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ABSTRACT

Estimation of mean spatial blood velocity, and hence volumetric flow, using Doppler 
ultrasound is typically performed under the assumption that the beam samples each part of 
the cross section of the blood vessel equally. This allows the mean velocity to be regarded 
as being proportional to the conventional mean Doppler shift frequency. In this work a 
new frequency estimator of mean velocity is presented for the case where the beam is 
assumed to be of negligible width compared to the vessel diameter and directed through the 
vessel axis. This estimator is proportional to the mean velocity if it can be further assumed 
that the velocity profile is axi-symmetric and is monotonie, or has an idealised bidirectional 
form. In practice neither the assumption of a uniformly insonating beam nor the 
assumption of an infinitely narrow beam are valid. Also the Doppler spectrum, as a 
representation of the velocity distribution of blood cells, is cormpted by spectral 
broadening, noise, filtering and the stochastic nature of the signal. In addition difficulty 
exists in the measurement of the representative Doppler angle. The effects on both 
estimators of these potential sources of error are discussed and compared. The question of 
volumetric flow measurement at various arterial sites is addressed by modelling the velocity 
profiles in the vessel throughout the cardiac cycle. Some sources of error affect only the 
new estimator, so one conclusion drawn is that mean velocity estimation and volumetric 
flow measurement are better performed using the conventional frequency with a uniformly 
insonating beam. Nevertheless if the beam is more accurately described as being very 
narrow and centrally positioned the new estimator performs better than the conventional 
frequency estimator. This description may well be appropriate if the blood vessels are large 
and the Doppler beam is transmitted and received using a linear array transducer such as in 
modern duplex systems.
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PREFACE - NOTATION AND NUMBERING

The extensive use of equations, derivations and diagrams in this thesis means that many 
symbols have been needed. The vast majority of these symbols are used without ambiguity 
throughout the thesis. Most of this consistent notation is listed on the following page. 
In other cases a symbol may signify different quantities in different chapters. Such symbols 
include a, b, x, y, a  and J3. Efforts have been made to minimise such ambiguity, and indeed 
within each individual chapter no ambiguity exists. Notation which is specific to a 
chapter, or is not used often enough, is not included in the list below. If  these symbols are 
important they are listed at the end of the chapter(s) in which they appear. Both the 
following list and the lists at the end of the individual chapters are merely to assist the 
recollection of the meanings of each symbol. In every case the meaning is described in the 
text itself.

Some general rules apply in the use of symbols. The bar notation, e.g. v , signifies 
averaging over space, or another related domain, usually at any one point in time. In 
agreement with this, when applied to frequencies and frequency bin index numbers, the bar 
notation, e.g. / ,  implies the conventional notion of the mean frequency of a spectrum after 

the frequency components are weighted by their intensity. The hat notation, e.g. / ,  implies 

the frequency calculated according to the new method. Temporal averaging is indicated by 
the subscript 'ave', e.g. ■ Capitalised subscripts are generally used to denote variables 

under certain conditions, e.g. p ^ i f )  for the power density of a noise spectrum. Lower 

case subscripts are used to denote a particular value of a general variable within a range, 
e.g. v„, is the maximum blood velocity present in the artery. Variable quantities are 
italicised, and fixed quantities are not.

Equations, figures (i.e. charts and diagrams) and tables are numbered within each chapter 
independently, so that the first equation in chapter 12 is referred to as 'equation (12.1)' or 
simply '(12.1)'. The first figure in that chapter is 'fig. 12.1' and the first table is 'table 12.1'. 
For simplicity, equations introduced earlier are sometimes duplicated in later chapters, and 
are renumbered for use in those chapters. Where appropriate derivations of equations are 
given in appendices E and F.

Important abbreviations

IWMB intensity weighted mean bin number
PIWMB position and intensity weighted mean bin number
IWMF intensity weighted mean frequency
PIWMF position and intensity weighted mean frequency



Common notation used unambiguously throughout

IWMB if the spectmm was deterministic 
B  the observed IWMB

èj^ PIWMB if the spectrum was deterministic
Ê  the observed PIWMB
c speed of sound in blood
-̂ iwMF percentage error in the mean velocity calculated from IWMF
p̂iwMF percentage error in the mean velocity calculated from PIWMF

/  general frequency variable
/  IWMF of obseived (deterministic) spectrum

f s  IWMF of theoretical (deterministic) signal spectmm

/  PIWMF of observed (deterministic) spectmm

f s  PIWMF of theoretical (deterministic) signal spectmm

/„, maximum frequency in theoretical Doppler signal
A,ax maximum frequency in Doppler signal
F  transmit frequency
i generalised index number of a frequency bin
IMAX the index of the highest frequency bin, i.e. for a single-sided spectmm this is

one less than the number of available frequency bins 
n 'bluntness' parameter defining the shape of a simple velocity profile

power recorded in the /'th frequency bin 
Pf mean power in the /'th frequency bin

p { f )  power spectral density function of Doppler signal

P s^ f )  power spectral density function of theoretical Doppler signal

P  total spectral power in spectmm
P  total spectral power in deterministic spectmm
R  internal radius of vessel
r radial distance from the vessel axis
t parameter defining the form of the theoretical Doppler spectmm
V velocity of a blood particle 

maximum blood particle velocity present
V actual mean velocity
V ' estimate of mean velocity
6  the angle between the ultrasound beam and the direction of motion of the

blood particle(s) (In chapters 4 and 7 which deal with the finite angular 
dimensions of the beam this is defined in terms of the line from the centre of 
the transducer to the centre of the sample volume.)

T time variable
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CHAPTER 1 - AN INTRODUCTION TO VOLUMETRIC FLOW  
MEASUREMENT USING ULTRASOUND

In the latter half of the twentieth century major advances in the clinical study of blood flow 
have been afforded by the availability of ultrasonography, and chiefly by the technique 
known as Doppler ultrasound. In this technique inferences are made about the flow of 
blood by studying the Doppler shifted signal of ultrasonic radiation transmitted and 
received outside the body, but scattered from blood particles within the body. As such, 
examinations made using Doppler ultrasound are regarded as being 'non-invasive' and safe, 
and are cost-effective and easy to perform. In addition blood vessels in situ can be 
visualised by the ultrasonic technique known as 'B-mode' imaging, where an image of tissue 
structure is built up from the pattern of reflections received by the transducer resting on the 
skin surface. The techniques of Doppler ultrasound and B-mode imaging have many 
clinical applications and are widely in use.

