced diurnal activity, with virtually no night activity. There is a sudden burst of activity $\approx 2 \mathrm{~h}$ before lights-off (ZT10), which is maintained for 1-2 h in the night phase (ZT13-14), before falling to a low level during the day. Activity increases $\sim 2 \mathrm{~h}$ before the lights-off signal. D. mauritiana (Figure 8.1: Top right panel), like the rest of the species of the melanogaster subgroup, exhibits a bimodal pattern of activity. The activity begins to increase at ZT22,

Figure 8.1 : Locomotor activity of members of the melanogaster subgroup in LD 12:12.

KEY: The ZT regime is given below the graphs
Night Activity is shaded
reaching its maximum ~ 30 mins before lights-on, in clear anticipation of the oncoming lightson transition, after which there is an abrupt decrease of activity. This low activity pattern is maintained throughout the daytime, until ZT12 when there is a burst of activity in clear anticipation of the oncoming lights-off signal, after which the activity drops to a relative low level which is sustained throughout the night. The D. mauritiana activity (described in greater detail in section 8.2) is an amalgamation of activities from 11 different strains, which could explain the observed large sem's.

D. yakuba complex:

D. teissieri (Figure 8.1: Bottom left panel) shows a gradual increase of activity $\sim 3 \mathrm{~h}$ before lights-on, which reaches its maximum $\sim 2 \mathrm{~h}$ into lights-on (ZT2). Thereafter, the activity falls and is sustained at a low level. Anticipation of lights-off begins a few hours before the ZT12. The activity continues to fall gradually after the lights-off transition and is maintained at low levels during the night. In D. erecta (Figure 8.1: Bottom second left panel) activity (smallest amount) increases sharply 2 h before the lights-on transition. Activity falls at ZT2, and this pattern is sustained until $\sim 2 \mathrm{~h}$ before lights-off. The 'evening' peak is delayed slightly into the dark phase, followed by a gradual decay of activity until ZT14, then the activity drops and is sustained at a low night-time level. D. orena (Figure 8.1: Bottom third left panel) shows very little activity overall. There are two bursts of activity, one comes just before lights-on and the other $\sim 2 \mathrm{~h}$ before lights-off (4 bins). The 'evening' peak is higher than the 'morning' peak. Thereafter activity ceases. D. yakuba (Figure 8.1: Bottom right panel) also shows a bimodal pattern of activity. There is a gradual increase of activity during the lights-on transition reaching a maximum $\sim 1 \mathrm{~h}$ (ZT1) into the 'day'. The high level of activity is sustained throughout the 'day', contrasting with the rest of the member species of the subgroup, and which is maintained for $\sim 1 \mathrm{~h}$ (ZT13) into the dark phase. Thereafter, the activity falls to a lower 'night' level which is maintained throughout the night. The large sem's observed could be due to the fact that the D. yakuba activity presented here is an amalgamation of the activities from 10 different strains (described in greater detail in section 8.3).

Other Indices: Total Activity, Day Activity, Night Activity, Night/Day Activity Ratio, Startle-On and -Off, and Anticipation-Off and -On Responses.

Subgroup: Various other indices were calculated and their mean values appear in Appendix 8.0. The indices are described in Chapter 2.

Figure 8.1.2: Results for Total, Day, Night Activity, Night/Day, Startle-On, Anticipation-Off, Anticipation-On and Startle-Off responses of the members of the melanogaster subgroup (see Table 8.1 for data).

One-way ANOVA between the above mentioned species for total amount of activity (TA, Column 1 in Table 8.1) showed significant differences ($\mathrm{F}=2.78, \mathrm{df}=7,692$, $\mathrm{p}=0.007$, see Figure 8.1.2: Panel 1, above). Furthermore, all the other indices gave significant F-ratios (see Figure 8.1.2, and Appendices 8.1a-f), except the Night/Day ratio. The most striking observations are that D. erecta and D. orena exhibit the least activity throughout the day (see Figure 8.1.2: Panel 2), although the night/day ratios of these species
do not differ significantly from those of the other species. In addition, D. orena shows no startle-on response, but exhibits the largest anticipation-off response. D. sechellia shows the greatest anticipation-on and the smallest startle-off responses (ANOVAs and Newman-Keuls a posteriori test results can be found in Appendices 8.1a-f). Within the melanogaster complex, D. sechellia is the one that shows different behaviour, whereas D. erecta and D. orena exhibit the more unusual activity patterns in the yakuba complex.

8.2 Locomotor activity in Light/Dark cycles of the different D. mauritiana strains.

The various D. mauritiana strains are all characterised by a bimodal pattern of activity (Figure 8.2). With the exceptions of D. mauritiana MG71, Isofemale 102, Isofemale 197, and MD 75 strains, the 'evening' peaks are higher than the 'morning' ones. All strains show relatively low levels of activity both during day- and night-time, as compared to D. melanogaster, with the maximum recorded activity around the two transitions.

One-way ANOVA, for the various indices revealed no significant differences for the total, day and night activities (see Figure 8.2.2: Panels $1,2 \& 3$, below), but the F-ratios for all other indices were significant (see Panels 4-8, Figure 8.2.2, and Appendices 8.2a-e). It is clear that the Indiana and MG71 strains (see Figure 8.2), by having their 'evening activity peaks delayed into the night (ZT13, lights-off) will have an effect on the Night/Day activity ratio (see Figure 8.2.2: Panel 4). For the startle and anticipation indices, there are various significant differences (see Appendices 8.2a-e) between the strains, and so some heterogeneity in behaviour within the species can be observed. However, the significant differences are usually caused by either one or two strains showing higher deviation from the rest of the strains, e.g. in the anticipation-off (see Figure 8.2.2: Panel 6), the Isofemale 152 strain exhibits an atypically high anticipation response to the light-off transtion.

Figure 8.2 : Locomotor activity of the different D. mauritiana strains In LD 12:12.
KEY: The ZT regime is given below the figures
Night Activity is shaded

Figure 8.2.2: Results of ANOVA for all the indices between the different D. mauritiana strains, under examination.

8.3 Locomotor activity in Light/Dark cycles of the different D. yakuba strains.

The various D. yakuba strains are all characterised by a bimodal pattern of activity (Figure 8.3). With the exceptions of D. yakuba France, Ivory Coast, Indiana, and EL8 strains, the 'morning' peaks are higher than the 'evening' ones. All strains show low levels of activity during daytime, while the night-time activity is sustained at even lower levels than daytime activity, with the maximum recorded activity around the two transitions, e.g., lights-off-to-on and lights-on-to-off transitions. The most unusual profile is that of D. yakuba S.T., with its trimodal pattern which indicates a burst of activity in the middle of the night phase.

Figure 8.3: Locomotor activity profiles of the different D. yakuba strains in LD 12:12
KEY: The ZT regime is shown below the graphs.
Night Activity is shaded

One-way ANOVA for total and night activities, between the various D. yakuba strains showed no significant differences (see Figure 8.3.2: Panels 1 \& 3 respectively, below), whereas all the other indices gave significant effects (see Figure 8.3.2: Panels 2 \& 48). Newman-Keuls a posteriori test results are shown in Appendices 8.3a-e, but a simple visual inspection of the Figure 8.3.2 reveals major differences in the data between the various strains. Again, as in D. mauritiana, it is clear that there is heterogeneity between strains in their behaviour.

Figure 8.3.2: Results for ANOVA for all the indices between the different strains of D. yakuba.

Summing up, for the latter two sections, it is clear that there is some intraspecies heterogeneity within both the D. mauritiana and D. yakuba strains, which must temper any conclusions about the species-specific aspects of the LD activity patterns.

8.4 Locomotor activity in Light/Dark cycles of the different Interspecific Hybrids.

The different interspecific hybrids are characterised by a bimodal pattern of activity, as all their respective parental strains. Figures 8.4.1, 8.4.2 and 8.4.3 depict the patterns of locomotor activity of the parental strains (Top row: maternal participant, and Bottom row: paternal participant), together with their corresponding interspecific hybrid patterns (Middle row).

D. yakuba France, D. teissieri Sweden and their interspecific hybrids:

The hybrids from the D. yakuba France(f) x D. teissieri Sweden(m) cross show (Figure 8.4.1: Middle left panel) a yakuba-like pattern of activity, in that it has more prominent morning and evening peaks, and therefore it is less bimodal than D. teissieri. However, the sample size is small for this hybrid. In addition, the peak evening activity is in the light phase, more like D. teissieri, and, the overall activity levels are more teissieri-like. The hybrid 'morning' peak occurs ~ 30 mins after lights-on, which is different from the parental strains (D. yakuba (ZT1) and D. teissieri (ZT2)). Thus, the overall pattern is more like the maternal species, but the evening peak and the overall activity (particularly during the night) resemble more the paternal species.

D. simulans Florida, D. mauritiana Sweden and their interspecific hybrids:

The D. simulans Florida(f) x D. mauritiana Sweden(m) (Figure 8.4.1: Middle right panel) hybrid shows a typical 'clean' simulans-like 'morning' peak of activity (~ 30 mins into lights-on), and the prominent morning and evening peaks give an overall simulans-like appearance. The immediate fall in activity after lights-off follows that of the paternal species. The overall levels of activity of the hybrids are greater than those of the parents.

Figure 8.4.1 : LD Locomotor activity profiles of D. yakuba France, D. teissieri Sweden, D. simulans Florida, D. mauritiana Sweden and their interspecific hybrids.
KEY: The ZT regime below the figures
Night Activity is shaded

Thus, in both crosses illustrated in Figure 8.4.1, the overall pattern of behaviour in these hybrids has the maternal 'signature', but the evening peak takes a paternal character, suggesting autosomal dominant or even Y chromosomal influence.

D. yakuba (females), D. mauritiana (males) strains and their interspecific hybrids:

The D. yakuba France(f) x D. mauritiana France(m) (Figure 8.4.2: Middle row left panel) hybrid shows an activity pattern reminiscent of D. yakuba France, in that the morning and evening peaks are less prominant, and the overall activity levels are more yakuba-like. The hybrid and paternal species show a startle response to lights-on. As the light comes on either at the end of bin 7 or the beginning of bin 8 the startle response becomes more mauritiana-like. The daytime activity decays gradually until midday when thereafter it begins to increase, until a sudden burst of activity ~ 30 mins into lights-off ('evening' peak) which is similar to that seen for D. yakuba France.

The D. yakuba Malawi(f) x D. mauritiana Sweden(m) hybrid (Figure 8.4.2: Middle row centre panel) also shows an overall activity pattern resembling D. yakuba Malawi in the prominance of the morning and evening peaks, but with higher levels of activity than both parents. Furthermore, the startle response to light-on, the trough of midday inactivity, the gradual increase of activity occurring preceeding the lights-on-to-off transition and the sudden burst of activity (Startle response to lights-off, reaching its maximum at ZT13) are all reminiscent of D. yakuba Malawi.

The D. yakuba Lamto3(f) x D. mauritiana Isofemale 72(m) hybrid (Figure 8.4.2: Middle row right panel) shows little anticipation and startle responses to lights-on, while showing clear anticipation to the lights-off, similar to D. yakuba Lamto3 also. The evening peak is also more similar to D. yakuba, with high levels of activity in the hour after lights-off. In addition, the overall levels of activity of the hybrid resembles that of D. yakuba Lamto3.
D. yakuba France - $\mathrm{N}=78$

FEMALE

D. mandriana France - N = 56

D. yakuba Lamto3-N=26

D. yakube Lamto3(()\times D. mesuritiana Isofemale $72(\mathrm{~m})-\mathrm{N}=8$

D. mauritiana Isofemale $\mathbf{7 2 - N} \mathbf{- 2 5}$

Figure 8.4.2 : Locomotor activity profiles of D. yakuba France, D. yakuba Malawi, D. yakuba Lamto3, D. mauritiana Isofemale 72, D. mauritiana Sweden, D. mauritiana France and their Interspecific hybrids in LD 12:12.

KEY: The ZT regime is shown below the ifgures
Night Activity is shaded

D. mauritiana (females) and D. yakuba (males) strains and their interspecific hybrids:

The D. mauritiana Isofemale 72(f) x D. yakuba Lamto3(m) hybrid (Figure 8.4.3: Middle row right panel) reciprocal cross produces a hybrid whose 'evening' peak is higher than its 'morning' peak, which is similar to D. mauritiana Isofemale 72 (Figure 8.4.3: Top right panel). The less prominent morning and evening peaks also resemble the maternal parent. Furthermore, the levels of activity of the hybrid resembles that of the paternal parent, which may imply paternal dominant effects on the levels of activity.

The D. mauritiana Sweden(f) x D. yakuba Lamto3(m) hybrid (Figure 8.4.3: Middle row left panel) shows a bimodal pattern of activity which resembles the D. mauritiana Sweden, with less prominent morning and evening peaks. The overall activity levels resemble the paternal species, but the reduced anticipation of lights-on, and the higher evening than morning activity levels are more in keeping with the maternal species.

Thus, the cursory examination of these hybrids' behaviour reveals that the overall patterns of activity are more similar to the maternal than the paternal contributors. A more detailed examination of the parental and hybrid behaviour, using the indices described earlier (see Appendix 8.0), together with ANOVA results are shown in Appendix 8.4a-f. For brevity, a single one-way ANOVA was performed for the parental and hybrid strains. Figure 8.4 .4 (sse below) gives the results.

If the 7 different crosses were to be presented separately, it would have entailed 56 separate figures. Hence I present the parental strains and their interspecific hybrids together in the various panels, on the same figure. The sequence of the parental and hybrid crosses, from $\mathrm{A} \rightarrow \mathrm{O}$, in the figure is a feature of the Statistica computer programme, over which I have no control. This makes the discussion of the data quite difficult. However, I will attempt to make this as painless to the reader as possible!

All one-way ANOVAs, except for the night activity are significant (see Figure 8.4.4: Panels $1,2 \& 4-8$ for significant effects, above). Newman-Keuls a posteriori tests are presented in Appendices 8.4a-f. The D. mauritiana Isofemale 72(f) x D. yakuba Lamto3(m)
D. maritiana Sweden - N=62

D. mauritiana Sweden(f) \times D. yakuba Lamto3(m) $-\mathrm{N}=15$

D. mauritiana Isofemale $72-\mathrm{N}=\mathbf{2 5}$

Figure 8.4.3: Locomotor activity of $\operatorname{D.~yakuba~Lamto3,~D.~mauritiana~Isofemale~72,~D.~mauritiana~Sweden~and~their~interspeciflc~hybrids~LD~12:12.~}$

KEY: The ZT regime is depicted below the graphs
Night Activity is shaded
(Column G), the reciprocal (Column K), and D. yakuba France(f) x D. teissieri Sweden(m) (Column L) hybrids show lower amounts of activity compared to the parental strains (Columns C, E, N, and O), implying hybrid unfitness (Haldane, 1922). The D. yakuba Malawi(f) x D. mauritiana Sweden(m) (Column J), and D. yakuba France(f) x D. mauritiana France(m) (Column I) exhibit higher amounts of activity as compared to their corresponding parental strains (Columns $\mathrm{D}, \mathrm{B}, \mathrm{N}$, and A , respectively), suggesting that the parental strains may have undergone inbreeding depression, while the D. mauritiana Sweden(f) x D. yakuba Lamto3(m) (Column H) and D. simulans Florida(f) x D. mauritiana Sweden(m) (Column M) hybrids show intermediate amounts of activity to the parental ones, implying autosomal control (Colomns B, E, and F).

Figure 8.4.4: ANOVA results between the various parental strains and their interspecific hybrids for all the indices- Arrows show parental strains (C \& E) and the reciprocal crosses (G \& K) for D. yakuba Lamto3 and D. mauritiana Isofemale 72.

GENOTYPES

GENOTYPES

KEY:

A = D. mauritiana France
$\mathrm{B}=\mathrm{D}$. mauritiana Sweden
C = D. mauritiana Isofemale 72
D = D. yakuba Malawi
$\mathrm{E}=$ D. yakuba Lamto3
$\mathrm{F}=$ D. simulans Florida
N = D. yakuba France
$0=$ D. teissieri Sweden
$\mathrm{G}=\mathrm{D}$. mauritiana Isofemale 72(f) \times D. yakuba Lamto3(m)
$\mathrm{H}=$ D. mauritiana Sweden(f) \mathbf{x} D. yakuba Lamto3(m)
I = D. yakuba France(f) \times D. mauritiana France(m) $J=D . y a k u b a$ Malawi(f) x D. mauritiana Sweden(m)
$K=$ D. yakuba Lamto3(f) \times D. mauritiana Isofemale 72(m)
$\mathbf{L}=$ D. yakuba France (f) \times D. teissieri Sweden(m)
$\mathbf{M}=$ D. simulans Florida(f) \times D. mauritiana Sweden(m)

One-way ANOVA for the day activity between the various parental strains and hybrids revealed significant differences (see Figure 8.4.4: Panel 2). Newman-Keuls a posteriori test for the day activity revealed significant differences, at least at $\mathrm{p}<0.05$, between the D. yakuba France(f) x D. mauritiana France(m) (Column I) hybrids and the parental strains (Column N \& A respectively, see Appendix 8.4a). Apart from the D. yakuba France(f) x D. mauritiana France(m) hybrids, which show higher amounts of day activity from their corresponding parents suggesting hybrid vigour, all the rest of the hybrids show intermediate amounts of day activity to their parental strains, implying autosomal control.

One-way ANOVA for the Night/Day activity ratio showed significant differences between the various strains(see Figure 8.4.4: Panel 4), but Newman-Keuls a posteriori test showed no significant differences between the various interspecific hybrids and their corresponding parental strains. Clearly, the significant F-ratio is detecting differences between Column J (D. yakuba Malawi(f) x D. mauritiana Sweden(m)), and Column M (D. simulans Florida(f) x D. mauritiana Sweden(m)) hybrids, which is not informative. One-way ANOVAs for the Startle-On and Anticipation-Off responses showed significant differences between strains (see Figure 8.4.4: Panels $5 \& 6$, respectively). Newman-Keuls a posteriori test for the former response revealed significant differences, at least at $\mathrm{p}<0.05$, between the D. yakuba Malawi(f) x D. mauritiana Sweden(m) hybrids (Column J), and D. mauritiana Sweden (Column B), but there were no significant differences between these hybrids and D. yakuba Malawi (Column D, see Appendix 8.4b). However, the hybrids' startle response is greater than both parents. As for the anticipation-off response, the Newman-Keuls a posteriori test revealed no significant differences between the various interspecific hybrids and their corresponding parental strains, although other non-informative differences exist. In addition, one-way ANOVAs for the Anticipation-On and Startle-Off responses between the different hybrids and their corresponding parental strains showed significant differences (see Figure 8.4.4: Panels $7 \& 8$, respectively). Newman-Keuls a posteriori test for the former response revealed significant differences, at least at $\mathrm{p}<0.05$, between D. mauritiana Isofemale72 (Column C), and D. yakuba Lamto3(f) x D. mauritiana Isofemale72(m) (Column K) with the hybrid value falling between those of the parental strains, but closer to the D. yakuba Lamto3 maternal parent and D. mauritiana Isofemale72(f) x D. yakuba Lamto3(m)
(Column H) hybrids, but no significant differences between D. yakuba Lamto3 (Column E) and these hybrids (see Appendix8.4c). Since, this is the only true reciprocal cross between D. mauritiana and D. yakuba strains (labelled with an \downarrow for instant recognition), this imples that D. yakuba is dominant. The test also revealed significant differences, at least at $\mathrm{p}<0.05$, between D. yakuba France (Column N) and the D. yakuba France(f) x D. teissieri Sweden(m) (Column L) hybrids(see Appendix 8.4c), with the hybrid value higher than both parental ones but closer to the paternal value, which may suggest D. teissieri dominant autosomal factors may be involved. Newman-Keuls a poesteriori test for the latter response revealed significant differences, at least at $\mathrm{p}<0.05$, between the D. yakuba Malawi(f) x D. mauritiana Sweden(m) (Column J) hybrids and their corresponding parental strains (Columns D \& B respectively, see Appendix 8.4d). The test also revealed significant differences, at least at $\mathrm{p}<0.05$, between D. mauritiana Isofemale72 (Column C) and D. yakuba Lamto3 (Column E), and the D. mauritiana Isofemale72(f) x D. yakuba Lamto3(m) (Column G) hybrids (see Appendix 8.4 d). In both cases the hybrid values are higher than both parental ones, which suggest hybrid vigour.

Summing up, it can be stated that the overall activity profile is significantly influenced by the maternal origin, which could imply X-linked factors, whereas the activity levels and the phasing of the evening peak may either be under dominant autosomal or even Y-chromosomal factor control. The only reciprocal crosses between D. yakuba Lamto3 and D. mauritiana Isofemale 72 strains, support the evidence that the overall pattern of activity profile may be under X chromosome control. Furthermore, certain features of the locomotor activity patterns, such as the morning and evening peaks may be either under X chromosomal or cytoplasmic factors. However, the overall activity levels are seen to be under autosomal dominant control.

8.6 Discussion:

The diurnal distribution of activity observed in light/dark cycles, which is universally observed among the member species of the melanogaster subgroup, is in line with a previous comprehensive study of Drosophila species (Hardeland and Strange, 1973). The peaks of activity were close to dawn and dusk, with a relative 'suppression' of activity during the remainder of lights-on. Previous studies have described an anticipatory increase in activity before lights-on (Petersen et al., 1988), yet a less pronounced increase of activity is observed here, which is more gradual than previously reported. A superficial explanation of this pattern of activity might be that, in the Afrotropical regions where most of the species examined are found, a bimodal pattern with peaks at the beginning and end of the day would confine activity to the cooler time of day, thus avoiding the midday sun, and thereby reflecting a behavioural strategy which minimises the chances of dessication (Kalmus, 1940; 1945). However, the same pattern of activity has been observed in species from non-arid clines (Hardeland and Strange, 1973).

It is interesting to note, however, that the one species which exhibited a relatively reduced 'suppression' of its activity during the 'midday' period, D. teissieri, tends to inhabit evergreen rainforest, with a high canopy of trees which would maintain a relatively moist environment (Tsacas et al., 1981). The D. melanogaster strain from Brighton (U.K.) is observed to have midday activity, which may reflect on the cooler climate of its area of collection than the Afrotropical region. The remaining species inhabit more exposed areas of forested savannah and mountainous evergreen forest (Tsacas et al., 1981). D. simulans which runs the greatest risk of encountering the cosmopolitan D. melanogaster, exhibits prominent morning and evening peaks which are quite different from those of D. melanogaster. D. sechellia (Tsacas and Bächli, 1981), and D. mauritiana (Tsacas and David, 1974) exhibit simulans-like and melanogaster-like activity patterns respectively, which is not surprising, given the fact that are endemic to Seychelles and Mauritius isles. In addition, this cursory resemblance is also in line with the phylogenetic relationship described by Nei (1983). D. yakuba is active throughout the daytime and the midday sun does not seem to affect it as much as the other species living in this region, found in shadowy places in the Afrotropical, and may be found in sympatry with D. melanogaster, D. simulans, D. teissieri, and D. erecta
(Tsacas et al., 1981; Lachaise et al., 1981; Tsacas and Lachaise, 1974). As it can be observed the overall patterns of activity exhibited by members of the D. yakuba complex, is more varied than those exhibited by the members of the D. melanogaster complex, which could probably reflect on their phylogenetic relationships (Nei, 1983; Cariou, 1987).

Another possibility that may explain the differences in the patterns of locomotor activity observed among the various species of the melanogaster subgroup is that different locomotor activity profiles have evolved so as to minimise the chances of disadvantageous interspecific hybridisations between species that live in sympatry in the Afrotropical regions. This is called 'character displacement' and can be caused by reinforcement (Butlin and Ritchie, 1989), and contributes further to the isolation of the species. For example, take a species such as D. yakuba, which is active throughout the daytime (see Figure 8.1: Bottom right panel) and living in sympatry with D. teissieri, which shows reduced daytime activity (see Figure 8.1: Bottom left panel). Bearing in mind that courtship is greatly aided by light and other visual cues (Burnet and Connolly, 1974; Robertson, 1983; Tompkins, 1984), their vastly different activity profiles could prevent interspecific hybridisation by minimizing the opportunities for hybridisation, since the latter species is almost idle during the day. Therefore, the evolution of such activity profiles may play an important part in speciation, for it develops further prezygotic reproductive isolation mechanisms, that may rival the 'mate recognition systems' in such organisms such tree frogs (Doherty and Gerhardt, 1984), crickets (Hoy et al., 1977), and the courtship song in the D. melanogaster (Kyriacou and Hall, 1986, reviewed in Butlin and Ritchie, 1989).

Hennessey (pers. comm.) has observed the activity patterns of various D. melanogaster strains at different temperatures. At $29^{\circ} \mathrm{C}$, the patterns of activity are more bimodal, resembling that of D. sechellia (see Figure 8.1: Top third left panel), and at $18^{\circ} \mathrm{C}$ the patterns become more unimodal. This was taken to mean that by changing the pattern of activity, these flies could accommodate these temperature changes. This flexibility in the locomotor activity of D. melanogaster might be the reason why this species can be found from temperate to hot climates (Ashburner, 1989). Similar experiments could be carried out using different species in the D. melanogaster subgroup in order to see whether this flexibility of the locomotor patterns is a common characteristic of the D. melanogaster subgroup or
whether is only a property of the cosmopolitan D. melanogaster. If D. melanogaster, at $29^{\circ} \mathrm{C}$, exhibits the same pattern of activity as that of D. sechellia at $25^{\circ} \mathrm{C}$, this could suggest that perhaps D. sechellia is more sensitive to higher temperatures.

Saunders (1982) observed that the 'morning' peak of activity seems to be a 'Startle' response to lights-on in D. pseudoobscura, in part because there appears to be no anticipation of that environmental transition. In contrast, the results presented here, indicate that ali the species, and the majority of strains and, interspecific hybrids begin to increase their activity $1-2 \mathrm{~h}$ before lights-on (Figure 8.1.1-8.6.1), in addition to showing an even more pronounced anticipation of lights-off (which incidentally also occurs in D. pseudoobscura, Petersen et al., 1988). These results are in agreement with the Hamblen-Coyle et al. (1992) observations on D. melanogaster locomotor activity patterns. In addition, Hamblen-Coyle et al. (1992) monitored the activity patterns of the various per-mutants, which were observed to cause the free-running period (τ) to be lengthened or shortened (reviewed by Kyriacou and Hall, 1990; Vosshall and Young, 1992). Hence, the evening peak could be phase-shifted by endogenous τ-altering mutations in a way that is generally consistent with the effects of the genetic variations on the 'evening' peak (Hamblen-Coyle et al., 1992). Therefore a species such as D. sechellia (Figure 8.1: Top third left panel), which has an endogenous free-running period of $\sim 23 \mathrm{~h}$ (see chapter 7), is observed to have advanced both its 'morning' and 'evening' peaks, as compared to the rest of the species examined.