Doppler ultrasound primarily provides information about blood velocity and not volume, 
and much research has been undertaken to advance velocity measurement. However 
quantification of the volumetric flow rate ultrasonically is problematic, and remains an 
unfinished area of study. In many clinical cases the quantification of a change in flow over 
time, perhaps as a result of the administration of a drug, may be an acceptable result, so 
that determination of the absolute flow is not necessary. However absolute flow remains a 
more fondamental quantity. Generally of more limited value than an estimate of flow made 
over many cardiac cycles would be an estimate made over one cycle, and of less value still 
a single estimate of instantaneous volumetric flow rate. However an estimate over many 
cycles ultimately can be formed from a continuous estimate of the instantaneous rate, so 
that instantaneous flow estimates can be the building blocks of general flow quantification.

The instantaneous volumetric rate of flow of a fluid through any cross section of a tube is 
equal to the area of the cross section multiplied by the velocity averaged spatially 
throughout the cross section. Therefore one way of determining the flow rate is to obtain 
independent estimates of area and mean velocity that are appropriate to the same point in 
time. Error in the continuous estimation of instantaneous flow may therefore arise from 
error in the measurement of the changing area, error in the measurement of the fluctuating 
mean velocity, or error in the referencing in time of these quantities. The work in this 
thesis focuses strongly on the estimation of instantaneous mean velocity, and the 
consequent reduction of the error in volumetric flow measurements. The measurement of 
cross-sectional area is a separate problem, and is only discussed in this introductory chapter 
and in appendix A. Accurate referencing in time is essentially an engineering problem. In 
one context it is described briefly in appendix A.
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General flow equation

This thesis is heavily reliant on the use of mathematical symbolism to express the physical 
ideas relating to the measurement of flow and velocity. It is fitting therefore that the first 
equation introduced is fundamental to the problem, and describes what has already been 
mentioned. If the area of the cross section perpendicular to the vessel axis changes with 
time T and has an area given by A{ r) as in fig. 1.1, and if the component o f the spatial mean 

velocity parallel to this axis through this cross section is v (r), then the instantanteous flow 

rate, Q( t)  , is given by

6(T) = X(T).v(T)

and the average flow rate, , throughout a cardiac cycle of duration T  is

(1.1a)

1
(1.1b)

The goal therefore is the evaluation of these flows, whether explicitly in terms of the 
factors A { t) and v (r) as in these equations, or in another way. There follows a 

description of how ultrasound can be used to achieve this. Subsequently this chapter 
introduces the main subject of this thesis, namely the estimation of the instantaneous mean 
velocity, v (r), in a way which differs from conventional methods.

vessel mean velocity =  v ( r )

area =  A ( t )

F ig .I.l - flow rate = area x mean velocity
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The Doppler equation

The basis of quantitative blood velocity study using ultrasound is the equation which 
describes the observed shift in frequency of the radiation scattered from a particle moving 
with a given velocity. If  /  is the shift in frequency and v is the speed of the particle then

( 1.2)

where F  is the transmit frequency, c is the speed of sound in the medium and 6  is the angle 
at the particle between the direction to the transducer and the direction o f motion. This is 
the basic Doppler equation, in which the Doppler shift frequency /  is seen to be 
proportional to the velocity v. The approximation is based on the inequality c »  v, which 
is true as c « 1580 m s ’ and v~l m s ’.

The transmit frequency is well known, and the speed of sound in blood is known to an 
accuracy of -0.5%, the uncertainty being due to dependence on the blood haematocrit. 
So if the angle 6 is known the velocity of the particle can be recovered from the measured 
fi-equency, i.e.

-  (1.3)
2 F co s0

In practice 9  is measured relative to the axis of the blood vessel. It follows that the 
velocity v in (1.3) is the component of the velocity along this axis, as seen in fig. 1.2.

transducer

vessel axis

Fig. 1.2 - geometry for the Doppler equation
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The Doppler spectrum and the velocity distribution

The particles, or scatterers, o f significance are the red blood cells, their contribution to the 
scattering of the ultrasound beam being much greater than that o f other blood components. 
More specifically the individual scatterers can be thought of as fluctuations in the local 
concentrations of the red blood cells, as modelled by Angelsen (1980). With such a model 
it is still appropriate to regard the velocity of the scatterers as being the velocity o f the red 
blood cells. If  on average all these scatterers present the same cross section to the beam 
then, for a fixed intensity of insonation, the mean received power in the Doppler signal is 
proportional to the number of red blood cells in the insonated region, called the 'sample 
volume'. Ideally therefore the Doppler shift spectrum has the same form as the distribution 
o f velocities of cells in the sample volume, enabling blood flow to be studied with accuracy 
by considering the spectrum. An example of this is shown in fig. 1.3 where the spectral 
density function, denoted by p { f  ) has the same form as the number density of scatterers 

p(v) with velocity, v. The maximum frequency is related to the maximum velocity v_ 

by the Doppler equation, (1.2).

power spectral density p  ( / )  
num ber density o f  scatterers p (v )

v„, velocity v
/  frequency /

Fig. 1.3 - equivalence of the ideal Doppler shift 
spectrum and the velocity distribution
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Methods of flow estimation using ultrasound

Various ultrasonic techniques exist for the continuous evaluation of the product given in 
(1.1a) and so for the measurement of volumetric flow. Generally speaking the product 
evaluated is not that given in (1. la) but is