In addition, the locomotor activity patterns for the different species have been divided into various components, such the Startle-On and Anticipation-Off, and AnticipationOn and Startle-Off components in order examine any possible different responses that the different species may exhibit during the lights-on-to-off transitions and vice versa. The different indices showed significant differences between the members of the melanogaster subgroup (see Figure 8.1.2). D. melanogaster is the most active, while D. sechellia, D. orena and D. erecta are the least active of the species. The same holds true for the amounts of day and night activities. D. mauritiana and D. erecta show the highest Night/Day activity ratios, indicating that they are more active during the night. D. yakuba is observed to react profoundly to the lights-on, while D. orena shows the highest anticipation for the oncoming lights-off transition. D. sechellia shows the highest anticipation of the oncoming lights-on
transition from the rest of the species, while D. melanogaster and D. yakuba show the highest 'Startle' response to the lights-off , and D. sechellia the least.

It is difficult to make any strong statements on the species-specificity of locomotor activity patterns, if only one strain of a species is examined. Inspecting the patterns of activity of the different D. mauritiana and D. yakuba strains, it is observed that they show similar relative amounts of activity. The differences appear in the bursts of activity around the 'dawn' and 'dusk' peaks, as well as their Night/Day activity ratios (see section 8.2 \& 8.3). The intraspecific heterogeneity that is observed between the various D. mauritiana and D. yakuba strains, is usually caused by either one or two strains which show higher deviation, in a particular variable (index) from the rest of the strains. Therefore, any conclusion that might be given about any species-specific aspects of LD activity profile, must be treated with some caution.

This diurnal locomotor pattern may in fact be an exogenous effect of the abrupt changes between light and dark phases in these laboratory experiments (Hamblen-Coyle et al., 1992; Petersen, 1988). In D. mauritiana MG71 and David75, for example, a clear burst of activity occurred in the bin immediately following lights-on, with little or no activity either directly before or directly after this bin. This seems to be an example of a "startle" reaction to the lights coming on, since the free-running records did not show this burst in both melanogaster subgroup complexes (see chapter 7). Indeed, there is a more gradual increase of activity around the two 'subjective' light transitions, and more gradual decrease in activity after the two light transitions. This kind of effect has been described in flight activity of the mosquito Anopheles gambiae, in which a dawn burst of activity disappeared if the sudden dark to light transition was replaced by a steady increase in light intensity (Jones et al., 1972). An entrainment and run schedule of this graduated type could be used to examine which of the peaks observed in this study were exogenously created, and which are clock-controlled. The question of anticipation of either or both of the light transitions, which must clearly involve some form of clock input, could not accurately be addressed in this study, due to the activity being collated into 30 minute bins. In several cases anticipation clearly occurred, whereas in others the changes in activity were too close to the light signal to allow a definite statement
about whether anticipation had occurred. A minute-by-minute basis might enable us to observe the exact phasing of activity changes during each day.

Petersen et al. (1988) reported that species-specific locomotor activity information was transferred along with the per ${ }^{+}$-pseudoobscura DNA to D. melanogaster per ${ }^{+}$ hosts. Thus per carries species-specific activity information. Examining the interspecific hybrids of the melanogaster subgroup and/or strains may help in discovering if the locomotor activity components were under X chromosome influence or whether some other autosomal factor may also play a role in the patterns of activities displayed. The mode of inheritance is more complex than originally thought. In general, the overall activity patterns of the various hybrids are broadly similar in shape to the corresponding maternal parent, implying that the overall pattern may be under the influence of the X chromosome, although maternal or paternal dominant factors can not be ruled out. Specifically, in D. simulans Florida(f) x D. mauritiana Sweden(m), the overall activity pattern is simulans-like, but the fall in activity after the two light transitions is more similar to the paternal participant. In D. yakuba France(f) x D. teissieri Sweden(m) hybrids the overall activity profiles are resembling the maternal parent, but the advancement of the evening peak in the light phase, as well as the overall levels of activity are more similar to the paternal parent. In D. yakuba(f) x D. mauritiana(m) crosses, hybrids exhibit a typical yakuba-like activity profile, and in D. mauritiana $(\mathrm{f}) \times D . y a k u b a(\mathrm{~m})$ crosses, the hybrids exhibited high morning and evening peaks, but less prominent than those of the paternal parent (D. yakuba), thus resembling the maternal activity profile. This has been further supported by the results from the only genuine reciprocal cross between D. mauritiana Isofemale72 and D. yakuba Lamto3, and their hybrids. This reciprocal cross also revealed that the overall locomotor activity profile of the hybrids resemble that of the maternal parent. In addition, their phasing of the morning and evening peaks resemble the maternal participant. Furthermore the levels of activity, in this reciprocal cross showed that they may be influenced by D. yakuba Lamto3 autosomal dominant factors. Yet, the relative amounts of activity, any possible advancement or delay in the evening peaks, as well as the magnitude of the responses to the light transitions of the hybrids were observed to be intermediate between the corresponding parental strains, in the other interspecific crosses. If these aspects of the locomotor activity profile are under autosomal control, then perhaps other autosomal clock genes such as psi-2 and psi-3
(Jackson, 1983), gate (Jackson, 1983), timeless (Seghal et al., 1994), and ebony (Newby and Jackson, 1991) may play an important part in the observed locomotor activity patterns. If such genes are involved, then variation in any one or more such genes could be responsible for the observed sensitivity to lights-on-to-off and vice versa transitions.

In short, the overall locomotor activity patterns may have the maternal 'signature', but the amount and pattern of activity around the light transitions, especially the evening peak, demonstrates paternal characteristics, suggesting either dominant autosomal factors or even Y chromosomal involvement.

GENERAL DISCUSSION

CHAPTER
 9

9. GENERAL DISCUSSION :

The experimental work was divided into two discrete sections. Specifically, the first section (Chapters 3-6) involved a search for, and subsequent characterisation of, species-specific differences, within the melanogaster subgroup in the courtship song rhythms. The second section involved an exploration into the circadian locomotor activity patterns between the different member species of the D. melanogaster subgroup and their interspecific hybrids under DD and LD conditions. The unifying feature in these two phenotypes is the influence of the period gene (Hall, 1995; Kyriacou et al., 1996).

9.1 Courtship song:

The ultradian oscillation in the courtship song of Drosophila (Kyriacou and Hall, 1980), was the subject of the first three experimental chapters. This is a controversial topic, in the wake of two reports denying the existence of these ultradian cycles (Crossley, 1988; Ewing, 1988). The controversy has finally been put to rest by Alt et al. (1997), who by using new advanced spectral methods, confirmed all the early results of Kyriacou and Hall (1980; 1989), including the effects of the per-mutants on the 60s song cycle. Furthermore, Noor and Aquadro (1997) found evidence of rhythmicity in the D. persimilis song. Therefore, courtship song rhythmicity may be more widespread among the Drosophila genus than was originally thought. My work was initiated during the 'controversial' period and my results further extend the existence of song cycles in the D. melanogaster subgroup of species.

The courtship song of all the member species of the D. melanogaster subgroup, as well as different interspecific hybrids were recorded and analysed. A problem that was encountered to a varying degree was the low courtship vigour of the various species under study. Rearing the males in solitude, and in the case of D. mauritiana rearing the males in solitude and under constant illumination conditions, seemed to overcorne the problem of low courtship vigour. As it had been stressed on several occasions by Crossley (1988) and Ewing (1988), and subsequently by Crossley
(1989), Ewing (1989), Logan and Rosenberg (1989) and Kyriacou and Hall (1989), Drosophila courtship has a drawback as far as time series analysis is concerned, in that it is a rather transitory event. It would be an exception for a male to court a female consistently, even for five or six minutes. However, this probably reflects the situation imposed upon courtship in laboratory conditions, rather than being representative of the situation in the wild, whereby Ewing (1983) reported that the Drosophila courtship durations are even shorter.

Reanalysis of the Kyriacou and Hall's (1980) original data, with new and more advanced spectral analyses, reconfirmed their findings. Furthermore, recording and analysing D. yakuba courtship songs supports the existence of long $\sim 65-70$ s song cycles, first detected by Thackeray (1990). In addition, recordings and analysis of courtship songs from the rest of the member species of the melanogaster subgroup revealed that song rhythms exist which could be broadly categorised into 4 separate classes, $30-45 \mathrm{~s}$ found in D. mauritiana and D. simulans, 45-50s found in D. sechellia, D. orena, and D. erecta, $50-60$ s found in D. melanogaster, and $60-75$ s found in D. yakuba and D. teissieri. With respect to D. simulans, my small sample size of 4 songs included an outlier (see Chapter 3). Therefore, I used the value of ≈ 40 s from Kyriacou and Hall (1980; 1986) (see below). The mode of inheritance of IPI periodicity was further studied by analysing interspecific hybrids. That the X chromosome is contributing to the species-specificity of the male song cycles has first been reported by Kyriacou and Hall (1986), and confirmed with the transformation experiments carried out by Wheeler et al (1991). The findings here, reinforce this notion, in that hybrids usually expressed the song period of the maternal species. However, additional autosomal factors could not be ruled out. Indeed, some autosomal gene involvement has been implicated by Kyriacou and Hall's (1986) study in D. melanogaster/D. simulans hybrids.

Wheeler et al. (1991) reported that apart from the varying lengths of the ThrGly repeat, 4 amino acid substitutions encoded downstream of the Thr-Gly repeat in D. melanogaster and D. simulans were species-specific, and therefore may be responsible for the differences in the observed courtship song rhythms. Two of these (A/T and K / R) are
highlighted in bold letters in Figure 9.1.1, and fall within a common phosphorylation site (wheeler et al., 1991). The other two are encoded further downstream. These two amino acid sustitutions seen in D. simulans are also found in both D. mauritiana and D. sechellia (Peixoto et al., 1992). These are Threonine at position 102 and Arginine at position 107. In addition, D. mauritiana has an Alanine residue at position 122, which is substituted by an Isoleucine in D. sechellia. D. yakuba and D. teissieri both show an Alanine and Arginine residues at positions 102 and 107 (Peixoto et al., 1992), as well as an Asparagine at position 105 which is not found in the other species. Finally, D. erecta and D. orena share the same amino acid substitutions. Furthermore, D. erecta has Theonine residue at position 120, which is unique from the other species. Thus, the amino acid changes encoded immediately downstream of the repeat are species-specific, and given the fact that this region is heavily involved in the species-specificity of the courtship song (Yu et al., 1987a; Wheeler et al., 1991), perhaps these differences correlate with the observed song cycles in the different species.

In order to study potential evolutionary changes in song rhythms a phylogenetic tree was used, where an attempt is made to determine the song cycle of the common ancestor of the melanogaster subgroup. Figure 9.2.2 shows a phylogenetic tree which is based on Nei's map on the phylogenetic relationship between the members of the subgroup (Nei, 1983; Cariou, 1987). This has also recently been used to study the evolution of the male-specific abdominal muscle of Lawrence (Lawrence and Johnston, 1984; 1986) by Gailey et al. (1997). The courtship song periods of the species were categorised into 4 different states I (35-45s), II (45-50s), III (50-60s) and IV (60-75s) (see Figure 9.2.2). It was assumed that song cycles can mutate between the different states in single steps only. By superimposing the various song cycle states, the most parsimonious solution (smallest number of steps) to the identity of the common ancestral song cycle can be empirically determined, by examining the number of single steps that are required to generate the extant species song cycles.

If the common ancestral species had a state I song cycle, then to reach state III there had to occur two changes at the erecta-orena branch, one at the melanogaster

N-TERMINAL

CONSERVED
REGION
VARIABLE REGION

simulans (Aus)AGTG.....GTG...........NGTNSG.........TGTGTTSSS...RGGS.....................TAIPPVTLTESLLNK \} IV
mauritianaAGTG.....GTG.NGTNSC..........TGTGTTSSS...RGGS.....................AAIPPVTLTESLLNK $\}$ IV
sechelliaAGTG.....GTG..TTSSS...RGGS.....................AAAPPVTLESLLNK \} III
yakubaAGTG.....GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG..TGTGTASSNYRGGG..................VAIQPVTLESLLNK \} I

erect
.............AGTGGTGGTGTGTGTGTGTGTGTGTG......
\qquad TDTGTGTG \qquad TR. ...NGTNSGTNSGTRTGTASS-YRGGGGGAGGGGGVTIQHLTLTESLLNK \} III
oren \qquad
\qquad NGGTNSG........TKTGTASS-YRGGG.. \qquad VAIQPVTLTESLLNK
$\uparrow \quad \uparrow \quad \uparrow$

Fiure 9.2.1: Part of the amino acid seuence of the Thr-Gly region in the PER protein of the eight species in the melanogaster subgroup. implicated by Wheeler et al. as contributing to the species-specificity of the song cycle (Wheeler et al., 1991). The bold letters designate the species-specific amino acid substitutions (Figure taken from Peixoto et al., 1992). Roman Numerals designate the different song cycle states. Arrows designate the relative positions in the amino acid sequence.
branch (state II), two at the mauritiana branch (state IV), and one at the simulans branch (state IV), resulting in a total of 6 single step changes (see Figure 9.2.2: triangle), in order to obtain the observed song cycle states. If the ancestral species had a state II song cycle, then there had to occur one change at the erecta-orena branch (state III), one at the teissieri-yakuba branch (state I), two changes at the mauritiana branch (state IV), and one at the simulans branch (state IV), giving a total of 5 single step changes (see Figure 9.2.2: rectangle), in order to reach the different song states. If the common ancestor had a state III song cycle, then to reach state I there had to occur two changes on the teissieriyakuba brach, one change on the melanogaster branch (state II), one change on the mauritiana brach (state IV), and one change on the simulans brach (state IV), giving again a total of 5 single step changes (see Figure 9.2.2: circle), in order to achieve the different observed song states. If the ancestral species had a state IV song cycle, then to reach state III there had to occur one change at the erecta-orena branch, three changes to reach state I at the teissieri-yakuba branch, two changes at the melanogaster branch, and one change at the sechellia branch (see Figure 9.2.2: rhombus), resulting in a total of 6 single step changes in order to reach the observed song states. So, it can be speculated that the common ancestral song cycle could have been either $50-60$ or $45-50$ s. Given the number of amino acid changes between the species in this region, it is very difficult to correlate song changes with specific substitutions.

The species-specific song differences could potentially be used for species recognition (Kyriacou and Hall, 1982; 1986). If this is the case then we might expect that species which live in sympatry, e.g, D. simulans and D. melanogaster to have different rhythms, thereby reducing the chances of hybridisation. This exaggeration of species markers such as visual clues, scents or courtship rituals, or adaptations in their anatomy, physiology and behaviour, in sympatric populations is called 'Character displacement' (Grant, 1984; Schluter and McPhail, 1992; Schluter, 1994). In this way, the species barriers are reinforced and maintained. Although reinforcement is a controversial subject in speciation, Noor (1995) proposed that it was important in the mating behaviour of D. pseudoobscura and D. persimilis. Because species that live in sympatry, such as D. teissieri and D. yakuba have similar long song cycles, this would suggest that character

displacement is not occurring. Furthermore, such species D. simulans, D. mauritiana, and D. sechellia show very similar song cycles, but since they live in allopatry, there is no need for any character displacement to occur. However, D. melanogaster and D. simulans, which are sympatric species, show distinctly different song cycles, and this may be a case of character displacement. Thus, song cycles could not be considered to be contributing to species isolation. Therefore, other song components and courtship characteristics may be contributing to sustaining the species barriers (see below).

The wing display repertoire amongst the member species of the D. melanogaster complex, could reflect a 'character displacement' scenario. In D. melanogaster, males hardly ever scissor and never row (Cowling and Burnet, 1981; chapter 3). In sympatric D. simulans, 'scissoring' was frequently observed, but no 'rowing' (Cowling and Burnet, 1981; Chapter 3). In D. mauritiana both wing displays were frequently observed (Cowling and Burnet,1981; Robertson, 1983; section 4.1), whereas in D. sechellia a 'scissoring-like' motion was observed (Cobb, 1990; section 4.1). The latter two species, which are allopatric (endemic to Mauritius and Seychelles, respectively), have similar wing display repertoires, whereas the two former sympatric species have different wing displays.

The wing display of the members of the D. yakuba complex, may also reflect 'character displacement', due to the fact all four members show a further 'individualism' in the type of wing display repertoires. These range from 'scissoring and rowing' (D. teissieri) (Cowling and Burnet, 1981), to vibration of both wings (D. orena) (Cobb, 1990), to single wing vibration ('scissoring-like') or both wings (D. erecta) (Cowling and Burnet, 1981), to vibration of one wing in Thud (Thackeray, 1989), or both to generate the Clack song (Thackeray, 1989, and see my results Chapter3). All four species may be found living in sympatry in the Afrotropical region, except D. orena, which is found at an altitude of $2,100 \mathrm{~m}$ (Tsacas and David, 1978). Futhermore, the greater variability in their sine song frequencies-ranging from total the absence of a sine song in D. yakuba (Cowling and Burnet, 1981; Thackeray, 1989), to $\sim 130 \mathrm{~Hz}$ in D. teissieri, to $\sim 180 \mathrm{~Hz}$ in D. orena, to $\sim 270 \mathrm{~Hz}$ in D. erecta, the greater variability seen in their mean IPIs (see section 3.4 and
4.3), and the broadness of distribution of their song periods (see Figure 4.5.1), may again reflect 'character displacement'.

Many species of Drosophila will hybridize, at least under laboratory conditions. The overall picture that emerges from Table 5.1 is that, even if all the participating species in the crosses are members of the same subgroup and/or complex, interspecific hybridisation is achieved with great difficulty; hybrids are often sterile, at least as males (Haldane, 1922; Sturtevant, 1920; David et al, 1974; von Schilcher et al., 1975; Lemeunier, 1979; Cowling and Burnet, 1981, Lachaise et al., 1986; Lee and Watanabe, 1987). Barriers to experimental hybridisation between species may be either pre- or postzygotic. Prezygotic isolation is usually assessed by some sort of a mating choice test. The degree of isolation can be measured by observations of matings (Futuyma, 1989). Since mating behaviour in the laboratory is essentially the same as that of wild flies (Krebs and Bean, 1991), varying rearing substrates is likely to have an influence on the composition of volatile cuticular hydrocarbons-which constitute the pheromones exuded by the females (Ferveur et al., 1997), or even other environmental factors that may influence the IPI production both qualitatively and quantitatively (Noor and Aquadro, 1997). Etges (1992) reported that by changing the host plants for feeding D. mojavensis, certain physiological shifts can occur, such as cuticular hydrocarbons. Contact pheromones in this species which can be correlated with altered behavioural responses are due to the adaptation of this species to its new host plant. So it is feasible, that by harmonising the rearing substrates of flies of the different species of the melanogaster subgroup as in the laboratory, will probably increase interspecific matings. Culturing D. sechellia on its natural substrate, the maritime rubacious shrub Morinda citrifolia (Lemeunier and Ashburner, 1984), might reduce the interspecific mating ability of this species, but make rearing this species under laboratory conditions easier.

Another way that the degree of isolation could be measured is to dissect females and look for sperm or by the appearance of zygotes (Coyne \& Orr, 1989). The hybrid sterility, which may range from slight to complete, may be caused by cytological and genetic factors such as incompatibility of genes of one of the parental species with the
genome of the other species that may lead to lethal physiological distrurbances (Coyne \& Orr, 1989; O'Neill \& Karr, 1990). In addition, interspecific hybrids are less successful in courtship than individuals of pure species, when species-specific behavioural patterns and species-specific stimuli play an important role (Orr et al., 1990). Interspecific hybrids differ from individuals of the parental species not only in morphology (Coyne et al., 1991), but, in addition, usually in the level of fertility and viability (Coyne et al., 1991). The majority of crosses give a sterile F_{1}, with a sex ratio heavily biased in favour of females, or, if both sexes are present, they are represented in approximately equal frequency, and then the males are typically sterile ('Haldane's' rule, Haldane, 1922; David, 1976; Cowling \& Burnet, 1981; Cobb, 1986). Pantazidis and Zouros (1988) discovered that by replacing a D. arizonae autosomal complement in D. mojavensis males carrying the Y-chromosome, normal spermatogenesis could be restored. Therefore, it may be possible that there exist some autosomal complement that could be activated, within the autosomes of the different species of the subgroup. Recently, Davies et al. (1996) have isolated a strain of D. simulans, that produces fertile hybrid females, in crosses with D. melanogaster. This strain may identify some of the genetic components involved in both pre- and postreproductive isolation in these species.

9.2 Locomotor activity

The locomotor activity of all eight member species of the melanogaster subgroup and their interspecific hybrids were investigated. Two conditions were used, constant darkness (DD), in order to reveal the period of the endogenous influences on this behaviour, and LD12, in order to examine the patterns of activity within each day. Members of the melanogaster complex, with the possible exception of D. mauritiana, show broad levels of activity, with no morning or evening peaks (see Chapter 7). Even species that are sympatric, such as D. simulans and D. melanogaster show similar activity profiles. Therefore, it is clear that in this case character displacement is not occurring. However, in the yakuba complex, where D. teissieri and D. yakuba live together, D. teissieri shows prominent morning and evening peaks, whereas D. yakuba exhibits a more melanogaster-like (broad) activity profile. In this case, character displacement, caused by
reinforcement, may be occurring, and thus avoiding sterile interspecific hybridisation. Thus the sex-linked per may not be the sole contributor to the individuality of the circadian locomotor activity. It is therefore possible that other aspects, such as the relative amounts of activity and inactivity, during the day- and night-time respectively, may be contributing to the maintainence of species barriers. Thus, it is conceivable, that several other autosomal loci such as psi-2, psi-3 (Jackson, 1983), and tim (Myers et al., 1995; Gekakis et al., 1995) may also affect locomotor activity, and therefore sustaining 'species individualism'.

All species and their hybrids exhibited free-running rhythms with very similar periods, ranging from between 23 and 25 hours. The absolute amounts of activity in each species/strain/hybrid was very different though. Even though any further statistical analysis has proved impossible for reasons explained in Chapter 7, several inferences could be made for the mode of inheritance of the circadian locomotor activity from the standardised data:

1) The overall pattern of activity of the hybrids resemble the paternal profile, which suggests autosomal influence;
2) The levels of activity are usually intermediate between the two parental levels, which implies autosomal control;
3) The amount of activity around the evening peak generally follows the paternal parent, suggesting autosomal control, although X chromosome involvement cannot be ruled out;
4) The amount of activity around the morning peak generally follows the paternal participant profile, again implying autosomal factors.

The experiments performed in LD cycles were also informative, showing that the pattern of activity within each daily cycle was unique in each species, and similar to the maternal participant in the interspecific hybrids. In particular, the phasing of activity occurring during the light transitions, and the proportion of activity occurring during the lights-on period were shown to be diagnostically distiguishing features in the locomotor activity proflies of each species. However, in the hybrids the phasing of activity with respect to the light transitions, and the levels of absolute activity revealed that probably autosomal rather than Y-chromosome factors may be involved. It is possible that other
autosomally located genes may also be involved in the locomotor activity patterns, such as tim (Myers et al., 1995; Gekakis et al., 1995). Hence, any species variability in the locomotor activity may reflect species-specific variation in such genes. My results in DD are not consistent with the sex-linked per locus having significant influence over the circadian locomotor activity patterns, which contradicts Petersen's (1988) and Hennessey's (pers. comm) work, and possible reasons for this were discussed in Chapter 7.

So , why the activity patterns of the hybrids show maternal influence in LD, and autosomal involvement in DD? So far there is no explanation for the observed discrepancies between the two light conditions. Nonetheless it seems reasonable to speculate that an LD cycle has a direct effect on the locomotor activity profiles. A similar effect can be appreciated when considering the activity patterns of per ${ }^{01}$ flies, in DD and LD conditions. In DD, per ${ }^{01}$ flies do not exhibit any distinguishable pattern of activity (Konopka and Benzer, 1971). However, in LD, these flies are more active during the light phase than during the dark phase, with increased spurts of activity around the two light transitions, suggesting that even if per 01 flies are not able to measure time endogenously, there is a considerable effect on the locomotor activity patterns in LD (reviewed by Kyriacou, 1990). The activity profiles of the hybrids in LD, suggest that this effect may possibly be mediated by as yet unknown loci, located on the X chromosome; and in DD conditions, some other unknown gene(s) may be involved.

9.3 Future lines of investigation:

The effect of producing rhythmically oscillating IPIs on mating success has been examined in D. melanogaster, by using artificially-simulated songs (Kyriacou and Hall, 1982; 1986; Greenacre et al., 1993). The mating speed of wingless males, in the presence of various 'IPI' regimes was found to be at its optimum when a 55 s rhythm was superimposed on the D. melanogaster mean IPI of 35 ms (Kyriacou and Hall, 1982). Moreover, Byrne and Kyriacou (pers. comm.) reported that the mean burst duration is critical in the mating speeds between D. arizonae and D. mojavensis, in simulator
experiments. The same avenue could be pursued in order to study the function of any song cycles in the other species of the melanogaster subgroup. Specifically, it would be interesting to investigate the ~ 70 s song cycles found in D. yakuba pulse song IPIs (see Chapter 3). It would be prudent and more thorough to not only synthetically generate two independent cycles, i.e., to simulate the Clack and the Thud rhythms, but, furthermore to generate each song type with different periods (within the $60-100$ s range) in different phases with respect to each other, and different mean burst duration and mean interburst intervals. Only then it would be possible to 'recreate', as close as possible to the real scenario the complex 'cocktail' of the Clack and Thud pulse song types produced by D. yakuba.

9.4 Conclusion:

Ultradian rhythms in the courtship song of Drosophila (Kyriacou and Hall, 1980) have been investigated. These rhythms are seen to be under the control of the per gene which is located on the X chromosome. It is also known that per affects circadian locomotor activity (Konopka and Benzer, 1971). Therefore it may have an important role to play in the behavioural activities of Drosophila. The potential for evolutionary significant changes occurring at this locus is clear (Peixoto et al., 1992; 1993), since any changes in courtship or locomotor activity behaviours may potentially result in the creation of an isolating mechanism between populations, resulting eventually in the creation of new species. The experiments described here represent a small step towards widening our perception of the evolutionary repercussions of biological rhythms in behaviour.