Q ' { t) =  A ' { t) . v ' { t) (1.4)

where the prime notation reflects the fact that the factors A'{r) and v '(r) , which may be 

evaluated explicitly or implicitly, and the product are estimates of the true values. The 
technique of greatest relevance to the work of this thesis is the duplex method which is 
described in the following paragraphs. The main subject of this thesis, that is the 
calculation of v ' ( t) from the form of a single spectrum, is also relevant to the attenuation 

compensation method, which is the first of the other methods briefly mentioned

The duplex method

In duplex ultrasound dynamic B-mode images of an artery are obtained, so that the vessel 
is oriented longitudinally on the screen, generally at an angle to the image horizontal. 
Overlaid on these images is the cursor defining the direction of the beam used to generate 
the Doppler signal giving blood velocity information. This beam lies in the image plane so 
that the user can intelligently manipulate the Doppler beam to insonate along a known path 
beneath the skin. The returning Doppler signal is electronically gated so that the echoes 
returning from a section of this path, the sample volume, are retained and others originating 
from scatterers at different depths are discarded. The length and depth of this sample 
volume are adjustable, and are indicated by cursors on the image also. Machine time is 
shared between the generation of the images and the generation of the Doppler signal, until 
the sample volume is deemed to be positioned across the appropriate cross section of the 
vessel. This is determined from the position of the cursors on the dynamic images and the 
quality of the preliminary Doppler signal. By visually aligning a variable angle cursor with 
the orientation of the arteiy on the image, the Doppler angle, 6, necessary for velocity 
calculation is estimated. The image is then frozen to allow all the machine time to be 
devoted to instantaneous velocity measurement. An example of such an image, with 
overlaid cursors defining the sample volume and the measured Doppler angle, is given in 
fig. 1.4.

In duplex ultrasound the estimate of mean velocity often obtained is that which woyld be 
appropriate if the Doppler beam insonated the cross section uniformly. The estimate of 
mean velocity in this case is found from (1.3) and the estimated angle by replacing /  by the
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observed mean Doppler shift frequency, which is denoted by / ( x )  and defined more fully 
in chapter 2. So in this case

v'(x) =
2Fcos0

(1.5)

One reason why this velocity estimate tends to be too high is that the low frequencies in 
the spectrum are filtered to remove the Doppler signal received from the slowly moving

and massive vessel walls, and hence / ( x )  is too high.

LEICESTER ROYAL INF 
VASCULAR LAB

SPECTRA , . , , 
2 2 - M * r - 9 4  (^M l 
13  : 3 7  2 7  ) j j  
L A /lO M l/4 0 ^^^  
- 6  dB 
4 0  mm

S 6 / 0
S CURVE

FF TP 46%

PO 6  0  MHZ 
RO 13  n n  
SV 6  7  mm 
PRF S O  KHZ 
HPF 2 0 0  Hz

4 0  6 . S mm

Fig. 1.4 - A frozen B-mode image of a carotid artery in a duplex system. The beam 
direction is defined by the long oblique line. Perpendicular to this are short cursors 
defining the extent of the sample volume. The cursor for angle estimation is oriented 
to be parallel to the axis of the artery. The diameter is measured from the cross- 
shaped cursors.

Typically a single estimate of vessel diameter is obtained by visual measurement on one or 
several frozen B-mode images. With the help of on-screen calipers the diameter from any 
one image can be read from the screen. On fig. 1.4 these calipers are crosses, the lower one 
not being particularly visible. So using an assumption of circularity a single estimate of 
cross-sectional area, say 4̂", is available. Therefore in estimating the instantaneous flow 
given in (1.1a) the duplex method usually evaluates the quantity
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Errors in the measurement o f flow throughout a cycle therefore chiefly result from the use 
of a constant cross-sectional area, uncertainty in the determination o f the appropriate angle, 
possible failure of the Doppler beam to insonate the cross section uniformly and the need to 
apply a high-pass filter before spectral analysis.

The attenuation compensation method

The attenuation compensation method of flow estimation involves the formation o f two 
concentric pulsed beams. One beam insonates the cross-section uniformly, and the other 
has a sample volume, of the same length and at the same depth, entirely within the lumen. 
This is illustrated in fig. 1.5. The total power in the Doppler signal o f the wide beam 
(bound by the dashed lines) is theoretically proportional to the cross sectional-area y4(r) 

and inversely proportional to cos0 . It follows that this method does not require explicit 
estimates o f the area A{ r) and angle 0  which are sources of error in the duplex method. 

The constant of proportionality between power and blood volume can be found by 
comparing the relative powers of the two received Doppler signals. In practice a single 
broad beam is transmitted with an annular array transducer and the two received beams are 
formed electronically and are collected simultaneously.

vessel

Fig.1.5 - insonation in the attenuation compensation method

Flow measurement using a multigate system

In a multigate system the beam is narrow and positioned through the vessel axis. The flow 
is examined by electronically gating the received Doppler signal to provide separate spectra 
for many points across the vessel diameter. This can provide an estimate of instantaneous 
flow if the velocity profile can be assumed to be axi-symmetric. Error is introduced if the 
beam does not pass through the centre of the vessel.

Flow measurement by assuming the form  o f  the velocity profile

If  it is assumed that the velocity profile has a particular form, then the mean velocity v( r) 
can be found from the maximum observed frequency, f ^ ^  , provided (some of) the fastest 

particles are insonated. This method of mean velocity estimation is not affected by the 
need to filter the low frequencies of the Doppler signal.
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Simplification by the estimation of diameter

If  the blood vessel can be assumed to have a circular cross section with internal radius 
R {t), which is estimated by R '{ r), then (1.4) becomes

(2'(r) = ;r7?'^(r) v ' ( t)  (1.6a)

and the flow throughout the cycle is estimated by

G L = y  (1.6b)

Often however, as in the duplex method described above, only a single estimate o f the
arterial radius, say R " , is used. So estimates of the instantaneous flow and the flow
throughout the cycle are

0 ' { t) = 7rR"^v'{r) (1.7a)

and

n„2 f+r
J v '(r ) f /r  (1.7b)

If  V'( r) is accurate then this estimate of average flow is in error to the extent that R"^ is 

not representative of the instanteous true value R{ tY  throughout the cycle.

Eriksen (1992) obtained representations of diameter and mean velocity waveforms in the 
common carotid and femoral arteries o f a limited number of volunteers, thus enabling the 
estimation of representative volumetric flow waveforms. He found that if the time- 
averaged diameter was used with the mean velocity waveform to estimate volumetric flow
throughout the cycle the result was underestimation to the order of 1 -4 % . That is,
calculation of volumetric flow using (1.7b) where R" = D^^J2, and is the time- 

averaged diameter, gave results 1 -4%  smaller than the 'true' flow analogous to (1.6b). If 
a single estimate of diameter taken at diastole was used it appeared that the estimate of 
cross-sectional area could be too low by 6% in the common carotid artery, or by 2% in the 
femoral artery. Similarly if the single estimate of diameter was made at systole the area 
could be overestimated by 7% in the carotid artery and 4% in the femoral artery. If  these 
errors in area are in relation to the effective area leading to the correct measurement of 
volume flow then these are the errors in the resulting flow estimates.
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Eriksen obtained each diameter waveform by combining the waveforms of several cycles, 
referenced using the ECG signal, and with durations normalised. The mean velocity 
waveform was found similarly, at the same site but from another set of cardiac cycles. The 
beam used to generate the velocity information did not insonate the vessel cross section 
uniformly. However the use of the resulting velocity waveforms was justified by noting the 
close similarity reported in earlier literature of velocity waveforms derived with restricted 
sample volumes to those derived from electromagnetic flowmetry.

Evolution of the project

The feasibility of the measurement of changing vessel diameter from analysis of B-mode 
image data led to the goal of this project being the measurement o f volumetric flow by the 
evaluation of (1.6a) and (1.6b) instead of the more commonly used (1.7a) and (1.7b). 
However it was apparent that errors in a flow estimate involving a single estimate of 
diameter, according to the usual equations (1.7a) and (1.7b), may primarily be due to errors 

in the measured mean velocity, v ' ( t) ,  and not to the nature of R" as a single estimate of 

the changing radius R{ r). The study of Eriksen described above supports the view that if a 

sensible estimate of R" is available and v '(r)  is systematically in error by more than a few 

per cent then effort spent on the evaluation of (1.6a) and (1.6b) in preference to (1.7a) and 
(1.7b) may not be justified. Concern about the large systematic error possible in v '(r)  in 

the case where the ultrasound beam is not as broad as the blood vessel, yet is assumed to 
be, then led to the development of an estimator of v (r) for the opposite limiting case, i.e. 

where the beam can be regarded as being of negligible width and directed through the 
centre of the vessel, as is assumed in the multigate method. The definition and justification 
of this estimator, valid when the instantaneous velocity profile is unidirectional and also 
satisfies other certain assumptions, is the basic result presented in this thesis. The 
properties of this estimator are also examined, and compared with those of the estimator 
that is valid when the beam does insonate each part of the cross section equally. Such 
comparison might tend to promote the view that these estimators are alternatives, to be 
chosen between. However it is important to realise that the different estimators, which can 
both be evaluated from the same spectrum, are valid under different assumptions about the 
beam. So choice exists primarily in the selection of the beam used for insonation, and not 
in the way that the resulting Doppler spectrum is processed for velocity information.
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Thesis structure

Both estimators are defined in chapter 2, where particular attention is given to the 
justification of the new result. Chapter 3 summarises many of the reasons why these 
estimators of mean velocity may be in error, and proposes a simple well-known model of a 
velocity profile for the quantification of these errors. The sources of error are addressed in 
no particular order in chapters 4 to 10. In chapter 11 the definition of the new estimator is 
generalised to be valid when there is a certain form of mixed flow, i.e. where flow in both 
the forward and reverse directions occur simutaneously. Chapter 12 returns the focus to 
the basic problem of volumetric flow measurement. The more general form of the 
estimator is applied to this problem at various sites of the body, i.e. with flows with 
differing degrees of pulsatility. In chapter 13, as a conclusion to the main work, the errors 
in the use of the two estimators for volumetric flow are summarised and compared by 
Considering an example case. Appendix A gives a brief description of a system designed 
for the original task of flow estimation taking into account fluctuations in vessel diameter. 
Associated problems are raised and relevant conclusions are stated. Appendices B and C 
focus on the effect on the new estimator of idealised departures from the assumed nature of 
the velocity profile, and appendix D discusses measurement of mean velocity when the 
velocity distribution changes within the period of recording of the Doppler signal. Finally 
appendices E and F give proofs of the results which are stated without the necessary 
justification in the main text.

Notation for this chapter

A( r) , A'( t) instantaneous cross-sectional area of blood vessel, and its estimate

A" single estimate of cross-sectional area
Dgy, time-averaged internal diameter of blood vessel

/ (  r) 'instantaneous' mean Doppler shift frequency

Q(r) ,Q' (t) instantaneous volumetric flow rate, and its estimate

Gave , Gave average volumetric flow rate in one cardiac cycle, and its estimate

i?( r),R '( r) instantaneous internal radius of blood vessel, and its estimate

Ji" single estimate of internal radius
T  period of cardiac cycle
v { t ) , v ' { t)  instantaneous spatial mean velocity, and its estimate
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CHAPTER 2 - A NEW ESTIMATOR OF MEAN BLOOD 
VELOCITY

It has already been seen that the Doppler principle allows the determination of the 
velocities present in a sample of flowing blood from the received shifts in frequency of the 
scattered beam. The velocity of each scatterer in question is the component of its velocity 
in a direction a known angle, 0, from the insonating beam. In particular, if the intensity of 
the received signal in a given frequency range is assumed to be proportional to the amount 
of blood travelling in the corresponding velocity range, the spatial mean velocity can be 
estimated by evaluating the intensity weighted mean frequency (IWMF) of the returning 
Doppler signal. The evaluation of this frequency, denoted by /  in chapter 1, is the basis 

for the estimation of mean blood velocity with many types of commercial ultrasound 
scanners. A major factor in the accuracy of this estimate is the degree to which the whole 
cross section of the vessel can be regarded as being insonated uniformly by the ultrasound 
beam (Evans 1982a)(Gill 1982). The sample volume is defined laterally by the Doppler 
beam dimensions and axially by electronic gating of the received signal. For accurate 
measurement of the spatial mean velocity this volume should extend across the entire 
oblique cross section of the vessel. More specifically the calculated IWMF statistic is only 
valid if the Doppler beam transmission and reception profile is uniform throughout this 
cross section. In practice this is often not the case, and scatterers at the lateral periphery 
are given less weighting than the scatterers in the centre of the vessel. For flow where the 
blood particles move more quickly nearer the centre of the vessel the resulting estimate of 
mean velocity is higher than the true value. This problem is particularly relevant in the case 
of duplex scanning if the transducer uses the same crystals to transmit the beams for both 
imaging and Doppler operations. The optimum image of the vessel is obtained with a 
narrow beam, yet the optimum Doppler beam is broad.