APPENDICES

APPENDICES

FOR CHAPTER 3

APPENDIX 3.1 :

CLEAN and VdB analyses, with Monte Carlo simulations, results of Kyriacou and Hall's (1980) plus some unpublished songs .

3.1:

SPECTRAL			ANALYSIS		
SPECIES/ STRAIN	CLEAN		VdB		Observations
D. simulans	$\begin{gathered} \text { 1st } \\ \text { PEAK } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { PEAK } \end{gathered}$	$\begin{gathered} \text { 1st } \\ \text { PEAK } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { PEAK } \end{gathered}$	Bins filled
SIM2	62.87	x	62.50	x	12/24
SIM4	36.53	x	36.70	x	27/36
SIM5	35.43	x	36.53	x	8/13
SIM8	33.58	x	34.04	x	26/34
SIM9	33.52	x	33.90	x	38/51
SIM1	32.74	x	22.41	x	38/51
SIMD5	31.98	x	32.00	x	18/37
D. melanogasterOREGON					
ORG3	54.24	x	54.79	x	33/34
ORGYM1	63.41	X	62.50	X	24/30
ORGYM2	55.81	x	56.34	x	16/30
ORGYrec2	59.17	x	59.26	x	20/27
ORGYsnm1	82.19	x	56.74	81.63	14/26
ORG2CL	44.59	x	44.94	x	25/35
ORG10	54.46	x	54.05	x	20/24
ORGICL	60.81	x	62.99	x	20/20
ORG4	47.62	x	50.31	x	12/15
ORG6	54.47	x	52.63	x	27/30
ORG7	52.73	x	53.69	x	30/31
ORG9	60.61	x	60.61	x	17/30
D. melanogater-Canton-S					
CSY2	60.98	x	59.26	x	11/12
CSY4	53.30	x	54.42	x	18/23
CSb5	54.31	x	54.42	x	29/30
CSYb3	58.14	x	59.70	x	21/23
CSYb4	56.00	x	56.74	x	28/29
CSYb6	58.62	x	60.61	x	15/19
CSYb7	46.51	x	45.45	x	22/22
CSICL	62.50	x	62.50	x	10/13
CS2CL	64.29	x	65.57	x	25/29
CS4CL	78.49	x	62.02	x	8/10
CS6	52.00	x	51.95	x	10/15
CS7	56.21	x	56.34	x	21/21
CS9	57.23	x	57.97	x	19/24
CSbl	52.81	x	53.69	x	34/34
CSb2	59.26	x	58.39	x	17/17
CSb3	50.36	x	49.69	x	29/29
CSb4	53.03	x	53.33	x	30/30
CSb6	54.26	x	54.42	x	30/30

Shaded-in values are used to determine mean genotype periods shown in table 3.1.1.

APPENDIX 3.2a:

Spectral analyses of D. yakuba song using CLEAN and VdB (with Monte Carlo simulations), and 250 and 50 ms cut-off points.

SPECTRAL ANALYSIS						
YAKUBA		CLEAN		VdB		Observations
Song	Pulse Type	1st Peak	$\begin{aligned} & \begin{array}{l} \text { 2nd } \\ \text { Peak } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
CUT Off POINTS : 250 \& 50 ms						
Yklt112	Overall	34.92	85.77	87.91	50.63	36/43
	Thud	66.12	x	66.12	x	22/39
	Clack	57.58	X	57.97	X	22/40
Yk2t112	Overall	75.42	45.15	76.92	X	43/56
	Thud	31.18	70.13	31.25	X	$28 / 56$
	Clack	23.52	21.82	23.67	21.86	26/51
Yk3t112	Overall	33.01	54.31	33.20	x	35/36
	Thud	34.07	21.17	34.04	21.16	20/36
	Clack	53.50	26.37	54.79	37.21	18/35
Yk4tlrl	Oerall	406.98	76.19	533.33	72.73	36/37
	Thud	x	x	533.33	37.38	34/37
	Clack	471.43	X	533.33	x	25/36
Yk5t1r1	Overall	24.27	X	23.95	x	$19 / 34$
	Thud	x	X	150.94	X	7/16
	Clack	x	x	x	x	17/34
Yk6t1r2	Overall	386.36	x	470.59	20.67	27/37
	Thud	71.88	x	72.73	35.87	26/30
	Clack	395.35	X	470.59	x	11/37
Yk7t1rl	Overall	42.55	X	42.55	21.45	21/36
	Thud	X	X	83.33	275.86	6/26
	Clack	x	X	42.33	x	20/36
Yk9t712	Overall	61.96	X	25.72	65.57	$26 / 45$
	Thud	62.14		25.81	65.57	26/45
	Clack	x	x	x	x	x
Yk20t1r1	Overall	40.79	32.53	500.00	25.97	36/37
	Thud	32.32	x	25.48	31.87	30/37
	Clack	24.75	22.35	22.60	x	22/37
Yallt10	Overall	29.29	26.08	29.52	25.89	35/59
	Thud	42.35	29.20	142.86	29.63	32/59
	Clack	22.61	x	22.54	65.04	7/49
Yal219r	Overall	622.22	36.18	727.27	31.28	61/77
	Thud	78.55	31.14	173.91	31.37	39/77
	Clack	763.16	x	888.89	250.00	37/71
Yic2t13	Overall	88.76	x	37.91	84.21	20/34
	Thud	83.80	29.30	83.33	29.74	17/34
	Clack	20.80	x	20.89	150.94	6/30
Yam2t9r	Overall	490.74	x	470.59	x	38/66
	Thud	490.74	x	470.59	X	37/66
	Clack	x	x	x	X	x
Yle2s1	Overall	43.60	36.00	43.01	36.70	35/38
	Thud	87.38	x	87.91	119.40	30/38
	Clack	44.33	x	43.72	333.33	10/35

3.2a:

SPECTRAL ANALYSIS						
YAKUBA		CLEAN		VdB		Observations
Song	Pulse Type	$\begin{gathered} \text { 1st } \\ \text { Peak } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{aligned} & \hline \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Bins } \\ \text { Filled } \end{gathered}$
CUT Off POINTS : 250 \& 50 ms						
Y3e2s1	Overall	892.86	27.62	888.89	195.12	43/44
	Thud	20.02	781.25	888.89	35.24	41/44
	Clack	26.12	X	30.19	25.64	14/39
Y8e2s 1	Overall	600.00	X	666.67	x	$42 / 44$
	Thud	617.65	X	727.27	x	42/44
	Clack	439.02	X	533.33	50.31	11/40
Y9e2s1	Overall	90.91	30.98	91.95	28.37	37/38
	Thud	95.74	23.87	23.87	97.56	36/36
	Clack	22.73	62.50	22.60	37.56	24/38
Y10e2s2	Overall	59.27	x	100.96	x	$29 / 41$
	Thud	x	x	100.00	29.96	$29 / 41$
	Clack	23.09	57.50	57.14	23.46	26/41
Yylt13r	Overall	29.48	x	29.85	x	25/29
	Thud	x	x	x	x	19/29
	Clack	29.93	X	30.30	x	13/25
Yylt14	Overall	57.89	92.17	58.39	98.77	41/43
	Thud	57.14	X	57.55	102.56	33/43
	Clack	22.49	X	22.60	37.38	$19 / 40$
Y1t1412	Overall	33.22	30.05	33.20	52.29	33/43
	Thud	32.55	62.50	61.54	x	$29 / 43$
	Clack	28.95	64.68	29.41	62.99	19/32
Yy2t141	Overall	20.08	55.76	x	x	26/35
	Thud	63.83	x	64.52	x	21/34
	Clack	54.11	X	51.95	$41 . .03$	16/31
Yy3t141	Overall	105.77	54.19	108.11	55.94	44/47
	Thud	143.52	x	131.15	x	32/47
	Clack	x	x	106.67	69.57	24/47
Yy3t1412	Overall	X	X	533.33	83.33	44/48
	Thud	36.16	28.89	380.95	36.70	32/48
	Clack	21.93	x	21.92	20.62	23/44
Yy3t18	Overall	26.20	X	55.56	25.97	29/39
	Thud	26.17	x	55.56	25.97	28/39
	Clack	x	x	x	x	x
Yy4t14	Overall	103.81	26.52	105.26	x	48/51
	Thud	104.26	20.62	106.67	47.90	44/51
	Clack	155.41	22.22	170.21	55.56	$27 / 51$
Yy4t14I	Overall	33.02	34.28	43.24	142.86	47/51
	Thud	42.61	26.41	42.78	26.58	25/48
	Clack	x	x	800.0	62.50	38/51
Yy5t141	Overall	64.75	21.37	66.12	21.05	31/43
	Thud	30.92	371.79	31.25	26.76	28/33
	Clack	25.26	371.79	26.27	24.02	18/31

3.2a:

SPECTRAL ANALYSIS						
YAKUBA		CLEAN		VdB		Observations
Song	Pulse Type	$\begin{gathered} \text { 1st } \\ \text { Peak } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \\ \hline \end{gathered}$
CUT Off POINTS : 250 \& 50 ms						
Yy5t1412	Overall	25.62	21.37	400.00	25.81	34/46
	Thud	71.17	X	21.45	71.43	$29 / 46$
	Clack	68.03	X	400.00	68.23	25/46
Yy6t13	Overall	x	X	23.32	x	14/21
	Thud	x	X	x	X	12/21
	Clack	25.74	x	60.15	X	5/16
Yy6t141	Overall	87.04	157.53	25.89	87.91	40/52
	Thud	73.72	x	71.43	98.77	31/45
	Clack	512.82	x	40.40	34.78	$22 / 52$
Yy7t141	Overall	X	X	22.73	27.59	2433
	Thud	x	X	22.54	27.59	22/33
	Clack	x	X	190.48	22.47	3/11
Yy8t13r	Overall	35.50	X	36.53	156.86	32/39
	Thud	x	X	150.94	615.38	32/39
	Clack	x	X	28.67	x	8/21
Yy9t13r	Overall	45.78	X	45.98	61.54	38/40
	Thud	59.01	58.64	45.71	60.15	35/40
	Clack	45.45	X	45.45	26.40	21/40
Yy10t10	Overall	102.89	24.26	24.24	103.90	50/59
	Thud	92.59	24.20	24.46	93.02	$28 / 57$
	Clack	30.82	24.11	31.01	x	$22 / 52$
Yy10t13	Overall	31.36	22.76	571.43	31.75	30/38
	Thud	22.53	x	22.54	x	26/38
	Clack	31.91	x	32.39	615.58	8/35
Yyhlt10	Overall	84.75	40.13	86.96	42.33	41/59
	Thud	84.75	X	86.02	41.24	31/59
	Clack	28.48	X	28.37	170.21	9/49

Shaded-in values are the Clean values used to determine the mean song periods

APPENDIX 3.2b:

Spectral analyses of D. yakuba song using CLEAN and VdB (with Monte Carlc simulations), and 350 and 50 ms cut-off points.

SPECTRAL ANALYSIS						
YAKUBA		CLEAN		VdB		Observations
Song	Pusse Type	$\begin{gathered} \text { 1st } \\ \text { Peak } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { Peak } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { Bins } \\ \text { Filled } \end{gathered}$
CUT Off POINTS				350 \& 50 ms		
Ykltll2	Overall	34.92	85.77	87.91	50.63	36/43
	Thud	66.12	x	66.12	52.29	22/39
	Clack	57.58	X	57.97	x	22/43
Yk2t112	Overall	75.42	45.08	76.92	22.22	43/56
	Thud	31.18	69.77	31.25	x	30/51
	Clack	23.52	21.82	23.67	21.86	$27 / 51$
Yk3t112	Overall	33.01	54.31	33.20	x	35/36
	Thud	34.07	21.17	34.04	21.16	20/36
	Clack	53.50	26.37	54.79	37.21	18/35
Yk4t1rl	Overall	406.98	76.75	500.00	76.19	37/37
	Thud	x	x	533.33	37.38	34/37
	Clack	500.00	X	533.33	x	25/37
Yk5t1rl	Overall	24.27	x	23.95	X	19/34
	Thud	x	x	150.94	x	7/16
	Clack	x	x	X	x	17/34
Yk6t1r2	Overall	386.36	x	470.59	20.67	27/37
	Thud	71.88	X	72.73	35.87	26/37
	Clack	404.76	x	470.59	x	12/37
Yk7tlr 1	Overall	21.38	43.37	43.48	X	22/36
	Thud	x	x	82.47	275.86	8/26
	Clack	x	x	43.24	x	21/36
Yk9t712	Overall	62.14	21.06	66.12	55.56	27/45
	Thud	61.96	20.96	65.57	55.56	27/45
	Clack	x	x	x	X	x
Yk20t1r1	Overall	40.79	x	40.79	32.53	36/38
	Thud	32.32	x	32.32	x	30/38
	Clack	24.75	22.35	24.75	22.35	28/38
Yallt10	Overall	29.29	26.08	29.29	26.08	38/59
	Thud	42.35	29.20	42.35	29.20	33/59
	Clack	22.67	x	22.67	x	11/49
Yal2t9r	Overall	735.29	110.13	651.16	36.08	63/77
	Thud	31.29	x	78.55	31.14	41/77
	Clack	644.74	228.97	763.16	x	38/71
Yic2t13	Overall	88.86	x	38.17	88.76	20/34
	Thud	83.80	X	83.80	x	20/34
	Clack	20.80	x	20.80	x	8/30
Yam2t9r	Overall	20.08	470.59	490.74	26.88	42/66
	Thud	461.54	x	473.21	x	42/66
	Clack	x	x	x	x	x
Yle2s 1	Overall	44.01	X	44.01	36.14	36/39
	Thud	46.88	x	46.88	x	31/39
	Clack	44.33	X	44.33	X	13/35

3.2b:

SPECTRAL ANALYSIS						
YAKUBA		CLEAN		VdB		Observations
Song	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Pulse } \\ \text { Type } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { 1st } \\ & \text { Peak } \end{aligned}$	$\begin{aligned} & 2 \text { nd } \\ & \text { Peak } \end{aligned}$	$\begin{gathered} 1 \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Peak } \end{gathered}$	$\begin{aligned} & \text { Bins } \\ & \text { Filled } \end{aligned}$
CUT Off POINTS : 350 \& 50 ms						
Y3e2s I	Overall	892.86	213.68	164.06	35.96	43/44
	Thud	757.58	24.18	36.08	160.31	41/44
	Clack	291.67	26.83	26.12	x	15/39
Y8e2s 1	Overall	600.00	x	600.00	x	42/44
	Thud	617.65	x	617.65	x	42/44
	Clack	439.02	x	439.02	x	11/41
Y9e2s 1	Overall	90.91	28.04	91.95	28.37	37/38
	Thud	96.26	23.87	96.26	23.87	36/38
	Clack	22.73	62.50	22.73	62.50	24/38
Y10e2s2	Overall	59.27	x	59.27	x	30/41
	Thud	x	x	x	χ	29/41
	Clack	23.09	57.50	23.09	57.50	26/41
Yylt13r	Overall	29.48	x	29.85	X	25/29
	Thud	x	x	222.22	62.99	19/29
	Clack	29.93	x	29.93	x	14/26
Yylt14	Overall	57.89	92.17	57.39	x	41/43
	Thud	57.14	x	57.55	x	33/43
	Clack	22.49	x	22.60	x	19/40
Y1t1412	Overall	33.22	30.05	33.22	x	33/43
	Thud	32.55	62.50	61.54	X	29/43
	Clack	64.68	28.95	28.95	62.99	19/32
Yy21141	Overall	20.08	55.76	X	X	26/35
	Thud	63.83	x	63.65	x	26/35
	Clackx	54.11	x	51.95	X	16/31
Yy31141	Overall	105.77	54.19	108.11	55.94	44/47
	Thud	143.52	x	131.15	x	32/47
	Clack	x	x	106.67	69.57	24/47
Yy3t1412	Overall	x	x	533.33	83.33	$44 / 48$
	Thud	36.16	28.89	36.70	28.89	32/48
	Clack	21.93	x	21.92	x	23/44
Yy3t18	Overall	31.03	28.08	26.20	x	29/39
	Thud	23.87	x	26.17	x	28/39
	Clack	x	x	x	x	x
Yy4114	Overall	103.81	26.52	105.26	x	48/51
	Thud	104.26	20.62	106.67	47.90	44/51
	Clack	22.22	155.41	22.35	170.21	$29 / 51$
Yy41141	Overall	33.02	34.28	33.25	x	$47 / 51$
	Thud	42.61	26.41	42.78	26.58	25/48
	Clack	x	x	800.00	62.50	38/51
Yy51141	Overall	64.75	21.37	66.12	21.05	31/43
	Thud	30.92	371.79	31.25	26.76	28/33
	Clack	25.26	371.79	26.27	24.02	18/31

3.2b:

SPECTRAL ANALYSIS						
YAKUBA		CIEAN		VdB		Observations
Song	Pulse	$\begin{gathered} 1 \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{aligned} & \substack{\text { neak } \\ \text { Peak }} \end{aligned}$	$\begin{gathered} \text { 1st } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Peak } \end{gathered}$	Bins Filled
CUT Off POINTS : 350 \& 50 ms						
Yy5t1412	Overall	25.62	21.37	400.00	25.81	34/46
	Thud	71.17	x	21.45	71.43	29/46
	Clack	68.03	x	400.00	25.81	25/46
Yy6t13	Overall	x	x	23.32	x	14/21
	Thud	x	x	x	x	12/21
	Clack	x	x	60.15	X	7/16
Yy6t141	Overall	105.77	54.19	87.04	25.74	43/52
	Thud	143.52	x	73.72	157.53	32/45
	Clack	x	x	512.82	x	$24 / 52$
Yy7t141	Overall	x	X	x	x	24/33
	Thud	36.16	28.89	x	x	23/33
	Clack	21.93	x	x	x	4/11
Yy8t13r	Overall	35.50	x	36.53	X	32/39
	Thud	x	x	150.94	615.38	32/39
	Clack	x	x	x	x	9/21
Yy9t13r	Overall	45.78	x	45.78	58.64	38/40
	Thud	59.01	45.45	61.54	45.71	35/40
	Clack	45.45	x	45.45	26.40	21/40
Yy10t10	Overall	102.89	24.26	24.24	103.90	50/59
	Thud	92.59	24.20	24.46	93.02	$28 / 57$
	Clack	30.82	24.11	31.01	x	22/52
Yy10t13	Overall	31.36	22.76	571.43	31.75	30/38
	Thud	22.53	x	22.54	x	26/38
	Clack	31.91	x	32.39	615.58	$8 / 35$
Yyhlı10	Overall	84.75	40.13	86.96	42.33	41/59
	Thud	84.75	x	86.02	41.25	31/59
	Clack	28.48	x	170.21	28.37	9/49

APPENDICES

FOR CHAPTER 4

APPENDIX 4.1:

CLEAN and VdB, with Monte Carlo simulations, spectral analyses of D. teissieri Sweden songs, using the lower 55 and 10 ms cut-off points.

SPECTRAL			ANALYSIS		
SPECIES	Clean		Van der Berg		Observations
	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2ND } \\ \text { PEAK } \end{gathered}$	$\begin{gathered} \text { 1ST } \\ \text { PEAK } \end{gathered}$	$\begin{gathered} \text { 2ND } \\ \text { PEAK } \end{gathered}$	$\begin{aligned} & \text { BINS } \\ & \text { FLLLED } \end{aligned}$
D. tessieri	CUT Off POINTS : $55 \& 10 \mathrm{~ms}$				
Telt1212	36.28	30.86	36.53	31.25	28/57
Te2t1111	88.36	40.51	90.91	50.96	17/47
Te2tllrl	24.46	X	23.05	x	14/20
Te2t6rl	37.14	32.44	37.21	23.67	30/60
Te3tllr	72.70	24.48	72.02	x	30/79
Teilt6r2	89.93	20.63	62.50	89.89	33/47
Tei2t6r2	86.10	21.61	86.96	21.68	29/59
Tei2t7rl	46.76	127.45	46.78	125.00	20/41
Tei3t7rl	69.21	26.85	70.80	x	60/78
Tei3rlt7	53.16	26.18	52.98	39.80	21/44
Tei3t1111	258.62	94.34	320.00	11268	17/34
Tei6t6r2	101.35	x	103.90	x	13/19

APPENDICES

FOR CHAPTER 5

APPENDIX 5.2.1:

One-way ANOVA between the periods of D. yakuba, D. mauritiana and their reciprocal interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	3	2040.810	47	563.0552	3.624528	0.019590

Newman-Keuls a posteriori test between the periods of D. yakuba, D. mauritiana and their
reciprocal interspecific hybrids (\mathbf{p}-values are given).

	D. yakuba (Thud + Clack)	D. mauritiana	D. yakuba(f) \mathbf{x} D. mauritiana (\mathbf{m})	D. mauritiana(f) \mathbf{x} D. yakuba (\mathbf{m})
D. yakuba (Thud + Clack)		0.099060	0.416296	0.347708
D. mauritiana			$\mathbf{0 . 0 2 6 0 8 9}$	0.252098
D. yakuba $(\mathbf{f}) \mathbf{x}$ D. mauritiana (\mathbf{m})				0.191122

KEY : BOLD LETTERS = SIGNIFICANT RESULTS

APPENDIX 5.4.1:

One-way ANOVA between the mean IPIs of \boldsymbol{D}. simulans, \boldsymbol{D}. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	273.8587	23	78.76285	3.47703	0.047933

Newman-Keuls a posteriori test between the mean IPIs of \boldsymbol{D}. simulans, \boldsymbol{D}. mauritiana and their interspecific hybrids (\mathbf{p}-values are given).

	D. simulans	D. mauritiana	D. simulans $(\mathbf{f}) \mathbf{x}$ D. mauritiana (\mathbf{m})
D. simulans		0.044747	0.124559
D. mauritiana			0.345463

APPENDIX 5.4.2:

One-way ANOVA between the mean SSFs of D. simulans, \boldsymbol{D}. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	229.8366	7	42.39455	5.421371	0.037821

Newman-Keuls a posteriori test between the mean SSFs of \boldsymbol{D}. simulans, D. mauritiana and their interspecific hybrids (\mathbf{p}-values are given).

	D. simulans	D. mauritiana	D. simulans(f) \mathbf{x} D. mauritiana (\mathbf{m})
D. simulans		$\mathbf{0 . 0 4 8 3 4 2}$	0.877454
D. mauritiana			$\mathbf{0 . 0 2 6 2 6 6}$

KEY : BOLD LETTERS = SIGNIFICANT RESULTS

APPENDIX 5.5.1:

One-way ANOVA between the mean IPIs of D. teissieri, D. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	$\mathbf{7 5 5 . 7 5 5 1}$	$\mathbf{4 0}$	40.6645	$\mathbf{1 8 . 5 8 5 1 3}$	$\mathbf{0 . 0 0 0 0 0 2}$

Newman-Keuls a posteriori test between the mean IPIs of \boldsymbol{D}. teissieri, D. mauritiana and their interspecific hybrids (p-values are given).

	D. teissieri	D. mauritiana	D. teissieri(f) \mathbf{x} D. mauritiana (\mathbf{m})
D. teissieri		0.000125	0.010366
D. mauritiana			0.0067061

APPENDIX 5.5.2:

One-way ANOVA between the modal IPIs of D. teissieri, D. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	369.595	$\mathbf{4 0}$	$\mathbf{1 2 . 1 8 7 6 9}$	$\mathbf{3 0 . 3 2 5 2 6}$	$\mathbf{0 . 0 0 0 0 0}$

Newman-Keuls a posteriori test between the modal IPIs of \boldsymbol{D}. teissieri, D. mauritiana and their interspecific hybrids (\mathbf{p}-values are given).

	D. teissieri	D. mauritiana	D. teissieri(f) \mathbf{x} D. mauritiana (\mathbf{m})
D. teissieri		0.000133	0.000122
D. mauritiana			0.022322

APPENDIX 5.5.3:

One-way ANOVA between the mean SSFs of D. teissieri, D. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	1453.937	8	34.00816	42.75260	$\mathbf{0 . 0 0 0 0 5 4}$

Newman-Keuls a posteriori test between the mean SSFs ofD. teissieri, D. mauritiana and their interspecific hybrids (\mathbf{p}-values are given).

	D. teissieri	D. mauritiana	D. teissieri $(\mathbf{f}) \mathbf{x}$ D. mauritiana (\mathbf{m})
D. teissieri		$\mathbf{0 . 0 0 0 2 4 3}$	0.055843
D. mauritiana			$\mathbf{0 . 0 0 0 3 6 9}$

APPENDIX 5.5.4:

One-way ANOVA between the periods of D. teissieri, D. mauritiana and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
STRAIN	2	2761.923	26	439.1862	6.288728	$\mathbf{0 . 0 0 5 9 2 0}$

Newman-Keuls a posteriori test between the periods of \boldsymbol{D}. teissieri, D. mauritiana and their interspecific hybrids (p-values are given).