Some work has been performed to derive the errors associated with the IWMF statistic for 
various ultrasound beam shapes and positions. Using parabolic flow and beams with a 
rectangular or Bessel function shape. Gill (1982) considered the errors for short and long 
sample volumes and various beamwidths and angles of incidence. Among his conclusions 
were that of the possible causes of non-uniform insonation "the most significant potential 
source of error remains the variation of the weighting factor ... across the ultrasound 
beam", where this factor is a function of the beam intensity profile and the sensitivity 
pattern of the receiver. Cobbold et al. (1983), using computer simulation, investigated the 
effect of a rectangular or Gaussian shaped Doppler beam being displaced from the centre of 
the vessel, and suggested that "when the beam width is roughly equal to the vessel diameter 
the estimated mean velocity is not a sensitive function of beam profile and position". Evans 
(1982a, 1985) calculated the amount of error for centrally placed beams with rectangular 
profiles of various widths and with plug (i.e. uniform across the vessel) and parabolic
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velocity profiles. For a parabolic velocity profile the maximum overestimate could be 33% 
of the true value, occurring when the beam is of infinitesimal width, and was in the range of 
30-33 % for beamwidths less than a quarter of the diameter.

The errors involved if IWMF is used when the beam does not provide uniform insonation 
are therefore considerable. In this chapter an alternative statistic is derived for the 
estimation of instantantaneous spatial mean velocity when it can be assumed that the 
sample volume is infinitely thin, i.e. of negligible width compared to the vessel diameter. In 
this case knowledge of the velocity profile can, under other assumptions, be inferred from 
the Doppler signal power spectrum, enabling the true mean velocity to be calculated. It is 
suggested that in practice, with the larger blood vessels, such an assumption of negligible 
beamwidth may be more appropriate than the assumption of uniform insonation.

Discrete spectral analysis

The derivation of the mean velocity from the spectrum makes use of the principles that the 
mean intensity of a reflected wave is theoretically proportional to the number of scatterers 
and the Doppler shift frequency is proportional to the scatterer velocity. So, as mentioned 
in chapter 1, the continuous Doppler signal spectrum is equivalent, apart from constant 
scale factors, to the velocity distribution of scatterers in the sample volume. In the typical 
case spectral analysis yields a discrete frequency spectrum. Consider a frequency range 
comprising IMAX+1 frequency bins of equal width, with each bin containing the intensity 
o f the appropriate fraction of the Doppler signal. The bins are numbered 0-IMAX and 
represent a range of positive frequencies (velocities). The bin numbered by the generalised 
index / is referred to as the /'th bin, and the zero frequency point corresponds to the centre 
o f the zeroth bin. This configuration is shown in fig.2. la.

power p.

(a)

I I I I 
6 1 2 3 4

I  bin number i

zero frequency 
point

power p,

(b)

I I I I 
0 1 2  3

bin number i

zero frequency 
point

Fig.2.1 - possible configurations of frequency bins in spectral analysis
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The description of the available frequencies after spectral analysis as 'bins' can be 
misleading. For example, analysis by Discrete (or Fast) Fourier Transform represents the 
signal as the sum of component 'spikes' at well defined and equally spaced single 
frequencies, as suggested in fig.2.1. It is not true to say that all the power at any one 
frequency in the continuous spectrum contributes to the power of the nearest spike. Rather 
each signal frequency is leaked into a number of adjacent spikes. This leakage can be 
regarded as small if there are a large number of spikes. The terminology 'bin' for a spike is 
used to convey the idea that the power in any spike is primarily due to signal frequencies 
nearest that spike frequency. Hence the powers recorded are thought o f as being the 
powers in the signal frequencies in well-defined and non-overlapping bands.

The random nature of the Doppler signal, and the finite length of the data segment used to 
produce these spectral estimates, dictate that the observed powers in the bins after spectral 
analysis, denoted by /?, and shown in fig.2.1, are random estimates o f their expected values. 
These expected values would be the powers observed if the signal remained stationary and 

could be sampled for an infinite duration. They are denoted by = £[//, ], where É[ ] is 

the expectation operator. For brevity the tilde notation is used throughout to denote such 
an expected value.

So if the signal was deterministic, i.e. if there was no random element, then the I'th bin 
would contain the power, p. , present in the Doppler signal in the frequencies 
corresponding to that bin. Such a p, value is therefore proportional to the volume of blood 
moving with velocities corresponding to the f'th frequency bin.

Mean velocity estimation with a uniformly insonating beam

In this section a conventional statistic for mean blood velocity estimation is presented. This 
statistic is that appropriate for the case where the sample volume is assumed to be 
representative of the whole cross section, for example when the intensity of the insonating 
beam is uniform throughout the cross section. It is helpful to refer throughout this thesis to 
such a uniformly insonating beam as being 'wide'. The relevant quantity is the deterministic 
value of the intensity weighted mean bin number (IWMB). This is the discrete form of the 

IWMF, / ,  already mentioned. It is calculated by weighting each bin only by its intensity 

(or power, i.e. the contents o f the bin), and is defined by

IMAX

'L>P.
~  IMAX (2-la)

Z À
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where the subscript D  denotes that the contributing powers are the deterministic, 
i.e. expected, quantities A • This is proportional to the mean velocity because the i values 
are proportional to frequency and hence to velocity, and, under the 'wide' beam assumption, 
the corresponding p  ̂ values are proportional to the number of red blood cells travelling 

with these velocities. As mentioned earlier this statistic generally gives an overestimate of 
the true mean frequency if insonation is not uniform. A simple known linear relationship 
exists between frequency and bin number, so that the IWMF can be found from the IWMB.

In practice these p  ̂ values are not available, and are replaced by the observed values Pf. 
The observed IWMB statistic, denoted by B , is then defined by

This statistic is presented for comparison with the new statistic described in the following 
paragraphs. This new statistic is the main subject of this thesis.

Mean velocity estimation with a narrow beam

An alternative estimate of mean frequency is a 'position and intensity weighted mean 
frequency' (PIWMF). Under some assumptions about the velocity profile, this estimate is 
appropriate if the beam can be assumed to be of constant negligible width compared to the 
diameter o f the vessel, and is positioned through the vessel axis. The estimate effectively 
takes into account the different proportions of scatterers at different radial positions 
insonated by such a beam. The calculation is made by weighting each frequency bin 
according to its intensity and calculated position from the vessel axis.

M odel geometry and assumptions

Relevant geometry for the derivation of the new statistic is shown in figs.2.2a and 2.2b. 
Fig.2.2a shows the longitudinal view of the vessel with the narrow sample volume 
extending across the vessel at the Doppler angle, 6. The central dashed line lies on a plane 
which is perpendicular to the vessel axis and contains the point where the sample volume 
intersects the vessel axis. Fig.2.2b gives the projection of the sample volume onto that 
plane, showing the sample volume of constant negligible beamwidth across the centre of 
the vessel cross section, which is assumed to be circular with internal radius R. The 
quantity % is a measure of the projection onto this plane of the distance along the sample 
volume from its centre.
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vessel wall

^  sam ple  volum e

b eam

sam ple
volume

(a) (b)

Fig.2.2a,b - geometry of the insonation of a blood vessel by a thin Doppler beam

If the velocity profile can be regarded as being axi-symmetric, and is known along a 
diameter, then the true mean flow can be found. This velocity profile can be found from 
the spectral analysis of the Doppler signal if it is further assumed that -

(i) each half of the velocity profile is a monotonie increasing function of distance from 
the vessel wall. An example of a profile satisfying this condition is shown in fig.2.3. 
The velocity v increases monotonically from zero at the vessel walls (at x = R  and 
X = - R )  to a maximum value at the vessel axis. It is not necessary for the profile to 
be strictly monotonie increasing, i.e. points in the profile o f zero gradient are 
permissible.

(ii) the Doppler beam dimensions are constant along the sample volume,

velocity v(jc)

0■R R

distance from vessel axis x

Fig.2.3 - an axi-symmetric monotonie velocity profile
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(iii) the sample volume can be thought of as being infinitely thin so that all scatterers a 
given distance along the sample volume have the same velocity,

(iv) the length, and position in depth, of the sample volume are sufficient for its 
projection to extend over a diameter of the cross section,

(v) the beam is directed through the centre o f the vessel,

(vi) the velocity profile can be regarded as being constant with axial position throughout 
the angled sample volume, i.e. constant between lines L and M on fig.2.2a,

(vii) the concentration of scatterers throughout the sample volume is constant, and

(viii) the 'cross section' of the scatterers presented to the beam is independent of their 
velocity. These last two assumptions mean that the mean power in the Doppler signal 
received from scatterers in any given volume, within the sample volume, can be 
regarded as being proportional to that volume, and is independent of the velocities in 
that volume.

The validity of these assumptions are discussed in chapter 3. The errors caused by the 
failure of such assumptions are the subjects of following chapters. A by-product of 
assumption (vi) is that in the development of the results in this thesis the sample volume 
can be treated as lying in the plane in which x is defined, as suggested in fig.2.2b.

It is helpful to refer throughout this thesis to a beam which is infinitely thin and directed 
through the vessel axis as being 'thin'.

It should be noted that assumptions (iv), (vi) and (viii) are necessary for an estimate of 
mean velocity to be made if alternatively a 'wide' beam is assumed. Assumption (vii) is also 
necessary if 'mean red cell velocity' is to be interpreted as 'mean blood velocity'. Also a 
weakened form of assumption (ii) is necessary, namely that the beam dimensions in the 
direction parallel to the vessel axis remain constant throughout the sample volume. The 
absence of variation in this direction, together with assumption (vi), allows the dimension 
into the page of fig.2.2b to be ignored, and so with either a 'thin' beam or a 'wide' beam the 
situation can be treated as two dimensional.

Estimation o f  the velocity profile

The index of the bin 'containing' the maximum velocity, , is denoted by H, where clearly 
^f<IM A X . This is the highest frequency bin with non-zero contents (power), so that 
Pf = 0 for /■ > i? . So Pjj is a proportional measure of the fraction of the sample volume 

occupied by scatterers in the highest velocity group. Given that the velocity profile along
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the diameter is symmetric and monotonie this group of Pu scatterers must occupy the 
central section in the sample volume. As a negligible beamwidth is assumed this section is 
'rectangular'. The limits o f this central section are denoted by x = % and x  = - s ^  as shown 
in fig.2.4. Similarly the group of p„_  ̂ scatterers with the next highest velocity can be 
thought o f as occupying the space in the sample volume from % to and -s„  to . 

The profile is symmetric by assumption so it is sufficient to consider only the positive x  
values, i.e. s„ , , etc.

1i+ l

-S.H-i
sample
volume

Fig.2.4 - the regions of the sample volume occupied by scatterers of different bins

A constant beam shape along the sample volume is assumed so that a constant of 
proportonality k  can be introduced such that

Ĥ-2 ~ ^  iPff Ph-\ + Ph-2 )

or

As the bins above H  are empty of power this can more generally be written as

which defines & = 0 for all bins above H.
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The total mean power in the Doppler signal is denoted by P, and so for this single-sided 
spectrum is

IMAX

P = ' L p . (2-2)
(=0

The quantity must be equal to the radius R, so that the constant k  can be identified, and

IMAX

^  j - i
(2 3)

It is appropriate also to define = 0 as this represents the inner extent o f the area

occupied by scatterers o f the IMAX'th bin, if they exist, which must be the very centre of 
the vessel. The relationship between these values, the velocity (i.e. frequency) profile and 
the frequency bins can be seen in fig.2.5.

frequency (bin units)

R

distance from vessel axis x 

Fig.2.5 - division of the velocity (frequency) profile into bins

The velocity corresponding to the i'th bin is deemed to be the average velocity of the 
scatterers bounded by the positions s. and . An appropriate position for this velocity is 
the centre of this region. If this midpoint is called r, then

^IM AX (2.4)

which in combination with (2.3) leads simply to

D  f  IMAX

V >='+>
0 3 /3 IM A X (2  5)
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This equation gives a radial distance from the centre o f the vessel for the blood cells 
travelling with the velocity corresponding to the /'th bin, and therefore represents the 
inverse of the velocity profile. If the number of bins is increased without limit, and their 
widths similarly reduced, then (2.5) becomes the equation for the inverse of the velocity 
profile, v(x), in the case of a continuous spectrum, i.e.