	D. teissieri	D. mauritiana	D. teissieri(f) \mathbf{x} D. mauritiana (\mathbf{m})
D. teissieri		$\mathbf{0 . 0 0 6 7 5 9}$	0.223193
D. mauritiana			$\mathbf{0 . 0 4 4 9 2 2}$

KEY : BOLD LETTERS = SIGNIFICANT RESULTS

APPENDICES

FOR CHAPTER 6

APPENDIX 6.1:

Regression of Mean Intrapulse Frequency(IPF) vs Position of IPF in Burst for the ten longest bursts of song

EQUATION : IPF=bx+a where $x=$ time

Species/Individual songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
melanogaster COMPLEX					
melanogaster	- 2.0905	300.898	0.625	6.41	0.030*
MEL1	- 1.8350	307.782	0.429	2.26	0.164
MEL2	- 3.3150	292.800	0.629	5.91	0.038*
MEL3	- 1.8989	304.740	0.409	2.41	0.146
mauritiana Sweden	- 2.4324	269.698	0.939	82.28	0.000*
MAUR1	- $\mathbf{1 . 3 8 0 0}$	267.460	0.815	27.71	0.006*
MAUR2	- 5.4300	301.000	0.949	125.7	0.000*
MAUR3	- 0.1800	238.840	0.167	0.34	0.568
mauritiana France	0.3906	250.648	0.234	0.58	0.463
MAUR4	1.2395	245.810	0.488	4.38	0.055
MAUR5	- 0.8399	257.404	0.343	1.34	0.274
mauritiana Indiana	2.0289	376.322	0.531	5.11	0.042*
MAUR6	0.7530	395.220	0.170	0.39	0.545
MAUR7	2.9250	361.540	0.471	3.99	0.066
simulans Florida	- 0.0206	408.871	0.000	0.00	0.983
SIMFLO1	2.2260	390.860	0.055	0.13	0.741
SIMFLO2	4.3500	390.600	0.425	1.33	0.293
SIMFLO3	- 1.4170	434.450	0.050	0.10	0.767
SIMFLO4	- 1.0800	402.950	0.520	0.74	0.480
sechellia Cambridge	- 6.9231	401.284	0.932	52.75	0.000*
SECHEL1	- 3.9990	351.970	0.748	12.66	0.005*
SECHEL2	- 3.6210	345.610	0.508	2.78	0.134
SECHEL3	- 5.9110	443.280	0.637	5.48	0.047*
SECHEL4	-13.3600	472.670	0.875	26.02	0.000*
yakuba COMPLEX					
erecta France	-0.1738	389.688	0.0632	0.040	0.848
EREC1	1.8232	354.990	0.5130	4.99	0.042*
EREC2	- 2.1940	447.510	0.3520	1.42	0.261
EREC3	1.0110	413.480	0.2430	0.87	0.366
EREC4	- 1.9200	270.210	0.3100	1.16	0.304
EREC5	- 1.6170	434.880	0.2970	0.87	0.376
teissieri Sweden	0.7880	433.041	0.2530	0.55	0.481
TEISS1	0.3830	427.330	0.0774	0.06	0.819
TEISS2	0.3656	435.171	0.1000	0.07	0.797
TEISS3	8.1740	400.293	0.9300	38.42	0.001*
TEISS4	-2.0870	459.110	0.3560	1.02	0.346
TEISS5	0.1550	434.600	0.0316	0.01	0.936
orena France	-9.1700	639.090	0.8720	25.50	0.000*
ORE1	-10.293	590.910	0.7420	9.78	0.014*
ORE2	-6.507	599.63	0.5210	2.99	0.122
ORE3	-4.425	551.43	0.5504	4.35	0.640
ORE4	- 0.974	787.22	0.8070	8.81	0.012*

6.1:

Species/Individualsongs		Slope (b)	Intercept (a)	r-value	F-value	p-value
yakuba Strains						
Strain	Pulse type					
vakuba Lam 03						
	thUD	-3.7880	333.164	0.6440	4.97	0.061
	CLACK	0.2099	322.806	0.0548	0.02	0.089
YLI	THUD	6.0750	359.660	0.6530	5.19	0.057
	CLACK	4.3340	302.690	0.5880	4.26	0.730
YL2	Thud	-1.6680	309.050	0.2280	0.39	0.554
	CLACK	- 1.9620	336.319	0.5030	2.37	0.168
yakuba France						
	THUD	-2.5759	310.935	0.7040	9.83	0.011^{*}
	CLACK	-5.2982	365.600	0.8330	18.17	0.003^{*}
YFi	THUD	-3.8690	303.367	0.7321	11.57	0.007^{*}
	CLACK	-2.7170	302.490	0.4960	2.60	0.145
YF2	THUD	-1.6350	321.410	0.3070	0.94	0.358
	THUD	0.6276	290.745	0.2790	0.85	0.375
	CLACK	$\stackrel{-0.7120}{ }$	426.310	0.1090	0.10	0.765
YS1	THUD	1.2166	272.064	0.4360	3.53	0.080
	CLACK	2.4750	426.460	0.1224	0.07	0.797
YS2	THUD	2.0964	304.122	0.5920	4.84	0.055
	Clack	-3.2690	425.140	0.3960	0.74	0.437
yakuba Malawi						
	THUD	$\stackrel{-0.3125}{ }$	288.108	0.1840	0.28	0.610
	CLACK	-0.1545	36.8870	0	0.00	0.975
YM1	thud	$\underline{-1.7400}$	28.160	0.6260	5.15	0.053
	CLACK	$\stackrel{-0.6770}{ }$	362.890	0.0548	0.02	0.902
YM2	THUD	$\underline{-1.1146}$	310.120	0.3860	2.46	0.139
	CLACK	${ }_{-0.5270}$	371.410	0.0632	0.03	0.862
yakuba Ivory Coast						
	THUD	-1.1570	348.268	0.3020	1.00	0.342
	CLACK	0.7730	415.310	0.1610	0.31	0.655
YIC1	THUD	-2.3380	344.073	0.5150	3.60	0.087
	Clack	4.5880	433.030	0.5920	4.32	0.071
YIC2	THUD	0.0250	352.430	0	0.00	0.987
	CLACK	$\underline{-2.7180}$	396.430	0.3330	1.00	0.347
INTRASPECIFIC HYBRIDS						
$\begin{gathered} \text { yakuba S.T.(f)x } \\ \text { vakuba Lamto3(m) } \end{gathered}$						
	THUD	-0.9750	320.080	0.2080	0.37	0.562
	Clack	$\stackrel{-4.8520}{ }$	499.173	0.7290	9.11	0.017*
YSYLI	THUD	2.8820	291.120	0.5130	2.85	0.130
	Clack	-11.597	537.290	0.8540	21.59	0.000*
YSYL2	THUD	-1.825	330.900	0.3290	1.09	0.323
	Clack	$\stackrel{-1.890}{ }$	461.090	0.2790	0.68	0.434
yakuba Lamto3(f) xyakuba Ivory Coast(m)						
	THUD	-4.4195	320.866	0.9340	54.4	0.000*
	CLACK	2.1206	425.007	0.7060	7.93	0.023**
YLYIC1	THUD	-5.5279	322.213	0.8920	31.18	${ }^{0.000^{*}}$
	Clack	1.4410	428.070	0.0774	0.51	0.994
YLYIC2	THUD	-2.3810	315.780	0.5540	3.99	0.077
	Clack	4.6560	414.861	0.7450	7.48	0.034*
yakuba Malawi(f) x yakuba S.T.(m)						
	THUD	0.6020	392.148	0.1820	0.34	0.572
	CLACK	1.8020	458.090	0.2950	0.76	0.409
YMYSI	THUD	0.6180	426.630	0.1140	0.12	0.741
	Clack	-0.3770	444.290	0.0548	0.03	0.876
YMYS2	THUD	-1.6240	356.710	0.2550	0.63	0.448
	CLACK	-2.1620	468.010	0.2850	0.61	0.459

6.1:

Species/Individual songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
INTERSPECIFIC HYBRIDS					
simulans Florida(f) x mauritiana Sweden(m)	- 7.2544	549.890	0.8470	20.26	0.000*
SMHYB1	-8.3240	570.570	0.6900	7.26	0.027
SMHYB2	-6.2610	615.230	0.4670	2.23	0.174
SMHYB3	-7.1700	463.860	0.6470	5.77	0.043*
teissieri Sweden(f) x mauritiana Sweden(m)	- 1.6750	549.460	0.1840	0.28	0.608
TMHYB1	-1.8410	549.610	0.2050	0.35	0.568
TMHYB2	1.1860	523.530	0.1000	0.08	0.783
TMHYB3	-4.9270	569.330	0.2881	0.73	0.418
mauritiana Sweden(f x yakuba Ivory Coast(m)	-0.7960	435.367	0.2350	0.58	0.465
MSYICHYB1	- 1.9150	468.060	0.3000	0.90	0.369
MSYICHYB2	- 1.2600	472.130	0.1643	0.25	0.631
MSYICHYB3	1.3930	363.210	0.2950	0.95	0.352
mauritiana Sweden(f) x yakuba Lamto3(m)	-0.2021	413.756	0.0949	0.09	0.762
MSYLHYB1	1.3570	381.830	0.1414	0.18	0.679
MSYLHYB2	3.1800	374.850	0.6595	7.70	0.020**
MSYLHYB3	-2.4500	472.910	0.6511	6.62	0.030*
MSYLHYB4	-1.0220	415.479	0.2664	0.77	0.402
yakuba France(f) x teissieri Sweden(m)	0.38000	409.629	0.0316	0.06	0.816
YFTSHYB1	-1.5780	365.340	0.3420	1.59	0.232
YFTSHYB2	0.5210	425.730	0.0200	0.002	0.889
YFTSHYB3	1.4300	444.349	0.3610	1.80	0.205
yakuba France(f) x mauritiana France(m)	- 1.4210	413.470	0.3950	1.85	0.203
YFMFHYB1	0.1010	394.000	0.0000	0	0.959
YFMFHYB2	-0.2090	353.210	0.0447	0.03	0.868
YFMFHYB3	-2.9189	483.439	0.7036	9.80	0.011*
yakuba Malawi(f) x mauritiana Sweden(m)	-0.4900	410.683	0.200	0.29	0.606
YMMS1	-1.4660	352.170	0.2240	0.42	0.535
YMMS2	0.5120	390.117	0.1265	0.16	0.697
YMMS3	0.7400	453.489	0.2050	0.30	0.598
KEY : $*$ - SIGNIFICANT CORRELATION					

APPENDIX 6.2:

Regression of Cycles per Cycles (CPP) vs Position of CPP in Burst for the ten longest bursts of song

EQUATION : CPP=bx+a where $x=t i m e$

Species/Individual songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
melanogaster COMPLEX					
melanogaster	0.03627	1.96213	0.9290	63.79	0.000*
MEL1	0.05301	1.70024	0.8456	25.14	0.000*
MEL2	0.02764	2.20510	0.3990	1.51	0.254
MEL3	0.00282	2.08450	0.0316	0.01	0.922
mauritiana Sweden	0.05852	1.66669	0.8440	27.32	0.000*
MAUR1	0.05903	1.47610	0.6820	6.95	0.030*
MAUR2	0.05542	2.12420	0.6900	9.09	0.013*
MAUR3	0.03655	1.54430	0.5215	2.99	0.122
mauritiana France	0.01424	2.47550	0.2830	0.86	0.375
MAUR4	0.02198	2.44270	0.3332	1.00	0.347
MAUR5	0.01465	2.47380	0.2324	0.51	0.494
mauritiana Indiana	0.01683	2.15240	0.4990	3.98	0.069
MAUR6	-0.03182	2.79090	0.3098	0.96	0.354
MAUR7	-0.01091	2.59270	0.1897	0.34	0.575
simulans Florida	0.011679	1.40023	0.4701	2.27	0.170
SIMFLO1	0.04875	1.34140	0.7950	12.01	0.010*
SIMFLO2	0.00767	1.32770	0.1095	0.09	0.779
SIMFLO3	0.01460	1.46622	0.3674	1.09	0.330
SIMFLO4	0.00873	1.40890	0.1049	0.08	0.785
sechellia Cambridge	0.10593	2.42557	0.9430	64.75	0.000*
SECHEL1	0.11238	3.00100	0.5718	3.89	0.084
SECHEL2	0.13807	2.39690	0.8798	24.02	0.000*
SECHEL3	0.00458	2.47220	0.0447	0.01	0.919
SECHEL4	0.17436	1.81330	0.9274	55.15	0.000*
yakuba COMPLEX					
erecta France	0.02560	2.73880	0.0447	0.02	0.888
EREC1	0.02926	2.29500	0.3911	2.53	0.134
EREC2	-0.02210	2.76020	0.2510	0.41	0.547
EREC3	0.03427	2.75250	0.6900	12.70	0.003*
EREC4	0.00929	2.55080	0.1414	0.20	0.665
EREC5	0.00258	2.73880	0.0447	0.02	0.888
teissieri Sweden	0.00895	1.70684	0.5590	3.65	0.092
TEISS 1	- 0.00060	1.52960	0.0316	0.000	0.946
TEISS2	0.03158	1.61407	0.8781	23.57	0.000*
TEISS3	-0.01763	1.54421	0.3886	1.070	0.341
TEISS4	0.00363	1.95028	0.0774	0.050	0.838
TEISS5	0.02281	1.91000	0.3886	1.420	0.268
orena France	0.04982	1.36593	0.8930	31.68	0.000*
ORE1	0.03939	1.40333	0.8081	15.07	0.005*
ORE2	0.06970	1.11670	0.6848	7.060	0.029*
ORE3	0.03182	1.54318	0.8614	28.82	0.000*
ORE4	0.02358	1.49340	0.7668	11.41	0.010*

6.2:

6.2:

Species/Individual Songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
INTERSPECIFIC HYBRIDS					
$\begin{gathered} \text { simulans } \operatorname{Florida}(\mathbf{f}) \times \\ \text { mauritiana } \text { Sweden }(\mathbf{m}) \end{gathered}$	0.01285	2.2076	0.3420	1.06	0.334
SMHYB1	0.02121	2.23333	0.4889	2.52	0.151
SMHYB2	0.03697	1.72667	0.6395	5.53	0.047*
SMHYB3	-0.01424	2.61330	0.1844	0.29	0.607
teissieri Sweden(f) x mauritiana Sweden(m)	0.01758	2.06030	0.2700	0.63	0.449
TMHYB1	-0.00424	2.08333	0.1183	0.11	0.748
TMHYB2	-0.01788	2.19333	0.4848	2.46	0.156
TMHYB3	-0.00061	2.13333	0	0.00	0.969
mauritiana Sweden(f) x yakuba Ivory Coast(m)	-0.00285	1.97605	0.0774	0.06	0.819
MSYICHYB1	0.00818	2.05090	0.1581	0.23	0.645
MSYICHYB2	-0.01182	1.98910	0.1643	0.25	0.631
MSYICHYB3	0.01154	1.81670	0.1673	0.29	0.600
$\begin{gathered} \text { mauritiana Sweden(f) x } \\ \text { yakuba } \text { Lamto } 3(\mathrm{~m}) \end{gathered}$	0.02483	1.91360	0.2970	0.96	0.349
MSYLHYB1	0.02313	1.66280	0.3860	1.58	0.240
MSYLHYB2	0.00699	1.72120	0.1449	0.22	0.650
MSYLHYB3	0.01489	1.16708	0.4336	2.09	0.182
MSYLHYB4	0.02483	1.91360	0.2966	0.96	0.349
yakuba France(f) x teissieri Sweden(m)	-0.00306	1.27411	0.1790	0.20	0.673
YFTSHYB1	-0.09037	1.69190	0.6782	3.40	0.139
YFTSHYB2	-0.03874	1.56790	0.5206	1.49	0.290
YFTSHYB3	-0.01349	1.13571	0.5000	2.00	0.207
yakuba France(f) x mauritiana France(m)	0.00720	1.81052	0.2120	0.47	0.507
YFMFHYB1	0.00082	1.39666	0	0.00	0.949
YFMFHYB2	0.03000	1.52667	0.7457	16.27	0.001*
YFMFHYB3	0.06554	2.23050	0.5376	3.25	0.109
yakuba Malawi(f) x mauritiana Sweden(m)	0.01820	1.65069	0.7510	10.37	0.012*
YMMS1	-0.00788	2.15330	0.1643	0.22	0.650
YMMS2	0.02194	1.16818	0.7134	4.48	0.860
YMMS3	0.02764	1.64773	0.6419	5.61	0.045*
KEY : *	GNIEI	JT COI	LIA		

APPENDIX 6.3:

Regression of Mean Interpulse Interval (IPI) vs Position of IPI in Burst for the ten longest bursts of song

EQUATION : IPI=bx+a where $x=$ time

Species/Individual songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
melanogaster COMPLEX					
melanogaster	0.11151	32.9994	0.4500	2.29	0.164
MEL1	0.17360	34.1330	0.2863	0.89	0.368
MEL2	-0.05250	32.8950	0.0707	0.05	0.829
MEL3	0.09598	32.5770	0.3130	1.08	0.323
mauritiana Sweden	-2.46740	57.2350	0.9590	115.40	0.000*
MAUR1	-2.03400	57.1860	0.8462	42.82	0.000*
MAUR2	-0.77360	42.5010	0.8112	30.81	0.000*
MAUR3	-1.82470	58.5540	0.9192	81.72	0.000*
mauritiana France	-1.43050	44.3610	0.9350	63.11	0.000*
MAUR4	-0.00300	46.0150	0	0.00	0.974
MAUR5	-2.00780	59.6690	0.9083	70.68	0.000*
mauritiana Indiana	-2.61900	64.1490	0.9560	129.57	0.000*
MAUR6	-1.85540	59.1880	0.9160	73.19	0.000*
MAUR7	-2.65550	64.8950	0.9455	118.67	0.000*
simulans Florida	0.40680	66.5790	0.2323	0.40	0.549
SIMFLO1	-0.25470	73.4100	0.1000	0.07	0.797
SIMFLO2	-1.69380	63.4510	0.6760	5.89	0.046*
SIMFLO3	0.20770	70.0890	0.1000	0.07	0.798
SIMFLO4	1.14900	53.3870	0.4219	1.52	0.257
sechellia Cambridge	-0.46450	100.035	0.4850	2.15	0.186
SECHEL1	-0.57090	100.005	0.4099	2.02	0.185
SECHEL2	-1.64970	115.306	0.6731	8.28	0.016*
SECHEL3	0.54940	97.0450	0.4324	2.30	0.160
SECHEL4	-3.06180	112.212	0.8591	28.20	0.000*
yakuba COMPLEX					
erecta France	-0.91260	51.0904	0.9150	46.71	0.000*
EREC1	-1.28770	50.1750	0.9284	62.45	0.000*
EREC2	-0.48850	47.5070	0.7456	12.52	0.005*
EREC3	-1.43580	56.3533	0.9757	200.28	0.000*
EREC4	-0.52990	43.7630	0.4754	2.92	0.188
EREC5	-0.36530	53.0450	0.2646	0.76	0.405
teissieri Sweden	0.20007	20.2320	0.8510	18.37	0.004*
TEISS 1	0.22026	18.2141	0.6797	7.71	0.021*
TEISS2	0.60000	21.2020	0.7842	12.78	0.007*
TEISS3	-0.33024	20.9730	0.7846	12.85	0.007*
TEISS4	-0.27490	24.7380	0.5089	3.84	0.076
TEISS5	0.39876	17.7108	0.9317	52.69	0.000*
orena France	-1.52600	66.8010	0.7250	7.76	0.027*
ORE1	-1.64470	66.0640	06481	5.79	0.043*
ORE2	-0.03090	52.3000	0	0.00	0.970
ORE3	-0.97890	72.4020	0.4074	1.59	0.243
ORE4	-1.74330	69.0590	0.7655	11.32	0.010*

6.3:

Species/Individual songs		Slope (b)	Intercept (a)	r-value	F-value	p-value
yakuba Strains						
Strain	Pulse type					
yakuba Lamto3						
	THUD	3.5810	107.300	0.5540	2.66	0.154
	CLACK	- 0.0360	111.363	0.0000	0	0.983
YL1	THUD	- 1.2350	134.360	0.2449	0.71	0.419
	CLACK	- 2.1390	121.850	0.3742	1.14	0.320
YL2	THUD	1.11600	106.849	0.2665	0.61	0.457
	CLACK	1.61300	104.246	0.3808	1.69	0.222
yakuba France						
	THUD	- 3.0250	145.900	0.5200	3.33	0.101
	CLACK	- 1.77100	129.461	0.4580	1.86	0.215
YF1	THUD	-2.2003	139.730	0.4970	4.93	0.042*
	CLACK	-4.3535	144.987	0.8706	28.21	0.000*
YF2	THUD	-2.4500	143.840	0.4701	3.13	0.105
	CLACK	3.0500	106.780	0.4561	2.37	0.158
yakuba S.T.						
	THUD	-2.9509	114.690	0.8570	24.88	0.000*
	CLACK	-2.8980	153.469	0.6750	5.87	0.046*
YS1	THUD	-0.3129	86.9780	0.2490	0.98	0.337
	CLACK	-9.5200	191.190	0.6870	4.47	0.088
YS2	THUD	-4.8125	134.367	0.8944	35.89	0.000*
	CLACK	4.2270	114.800	0.4037	0.97	0.369
yakuba Malawi						
	THUD	-6.9253	162.490	0.9945	209.00	0.000*
	CLACK	-6.5301	150.802	0.9884	628.25	0.000*
YM1	THUD	-6.2196	154.649	0.9859	281.62	0.000*
	CLACK	-4.4704	145.403	0.9170	42.27	0.000*
YM2	THUD	-4.8539	157.513	0.9428	119.23	0.000*
	CLACK	-6.3416	149.175	0.9889	361.01	0.000*
yakuba Ivory Coast						
	THUD	- 3.3627	111.106	0.7820	14.17	0.004*
	CLACK	- 0.8162	118.380	0.4610	1.90	0.211
YIC1	THUD	- 0.0393	84.5020	0.0316	0.02	0.896
	CLACK	4.6400	91.1390	0.8367	18.68	0.003*
Y1C2	THUD	- 2.4784	111.059	0.8000	28.50	0.000*
	CLACK	- 5.6995	142.851	0.9685	120.57	0.000*
INTRASPECIFIC HYBRIDS						
yakuba S.T.(f) x yakuba Lamto3(m)						
	THUD	- 0.9563	99.1860	0.3990	1.33	0.287
	CLACK	- 1.3020	124.159	0.3520	0.99	0.352
YSYL1	THUD	0.7332	83.2630	0.5394	3.29	0.107
	CLACK	- 0.2040	118.807	0.0548	0.02	0.881
YSYL2	THUD	- 1.6512	111.770	0.5718	5.34	0.041*
	CLACK	- 1.6970	126.944	0.4416	1.94	0.201
yakuba Lamto3(f) x yakuba Ivory Coast(m)						
	THUD	-0.5727	100.088	0.3600	1.05	0.340
	CLACK	-0.1042	140.279	0.0447	0.01	0.912
YLYIC1	THUD	0.6093	95.0770	0.2074	0.45	0.517
	CLACK	- 2.8333	148.600	0.5109	2.47	0.160
YLYIC2	THUD	0.0715	97.8480	0.0447	0.02	0.898
	CLACK	1.5950	136.137	0.4062	1.58	0.244
yakuba Malawi(f) x yakuba S.T.(m)						
	THUD	0.5655	95.2360	0.2740	0.73	0.416
	CLACK	2.6232	114.561	0.7060	6.97	0.033*
YMYS1	THUD	1.5598	77.2350	0.7211	11.93	0.005*
	CLACK	2.2930	118.322	0.4472	1.74	0.228
YMYS2	THUD	- 0.2650	112.458	0.0632	0.04	0.853
	CLACK	2.1685	113.676	0.6641	7.09	0.026*

6.3:

Species/Individual songs	Slope (b)	Intercept (a)	r-value	F-value	p-value
INTERSPECIFIC HYBRIDS					
simulans Florida(f) x mauritiana Sweden(m)	1.8013	45.3530	0.868	21.31	0.000*
SMHYB1	0.0109	37.1200	0	0.000	0.955
SMHYB2	-0.4955	63.4370	0.2510	0.67	0.431
SMHYB3	0.6295	50.0720	0.2610	0.66	0.438
teissieri Sweden(f) x mauritiana Sweden(m)	- 0.3308	41.5300	0.4380	1.67	0.238
TMHYB1	- 1.1174	49.4950	0.8025	18.12	0.000*
TMHYB2	-0.6693	40.0560	0.6395	6.93	0.025*
TMHYB3	-0.0778	38.0860	0.0632	0.03	0.860
mauritiana Sweden(f) x yakuba Ivory Coast(m)	0.8087	107.755	0.4560	2.37	0.158
MSYICHYB1	0.2823	95.1770	0.1304	0.18	0.683
MSYICHYB2	1.5040	119.868	0.5514	4.37	0.063
MSYICHYB3	0.1020	110.440	0.0316	0.01	0.927
mauritiana Sweden(f) x yakuba Lamto3(m)	0.3697	85.8770	0.3350	1.14	0.313
MSYLHYB1	0.1082	107.686	0.0632	0.004	0.842
MSYLHYB2	-0.1532	102.701	0.1000	0.11	0.747
MSYLHYB3	0.0952	60.7860	0.0447	0.02	0.886
MSYLHYB4	0.8309	77.0210	0.4637	3.01	0.110
yakuba France(f) x teissieri Sweden(m)	- 0.3525	78.7530	0.1580	0.13	0.733
YFTSHYB1	-0.7515	77.7420	0.3962	1.68	0.228
YFTSHYB2	-0.1020	77.7010	0.0316	0.00	0.948
YFTSHYB3	-0.0620	77.5440	0	0.00	0.968
yakuba France(f) x mauritiana France(m)	1.0605	47.8400	0.7730	13.40	0.005*
YFMFHYB1	0.0689	37.6070	0.0949	0.09	0.772
YFMFHYB2	1.1423	45.7040	0.7994	17.74	0.002*
YFMFHYB3	0.8790	88.3230	0.2501	0.67	0.433
yakuba Malawi(f) x mauritiana Sweden(m)	- 0.6123	44.4070	0.6530	5.20	0.057
YMMS1	0.1580	33.1760	0.4461	2.49	0.146
YMMS2	0.5965	42.1070	0.2627	0.74	0.411
YMMS3	0.3422	41.5570	0.4550	2.62	0.137

KEY : * - SIGNIFICANT CORRELATION

APPENDIX 6.4:

Temporal changes in IPF, CPP and IPI for all the members species of the D. melanogaster subgroup. (Note that the individual song trends are presented).