= f  Jfl.i pW*
where / i s  related to v, and / „  to v„,, by the Doppler equation (1.2), « is a dummy variable 

and P  can be thought o f now as the total power in the continuous spectrum.

Calculation o f  the mean velocity estimator

The correct representative frequency in bin units can be expressed in a form similar to that 
o f (2.1a), i.e. as a normalised sum of terms from each bin. With reference to fig.2.4, the 
scatterers with velocities in the range corresponding to the I'th bin will occupy a ring

bounded by the radial distances x -  5, and x = 5,̂ , with an area equal to ;r (x/ -  sf̂ ■̂ ). As a

constant density of scatterers is assumed throughout the cross section the weight given to 
the i'th velocity bin should be the area of this ring. With the factor cancelling from both

numerator and normalizing denominator this weight is (x/ -  ). The mean frequency in

bin units over the whole cross section, is then given by

mean frequency in bin units =   (2.6)

where nothing is added to either numerator or denominator in extending the summations to 
the index IMAX. The quantity i ' is the frequency, expressed in bin units, corresponding to 
the mean velocity of the scatterers in the ring bounded by 5, and , whereas the quantity i 
has been assumed to correspond to the mean velocity in the section o f the ring intersecting 
the sample volume. If all the scatterers in the /'th ring actually had the minimum possible 
velocity, i.e. giving a Doppler frequency of i-'A , then / ' would be equal to /-16. 
Alternatively the maximum possible value of / '  is Z+Vi. These obviously represent extreme 
cases, corresponding to profiles with an unrealistic steplike nature. For normal spectra, 
when the contributions from all the bins are considered, the error in a mean fi-equency 
measurement due to this frequency quantization will be considerably less than ± ’/2  a bin
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width, and will approach zero as the number of bins increases, i.e. as the frequency 
resolution is improved.

In general / ' will be slightly less than i. This is because, under the monotonie profile 
assumption, the lower velocity scatterers in the ring bounded by s. and 5^, are those 
which are further from the centre and occupying laminae with larger circumferences. These 
therefore are under-represented in the section of the sample volume between s,. and 5,+, .

It is helpful to clarify terminology. The 'bin number' o f the /'th bin is /, and is o f course an 
integer. The 'mean bin number' will in general be fractional. The 'mean frequency in bin 
units' for the scatterers in the /'th ring, / ' ,  is fractional and hence is not equal to / as shown 
above, and consequently the 'mean frequency in bin units' over all or a subset o f the cross 
section is also fractional.

The quantity / ' is approximately equal to / so that the weighted mean frequency in bin units 
given by (2.6) is approximated by the deterministic form of the 'position and intensity 

weighted mean bin number' (PIWMB), denoted by Substituting / for / '  and

recognising that the denominator of (2.6) is the square of the radius gives

From (2.3) it can be seen that

_ R  -

and from the definition of r, in (2.4)

Therefore factorising the difference of squares in (2.7) gives

IMAX

2

The /'th bin is seen to be weighted according to both its intensity and position, as suggested 
in the title PIWMB. Remembering that P  is defined by (2.2), it can be seen that equation 
(2.8) for PIWMB is therefore the same as (2.1a) for IWMB except that each term
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in the summation is additionally weighted by a dimensionless factor which is, from (2.5)

IMAX

The velocity profile information discussed earlier is present implicitly in this term. It is seen 
that no estimate of the vessel radius is required. Making use of the definition of the total 
power, P, in (2.2) gives the definition of the deterministic PIWMB

IMAX /  IMAX \

2 : 'A
1=0 y  y=i+i

[IMAX

Z Â
1=0

The PIWMB observed in practice is denoted by B  and is therefore

2 Z P y  + A
j= i+ \

(2.9b)

This equation therefore allows the estimation of the weighted mean bin number, and hence 
the mean velocity, correct for the 'thin' beam insonation, from the IMAX+1 length array of 
bin contents given by p̂ . It is valid no matter how the spectral estimation is performed, as 
long as the spectral power estimates are an array of numbers from equally spaced frequency 
bins. Note that if the p, values are whole numbers then both the numerator and 
denominator o f (2.9b) can be found using integer arithmetic.

If  the bracketed term in the numerator is called q^, that is
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then a useful form for computation is

where

D̂iiAx = f  IMAX and recursively g,_, = % +

so that B  is most easily computed by summing from the IMAX'th bin to the zero'th bin.

Continuous forms

It is possible to define integral forms of the 'discrete' statistics B^ and These are their 

limiting forms as the number of frequency bins increases indefinitely, expressed in terms of 
frequency. The 'wide' beam estimator is the IWMF, / ,  discussed above. This is familiar 

(Arts and Roevros 1972)(Gerzberg and Meindl 1977) (Gill 1979) and for this single-sided 
spectrum is defined by

/  = (2 .10)

The 'thin' beam estimator is the position and intensity weighted mean frequency, PIWMF, 

mentioned earlier, which is denoted by /  and defined by

/ (2.11)

where m is a dummy variable. This equation follows from (2.9a) by noting that as the 
number o f bins increases the '+p, ' in each of the terms of the numerator becomes negligible.
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unless a finite proportion of the total power is contained in the corresponding single 
fi-equency component, i.e. unless the spectrum contains a delta function at the frequency 
corresponding to the i'th bin.

Equation (2.11) is therefore readily acceptable in the practical case where the spectrum 
does not contain any delta functions, but might be thought ambiguous and problematic in 
the mathematical case where a delta function is present. That is, the meaning o f the term in 
the numerator

when the spectrum contains a delta function at /  might appear to be ambiguous. The 
problem can be addressed by considering the related question - "What is the value of the 
quantity

when the function g{x) is a delta function with value 1 at the limit o f integration ? " The 

answer by convention is X , which is a sensible answer as by symmetry

should also be equal to X • When the integral form (2.11) is related to the discrete form 
(2.9a) this value of X expresses the fact that the '+ p / terms in the numerator of (2.9a) are 

not multiplied by the factor o f 2 applicable to the Pj terms. The result is that (2.11) is a 

valid formula for PIWMF even in the case where delta functions are present.