Species/Strain	Intrapulse Frequency (IPF)				Cycles per Pulse (CPP)				Interpulse Interval (IPI)			
		Overall	Individual songs		Overall		Individual songs		Overall		Individual songs	
melanogaster(Brighton)		\downarrow	All 3 \downarrow			\uparrow	All $3 \uparrow$		\uparrow		$2 \uparrow$, 1 \downarrow	
simulans (Florida)		Slight \downarrow	$2 \uparrow$, $2 \downarrow$			\uparrow	$4 \uparrow$		\uparrow		$2 \downarrow, 2 \uparrow$	
mauritiana(Sweden)		\downarrow	$3 \downarrow$			\uparrow	$3 \uparrow$		\downarrow		3 \downarrow	
mauritiana (France)		Slight \uparrow	$1 \uparrow, 1 \downarrow$			\uparrow	$1 \uparrow, 1 \downarrow$		\downarrow		$2 \downarrow$	
mauritiana(Indiana)		\uparrow	$2 \uparrow$			\uparrow	$2 \uparrow$		\downarrow		$2 \downarrow$	
sechellia(Cambridge)		\downarrow	All $4 \downarrow$			\uparrow	$3 \uparrow$, \downarrow		\downarrow		3 $\downarrow, 1 \uparrow$	
teissieri (Sweden)		\uparrow	4 $\downarrow, 1 \uparrow$			\downarrow	$2 \uparrow$, $\downarrow \downarrow$		1		3 \uparrow, $2 \downarrow$	
orena (France)		\downarrow	4 \downarrow			\uparrow	$4 \uparrow$		\downarrow		$3 \downarrow$, $1 \uparrow$	
erecta (France)		\downarrow	$2 \uparrow$, ${ }^{\text {d }}$		\uparrow		$3 \uparrow, 2 \downarrow$		\downarrow		5 \downarrow	
yakuba Strains	Thud	Clack										
France	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow	$1 \uparrow, 1 \downarrow$
Ivory Coast	\downarrow	\uparrow	$1 \uparrow$	$1 \uparrow, 1 \downarrow$	\uparrow	\uparrow	$2 \uparrow$	1 \uparrow, $1 \downarrow$	\downarrow	\downarrow	$1 \uparrow, 1 \downarrow$	$1 \uparrow$,1 \downarrow
Lamto3	\downarrow	\uparrow	$2 \downarrow$	$1 \uparrow, 1 \downarrow$	\downarrow	\uparrow	1 \uparrow, $1 \downarrow$	$2 \uparrow$	\uparrow	\downarrow	$1 \uparrow$, 1 \downarrow	$1 \uparrow, 1 \downarrow$
Malawi	\downarrow	\downarrow	$2 \downarrow$	$2 \downarrow$	\uparrow	\uparrow	2 \downarrow	$2 \uparrow$	\downarrow	\downarrow	$2 \downarrow$	$2 \downarrow$
S.T.	\uparrow	\downarrow	$1 \uparrow, 1 \downarrow$	1 \uparrow, 1 \downarrow	\uparrow	\downarrow	$2 \uparrow$	1 \uparrow, $1 \downarrow$	\downarrow	\downarrow	$2 \downarrow$	1†,1 \downarrow
yakuba Intraspecific Hybrids												
Malawi(f) \times S.T.(m)	\downarrow	\downarrow	$1 \uparrow .1 \downarrow$	2 \downarrow	\uparrow	\uparrow	$2 \uparrow$	$2 \uparrow$	\uparrow	\uparrow	1 \uparrow, $1 \downarrow$	$2 \uparrow$
S.T.(f) \times Lamto3(m)	\downarrow	\downarrow	1 \uparrow, 1 \downarrow	$1 \uparrow$, $\downarrow \downarrow$	\uparrow	\uparrow	1 \uparrow, $1 \downarrow$	$1 \uparrow, 1 \downarrow$	\downarrow	\downarrow	$1 \uparrow, 1 \downarrow$	2 \downarrow
Lamto3(f) x Ivory Coast(m)	\downarrow	\uparrow	$2 \downarrow$	$2 \uparrow$	\uparrow	\uparrow	$2 \uparrow$	$2 \downarrow$	\downarrow	\downarrow	$2 \uparrow$	1 \uparrow, 1 \downarrow

KEY: $\uparrow=$ Increase, $\downarrow=$ Decrease

APPENDIX 6.5

APPENDIX 6.5

Figure 6.18 : D. yakuba France(f) \times D. mauritiana France(ma)-Hybrid:Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE YREQUENCY (IPY)
MIDDLE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW: C - INTERPULSE INTERVAL (IPI)

COLUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MiDDLE - SPECLES REGRESSION FOR ELEMENT MEAN
RIGHT - REGRESSION YOR ELEMENT IN INDIVIDUAL SONG
ASTERISKS DENOTE SKGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3)

Figure 6.20 : D. yakuba France(1) \times. teissieri Sweden(m)-Hybrid: Song elements versus pulse position in burst
TOP ROW: A - INTRAPULSE FREQUENCY (IPF)
MIDDLE ROW : B - CYCLES PER PULSE (CPP)
HOTTOM ROW : C - INTERPULSE INTERVAL (IPI)
COLIMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDDLE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL SONG
ASTERISKS DENOTE SIGNIPICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3)

Figure 6.19 : D. yakuba Matawi(f) x D. mauritiana Sweden(m)-Hybrid: Song elements versus pulse pusition in burst
TOP ROW: A - INTRAPULSE FREQUENCY (IPF)
MIDIDE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW : C - INTERPULSE INTERVAL (IPI)
COIUMN: IEFPT • MEAN OF ELLEMENT VERSUS PULSE NUMBER
MIDIDIE - SPECIES REGRESSION FOR ELEMENT MEANS
MIDILE - SPECIES REGRESSION FOR EIEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL SONG
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL SONG
ASTERISKS IDENOTE SIGNIFICANT REGRESSIONS (SEE APPENIICES 6.1, 6.2 \& 6.3).

RED $=\mathbf{F L} \mathrm{Y}_{2}$ LICHT GREEN $=$ FLY

Figure 6.21 : D. mauritiana $S w e d e n(f) \times D$. yakuba Ivory Coast(m): Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE FREQUENCY (IPF)
MIDILLE ROW : B . CYCLES PER PULSE (CPP)
BOTTOM ROW: C. INTERPUISE INTERVAI, (IPI)
COLUMN: LEFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDILE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELLEMENT IN INIIIVIIUUAI, SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).

COLOUR KEX BLUE $=$ FLI \mathbf{Y}_{1} REI) $\mathrm{Fl} \mathrm{Y}_{2}$ LIGHT GRENN $=$ FLY ${ }_{3}$ DARK RED $=$ FLI, \mathbf{Y}_{4}

Figure 6.22 : D. mauritianal Sweden(f) x D. yakuba Lamto3(m)-Hybrid: Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE VREQUENCY (IPF)
MIDIDLE ROW: B - CYCLES PER PULSE (CPP)
BOTTOM ROW : C • INTERPULSE INTERVAL, (IPI)

COLUMN: LEFTT - MEAN OF ELLEMENT VERSUS PULSE NUMBER
MIDDLE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELLEMENT IN INDIVIDUAL SONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, $6.2 \& 6.3$).

Figure 6.23 : D. simulans Florida(f) x D. mauritiana Sweden(m)-Hybrid: Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE FREQUENCY (IPF)
MIDDLE ROW: B . CYCLES PER PULSE (CPP) MIDILE ROW: B - CYCLES PER PULSE (CPP)
BOTTOM ROW : C INTERPULSE INTERVAL (IPI)

COLUMN: LEFT . MEAN OF ELEMENT VERSUS PULSE NUMBER
EFT - MEAN OF ELEMENT VERSUS PULSE NUMBER
MIDII, - SPECIES REGRFSSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INIIIVIDUAISONG
ASTERISKS DENOTE SIGNIFICANT REGRESSIONS (SEE APPENDICES 6.1, 6.2 \& 6.3).

COLOURKEY
$\mathrm{BL}, \mathrm{UE}=\mathrm{FL} \mathrm{Y}_{1}$
REI) $=$ FL. $_{2}$ LIGHT GREEN $=$ FLY $_{3}$

Figure 6.24 : D. teissieri Sweden(f) x D. mauritiana Sweden(m)-Hybrid : Song elements versus pulse position in burst
TOP ROW : A - INTRAPULSE FREQUENCY (IPF)
MIDDLE ROW : B - CYCLES PER PULSE (CPP)
BOTTOM ROW : C - INTERPULSE INTERVAL (IPI)

Coldumin left - mean of element versus pulse number
MIDILE - SPECIES REGRESSION FOR ELEMENT MEANS
RIGHT - REGRESSION FOR ELEMENT IN INDIVIDUAL SONG
ASTERISKS IDENOTE SIGNIFICANT REGRESSIONS (SEEAPPENDICES 6.1, 6.2 \& 6.3).

APPENDIX 6.6:

Temporal changes in IPF, CPP and IPI for the interspecific hybrid songs. (Note that the individual song trends are presented).

Interspecific genotypes	Intrapulse Frequency (IPF)		Cycles per Pulse (CPP)		Interpulse Interval (IPI)	
	Overall	Individual songs	Overall	Individual songs	Overall	Individual songs
vakuba France(f) x mouritiana France(m)	\downarrow	$\begin{aligned} & 2 \text { songs } \downarrow \\ & 1 \text { song } \uparrow \end{aligned}$	\uparrow	$\underset{\uparrow}{\text { All } 3 \text { songs }}$	\uparrow	$\underset{\uparrow}{\text { All } 3 \text { songs }}$
yakubu Malawi(f)x mauritiana Sweden(m)	\downarrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \end{aligned}$	\uparrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \end{aligned}$	\downarrow	$\begin{gathered} \text { All } 3 \text { songs } \\ \uparrow \end{gathered}$
yakuba France(f) x tetssieri Sweden(m)	\uparrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \end{aligned}$	\downarrow	$\begin{gathered} \text { All } 3 \text { songs } \\ \downarrow \end{gathered}$	\downarrow	$\begin{gathered} \text { All } 3 \text { songs } \\ \downarrow \end{gathered}$
mauritiana Sweden(f) x vakuba Ivory Coast(m)	\downarrow	$\begin{aligned} & 2 \text { songs } \downarrow \\ & 1 \text { song } \uparrow \end{aligned}$	\downarrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \\ & \hline \end{aligned}$	\uparrow	$\begin{gathered} \text { All } 3 \text { songs } \\ \uparrow \end{gathered}$
mauritiana Sweden(f)x yakuba Lamto3(m)	\downarrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 2 \text { songs } \downarrow \\ & \hline \end{aligned}$	\uparrow	$\begin{gathered} \text { All } 4 \text { songs } \\ \uparrow \end{gathered}$	\uparrow	$\begin{aligned} & \hline 3 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \\ & \hline \end{aligned}$
simulans Florida(f) x muuritiana Sweden(m)	\downarrow	All 3 songs	\uparrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \end{aligned}$	\uparrow	$\begin{aligned} & 2 \text { songs } \uparrow \\ & 1 \text { song } \downarrow \\ & \hline \end{aligned}$
teissieri Sweden(f) x mauritiana Sweden(m)	\downarrow	$\begin{gathered} 2 \text { song } s ~ \\ 1 \\ 1 \text { song } \uparrow \end{gathered}$	\uparrow		\downarrow	$\begin{gathered} \hline \text { All } 3 \text { songs } \\ \downarrow \\ \hline \end{gathered}$

KEY: $\uparrow=$ Increase, $\downarrow=$ Decrease

SUMMARY FOR APPENDICES 6.7, 6.8 \& 6.9:

In D. mauritiana France, half of the songs were shown to have shorter mbd and mibi for the first half of the song and half were shown to have shorter mbd and mibi for the second half of the song. In D. mauritiana Sweden, the great majority of songs examined showed shorter mbd and ibi for the first half of the song, while in D. mauritiana Indiana, the mbd and ibi of the second half of the song was shorter than those of the first half (Appendix : 6.7). In D. yakuba strains, the only parental strain that was shown to have shorter mbd and ibi in second half of the song was Malawi. Furthermore, all the yakuba intraspecific hybrids were shown to have a mbd and ibi shorter in the first half of the song (Appendix 6.8). In D. erecta and D. orena strains examined, both the mbd and ibi were shown to be shorter for the first half of the song than the second half (Appendix : 6.8). Upon examining the results of the various interspecific hybrids, the majority of the songs were shown to have a shorter mbd and ibi for the first half of the songs, while others had shorter mbd and ibi in the course of the second half, such as the D. mauritiana(f) $\times D$. yakuba(m) interspecific genotype (see Appendix : 6.9).

APPENDIX 6.7:

Mean Burst Duration \& Mean Interburst Interval for songs of members of the melanogaster complex

APPENDIX 6.8:

Mean Burst Duration \& Mean Interburst Interval for songs of members of the yakuba complex

SPECIES:	Mean burst duration for the entire song(ms)	Mean burst duration for the first half of the song (ms)	Mean burst duration for the second half of the song(ms)	Mean Interburst Interval for the entire song(s)	Mean Interburst Interval for the first half of the song (s)	Mean Interburst Interval for the second half of the song. (s)
teissieri						
TEI6tor2	252.51	242.89	362.13	4.9885	3.6548	6.3222
TE1t6r2	123.31	103.97	142.65	4.1956	3.8654	4.5258
TE1216r2N	209.04	193.63	224.45	3.9358	3.6978	4.7738
TE1317r1	161.94	117.89	205.99	3.7450	3.2985	4.1915
TE3t11r1	274.02	139.65	408.39	3.9554	3.5874	4.3234
TE2t11r1	327.81	205.98	449.64	3.6580	3.5963	3.7197
TEI217r 1	167.62	154.39	180.85	5.7290	4.4698	6.9882
TEILt6r 1	206.90	165.43	248.37	3.5588	2.8965	4.2211
erecta						
EL2t1311	750.41	625.31	875.51	16.3972	14.3267	18.4677
ELIt1311	704.66	583.65	825.67	9.1148	8.1392	10.0904
EL2t1211	720.26	589.58	850.94	7.4428	5.2354	9.6502
ELSt1311	488.56	495.23	481.89	18.0391	13.9867	22.0915
ELIt11r2	744.07	523.12	965.02	16.3344	14.9832	17.6856
EL3 ${ }^{\text {d }} 1211$	866.96	625.63	1108.21	5.8470	4.6321	7.0613
EL1t13r2	1308.87	1253.83	1363.91	16.9150	15.8623	17.9677
EL10E2S2M1	1135.80	1025.98	1245.62	23.5732	19.9545	27.1919
EL4E2S2M1	1376.28	1234.35	1518.21	17.5560	15.4387	19.6733
EL3E2S2M1	1247.87	1170.32	1325.42	16.1597	14.5246	17.7948
ELSE2S2M1	1310.52	1196.65	1424.39	17.8212	15.9852	19.6572
orena						
OR2t1211	591.65	456.28	727.02	4.4701	3.8597	5.0805
OR3111r2	651.46	498.76	804.16	10.4021	9.3258	11.4784
OR311211	759.32	695.34	823.30	2.9997	1.9872	4.0122
OR4t1211	477.80	398.62	556.98	2.2684	1.9564	2.5804
OR1t1211	693.29	708.65	677.93	4.3230	3.5217	5.1243
OR3SE10r1	628.67	594.35	662.99	2.5276	2.3798	2.6754
OR7SE111	946.72	835.64	1057.80	4.6136	4.7513	4.4759
OR5SE10r2	695.69	556.98	834.40	5.4085	4.4386	6.3784
OR8SE1111	974.49	867.54	1081.44	3.9538	3.1287	4.7789
OR6SE10r2	943.40	987.53	899.27	2.9732	3.1054	2.8410
OR1SE10r2	586.04	832.64	339.44	3.1746	4.2568	2.0924
OR4SE10r2	843.69	839.62	847.76	3.4798	3.3897	3.5699
OR2SE10r2	702.48	698.32	706.64	1.1824	1.0987	1.2661
yakuba						
Yamlt5r2	1408.55	1596.21	1220.89	18.3405	15.2381	21.4429
Yam219r2	1458.59	1365.89	1551.29	11.7863	11.8594	11.7132
Yam319r2	1456.50	1385.32	1527.68	11.2452	11.3896	11.1008
Yic2t13r1	2197.28	2054.36	2340.20	11.3563	10.9632	11.7494
Yicliti3rl	2359.03	2285.36	2432.70	7.6757	7.5893	7.7621
Yk7t1r1	1403.40	1324.58	1482.22	5.0609	4.8263	5.2955
Yk2t112	1128.25	836.92	1419.58	2.9466	2.3154	3.5778
Yk11112	1147.68	925.64	1369.72	2.6807	2.4587	2.9027
Yk6t1r2	1239.60	1256.31	1222.89	2.7904	2.9548	2.6260
Yk31112	1720.87	1756.25	1685.49	2.4564	2.5398	2.3730
Yk20t1r1	1508.23	1510.56	1505.90	1.6364	1.6378	1.6342
Yk4ilr	1686.60	1523.87	1849.33	1.3787	1.4695	1.2879
Yal2t9r1	900.38	789.32	1011.44	3.2215	3.1405	3.3025
Yallitil1	1430.44	1489.65	1371.23	5.4844	4.9682	6.0006
Yal3t'r1	1230.73	1268.32	1193.14	4.4626	3.2985	5.6267
Ystlillir	1597.89	1652.63	1543.15	12.2732	13.1456	11.4008
Ystil10r2	1306.51	1185.79	1427.23	10.3236	11.3625	9.2847
Yst3t11r1	1484.89	1372.34	1597.44	15.9640	16.5843	15.3437
Yak 10e2s2m1	2738.20	2614.83	2861.57	3.5157	3.5032	3.5282
Yak2e2s2	3519.46	3284.36	3754.56	1.6927	1.6234	1.7620
Yak8e2s2m1	4023.62	2689.24	5358.00	1.1962	1.0658	1.3266
Yak9e2s2m1	3411.55	3258.65	3564.45	1.4069	1.3256	1.4882

6.8:

SPECIES:	Mean burst duration for the entire song(ms)	Mean burst duration for the first half of the song (ms)	Mean burst duration for the second half of the song(ms)	Mean Interburst Interval for the entire song(s)	Mean Interburst Interval for the first half of the song (s)	Mean Interburst Interved for the second half of the song (s)
Intraspecific Hybrids						
Yal3Yic2t1412	2209.76	1987.54	2431.98	3.1338	3.3216	2.9460
Yal3Yic3t1412	2859.89	2967.43	2752.35	2.3206	2.5413	2.0999
Yal3Yic 111412	2531.31	2168.35	2894.27	2.3187	2.3814	2.2560
Yal3Yiclt13r2	1985.59	1798.32	2172.86	4.3321	4.1235	4.5407
Yal3Yiclitior	1038.61	1125.38	951.84	5.2166	5.2368	5.1964
YamYistilor2	1519.31	1482.32	1556.30	2.6805	2.5632	2.7978
YamYstlitior	1138.61	1093.24	1183.98	5.2166	5.3614	5.0718
Ystyal35t13r1	1908.73	2015.63	1801.83	6.1427	8.2149	4.0705
YstYal34t13r1	1807.96	1623.54	1992.38	2.9854	2.4879	3.4829
YstYal34t1411	2047.36	2083.54	2011.18	2.7494	2.8741	2.6247
YstYal36t1411	1708.63	1759.85	1657.41	3.6068	3.8476	3.3660
YstYal35t1411	1557.54	1560.32	1554.76	3.7962	3.9855	3.6045
YstYal37t13r1	1606.60	1756.59	1456.61	6.8724	6.9238	6.8210
YstYal33t13rl	1939.72	1087.32	2792.12	4.8734	3.6985	6.0483
YstYal38t13r1	1661.59	2052.36	1270.82	5.1699	4.9852	5.3546
YstYal37t1411	1370.77	1423.52	1318.02	6.8962	7.1206	6.6718
Yal3Yst2t1411	1276.87	1364.87	1188.91	5.7773	6.2147	5.3399
Yal3Yst2t13r2	1674.59	1458.23	1890.95	10.0080	11.5712	8.4448
Yal3Yst111411	1119.80	1257.28	1033.32	6.5001	8.2436	4.5766

APPENDIX 6.9:

Mean Burst Duration \& Mean Interburst Interval for songs of the hybrid genotypes

HYBIRID:	Mean burst duration for the entire song (ms)	Mean burst duration for the first half of the song(ms)	Mean burst duration for the second half of the song(ms)	Mean Interburst Interval for the entire song(s)	Mean Interburst Interval for the first half ofthe song (s)	Mean Interburst Interval for the second half of the song (s)
yakuba(f) x mauritiana (m)						
HY211011	669.24	485.29	853.19	9.2031	6.2587	12.1475
HY7t612	414.91	403.25	426.57	6.8490	4.8752	8.8228
HYlitor 2	472.79	481.23	464.35	9.6084	10.2548	8.9620
HY4t5r)	576.21	575.89	576.53	4.5391	4.5232	4.5550
HYBltil2	907.23	765.41	1049.05	4.4034	3.6254	5.1814
HYB5tsr2	910.48	924.86	896.10	5.1912	5.4682	4.9142
HYB7t5r2	676.86	83.04	523.68	7.2513	5.2178	7.2848
HYBXISII	622.64	548.36	696.92	1.6246	1.2483	2.0009
HYB3t511	805.24	745.23	865.25	1.1089	1.0956	1.1222
HYB61552	679.10	758.12	600.08	12.8978	14.3267	11.4693
HY+10.1	788.70	780.21	797.13	1.8586	1.5954	2.1208
HYB36612	638.08	6.32 .54	643.62	8.4628	8.1296	8.7960
HYB215 2	947.79	936.81	958.77	10.1218	9.2354	11.0082
yakuba(f) x teissieri(m)						
HYB4t711	684.90	548.63	821.17	10.4696	9.8752	11.0640
HYB91612	476.26	480.23	472.29	6.6453	6.7214	6.5692
HYB6t711	633.71	610.56	656.86	15.9063	15.7523	16.0603
HYB8t612	531.30	529.24	531.36	6.5112	5.9621	7.0603
HYB6t612	588.30	586.54	590.06	7.5103	7.4283	7.5923
mauritiana(f) x yakuba(m)						
MY4t15r2	1423.61	1623.54	1223.68	5.4803	5.6423	5.3183
MY7t1512	1141.76	1235.64	1047.88	2.4759	2.5842	2.3676
MY6t15r1	2949.31	3021.54	2877.08	4.8514	4.9583	4.7445
MY2,1511	1389.61	1354.56	1424.66	4.1386	3.9652	4.3120
MY3t14r2	1226.87	1358.34	1095.40	10.4731	11.8623	9.0839
MY8t1511	1289.49	1314.23	1264.75	3.6168	3.8521	3.3815
MY8t15r1	2295.58	2054.86	2536.30	7.2075	6.9854	7.4296
simulans(f) x mauritiana (m)						
SM1t1711	509.62	452.31	552.93	9.3900	6.5241	12.6529
SM2se2s2m1	633.35	584.32	682.38	10.4317	8.3269	12.5365
SM4se2s2m1	779.96	658.71	901.21	7.2263	5.3658	9.0868
SM3se2s2m1	952.07	752.36	1151.78	4.7793	3.9852	5.5734
SM1se2s2m1	499.39	328.56	670.22	4.6184	4.0128	5.2240
teissieri(f) x mauritiana(m)						
TM1se2sim2	528.79	496.37	561.21	4.6099	3.2564	5.9634
TM9se2s2m2	527.64	493.25	562.03	3.8443	3.1642	4.5244
TM3se2sim2	520.64	483.63	557.65	4.0436	2.5948	5.4924
TM6se2s1m2	462.95	398.67	527.23	5.6501	4.6387	6.6615
TM5se2s1m2	435.12	395.21	475.03	6.8130	4.6329	8.9931
TM8se2s2m2	545.71	436.85	654.57	11.5418	8.9632	14.1204
TM1se2s2ml	545.83	368.27	723.39	9.9106	6.5342	13.2870
TM7se2s1m2	548.73	487.36	610.10	4.3857	2.5986	6.1728

APPENDIX 6.10:

Two-way ANOVA for MBD for the first and second part of song between the different species of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	$\mathbf{1 2}$	$\mathbf{9 5 1 4 2 2 8}$	$\mathbf{1 2 9}$	$\mathbf{1 0 7 2 1 9 1}$	$\mathbf{8 . 8 7 3 6 3 0}$	$\mathbf{0 . 0 0 0 0 0 0}$
Part A or B	1	811136	129	779337	1.040803	0.309544
Interaction: Genotypes X Part A or B	12	264427	129	779337	0.339298	0.980327

Newman-Keuls a posteriori test for the mbd between the members of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids (\mathbf{p}-values are given). Note that only significant results are given.

	melanogaster	simulans	mauritiana	sechellia	teissieri	erecta	orena	yakuba	yakuba(f) x mauritiana(m)
D. melanogaster									
D. simulans									
D. mauritiana									
D. sechellia									
D. teissieri									
D. erecta									
D. orena									
D. yakuba	0.001511	0.08203	0.001879	0.041735	0.000214	0.037464	0.008068		
yakuba x teissieri								0.006278	
teissieri \times mauritiana									
simulans \times mauritiana									
yakuba \times mauritiana								0.008880	
mauritiana \times yakuba			0.027785						0.065615

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDIX 6.11:

Two-way ANOVA for IBI for the first and second part of song between the different species of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids.

Effect	df Effect	Ms Effect	df Error	MS Error	F	p-level
Genotypes	12	266.5058	129	143.27368	6.15861	0.00000
Part A or B	1	51.3965	129	3.25092	15.80984	0.000116
Interaction: Genotypes \times A or B	12	12.5476	129	3.25092	$\mathbf{3 . 8 5 9 7 2}$	0.000048

Newman-Keuls a posteriori test between the ibi of the members of the D.melanogaster subgroup and
their interspecific hybrids (\mathbf{p}-values are given).

	melanogaster		simulans		mauritiana		sechellia		tersisieri		crecta		arrea		yakuba		yakuba x		$\begin{gathered} \text { Veissieti } \\ \text { umamritiana } \end{gathered}$		simulans t mawritiana		yakuha X mawritiana		$\begin{gathered} \begin{array}{c} \text { mawritiama } x \\ \text { yatuba } \end{array} \\ \mathrm{IBI}_{2} \end{gathered}$
	${ }^{18184}$	${ }^{\text {[83 }}$	${ }^{18} \mathrm{BH}_{1}$	${ }_{18 \mathrm{~B}_{2}}$	$\left.{ }^{181}\right]_{1}$	${ }^{18 \mathrm{H} \mathrm{I}_{1}}$	${ }^{\text {init }}$	${ }^{181]_{1}}$	${ }^{181} 1_{1}$	${ }^{18}{ }^{1}{ }_{1}$	${ }_{\text {IM }}{ }_{1}$	${ }^{1 \mathrm{IH}_{1}}$	${ }^{\text {[1/4, }}$	${ }^{1811_{2}}$	${ }^{181}$	${ }^{\text {tint }}$	${ }^{181} 1$	${ }^{\text {IRI }}$	InH_{1}	$\left.{ }^{181}\right]_{2}$	${ }_{\text {[18, }}$	${ }^{\text {[8], }}$	${ }^{\text {in }} \mathrm{H}_{1}$	${ }^{1811_{2}}$	
melanogaster(A)																									
melanogaster(\mathbf{B})	0.461																								
simulans (A)	0.000																								
simulans(B)		0.000	0.169																						
mauritiana (A)	0.000		0.000																						
mauritiana (\mathbf{B})		0.000		0.000	0.937																				
sechellia (A)	0.000		0.000		0.885																				
sechellia(B)		0.000		0.000		0.933	0.724																		
teissieri(A)	0.053		0.000		0.000		0.000																		
teissieri(\mathbf{B})		0.919		0.000		0.000		0.000	0.518																
erecta(A$)$	0.000		0.042		0.000		0.005		0.000																
erecta(B)		0.000		0.002		0.000		0.000		0.00	0.000														
arena(A)	0.030		0.000		0.000		0.000		0.988		0.000														
orema(B)		0.949		0.000		0.000		0.000		0.81		0.000	0.730												
yakuba(A)	0.000		0.000		0.003		0.009		0.330		0.000		0.355												
yakuba(B)		0.002		0.000		0.000		0.001		0.74		0.000		0.666	0.93										
yakuba xteissieri(\mathbf{A})									0.000						0.004										
yakuba xteissieri(\mathbf{B})										0.00						0.000	0.835								
teissieri \times mauritina (\mathbf{A})					0.000				0.575																
teissierix \times mauritiana (\mathbf{B})						0.521				0.01															
simulans x mauritiana (\mathbf{A})			0.000		0.003														0.0						
simulans \times mauritiana(\mathbf{B})				0.000		0.98																			
yakuba \times mauritiana(A$)$					${ }^{0.003}$										0.0986						0.930				
yakuba \times mauritiana(B)						0.020										0750							0.280		
mauritiana \times yakuba(A)					0.002										0.998								0.876		
mauritiana \times yakuba(B)						0.000										0.723								0.605	0.987

KEY : BOLD LETTERS = SIGNIFICANT RESULTS SHADED-IN = NON-SIGNIFICANT RESULTS

APPENDIX 6.12:

One-way ANOVA for \% courtship vigour (arcsin-corrected) for the entire song between the different species of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	12	0.137597	129	0.015093	9.116560	0.000000

Newman-Keuls a posteriori test for the \% courtship vigour (arcsin-corrected) for the entire song between the members of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids (\mathbf{p}-values are given).

	melanogaster	simulans	mauritiana	sechellia	teissieri	erecta	orena	yakuba(f) x teissieri(m)	yakuba(f) x mauritiana(m	mauritiana(f) \mathbf{x} yakuba(m)
D. melanogaster										
D. simulans										
D. mauritiana										
D. sechellia										
D. teissieri										
D. erecta										
D. orena										
yakuba \times teissieri					0.773625					
simulans x mauritiana		0.995774	0.978840							
teissieri x mauritiana			0.794858		0.987436					
D. yakuba	0.118640	0.000501	0.001093	0.037026	0.000459	0.001470	0.099258	0.001376	0.047273	0.24425
yakuba \times mauritiana			0.435760							
mauritiana x yakuba			0.052017						0.430652	

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDICES

FOR CHAPTER 7

APPENDIX 7.1:

One-way ANOVA for the mean periods between the different species of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids in DD.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	11	4.731971	440	0.464965	10.17705	0.000000

Newman-Keuls a posteriori test for the mean periods between the members of the \boldsymbol{D}. melanogaster subgroup and their interspecific hybrids (\mathbf{p}-values are given).

	melanogaster	simulans	mauritiana	sechellia	teissieri	erecta	orena	yakuba	yakuba(f) x mauritiana(m)
D. melanogaster									
D. simulans									
D. mauritiana									
D. sechellia	0.000024	0.003892	0.001136		0.003751	0.004665	0.000632	0.000860	
D. teissieri									
D. erecta									
D. orena									
D. yakuba									
yakuba(f) \times mauritiana(m)			0.994294					0.844087	
mauritiana(f) \times yakuba(m)			0.971415					0.983324	0.974245
yakuba(f) \times teissieri(m)					0.004091			0.002455	
simulans(f) \times mauritiana(m)		0.820356	0.737729						

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDIX 7.2:

One-way ANOVA for the mean periods between the different parental strains and their interspecific hybrids in DD.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	13	0.819735	271	0.360305	2.275116	0.007376

Newman-Keuls a posteriori test for the mean periods between the different parental strains and their interspecific hybrids (\mathbf{p}-values are given).

	yakuba France	yakuba Malawi	yakuba Lamto3	mauritiana France	mauritiana Sweden	mauritiana Isofemale72	simulans Florida	teissieri Sweden
yakuba F.(f) \times mauritiana $\mathrm{F} .(\mathrm{m})$	0.904375			0.809891				
yakuba M.(f) \times mauritiana S.(m)		0.007969			0.013902			
yakuba L3 (f) \times mauritiana Is ($72(\mathrm{~m}$)			0.488569			0.298375		
mauritiana S. (f) x yakuba $\mathrm{L3} 3 \mathrm{~m}$)			0.672525		0.976669			
yakuba F .(f) \times teissieri S .(m)	0.037999							0.045118
simulans F.(f) \times mauritiana S.(m)					0.774811		0.817486	

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDICES

FOR CHAPTER 8

APPENDIX 8.0:

Various components of locomotor activity in L:D conditions

SPECIES/STRAIN	1	2	3	4	5	6	7	8
melanogaster (Brighton)	416.575	0.626	0.374	0.707	0.206	0.288	0.160	0.306
simulans (Florida)	239.577	0.592	0.408	0.804	0.134	0.272	0.239	0.216
mauritiana STRAINS	137.886	0.579	0.421	0.820	0.201	0.279	0.322	0.228
FRANCE	104.574	0.680	0.320	0.589	0.228	0.273	0.345	0.189
SWEDEN	135.925	0.749	0.251	0.468	0.193	0.268	0.261	0.292
indiana	129.571	0.360	0.640	1.839	0.086	0.312	0.014	0.476
MG17	164.448	0.671	0.329	0.607	0.177	0.262	0.383	0.113
MG71	12.604	0.492	0.508	1.119	0.115	0.212	0.005	0.570
Isoremale 72	342.599	0.301	0.699	2.378	0.235	0.320	0.518	0.126
isofemale 102	107.884	0.961	0.039	0.220	0.457	0.210	0.428	0.058
ISOFEMALE 152	110.219	0.760	0.240	0.451	0.178	0.557	0.143	0.226
ISOFEMALE 197	47.841	0.684	0.316	0.613	0.219	0.221	0.391	0.139
DAVID 75	180.929	0.130	0.870	0.405	0.501	0.143	1.656	0.246
DAVID 105	96.877	0.871	0.129	0.307	0.159	0.185	0.284	0.083
sechellia (Cambridge)	73.610	0.755	0.245	0.435	0.039	0.504	0.903	0.003
yakuba complex								
yakuba STRAINS	263.513	0.620	0.380	0.721	0.232	0.207	0.199	0.295
France	454.688	0.596	0.404	0.782	0.176	0.192	0.151	0.228
malawi	136.524	0.607	0.393	0.753	0.282	0.313	0.284	0.457
lamto 3	235.115	0.961	0.039	0.219	0.231	0.182	0.173	0.576
IVORY COAST	252.734	0.619	0.381	0.723	0.349	0.344	0.285	0.188
s.t.	90.224	0.359	0.641	1.850	0.249	0.066	0.179	0.392
SUBTAOME	117.704	0.439	0.561	1.350	0.314	0.077	0.146	0.070
JAPAN	183.048	0.570	0.430	0.850	0.080	0.165	0.116	0.160
EL8	19.667	0.286	0.714	2.540	0.587	0	0.064	0.975
Indiana	138.657	0.576	0.424	0.835	0.113	0.207	0.230	0.105
Lamto 5	72.167	0.865	0.135	0.315	0.622	0.116	1.265	0.005
teissieri (Sweden)	342.748	0.490	0.510	1.123	0.146	0.357	0.408	0.195
orena (France)	11.246	0.678	0.322	0.593	0	1.487	0.168	0.227
erecta (France)	203.714	0.459	0.541	1.259	0.134	0.479	0.417	0.182
INTERSPECIFIC HYBRIDS0. 272								
$\begin{gathered} \text { yakuba France }(f) \times \text { mauritiana } \\ \text { France }(\mathrm{m}) \end{gathered}$	697.996	0.774	0.226	0.431	0.193	0.184	0.236	0.272
yakuba Malawi(f) x mauritiana Sweden(m)	269.185	0.480	0.520	1.162	0.422	0.205	0.124	1.376
yakuba Lamto 3 (f) x mauritiana Iso $72(\mathrm{~m})$	115.518	0.853	0.147	0.329	0.187	0.394	0.208	0.654
yakuba $\underset{\substack{\text { France }(f) \\ \text { Sweden } \\ \text { t teissieri }}}{ }$	100.437	0.847	0.153	0.181	0.217	0.284	0.492	0.021
mauritiana Sweden(f) x yakuba Lamto3(m)	155.095	0.650	0.350	0.590	0.203	0.289	0.248	0.259
mauritiana Iso 72(f) x yakuba $\mathrm{Lamto}^{\mathbf{3}(\mathrm{m})}$	104.228	0.844	0.156	0.342	0.213	0.265	0.166	1.746
simulans Florida (f) x mauritiana $\operatorname{Sweden}(\mathrm{m})$	183.649	0.908	0.092	0.101	0.332	0.939	0.179	0.617

KEY: 1. Total Activity (Mean Total Activity per fly over 48 bins, TA)
2. Day Activity + Total Activity (D/T)
3. Night Activity + Total Activity (N/T)
4. Night Activity + Day Activity (N/D) see Chapter 2
5. 4 bins after lights-on (Startle On) + Day Activity (SON)
6. 4 bins before lights-off (Anticipation Off) + Day Activity (ANTOFF)
7. 4 bins before lights-on (Anticipation On) + Night Activity (ANTON)
8. 4 bins after lights-off (Startle Off) + Night Activity (SOFF)

APPENDIX 8.1a:

One-way ANOVA for Total Activity between the different species of the \boldsymbol{D}. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	1096990	692	394464.1	2.7809692	0.007391

APPENDIX 8.1b:

One-way ANOVA for Day Activity between the different species of the D. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	362008.3	692	73060.83	4.95448	0.000017

Newman-Keuls a posteriori test between the Day Activity of the members of the \boldsymbol{D}. melanogaster subgroup (\mathbf{p}-values are given).

	erecta	orena
melanogaster	0.010264	0.012049

APPENDIX 8.1c:
One-way ANOVA for the Startle-On response between the different species of the D. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	0.265635	692	0.036808	7.216719	0.000000

Newman-Keuls a posteriori test for the Startle-On response between the members of the D. melanogaster subgroup (p-values are given). Note that only significant result are shown.

	melanogaster	simulans	sechellia	teissieri	erecta	mauritiana	yakuba
sechellia	0.008374						
orena	0.000494	0.029822		0.023532	0.016157	0.000568	0.000087
mauritiana			0.008395				
yakuba			0.001653				

APPENDIX 8.1d:

One-way ANOVA for the Anticipation-Off response between the different species of the \boldsymbol{D}. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	2.177805	692	0.045875	47.47283	0.000000

Newman-Keuls a posteriori test for the Anticipation-Off response between the members of the \boldsymbol{D}. melanogaster subgroup (p-values are given). Note that only significant result are shown.

	melanogaster	simulans	sechellia	teissieri	erecta	orena
sechellia	0.001400	0.001035				
teissieri			0.037248			
erecta	0.003175	0.003432		0.04037		
orena	0.000017	0.000026	0.000009	0.000008	0.000022	
mauritiana			0.001198		0.003428	0.000020
yakuba			0.000031		0.000052	0.000032

APPENDIX 8.1e:

One-way ANOVA for the Anticipation-On response between the different species of the \boldsymbol{D}. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	1.022367	692	0.96894	10.55138	0.00000

Newman-Keuls a posteriori test for the Anticipation-On response between the members of the \boldsymbol{D}. melanogaster subgroup (p-values are given). Note that only significant result are shown.

	melanogaster	simulans	sechellia	teissieri	erecta
sechellia	0.000032				
teissieri	0.030062	0.000017	0.000024		
erecta	0.029106		0.000010		
orena			0.000026	0.029357	0.030420
mauritiana			0.000008		
yakuba			0.000020		

APPENDIX 8.1f:

One-way ANOVA for the Startle-Off response between the different species of the \boldsymbol{D}. melanogaster subgroup.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	7	0.226265	692	0.084319	2.683447	0.009536

Newman-Keuls a posteriori test for the Startle-Of response between the members of the \boldsymbol{D}. melanogaster subgroup (p-values are given). Note that only significant result are shown.

	melanogaster	erecta	yakuba
sechellia	0.006218	0.044587	0.007965

APPENDIX 8.2a:

One-way ANOVA for the Night/Day Activity ratio between the different \boldsymbol{D}. maurtiana strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	10	43.94639	240	3.273543	13.42472	0.00000

Newman-Keuls a posteriori test for the Night/Day Activity ratio between the different D. mauritiana (\mathbf{p}-values are given). Note that only significant results are shown.

	France	Sweden	MG17	MG71	Isofemale 72	Isofemale 152	Isofemale 197	Isofemale 102	David 75	David 105
Indiana	0.000017	0.000020	0.000032	0.000009	0.000022	0.000026	0.000008	0.000015	0.000012	0.00001

APPENDIX 8.2b:

One-way ANOVA for the Startle-On between the different \boldsymbol{D}. maurtiana strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	10	0.097232	240	0.0310770	3.128753	0.000892

Newman-Keuls a posteriori test for the Startle-On between the different D. mauritiana strains (p-values are given). Note that only significant results are shown.

	France	Sweden	MG17	MG71	Isofemale 72	Isofemale 152	Isofemale 197	Indiana	David 105
Isofemale 102	0.012439	0.008592	0.008195	0.000370	0.005872	0.006066	0.016009	0.000121	0.004618
David 75	0.004445	0.001932	0.001513	0.000047	0.003134	0.001162	0.004651	0.000024	0.000747

APPENDIX 8.2c:

One-way ANOVA for the Anticipation-Off between the different D. maurtiana strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	10	0.135136	240	0.044509	3.036157	0.001219

Newman-Keuls a posteriori test for the Anticipation-Off between the different D. mauritiana strains
(p-values are given). Note that only significant results are shown.

	France	Sweden	MG17	MG71	Isofemal e 72	Isofemale 197	Indiana	Isofemal e	David 75	David 105
Isofemale 152	0.014760	0.019456	0.023109	0.004658	0.012641	0.007220	0.026998	0.006107	0.000586	0.003312

APPENDIX 8.2d:

One-way ANOVA for the Anticipation-On between the different D. maurtiana strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	10	0.135136	240	0.044509	3.036157	0.001219

Newman-Keuls a posteriori test for the Anticipation-On between the different D. mauritiana strains (\mathbf{p}-values are given). Note that only significant results are shown.

	France	Sweden	MG17	MG71	Isofemale 	Isofemale 152	Isofemale 197	Indiana	Isofemale 102	David 105
Isofemale 72				0.023511						
Indiana					0.012115					
David 75	0.00002	0.00003	0.000017	0.000012	0.000009	0.000010	0.000008	0.000015	0.000022	0.000026

APPENDIX 8.2e:

One-way ANOVA for the Startle-Off between the different D. maurtiana strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Species	10	0.328588	240	0.069897	4.701053	0.000004

Newman-Keuls a posteriori test for the Anticipation-On between the different D. mauritiana strains (\mathbf{p}-values are given). Note that only significant results are shown.

	MG17	MG71	Indiana
MG71	0.016374		
Isofemale 72		0.019562	
Isofemale 152			
Isofemale 197		0.021652	
Indiana	0.047865		
Isofemale 102		0.004048	0.015243
David 75			
David 105		0.007964	0.026682

APPENDIX 8.3a:

One-way ANOVA for the Night/Day Ratio between the different D. yakuba strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Strains	9	7.874258	219	1.353914	5.815923	0.000000

Newman-Keuls a posteriori test for the Night/Day ratio between the different D. yakuba strains (p-values are given). Note that only significant results are shown.

	Indiana	France	Ivory Coast	Japan	S.T.	Lamto3	Lamto5	Subtaome	Malawi
EL8	0.000034	0.000028	0.000044	0.000029	0.000042	0.000010	0.000012	0.007741	0.000019
Lamto3								0.016310	
Lamto5								0.0200010	

APPENDIX 8.3b:

One-way ANOVA for the Startle-On response between the different D. yakuba strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Strains	9	0.213679	219	0.052074	4.107284	0.000067

Newman-Keuls a posteriori test for the Startle-On response between the different \boldsymbol{D}. yakuba strains (pvalues are given). Note that only significant results are shown.

	Indiana	France	Japan	S.T.	Lamto3
EL8	0.002566	0.014526	0.001006		0.047322
Lamto5	0.001142	0.007643	0.000422	0.035414	0.029038

APPENDIX 8.3c:

One-way ANOVA for the Anticipation-Off response between the different D. yakuba strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Strains	9	0.166924	219	0.033489	4.9844961	0.000004

Newman-Keuls a posteriori test for the Anticipation-Off response between the different \boldsymbol{D}. yakuba strains (\mathbf{p}-values are given). Note that only significant results are shown.

	Ivory Coast	Malawi
EL8	0.007928	0.020268

APPENDIX 8.3d:

One-way ANOVA for the Anticipation-On response between the different \boldsymbol{D}. yakuba strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Strains	9	0.289905	219	0.050217	5.773060	0.000000

Newman-Keuls a posteriori test for the Anticipation-On response between the different D. yakuba strains (p-values are given). Note that only significant results are shown.

	Indiana	EL8	France	Ivory Coast	Japan	S.T.	Lamto3	Subtaome	Malawi
	Lamto5	0.000008	0.000012	0.000026	0.000009	0.000010	0.000017	0.000020	0.000032

APPENDIX 8.3e:

One-way ANOVA for the Startle-Off response between the different \boldsymbol{D}. yakuba strains.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Strains	9	0.666440	219	0.075939	8.775963	$\mathbf{0 . 0 0 0 0 0 0}$

Newman-Keuls a posteriori test for the Startle-Off response between the different D. yakuba strains (pvalues are given). Note that only significant results are shown.

	Indiana	France	Ivory Coast	Japan	S.T.	Lamto3	Lamto5	Subtaome	Malawi
EL8	0.000035	0.000127	0.000063	0.000047	0.006466	0.040020	0.000012	0.000011	0.013676
Lamto 3	0.022402						0.002619	0.012445	
Lamto 5									0.031349

APPENDIX 8.4a:

One-way ANOVA for the Day Activity between the different species and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	14	558058.3	504	113408.4	4.920782	0.000000

Newman-Keuls a posteriori test for the Day Activity between the different species and their interspecific hybrids (p-values are given). Note that only significant results are shown.

	D. yakuba France $(\mathrm{f}) \mathrm{x}$ D. mauritiana France(m)
D. yakuba France	0.043025
D. mauritiana France	0.019481

APPENDIX 8.4b:

One-way ANOVA for the Startle-On response between the different species and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	14	558058.3	504	113408.4	4.920782	$\mathbf{0 . 0 0 0 0 0 0}$

Newman-Keuls a posteriori test for the Startle-On response between the different species and their interspecific hybrids (p-values are given). Note that only significant results are shown.

	D. yakuba Malawi(f) x D. mauritiana $\operatorname{Sweden}(\mathrm{m})$
D. yakuba Malawi	0.061250
D. mauritiana Sweden	$\mathbf{0 . 0 0 7 7 0 3 4}$

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDIX 8.4c:

One-way ANOVA for the Anticipation-On response between the different species and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	14	0.340690	504	0.069484	4.903166	0.000000

Newman-Keuls a posteriori test for the Anticipation-On response between the different species and their interspecific hybrids (p-values are given). Note that only significant results are shown.

	D. yakuba France(f) x D. teissieri Sweden(m)	D. mauritiana Isofemale 72(f) x D. yakuba Lamto 3(m)	D. yakuba Lamto 3(f) x D. mauritiana Isofemale $72(\mathrm{~m})$
D. yakuba France	0.016817		
D. yakuba Lamto 3		0.936035	0.923849
D. mauritiana Isofemale 72		0.015069	0.043371

KEY: BOLD LETTERS - SIGNIFICANT RESULTS

APPENDIX 8.4d:

One-way ANOVA for the Startle-Off response between the different species and their interspecific hybrids.

Effect	df Effect	MS Effect	df Error	MS Error	F	p-level
Genotypes	14	0.340690	504	0.069484	4.903166	0.000000

Newman-Keuls a posteriori test for the Startle-Off response between the different species and their interspecific hybrids (p-values are given). Note that only significant results are shown.

	D. mauritiana ISofemale $72(f) \times$ D. yakuba Lamto $3(\mathrm{~m})$	D. yakuba Malawi(f) x D. mauritiana Sweden (m)
D. yakuba Malawi		0.015752
D. mauritiana Sweden		0.000898
D. mauritiana Isofemale		
72	0.000023	

REFERENCES

REFERENCES

Albagli. O., Dhordain, P., Deweindt, C., Lecocq, G., and Leprince, D. (1995). The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 6, 1193-1198.

Alexander, B.D. (1962). Evolutionary change in cricket acoustic communication. Evolution 16, 443-467.

Alt, S., Ringo, J., Talyn, B., Bray, W., and Dowse, H. (1997). The period gene controls courtship song cycles in D. melanogaster. (in press).

Antoch, M.P., Song, E.-J., Chang, A.-M., Vitaterna, M.H., Zhao, Y., Wilsbacher, L.D., Sangoram, A.M., King, D.P., Pinto, L.H., and Takahashi, J.S. (1997). Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 14-26.

Anthony, C., and Jallon, J.-M. (1982). The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 28, 873-880.

Anthony, C., Davis, T.L., Carlson, D.A., Penichí, J.-M., and Jallon, J.-M. (1985). Compared behavioural responses of male Drosophila melanogaster (Canton-S) to natural and synthetic aphrodisiacs. J. Chem. Ecol. 11, 1617-1629.

Ashburner, M., Bodmer, M., and Lemeunier, F. (1984). On the evolutionary relationships of Drosophila melanogaster. J. Ins. Physiol. 30, 873-880.

Ashburner, M. (1989). 'Drosophila : A Laboratory Handbook'. Eds. Cold Spring Harbour Laboratory Press.

Ayer, S., and Benyajati, C. (1990). Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines. Mol.Cel.Biol. 10, 3512-3523.

Baker, B.S., and Ridge, K.A. (1980). Sex and the single cell. I. On the action of major foci affecting sex-determination in Drosophila melanogaster. Genetics 94, 383423.

Bargiello, T.A., Jackson, F.R., and Young, M.W. (1984). Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312, 752-754.

Bargiello, T.A., and Young, M.W. (1984). Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81, 2142-2146.

Barinaga, M. (1995). Bisexual Fruit flies point to brain courtship centres. Science 267, 791-792.

Bastock, M., and Manning, A. (1955). The courtship of Drosophila melanogaster. Behaviour 8, 85-111.

Baylies, M.K., Bargiello, T.A., Jackson, F.R., and Young, M.W. (1987). Changes in abundance or structure of the period gene product can alter periodicity of the Drosophila clock. Nature 326, 390-392.

Begun, D.J., and Aquadro, C.F. (1991). Molecular population genetics of the distal portion of the X chromosome in Drosophila: Evidence for genetic hitchhiking of the yellow-achaete region. Genetics 129, 1147-1158.

Bennet-Clark, H.C., and Ewing, A.W. (1969). Pulse interval as the critical parameter of the courtship song of Drosophila melanogaster. Anim. Behav. 17, 755-759.

Berg, M. J. van den (1988). Assortive mating in Drosophila melanogaster and among three species of the melanogaster subgroup. Ph.D. Thesis, University of Groningen, Holland.

Bixler, A., Jenkins, J.B., Tompkins, L., and McRobert, S.P. (1992). Identification of acoustic stimuli that mediate sexual behaviour in Drosophila busckii (Diptera: Drosophilidae). J. Insect. Behav. 4, 469-478.

Boake, C.R.B., and Hoikkala, A. (1995). Courtship behaviour and mating success of wild-caught Drosophila silvestris males. Anim. Behav. 49, 1303-1313.

Bodmer, M., and Ashburner, M. (1984). Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. Nature 309,425-430.

Bourdon, M.A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985). Molecular cloning and sequence analysis of a chondroitin sulphate proteoglycan cDNA. Proc. Natl .Acad. Sci. USA 82, 1321-1325.

Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a mean of altering cell fates and generating dominant phenotypes. Development 118, 401-415.

Breedlove, S.M. (1994). Sexual differentiation of the human nervous system. Annu. Rev. Psychol. 45, 389-418.

Burnet, B. and Connolly, K. (1974). Activity and sexual behaviour in Drosophila melanogaster. In: J.H.F. van Abeelen (Editior), The Genetics of behaviour, North Holland, Oxfprd, pp: 201-258.

Burtis, K.C., and Baker, B.S. (1989). Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56, 997-1010.

Burtis, K.C. (1993). The regulation of sex determination and sexually dimorphic differentiation in Drosophila. Curr. Opin. Cell Biol. 5, 1006-1014.

Cariou, M.-L. (1987). Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet. Res. Camb. 50, 181-185.

Carracedo, M.C., Casares, P., Izquierdo, J.I., and Piñeiro, R. (1991). Receptivity and sexual maturation of Drosophila melanogaster females in relation to hybridisation with D. simulans males. Genome 29, 334-339.

Carson, H.L., Clayton, F.E., and Stalker, H.D. (1967). Karyotypic stability and speciation in Hawaiian Drosophila. Proc. Natl. Acad. Sci. USA 57, 1280-1285.

Casares, P., Carrecedo, M.C., Piñeiro, R., and San Miguel, E. (1992). Genetic basis for female receptivity in Drosophila melanogaster: A diallel study. Heredity 69, 400411.

Charalambous, M. (1990). Genetics of song and female preference in the grasshopper Chorthippus brunneus (Orthoptera Acrididae): Sexual selection and the mate recognition system. Ph.D. Thesis, University of East Anglia.

Charalambous, M., Butlin, R.K., and Hewitt, G..M. (1994). Genetic variation in male song and female song preference in the grasshopper, Chorthippus brunneus (Orthoptera: Acrididae). Anim. Behav. 47, 399-411.

Charlesworth, B., Coyne, J.A., and Barton, N. (1987). The relative rates of Evolution of Sex-chromosomes and autosomes. Am. Nat. 130, 113-146.

Charlesworth, B. (1991). The evolution of sex chromosomes. Science 251, 1030-1033.

Citri, Y., Colot, H.V., Jacquier, A.C., Yu, Q., Hall, J.C., Baltimore, D., and Rosbash, M. (1987). A family of unusually spliced and biologically active transcripts is encoded by a Drosophila clock gene. Nature 326, 42-47.

Cline. T.W. (1984). Autoregulatory functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107, 231-77.

Cobb, M., Connolly, K., and Burnet, B. (1985). Courtship behaviour in the melanogaster species sub-group of Drosophila. Behaviour 95, 203-231.

Cobb, M., Burnet, B., and Connolly, K. (1986). The structure of courtship in the Drosophila melanogaster species sub-group. Behaviour 97, 182-212.

Cobb, M., Connolly, K., and Burnet, B. (1987). The relationship between locomotor activity and courtship behaviour in the melanogaster species subgroup of Drosophila. Anim. Behav. 35, 705-713.

Cobb, M., Burnet, B., and Connolly, K. (1988). Sexual isolation and courtship behaviour in D. simulans and D. mauritiana and their interspecific hybrids. Behav. Genet. 18, 211-225.

Cobb, M., Burnet, B., Blizard, R., and Jallon, J.-M. (1989). Courtship in Drosophila sechellia: its structure, functional aspects and relationship to that of the other members of the D. melanogaster species subgroup. J. Ins. Behav. 2, 63-89.

Cobb, M., Burnet, B., Blizard, R., and Jallon, J-M. (1990). Altered mating behaviour in a Carsonian population of Drosophila sechellia. Evolution 44, 2057-2068.

Cobb, M., and Jallon, J.-M. (1990). Phermones, mate recognition and courtship stimulation in the Drosophila melanogaster species subgroup. Anim. Behav. 39, 1058-1067.

Colot, H.V, Hall, J. C., and Rosbash, M. (1988). Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO Journal 7 (12), 3929-3937.

Cook, R. (1980). The extent of visual control in the courtship tracking of Drosophila melanogaster. Biol. Cybernet. 37, 41-51.

Cook, S.E., Vernon, J.G., Bateson, M., and Guildford, T. (1994). Mate choice in the polymorphic African swallowtail butterfly, Papillo dardanus: male-like females may avoid sexual harassment. Anim. Behav. 47, 389-397.

Crosthwaite, S.K., Dunlap, J.C., and Loros, J.J. (1996). Neurospora wc-1 and wc-2: Tanscription, photoresponses, and the origins of circadian rhythmicity. Science 276, 763-769.

Costa, R., Peixoto, A.A., Thackeray, J.R., Dalgleish, R., and Kyriacou, C.P. (1991). Length polymorphism in the Threonine-Glycine- encoding repeat region of the period gene in Drosophila. J. Mol. Evol. 32, 238-246.

Costa, R., Peixoto, A.A., Barbujani, G., and Kyriacou, C.P. (1992). A latitudinal cline in a Drosophila clock gene. Proc. R. Soc. Lond. [Biol.] 250, 43-49.

Cowling, D.E., and Burnet, B. (1981). Courtship songs and genetic control of their acoustic characteristics in sibling species of the Drosophila melanogaster subgroup. Anim. Behav. 29, 924-935.

Coyne, J.A. (1983). Genetic basis of differences in genital morphology among three sibling species of Drosophila. Evolution 37, 1101-1118.

Coyne, J.A., and Kreitman, M. (1986). Evolutionary genetics of two sibling species, D. simulans and D. sechellia. Evolution 40, 673-91.

Coyne, J.A., and Milstead, B. (1987). Long-distance migration of Drosophila. III. Dispersal of D. melanogaster alleles from a Maryland orchard. Am. Nat. 130, 7082.

Coyne, J.A., and Orr, H.A., (1989). 'In speciation and its consequences'. Eds Otto, D. \& Endler, J. (Sinauer, Sunderland, Massachusetts), 180-207.

Coyne, J.A., and Orr, H.A., (1989). Patterns of speciation in Drosophila. Evolution 43, 262-281.

Coyne, J.A., and David, J.R. (1991). Genetics of morphological differences and hybrid sterility between Drosophila sechellia and its relatives. Genet. Res. 57, 113-122.

Coyne, J.A. (1992). Genetics and Speciation. Nature 355, 511-515.

Coyne, J.A., and Oyama, R. (1995). Localisation of pheromonal sexual dimorphism in Drosophila melanogaster and its effect on sexual isolation. Proc. Nat. Sci. U.S.A. 92, 9505-9509.

Crossley, S.A. (1986). Courtship sounds and behaviour in the four species of the Drosophila bipectinata complex. Anim. Behav. 34, 1146-1159.

Crossley, S.A. (1988). Failure to confirm rhythms in Drosophila courtship song. Anim. Behav. 36, 1098-1109.

Crossley, S.A. (1989). Reply to Kyriacou and Hall 1989. Anim. Behav. 37, 860-861.

Crow, J.F. (1948). Alternative hypothesis of hybrid vigour. Genetics 33, 477-487.

Crow, J.F. (1952). 'Dominance and Overdominance', in Gowen, J. W. (Ed.), Heterosis, Iowa State College, Ames, Iowa, USA, 282-297.

Davis, A.W., Roote, J., Morley, T., Sawamura, K., Herrmann, S., and Ashburner, M. (1996). Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans. Nature 380, 157-159.

Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.

David, J.R., McEvey, S.F., Solignac, M, and Tsacas, L. (1989). Drosophila communities on Mauritius and the ecological niche of D. mauritiana (Diptera, Drosophilidae). J. Afr. Zool. 103, 107-116.

David, J., Bocquet, C., Lemeunier, F., and Tsacas, L. (1976). Persistance of male sterility in strains issued from hybrids between two sibling species: D. simulans and D. mauritiana. Genetics 62, 93-100.

Davis, AW., Roote, J., Morley, T., Sawamura, K., Herrmann, S., and Ashburner, M. (1996). Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans. Nature 380, 157-159.

Doherty, J.A., and Gerhardt, H. (1984). Acoustic communication in hybrid tree frogs: sound production by males and selective phonotaxis by females. J. Comp. Physiol. 154, 319-330.

Dover, G.A. (1987). DNA turnover and the molecular Clock. J. Mol. Evol. 26, 47-58.

Droney, D.C. (1994). Tests of hypotheses for lek formation in a Hawaiian Drosophila. Anim. Behav. 47, 351-361.

Dudai, Y. (1985). Genes, enzymes and learning in Drosophila. Trends in Neurosci. 8, 18-21.

Dushay, M.S., Rosbash, M., and Hall, J.C. (1989). The disconnected visual system mutations in D. melanogaster drastically disrupt circadian rhythms. J. Biol. Rhythms 4, 1-27.

Dyson-Hudson,V.R.D. (1956). The daily activity rhythm of Drosophila subobscura and D. obscura. Ecology 37, 562-567.

Easteal, S., and Oakshott, J.G. (1985). Estimating divergence times of Drosophila species from DNA sequence comparisons. Mol.Biol.Evol. 2, 87-91.

Edery, I., Rutila, J.E., and Rosbash, M. (1994). Phase-shifting of the circadian clock by induction of the Drosophila period protein. Science 263, 237-239.

Eisses, K.T., Van Dijk, H., and Van Delden, W. (1979). Genetic differentiation within the melanogaster species group of the genus Drosophila (Sophophora). Evolution 33, 1063-1068.

Engelmann, W., and Mack, W. (1978). Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol. 127, 229-237.

Etges, W.J. (1992). Premating isolation is determined by larval substrates in cactophilic Drosophila mojavensis. Evolution 46, 1945-1950.

Ewer, J., Hamblen-Coyle, M., Rosbash, M., and Hall, J.C. (1991). Requirement for PERIOD gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. J. Neurogen. 7, 31-73 .

Ewing, A.W., and Bennet-Clarke, H.C. (1968). The courtship songs of Drosophila. Behaviour 31, 288-301.

Ewing, A.W. (1969). The genetic basis of sound production in Drosophila pseudoobscura and D. persimilis. Anim. Behav. 17, 555-560.

Ewing, A.W. (1977). Communication in Diptera. In: How Animals Communicate (Ed. by T.A. Sebeok), p:403-17. Bloomington \& London: Indiana University Press.

Ewing, A.W. (1983). Functional aspects of Drosophila courtship. Biol. Rev. 58, 275292.

Ewing, A.W., and Miyan, J.A. (1986). Sexual selection, sexual isolation and the evolution of song in the Drosophila repleta group of species. Anim. Behav. 34, 421-429.

Ewing, L.S., and Ewing, A.W. (1987). Courtship in Drosophila melanogaster in large observation chambers: the influence of reproductive state. Behaviour 101, 288301.

Ewing, A.W. (1988). Cycles in the courtship song of male Drosophila melanogaster have been demonstrated. Anim. Behav. 36, 1091-1097.

Falconer, D.S. (1971). Improvement ofo litter size in a strain of mice at a selection limit. Genet. Res. 17, 215-235.

Fejes, E. (1990). A 268bp upstream sequence mediates the circadian clock-regulated transcription of the wheat Cab-1 gene in transgenic plants. Plant Mol. Biol. 15, 921-932.

Feldman, J.F., and Hoyle, M.N.(1973). Isolation of circadian clock mutants of Neurospora crassa. Genetics 75, 605-613.

Ferveur, J.-F., Stortkuhl, K.F., Stocker, R.F., and Greenspan, R.J. (1995). Genetic feminization of brain structures and changed sexual oreintation in male Drosophila. Science 267, 902-905.

Ferveur, J.-F., Cobb, M., Boukella, H., and Jallon, J.-M. (1996). World-wide variation in Drosophila melanogaster sex pheromone: genetic bases and behavioural consequences. Genetica 97, 73-80.

Ferveur, J.-F., and Sureau, G. (1996). Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. R. Soc. London series B- Biol. Sci. 263, 967-973.

Ferveur, J.-F., Savarit, F., O’Kane, C.J., Sureau, G., Greenspan, R.J., and Jallon, J.-M. (1997). Genetic feminization of pheromones and its behavioural consequences in Drosophila male.

Folkard, S.S., Hume, K.I., Minors, D.S., Waterhouse, D.M. and Watson, F.L. (1985). Independence of the circadian rhythm in alertness from the sleep/wake cycle. Nature 313, 678-679.

Ford, M.J., Yoon, C.K., and Aquadro, C. (1994). Molecular evolution of the period gene in Drosophila athabasca. Molec. Biol. Evol. 11, 169-182.

Futuyma, D.J. (1989). 'In speciation and its consequences'. Eds Otto,D. \& Endler, J. (Sinauer, Sunderland, Massachusetts), p:557-578.

Gailey, D.A., Jackson, F.R. and Siegel, R.W. (1984). Conditioning mutations in Drosophila melanogaster affect experience-dependent behavioural modification in courting males. Genetics 106, 613-623.

Gailey, D.A., and Hall, J.C. (1989). Behaviour and cytogenetics of fruitless, in Drosophila melanogaster. Different courtship defects caused by separate, closely linked lesions. Genetics 121, 773-785.

Gailey, D.A., Taylor, B.J., and Hall, J.C. (1991). Elements of the fruitless locus regulate development of the muscle of Lawrence, a male-specific structure in the abdomen of Drosophila melanogaster adults. Development 113, 879-990.

Gailey, D.A., Ohshima, S., Santiago, S.J.-M., Montez, J.M., Arellano, A.R., Robillo, J., Villarmo, C.A., Roberts, L., Fine E., Villella, A., and Hall, J.C. (1997). The muscle of Lawrence in Drosophila: A case of repeated evolutionary loss. Proc. Natl. Acad. Sci. U.S.A. 94, 4543-4547.

Galton, F. (1865). Hereditary talent and character. Macmillans Magazine 12, 155-166, 318-327.

Gekakis, N., Saez, L., Delahayebrown, A.M., Myers, M.P. Seghal, A., Young, M.W., and Weitz, C.J. (1995). Isolation of timeless by per protein interaction, defective interaction between timeless protein and long-period mutant per ${ }^{\text {L }}$. Science 270, 811-815.

Gill, K.S. (1963). A mutation causing abnormal courtship and mating behaviour in males of Drosophila melanogaster. (Abstract) Am. Zool. 3, 507.

Glover, D.M. (1991). Mitosis in the Drosophila embryo-in and out of control. Trends in Genet. 7(4), 125-132.

Good, D.S. (1993). Evolution of behaviours in Drosophila melanogaster in high temperatures: Genetic and Environmental effects. J. Ins. Physiol. 39, 537-544.

Gorczyca, M., Hall, J.C., and Mackey, M.C. (1987). The INSECTAVOX, an integrated device for recording and amplifying courtship songs. Dros. Info. Serv. 66, 157160.

Govind, S., and Steward, R. (1991). Dorsoventral pattern formation in Drosophila: signal transduction and nuclear targeting. Trends in Genet. 7, 119-125.

Grant, P.R. (1984). Recent research on the evolution of land birds of the Galapagoes. J. Biol. Soc. Limn. of London 21, 113-136.

Greenacre, M.L. (1990). Genetic analysis of courtship behaviour and biological rhythms in Drosophila. Ph.D Thesis.

Greenacre, M.L., Ritchie, M.G., Byrne, B.C., and Kyriacou, C.P. (1993). Female song preference and the period gene in Drosophila. Behav. Genet. 23, 85-90.

Greenspan, R.J. (1995). Undestanding the genetic construction of behaviour. Sci. Am. 272, 74-79.

Griffith, L.C., Verselis, L.M., Danho, W., and Greenspan, R.J. (1993). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioural plasticity. Neuron 10, 501-509.

Grossfield, J. (1966). The influence of light on the mating behaviour of Drosophila. Stud. Genet. Univ. Tex. Publ. 6615 3, 147-176.

Grossfield, J. (1968). The relative importance of wing utilisation in light dependent courtship in Drosophila. Genet. Univ. Tex. Publ. 6818 4, 147-156.

Grossfield, J. (1971). Geographic distribution and light-dependent behaviour in Drosophila. Proc. Natl. Acad. Sci. 68, 2669-2672.

Hall, J.C. (1977). Portions of the central nervous system controlling reproductive behaviour in Drosophila melanogaster. Behav. Genet. 7, 291-312.

Hall, J.C. (1978). Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav. Genet. 8, 125-141.

Hall, J.C. (1978a). Behavioural analysis in Drosophila mosaics. In : Genetic mosaics and cell differentiation. Eds by W.J. Gerhing. Springer-Verlag, Heidelberg.

Hall, J.C. (1979). Control of male reproductive behaviour by the central nervous system of Drosophila: dissection of a courtship pathway by genetic mosaics. Genetics 92, 437-457.

Hall, J.C. (1984). Complex brain and behaviour functions disrupted by mutations in Drosophila. Dev. Genet. 4, 355-378.

Hall, J.C. (1990). Genetics of circadian rhythms. Ann. Rev. Genet. 24, 659-697.

Hall, J.C., and Kyriacou, C.P. (1990). Genetics of biological rhythms in Drosophila. Adv. Ins. Physiol. 22, 221-298.

Hall, J.C., Hamblen-Coyle, M.J., Moroz, L., Rutila, J.E., Yu, O., Rosbash, M. and Wheeler, D.A. (1992). Circadian rythms of D. melanogaster transformed with DNA from the period gene of D. simulans. Dros. Inf. Serv. 71, 204-207.

Hall, J.C. (1994). The mating of a fly. Science 264, 1702-1714.

Hall, J.C. (1995). Tripping along the trail to the molecular mechanisms of biological clocks. Trends in Neurosci. 18, 230-240.

Hall, J.C. (1996). Are cycling gene products as internal zeitgebers no longer the zeitgeist Chronobiology?. Neuron 17, 799-802.

Halliday, T.R. (1978). Sexual selection and mate choice. In behavioural Ecology- an evolutionary approach ed. J. R. Krebs and N. B. Davies. Blackwell scientific Publication.

Hamblen-Coyle, M., Zehring, W.A., Kyriacou, C.P., Reddy, P., Yu, Q., Wheeler, D.A., Zweibel, L.J., Konopka, R.J., Rosbash, M., and Hall, J.C. (1986). Germ-line transformation involving DNA from the period locus in Drosophila melanogaster; Overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per-mutants. J. Neurogen. 3, 249-291.

Hamblen-Coyle, M., Wheeler, D.A., Rutila, J.E., Rosbash, M., and Hall, J.C. (1992). Behaviour of period-altered circadian rhythm mutants of Drosophila in Light:Dark cycles (Diptera: Drosophilidae). J. Ins. Behav. 5(4), 417-446.

Handler, A.M., and Konopka, R.J. (1979). Transplantation of a circadian pacemaker in Drosophila. Nature 279, 236-238.

Hardeland, R., and Strange, G. (1973). Comparative studies on the circadian rhythms of locomotor activity of 40 Drosophila species. J. Interdiscipl. Cycle Res. 4, 353359.

Hardin, P.E. (1992). Identification and analysis of a circadian output gene from Drosophila. EMBO Workshop on Molecular Chronobiology. Abstr. pp:12.

Hardin, P.E., Hall, J.C., and Rosbash, M. (1992). Behavioural and molecular analyses suggest that circadian output is disrupted by disconnected mutants in D. melanogaster. EMBO Journal 11, 1-6.

Hardin, P.E., Hall, J.C., and Rosbash, M. (1992). Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc. Natl. Acad. Sci. U.S.A. 89, 11711-11715.

Hardin, P.E., and Siwicki, K.K. (1995). The multiple roles of per in the Drosophila circadian clock. Seminars in Neurosciences 7, 15-25.

Haymer, D.S., and Hartl, D.L. (1982). The experimental assessment of fitness in Drosophila, I. Comparative measures of competitive reproductive success. Genetics 102, 455-466.

Haymer, D.S., and Hartl, D.L. (1983). The experimental assessment of fitness in Drosophila, II. A comparison of competitive and non-competitive measures. Genetics 104, 343-352.

Haymer, D.S., and Marsh, J.L. (1986). Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Devel. Genet. 6, 281-291.

Hazelrigg, J. (1987). The Drosophila white gene: a molecular update. Trends in Genet. 3, 43-47.

Heisenberg, M. (1994). Central brain function in insects: genetic studies on the mushroom bodies and complex in Drosophila. In Neural Basis of Behavioural Adaptations, K. Schildberger and N. Elsner, eds. (Stuttgart, Germany: Gustav Fischer Verlag), 61-79.

Helfrich-Förster, C. (1996). Drosophila rhythms: from brain to behaviour. Sem. in Cell and Devel. Biology 7, 791-802.

Helversen, D. von, and Helversen, O. von. (1975). Verhaltensgenetische untersuchugen am akustischen kommunikationssystem der feldheuschrecken (Ortherptera: Acridae). I. Der gesang von artbastarden zwischen Chorthippus biggutulus und Ch. mollis. J. Comp. Physiol. 104, 273-299.

Hing, A.L.Y., and Carlson, J.R. (1996). Male-male courtship behaviour induced by ectopic expression of the Drosophila white gene: role of sensory function and age. J. Neurobiol. 30, 454-464.

Hoikkala, A. (1985). Genetic variation in tme male courtship sound of Drosophila littoralis. Behav. Genet. 15, 135-142.

Hoikkala, A., and Lumme, J. (1987). The genetic basis of evolution of the male courtship sounds in the Drosophila virilis group. Evolution 41, 827-845.

Hoikkala, A. (1988). The importance of different courtship stimuli in the mating behaviour of european species of the Drosphila virilis group. Ann. Zool. Fennici 25, 257-263.

Hoikkala, A. (1993). The importance of different courtship stimuli in the mating behaviour of different European species of the Drosophila virilis group. Ann. Zool. Fennici 25, 257-263.

Hoikkala, A., Kaneshiro, K.Y., and Hoy, R.R. (1994). Courtship songs of the picturewinged Drosophila planitibia subgroup species. Anim. Behav. 47, 1363-1374.

Hoikkala, A., and Welbergen, P. (1995). Signals and responses of females and males in successful and unsuccessful courtships of three Hawaiian lek-mating Drosophila species. Anim. Behav. 50, 177-190.

Hotta, Y., and Benzer, S. (1976). Courtship in Drosophila mosaics: sex-specific foci for sequential action patterns. Proc. Natl. Aca. Sci. USA 73, 4154-4158.

Hunter-Ensor, M., Ousley, A., and Sehgal, A. (1996). Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677-685.

Hutter, P., Roote, J., and Ashburner, M. (1990). A genetic basis for the inviability between sibling species of Drosophila. Genetics 124, 909-920.

Huang, Z.J., Edery, I., and Rosbash, M. (1993). PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364, 259.

Hudson, R.R., Kreitman, M., and Aguade, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153-159.

Ikeda, H., Takabatake, I., and Sawada, (1980). Variation in courtship sounds among three geographical strains of Drosophila mercatorum. Behav. Genet. 10, 361375.

Ishida, N. (1991). Diurnal regulation of per repeat mRNA in the suprachiasmatic nucleus in the rat brain. Neuroscience Letters 122, 113-116.

Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., and Yamamoto, D. (1996). Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. P.N.A.S. USA 93, 9687-9692.

Izquierdo, J.I., Carracedo, M.C., Piñeiro, R., and Casares, P. (1992). Response to selection for increased hybridisation between Drosophila melanogaster females and D. simulans males. J. Hered. 83, 100-104.

Jackson, F.R., Bargiello, T.A., Yun, S-H, and Young, M.W. (1986). Product of per locus of Drosophila shares homology with Proteoglycans. Nature 320, 185-188.

Jallon, J.-M., and Hotta, Y. (1979). Genetic and behavioural studies of female sex-appeal in Drosophila. Behav. Genet. 8, 487-502.

Jallon, J.-M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14, 441-478.

Jallon, J.-M., Anthony, C., Chang Yong, T.P., and Maniar, S. (1986). Genetic factors controlling the production of aphrodisiac substances in Drosophila. In 'Advances in Invertebrate Reproduction' 4 (ed. M Porchet, J.C. Andries, and A. Dhainaut), pp. 445-452. Elsevier Science Publishers B.V.

Jallon, J.-M., and David, J.R. (1987). Variations in cuticular hydrocarbons along the eight species of the Drosophila melanogaster subgroup. Evolution 41, 294-302.

Jewett, M.E., Kronauer, R.E., and Czeisler, C.A. (1991). Light-induced suppression of endogenous circadian amplitude in humans. Nature 350, 59-62.

Johnson, C.H., and Hastings, J.W. (1986). The Elusive Mechanism of the Circadian clock: The quest for the chemical basis of the biological clock is beginning to yield tantalising clues. Am. Scient. 74, 29-36.

Jones, M.D.R., Cubbin, C.M., and Marsh, D. (1972). Light-on effects and the question of bimodality in the circadian flight activity of the mosquito Anopheles gambiae. J. Exp. Biol. 57, 347-357.

Kalmus, H. (1940). The resistance to dessication of Drosophila mutants affecting body colour. Proc. Roy. Soc. B. 130, 183-201.

Kalmus, H. (1945). Adaptive and selective responses of a population of D. melanogaster containing e and e^{+}to differences in temperature, humidity, and to selection for developmental speed. J. Genet. 49, 58-63.

Kawanishi, M., and Watanabe, T.K. (1980). Genetic variation of courtship song of Drosophila melanogaster and D. simulans. Jap. J. Genet. 55, 235-240.

Kawanishi, M., and Watanabe, T.K. (1981). Genes affecting courtship song and mating preference in Drosophila melanogaster, Drosophila simulans and their hybrids. Evolution 35, 1128-1133.

Kelly, J.K., and Noor, M.A.F. (1996). Speciation by Reinforcement: A model derived from studies of Drosophila. Genetics 143, 1483-1497.

King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Tanaka, M., Antoch, M.P., Steeves, T.D.L., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W., and Takahashi, J.S. (1997). Positional cloning of the mouse circadian Clock gene. Cell 89, 1-13.

Kliman. R.M., and Hey, J. (1993). DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics 133, 375387.

Konopka, R.J., and Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112-2116.

Konopka. R.J.. and Orr, D. (1979). Effects of a clock mutation on the subjective dayImplications for the membrane model of the Drosophila circadian clock. In: Development and neurobiology of Drosophila. Plenum Books.

Konopka, R.J., and Wells, S. (1980). Drosophila clock mutations affect the morphology of a brain neurosecretory cell group. J. Neurobiol. 11, 411-415.

Konopka. R.J., Wells, S., and Lee, T. (1983). Mosaic analysis of a Drosophila clock mutant. Mol. Gen. Genet. 190. 284-288.

Konopka. R.J. (1987a). Genetics of biological rhythms in Drosophila. Ann. Rev. Genet. 21. 227-236.

Konopka, R.J. (1987b). Neurogenetics of Drosophila circadian rhythms. In "Evolutionary Genetics of Invertebrate Behaviour" (ed. M. D. Huettel), p:215-221. Plenum Press, New York.

Konopka, R.J, Smith, R.F., and Orr, D. (1991). Characterisation of Andante, a new Drosophila clock mutant, and its interactions with other clock mutants. J. Neurogen. 7, 103-114.

Konopka, R.J. Hamblen-Coyle, M.J., Jamison, C., and Hall, J.C. (1995). An ultrashort clock mutation at the period locus of Drosophila melanogaster that reveals some new features of the fly's circadian system. J. Biol. Rhythms 4.

Konopka, R.J.. Kyriacou. C.P., and Hall, J.C. (1997). Mosaic analysis in the Drosophila CNS of circadian and courtship song rhythms affected by a PERIOD clock mutation. J. Neurogen. (in press).

Kripke. D.F., Risch. S.C., and Janowsky, D. (1983). Bright white light alleviates depression. Psychiatry Research 10. 105-112.

Krebs. R.A.. and Bean. K.L. (1991). The mating behaviour of Drosophila mojavensis on organ pipe and agria cactus. Phyche 98, 101-109.

Kulkarni. S.J.. and Hall, J.C. (1987). Behavioural and cytogenetic analysis of the cacophony courtship song mutant and interacting genetic variants in Drosophila melanogaster. Genetics 115, 461-475.

Kulkarni, S.J., Steinlauf, A.. and Hall, J.C. (1988). The dissonance mutant courtship song in Drosophila melanogaster: Isolation, behaviour, and cytogenetics. Genetics 118. 267-285.

Kyriacou. C.P., and Hall. J.C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc. Natl. Acad. Sci. USA 77, 6729-6733.

Kyriacou, C.P., and Hall, J.C. (1982). The function of courtship song rhythms in Drosophila. Anim. Behav. 30, 794-801.

Kyriacou. C.P.. and Hall. J.C.(1984). Learning and memory mutations impair acoustic priming of mating behaviour in Drosophila. Nature 308, 62-65.

Kyriacou. C.P., and Hall, J.C. (1984). Action potential mutations stop a biological clock in Drosophila. Nature 314, 171-173.

Kyriacou, C.P. (1985). Long-term ebony polymorhisms: A comparison of the Contributions of Behavioural and non-behavioural fitness characters. Behav. Genet. 15, 165-180.

Kyriacou. C.P.. and Hall. J.C. (1986). Interspecific genetic control of courtship song production and reception in Drosophila. Science 232, 494-497.

Kyriacou, C.P., and Hall. J.C. (1988). Comment on Crossley's and Ewing's failure to detect cycles in Drosophila mating songs. Anim. Behav. 36, 1110.

Kyriacou, C.P., and Hall, J.C. (1989). Spectral analysis of Drosophila courtship song rhythms. Anim. Behav. 37, 851-859.

Kyriacou. C.P. (1990). The molecular ethology of the period gene in Drosophila. Behav. Genet. 20, 191-211.

Kyriacou. C.P., Oldroyd. M.. Wood, J.. Sharp, M., and Hill, M.(1990). Clock mutations alter developmental timing in Drosophila. Heredity 64, 395-401.

Kyriacou, C.P., Berg. M.J. van den, and Hall, J.C. (1990). Drosophila courtship song cycles in normal and period mutant males revisited. Behav. Genet. 20, 617-644.

Kyriacou. C.P.. Greenacre, M.L., Ritchie, M.G., Byrne, B..C., and Hall, J.C. (1992). Genetic analysis of the love song preferences of Drosophila females. Amer. Zool. 32. 31-39.

Kyriacou, C.P. Sawyer, L.A., Piccin, A., Couchman, M.E., and Chalmers, D. (1996). Evolution and population biology of the period gene. Sem. in Cell and Devel. Biology 7, 803-810.

Kyriacou, C.P., Campesan, S., Stanley, R., Demetriades, M.C., and Rosato, E. (1997). Forward and reverse genetic approaches to the study of behaviour in higher cukaryotes. Recent Res. Devel. in Molecular Biol. 1, 29-40..

Lachaise. D.. Lemeunier, F., David, J.R., Tsacas, L., and Ashburner, M. (1986). The reproductive relatioships of Drosophila sechellia with D. mauritiana, D. simulans, and D. melanogaster from the Afrotropical region. Evolution 40, 262-271.

Lawrence. P.A.. and Johnston. P. (1984). The genetic specification of pattern in a Drosophila muscle. Cell 36, 775-782.

Lawrence, P.A.. and Johnston, P. (1986). The muscle pattern of a segment of Drosophila may be determined by neurons and not by contributing myoblasts. Cell 45. 505-513.
L.ee. C.. Parikh, V.. Itukaichi. T.. Bae, K., and Edery, I. (1996). Resetting the Drosophila clock by photic regulation of per and a per-tim complex. Science 271, 1740-1744.

Lee. W.H., and Watanabe, T.K. (1987). Evolutionary genetics of the D. melanogaster subgroup. Jpn J. Genetics 62, 225-239.

Lemeunier. F., and Ashburner, M. (1976). Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc. R. Soc. London B. 193, 275-94.

Lemeunier, F., and Ashburner, M.(1984). Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). IV. The chromosomes of the new species. Chromosoma 89, 343-351.
I.emeunier, F., David, J.R., Tsacas, L., and Ashburner, M. (1986). The melanogaster species group. The Genetics and Biology of Drosophila Vol. 3e, 147-256. Academic Press, London.

Limatainen, J. (1993). Courtship signals, their importance and inheritance in the species of the Drosophila virilis group. ACTA Univ. Ouluensis A 248.

Lilliefors. H.W. (1967). The Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc. 62, 399-402.
L.iu. X.. Lorenz. L.. Yu. Q.. Hall. J.C.. and Rosbash. M. (1988). Spatial expression of the period gene in I). melanogaster. Genes and Development 2, 228-238.

Livingstone. M.S. (1981). Two mutations in Drosophila affect the synthesis of octapamine, dopamine and serotonin by altering the activities of two amino-acid decarboxylases. Neurosci. Abstr. 7, 249-259.

Logan. I.G., and Rosenberg. J. (1989). A Referee's comment on the identification of cyles in the courtship song of Drosophila melanogaster. Anim. Behav. 37, 860871.

Lutz. F.E. (1932). Experiments with Orthoptera concerning diurnal rhythms. Am. Mus. Novitates 550. 1-24.

Manning, A. (1977). The control of sexual receptivity in female Drosophila. Anim. Behav. 15. 239-250.

Massey, F.J., Jr. (1951). The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46. 68-78.

Matsomoto, A., Motoshige, T., Murata, T., Tomioka, K., Tanimura, T., and Chiba, Y. (1994). Chronobiological analysis of a new clock mutant Toki, in D. melanogaster. J. Neurogenet. 9, 141-155.

McClung, C.R., Fox, B.A.. and Dunlap, J.C. (1989). The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 339, 558-562.

McKeown. M. (1994). Sex determination and differentiation. Dev. Genet. 15, 201204.

McRobert, S.P.. and Tompkins, L. (1985). The effect of transformer, doublesex, and intersex mutations on the sexual behaviour of Drosophila melanogaster. Genetics 108. 103-110.

Menaker. M.. Takahashi. J.S.. and Eskin, A. (1978). The physiology of circadian pacemakers. Ann. Rev. Physiol. 40. 501-526.

Miller, A., in ' Biology of Drosophila', M. Demerec, Ed. (Hafner, New York, 1950), pp. $420-534$.

Moore-Ede. M.C., Sulzman. F.M., and Fuller, C. A. (1982). The clocks that time Us. Harvard Univ. Press.

Murata. M., Matsumoto, A., Tomioka, K., and Chiba, Y. (1995). ritsu- a rhythm mutant from a natural-population of Drosophila melanogaster. J. Neurogenet. 9, 239249.

Myers. M.P., Wagner-Smith. K., Welsey, C.S., Young, M., and Seghal, A. (1995). Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270, 805--808.

Myers. M.P.. Wager-Smith. K.. Rothenfluh-Hilfiker. A., and Young, M.W. (1996). Light-induced degradation of timeless and entrainment of the Drosophila circadian clock. Science 271. 1736-1740.

Nambu, J.R., Franks, R.G., Hu, S., and Crews, S.T. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of the CNS Midline cells. Cell 63, 63-75.

Newby. L.M., and Jackson. F.R. (1991). Drosophila chony mutants have altered circadian activity rhythms but normal eclosion rhythms. J. Neurogen. 7, 85-101.

Newby. L.M., and Jackson. F.R. (1993). A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics 135. 1077-1090.

Nissani, M. (1977). Gynandromorph analysis of some aspects of sexual behaviour of Drosophila melanogaster. Anim. Behav. 25, 555-566.

Noor. M.A.F. (1995). Speciation driven by natural selection in Drosophila. Nature 375. 674-675.

Noor. M.A.F., and Aquadro. C.F. (1997). The courtship songs of Drosophila pseudoobscura and D. persimilis. I. Analysis of variation among species, populations, and individuals (submitted).

O'Kane, C.J., and Gehring, W.J. (1987). Detection in situ of genomic regulatory clements in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 84, 9123-9127.

O’Neall, S.L., and Karr, T.L. (1990). Bidirectional incompatibility between conspecific population of D. simulans. Nature 348, 178-180.

Ohnishi, S.. Kawanishi, M., and Watanabe, T.K. (1983). Biochemical phylogenetics of Drosophila: Protein differences detected by two-dimensional electrophoresis. Genetica 6, 55-63.

Pantazidis, A.C., and Zouros, E. (1988). Location of an autosomal factor causing sterility in Drosophila mojavensismales carrying the Drosophila arizonensis Y chromosome. Heredity 60, 299-304.

Pantazidis, A.C., Galanopoulos, V.K., and Zouros, E. An autosomal factor from Drosophila arizonae restores normal spermatogenesis in D. mojavensis males carrying the D. arizonae Y chromosome.

Paterson. H.E.H. (1985). The recognition concept of species. In: Species and Speciation. (Ed. by E. S. Vrba), pp:21-29. Pretoria: Transval Museum.

Pawson. T., and Bernstein. A. (1990). Receptor tyrosine kinase: genetic evidence for their role in Drosophila and mouse development. Trends in Genet. 6. 350-356.

Peixoto. A.A., Costa, R.. Wheeler, D.A., Hall, J.C., and Kyriacou, C.P. (1992). Evolution of the Threonine-Glycine repeat region of the period gene in the melanogaster species subgroup of Drosophila. J. Mol. Evol. 35, 711-719.

Peixoto, A.A., Campesan, S., Costa, R., and Kyriacou, C.P. (1993). Molecular evolution of a repetitive region within the per gene of Drosophila. Mol. Biol. Evol. 10, 127-139.

Peixoto, A.A.. Smith, L.A., and Hall, J.C. (1997). Genomic organization and evolution of alternative exons in a Drosophila calcium channel gene. Genetics 145, 10031013.

Pelandakis, M., Higgins, D.G., and Solignac, M. (1991). Molecular phylogeny of the subgenus Sophophora of Drosophila derived from large subunit of ribosomal RNA sequences. Genetica 84, 87-94.

Pièciro. R.. Carracedo, M.C., Izquierdo, J.I., and Casares, P. (1993). Bidirectional selection for female receptivity in Drosophila melanogaster. Behav. Genet. 23(1), 77-83.

Pirotta,V., Hadfield. C., and Pretorius, G.H.J. (1983). Microdissection and cloning of the white locus and the 3B1-3C2 region of the Drosophila X chromosome. EMBO J. 2, 927-934.

Pittendrigh, C.S. (1960). Circadian rhythms and the circadian organisation of living systems. Cold Spring Harbour Symp. Quant. Biol. 25, 159-184.

Pittendrigh, C.S. (1965). On the mechanism of entrainment of a circadian rhythm by light cycles. In Circadian Clocks ed. J. Aschoff, p:277-297. North Holland, Amsterdam.

Pittendrigh. C.S., and Daan. S. (1976). A functional anlysis of circadian pacemakers in nocturnal rodents. IV Entrainment: pacemaker as clock. J. Comp. Physiol. 106, 291-331.

Power. J.M.. Ringo, J.M., and Dowse, H.B. (1995). The efects of period mutations and light on the activity rhythms of Drosophila melanogaster. J. Biol. Rhyt. 10, 267280.

Reddy, P., Zehring, W.A., Wheeler, D.A., Pirotta, V., Hadfield, C., Hall, J.C., and Rosbash, M. (1984). Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701-710.

Redman. J., Armstrong, S., and Ng, K.T. (1983). Free-running activity rhythms in the rat: Entrainment by melatonin. Science 219, 1089-1092.

Reeve, E.C.R. (1955a). Inbredding with homozygotes at a disadvantage. Ann. Human Genet. 19. 332-346.

Ritchic, M.G., and Gleason. J.M. (1995). Rapid evolution of courtship song pattern in Drosophila willistomi sibling species. J. Evol. Biol. 8, 463-479.

Ritchie, M.G., and Kyriacou, C.P. (1994). Reproductive isolation and the period gene of Drosophila. Mol. Ecol. 3, 595-599.

Ritchic. M.G., Yates, V.H., and Kyriacou, C.P. (1994). Genetic variability of the interpulse interval of courtship song among some European populations of Drosophila melanogaster. Heredity 72, 459-464.

Rio. D.C. (1990). Molecular mechanisms regulating P-element transposition. Ann. Rev. Genet. 24. 543-578.

Roberts. R.C. (1960). The effects of litter size of crossing lines of mice inbred without selection. Genet. Res. 1, 239-252.

Roberts. S.K. de F. (1974). Circadian rhythms in cockroaches. Effect of the optic lobe lesions. J. Comp. Physiol. 88, 21-30.

Robertson, A. (1952). The effect of inbreeding on the variation due to recessive genes. Genetics 37. 189-207.

Robertson, H.M. (1983). Mating behaviour and the evolution of Drosophila mauritina. Evolution 37, 1283-1293.

Romer, F. . in 'Recent Advances in Comparative Anthropods Morphology, Physiology and Development', A.P. Gupta, Ed. (New Brunswick, N.J., Rutgers Univ. Press, 1991). pp. 542-566.

Rosato, E., Peixoto, A.A., Barbujani, G., Costa, R., and Kyriacou, C. P. (1994). Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138. 693-707.

Rosato, E.. Peixoto, A.A., Gallippi, A., Kyriacou, C.P., and Costa, R. (1996). Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster. J.Mol. Evol. 42, 392-408.

Rosato, E., Peixoto, A.A., Costa, R., and Kyriacou, C.P. (1997). Linkage disequilibrium, mutational analysis and selection in the repetitive region of the clock gene, period, in Drosophila melanogaster. Genet. Res. (in press).

Rutila, J.E., Edery, I.. Hall. J.C.. and Rosbash, M. (1992). The analysis of new shortperiod circadian rhythm mutants suggests features of D. melanogaster period gene function. J. Neurogen. 8. 101-113.

Rutila, J.E., Hongkui, Z., Le. M., Curtin, K.D., Hall, J.C., and Rosbash, M. (1996). The tim $^{\text {st }}$ mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17, 921-926.

Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall, J.C., Taylor, B.J., and Wasserman, S.A. (1996). Control of male sexual behaviour and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079-1089.

Sinchez. L., and Nathiger, R. (1982). Clonal analysis of Sex-lethal, a gene neede for female sexual development in Drosophila melanogaster. Wilhelm Roux’ Arch. 191. 211-214.

Satokangas, P., Liimatainen. J.O., and Hoikkala. A. (1994). Songs produced by the females of the Drosophila virilis group of species. Behav. Genet. 24, 263-272.

Sauman, I., and Reppert, S.M. (1996a). Circadian clock neurons in the silkmoth Antheraea pernyi: Novel mechanisms of period protein regulation. Neuron 17, 889-900.

Sauman, I.. and Reppert. S.M. (1996b). Molecular characterisation of prothoracicotropic hormone (PTTH) from the giant silkmoth Antheraea pernyi: developmental appearance of PTTH-expressing cells and relationship to circadian clock cells in central brain. Devel. Biol. 178, 418-429.

Saunders, D. S. (1982). Insect clocks. 2ND Edition. Pergamon, Oxford.

Sawyer, L.A.. Hennessey, M.J., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., and Kyriacou, C.P. (ms submitted). Threonine-Glycine repeat length within the period gene modulates circadian temperature compensation in Drosophila melanogaster.

Scavarda. N.J., and HartI, D.L. (1984). Interspecific DNA transformation in Drosophila. Proc. Natl. Acad. Sci. USA 81, 7515-7519.

Schilcher, F. von. (1976a). The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim. Behav. 24, 18-26.

Schilcher, F. von. (1976b). The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622-625.

Schilcher. F. von. (1977). A mutation which changes courtship song in Drosophila melanogaster. Behav. Genet. 7, 251-259.

Schilcher, F. von, and Hall, J.C. (1979). Neural topology of courtship song in sex mosaics of Drosophila melanogaster. J. Comp. Physiol. 129, 85-95.

Schluter, D. (1994). Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798-801.

Schluter, D.. and McPhail, J.D. (1992). Ecological character displacement and speciation in sticklebacks. Am. Natur. 140, 85-108.

Scott, D. (1986). Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc. Nat. Sci. U.S.A. 83, 8429-8433.

Scott. D.. and Jackson, L. (1988). Interstrain comparison of male-predominant antiaphrodisiacs in Drosophila melanogaster. J. Ins. Physiol. 34, 863-871.

Scott, D., Richmond, R.C., and Carlson, D.A. (1988). Pheromones exchanged during mating: a mechanism for mate assessment in Drosophila. Anim. Behav. 36, 11641173.

Schgal. A., Price, J.L., Man, B., and Young, M.W. (1994). Loss of circadian behavioural rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603-1606.

Sheridan, A.K. (1981). Crossbreeding and heterosis. Ann. Breed. Abstr. 49, 131-144.

Shin. H-S.. Bargicllo, T.A., Clark, B.T., Jackson, F.R., and Young, M.W. (1985). An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature 317. 445-448.

Siegfried, E., Ambrosio, L., and Perrimon. N. (1990). Serine/Glycine protein kinases in Drosophila. Trends in Genet. 6, 357-362.

Smith. R.F., and Konopka, R.J. (1981). Circadian clock phenotypes of chromosome aberrations with a breakpoint at the per locus. Mol. Gen. Genet. 183, 243-251.

Smith, R.F., and Konopka, R.J. (1982). Effects of dosage alterations at the per locus on the period of the circdian clock of Drosophila. Mol. Gen. Genet. 185, 30-36.

Solignac, M.. and Monnerot, M. (1986). Race, formation, speciation, and introgression within D. simulans, D.mauritiana, and D. sechellia inferred from mitochondrial DNA analysis. Evolution 40, 531-539.

Spieth, H.T. (1952). Mating behaviour within the genus Drosophila. Bull. Am. Mus. Nat. Hist. 99, 401-474.

Stanewsky, R., Fry, T.A., Reim, I., Saumweber, H., and Hall, J.C. (1996). Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences
courtship and visually mediated behaviour in Drosophila: In vitro mutagenesis of nonA. Genetics 143, 259-275.

Suvanto, L.. Hoikkala, A., and Liimatainen, J.O. (1994). Secondary courtship songs and inhibitory songs of Drosophila virilis-group males. Behav. Genet. 24, 85-94.

Swaab. D.F., and Hofman, M.A. (1995). Sexual differentiation of the human hypothalamus in relation to gender and sexual orientation. Trends Neurosci. 18, 264-270.

Tajima. F. (1989). Statistical Method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.

Takahashi, J.S. (1991). Circadian rhytms:from gene expression to behaviour. Current Op. Neurobiol. 1. 556-561.

Taylor. B.J. (1992). Differentiation of a male-specific muscle in Drosophila melanogaster does not require the sex-determining genes doublesex and intersex. Genetics 132. 179-191.

Taylor, B.J., Villella, A., Ryner, L.C., Baker, B.S., and Hall, J.C. (1994). Behavioural and neurobiological implications of sex-determining factors in Drosophila. Dev. Genet. 15, 275-296.

Taylor, B.J., and Knittel, L.M. (1995). Sex-specific differentiation of a male-specific abdominal muscle, the Muscle of Lawrence, is abnormal in hydroxyurea-treated and in fruitless male flies. Development 121, 3079-3088.

Thackeray, J.R., and Kyriacou, C.P. (1991). Molecular evolution in the D. yakuba period locus. J. Mol. Evol. 31, 389-401.

Throchmorton, L.H. (1975). The phylogeny, ecology and geography of Drosophila. In handbook of Genetics ed. R. C. King, 421-469.

Timblin, C., Battey, J. and Kuehl,W.M. (1990). Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. Nuc. Acid Res. 18, 1587-1993.

Tomaru. M.. and Oguma.Y. (1994a). Differences in courtship song in the species of the Drosophila auraria complex. Anim. Behav. 47, 133-140.

Tomaru, M.. and Oguma.Y. (1994b). Genetic basis and evolution of species-specific courtship song in the Drosophila auraria complex. Genet. Res. Camb. 63, 11-17.

Tomaru, M., Matsubayashi, H., and Oguma,Y. (1995). Heterospecific interpulse intervals of courtship song elicit female rejection in Drosophila biauraria. Anim. Behav. 50, 905-914.

Tompkins, L., Hall, J.C., and Hall, L.M. (1980). Courtship-stimulating volatile compounds from normal and mutant Drosophila. J. Ins. Physiol. 26, 689-697.

Tompkins, L., and Hall, J.C. (1981). Drosophila males produce a phermone which inhibits courtship. Z. Naturforsch. 36c, 694-696.

Tompkins, L., and Hall, J.C. (1983). Identification of brain sites controlling femlae receptivity in mosaics of Drosophila melanogaster. Genetics 103, 179-195.

Tompkins, L., Gross, A., Hall, J.C., Gailey, D.A., and Siegel, R.W. (1982). The role of female movement in the sexual behaviour of Drosophila melanogaster. Behav. Genet. 12, 295-307.

Tompkins, L., Siegel, R.W., Gailey, D.A., and Hall, J.C. (1983). Conditioned courtship in Drosophila and its mediation by association of chemical cues. Behav. Genet. 13. 565-578.

Tompkins, L. (1984). Genetic analysis of sex appeal in Drosophila. Behav. Genet. 14, 411-440.

Tompkins, L. (1984). The effect of Sex-lethal mutations on the sexual behaviour of D. melanogaster. Genetics 107, 107-115.

Tompkins. L. (1985). Genetic control of sexual behaviour in Drosophila melanogaster. Genetics 108, 57-63.

Truman. J.W. (1974). Physiology of insect rhythms IV. Role of the brain in the regulation of the flight rhythm of the giant Silkmoth. J. Comp. Physiol. 95, 281296.

Tsacas, L. (1971). D. teissieri, nouvelle espice africaine du groupe melanogaster et notre sur deux autres espices nouvelles pour l' Afrique. Bull. Soc. Entomol. Fr. 76. 35-45.

Tsacas, L., Lachaise, D., and David, J.R. (1981). Composition and Biogeography of the Afrotropical Drosophilid Fauna. In: The genetics and biology of Drosophila (eds. M. Ashburner, H.L. Carson and J.N. Thompson, Jr.), Vol. 3a, p:197-259, Academic Press London.

Tsacas. L. (1984). Nouvelle donnees sur la biogiographie et l'ivolution du groupe Drosophila melanogaster en Afrique. Description de six nouvelles espices (Diptera, Drosophilidae). Ann. Soc. Entomol. Fr. (N.S.) 16, 517-540.

Tsacas, L., and Bächli, G. (1981). Drosophila sechellia, n. sp., huitiome espice du sousgroupe melanogaster des Iles Söchelles (Diptera, Drosophilidae). Rev. Fr. Entomol. 3, 146-150.

Tsacas, L., and David, J.R. (1974). Drosophila mauritiana, n. sp. du groupe melanogaster de l' ile Maurice (Diptera, Drosophilidae). Bull. Soc. Entomol. Fr. 79. 42-46.

Tsacas, L., and David, J.R. (1978). Une septiome espice appartenant au sous-groupe Drosophila melanogaster Meigen: Drosophila orena spec. nov. du Cameroun (Diptera: Drosophilidae). Beitr. Entomol. (Berlin) 28, 179-182.

Tsacas, L., and Lachaise, D. (1974). Quatre nouvelles espices de la Cote-d’ Ivoire du genre Drosophila, groupe melanogaster, et discussion de I' origine du sous-groupe melanogaster (Diptera: Drosophilidae). Ann. Univ. Abidjan E. 7, 193-211.

Tully, T. (1984). Drosophila learning: behaviour and biochemistry. Behav. Genet. 14, 527-557.

Tully, T., and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant D. melanogaster. J. Comp. Physiol. 157, 263-277.

Turck. F.W. (1985). Circadian neural rhythms in mammals. Ann. Rev. Physiol. 47, 4964.

Turek, F.W., and Losee-Olsen, S. (1986). A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321, 167-168.

Van Gelder, R.N., and Krasnow, M.A. (1996). A novel circadianly expressed D. melanogaster gene dependent on the period gene for its rhythmic expression. EMBO Journal 15, 1625-1631.

Venard, R.. and Jallon, J.-M. (1980). Evidence for an aphrodisiac pheromone of female Drosophila. Experientia 36, 211-212.

Villella, A., and Hall, J.C. (1996). Courtship anomalies caused by doublesex mutations in Drosophila melanogaster. Genetics 143, 331-344.

Vosshall, L.B., and Young, M.W. (1992). Circadian behaviour defects of eye, optic lobe, and brain mutants of Drosophila melanogaster. In Young, M.W. (ed.), Molecular Genetics of Biological Rhythms. Marcel Dekker, New York.

Vosshall, L.B.. Price, J.L., Seghal, A., Saez, L., and Young, M.W. (1994). Block in nuclear localisation of period protein by a second clock mutation, timeless. Science 263, 1606-1609.

Vuoristo. M., Isoherranen. E.. and Hoikkala, A. (1996). Female wing spreading as acceptance signal in the Drosophila virilis group of species. J. Insect Behav. 9, 505-515.

Watanabe. T.K., and Kawanishi, M. (1979). Mating preference and direction of evolution in Drosophila. Science 205, 906-907.

Watterson, G.A. (1975). On the number of segregating sites in general models without recombination. Theoretical Population Biology 7, 256-276.

Wehr. T.A., and Wirz-Justice, A. (1982). Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmcopsychiatry 15, 31-39.

Welbergen, P., van Dijken, F.R,. and Scharloo, W. (1987). Collation of courtship behaviour of sympatric species of Drosophila melanogaster and Drosophila simulans. Behaviour 101, 253-274.

Welbergen, P., Spruijt, B, and van Dijken, F.R. (1992). Mating speed and interplay between male and female courtship responses in Drosophila melanogaster (Diptera: Drosophilidae). J. Ins. Behav. 5, 229-244.

Wheeler, I.A.. Fields, W.L., and Hall, J.C. (1988). Spectral analysis of courtship songs: D. melanogaster, D. simulans, and their interspecific hybrids. Behav. Genet. 18, 675-703.

Wheeler, D.A., Kulkarni, S.J., Gailey, D.A., and Hall, J.C. (1989). Spectral analysis of courtship songs in behavioural mutants of Drosophila melanogaster. Behav. Genet. 19, 503-528.

Wheeler. D.A., Kyriacou, C.P., Greenacre, M.L., Yu, Q., Rutila, J.E., Rosbash, M., and Hall. J.C. (1991). Molecular transfer of a species-specific courtship behaviour from Drosophila simulans to Drosophila melanogaster. Science 251, 1082-1085.

White. J., Yeats. A., and Skipworth. G. (1994). Tables for statisticians. 3rd Edition, Stanley Thornes, (Publishers) LTD.

Winer. B.J. (1971). Statistical Principles in Experimental Design. Second Edition. Publ. Mc-Graw-Hill and Kogakusha.

Winfree, A.T. (1987). The timing of Biological clocks. Scientific American Library, Inc.

Yoon. C.K. (1991). Molecular and behavioural evolution in the semispecies of Drosophila athabasca. Ph.D. Thesis Cornell University, U.S.A.

Yoon. C.K., and Aquadro, C.K. (1994). Mitichondrial DNA variation among the Drosophila athabasca semispecies and Drosophila affinis. J. Hered. 85, 421-426.

Young, M. (1992). New clock mutants in Drosophila. EMBO Workshop on Molecular Chronobiology, Abstr. pp. 11.

Yu, Q.. Jacquier, A.C., Citri, Y., Hamblen, M., Hall, J.C., and Rosbash, M. (1987a). Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 84, 784-788.

Yu, Q., Colot, H.V., Kyriacou, C.P., Hall, J.C., and Rosbash, M. (1987b). Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326, 765-769.

Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J., Kyriacou, C.P., Rosbash, M., and Hall. J.C. (1984). P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39, 369-376.

Zeng. H., Qian, Z., Myers, M.P., and Rosbash, M. (1996). A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 129-135.

Zhang, S.-D., and Odenwald, W.F. (1995). Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proc. Natl. Acad. Sci. USA 92, 5525-5529.