The same considerations apply to the integral equations (11.8) and (E.IO) introduced in 
chapter 11 and appendix E respectively, although this is not discussed in those chapters.

Equations (2.10) and (2.11) for IWMF and PIWMF make use of the power spectrum 

p { f ) ,  which corresponds to the deterministic p̂  values. These expressions are widely 

used in some of the following chapters where the random nature of the finite-length 
segment of the Doppler signal is not considered.
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Bounds on PIWMB

The work of chapter 10 shows that an expected power of zero implies an observed power 
o f zero, and a finite expected power implies a finite observed power. The converses o f 
these statements can also be regarded as true if the dynamic range of recording is adequate. 
So H  can be redefined without inconsistency as the index of the highest bin with non-zero 
observed power, i.e. p„ * 0  and /?, = 0 for i > H . It is shown in appendix E that, in 

relation to IWMB and this bin number H, PIWMB is bound by

(2.12)

where the deterministic quantities and Bg can be inserted instead. That the value of 
IWMB is an upper bound for PIWMB is evident from the fact that PIWMB, in assuming 
that the profile is monotonie, weights the low frequency components more, i.e. those from 
the scatterers in laminae of large circumference near the vessel walls. In addition, the ratio 

B /b  can be made as close to zero as required by defining an idealised signal with a very 

large power in the zero'th bin, a small power in the //'th  bin, and all other bins empty. So 
the ratio o f the estimators might be as high as 1 or, in extreme cases, as low as zero.

Analogously, as the Doppler shift frequencies from this flow are defined to be positive, the 
PIWMF is bound in relation to IWMF and the highest signal frequency, , by

(2.13)

and the ratio / / /  might be as high as 1 or as low as zero.

The correction for the continuous monotonie profile

The derivation of the definition of PIWMB was made by substituting i for the correct value 
/■' in (2.6). Because in general /' < / , PIWMB as defined by (2.9a) is too high. If  the 
profile can be approximated as a continuous series of line segments where the vertices are 
at the edges of the bins, and where the frequency is / -  X when the radial distance is 5., as 

shown in fig.2.6, then a close approximation to the correct estimator is

PIWMB = B„ -  -  ^
1=0
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where is given by (2.9a). The derivation of this result is given in appendix E. As 

expected the correction term is negative and approaches zero as the number of bins is 
increased. This can be seen by noting that, as there are / /  +1 non empty bins, p f JP^ is o f 

the order o f l/H ^  so that the summation is of the order of 1/i/. The expression o f choice 

for the statistic PIWMB therefore remains (2.9b).

freq u en c y  / ( r )  
(b in  u n its )

I

R0

distance  from  vessel c en tre  r

Fig.2.6 - a piecewise linear model of a velocity (frequency) profile

An alternative frequency bin configuration

The expressions derived have been formulated for the case where the zero-frequency point 
is at the centre of the zero'th bin, as in fig.2.1a. For the case where the zero'th frequency 
bin is interpreted as corresponding entirely to positive frequencies, with its lower edge at 

zero, as shown in fig.2.1b, the result is that the estimator o f mean velocity, say ê ,  is

1
/IM A X  Y  2

Z aV 1=0

(2.15)

A derivation of this result is given in appendix E. So PIWMB is shifted by the same 
magnitude as the origin of the frequency scale, which is not surprising because (2.9b) is 
linear in the frequency variable /.



3W6

Summary

The estimator PIWMB defined by (2.9a) is proportional to spatial mean blood velocity if 
the Doppler beam is assumed to be of negligible thickness compared to the vessel diameter, 
and directed through the centre of the vessel, and the velocity profile is axi-symmetric and 
monotonie. This is an alternative statistic to IWMB which is the statistic valid where 
uniform insonation can be assumed, an assumption thought to be poorer in many real cases. 
The random nature of the Doppler signal means that the statistics observed in practice are 
found from spectral estimates which are stochastic. The observed form of PIWMB is thus 
defined by (2.9b). For a Doppler signal corresponding to only positive blood velocity 
components PIWMB is bound between zero and IWMB. PIWMF and IWMF are 
continuous frequency forms of these statistics derived from the underlying power spectrum.

When applied to bin numbers, B, and frequencies, / ,  the bar notation, e.g. B , denotes an 
'intensity weighted' quantity. The 'position and intensity weighted' quantities are denoted 
by the hat notation, e.g. ê .

The corresponding mean velocity estimates, v ', are found using the inverted Doppler 
equation (1.3). If A / is the width in frequency of each bin, then for IWMB and PIWMB 

these are

= B and ÿ '=
2F  cosO I F  cos 6

and for IWMF and PIWMF these are

V ' =    /  and V ' = -----  /
IFcosO  I F  cos 0

Notation for this chapter

] expectation operator

H  the index of the highest observed frequency bin with non-zero power
/ '  frequency equivalent to the mean velocity of scatterers in the ring

corresponding to the /'th bin 
g, a convenient intermediate form of a partial sum of the spectral powers

r. appropriate radial distance for the centre of the region of scatterers of the
/'th bin with a 'thin' beam 

5, calculated extent of radial position of scatterers with velocities in the fth bin
and above with a 'thin' beam 

u a dummy variable
X  distance along the sample volume from the centre of the vessel
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CHAPTER 3 - AN INTRODUCTION TO POSSIBLE ERRORS

This chapter presents a brief discussion of the assumptions made in chapter 2 in the 
derivations of IWMB and PIWMB as proportional estimators of mean blood velocity, and 
identifies associated and other possible sources of error. A standard family of velocity 
profiles is described for the quantitative error analysis performed in later chapters. The 
theoretical Doppler spectra corresponding to these velocity profiles are derived for both 
'wide' and 'thin' beams, and the associated mean frequencies IWMF and PIWMF are 
established.

Validity of assumptions

The failure of assumptions made in chapter 2 would generally lead to errors in IWMB 
and/or PIWMB. Assumptions made which are not the subjects of following chapters are 
briefly discussed here.

Assumption (ii) - needed fo r  PIWMB to be valid:
The Doppler beam dimensions are constant along the sample volume.

The assumption of constant beam dimensions along the sample volume is most valid if the 
sample volume is small and positioned near the centre of the focal zone of the transducer. 
However this is compromised by the need for assumption (iv) to be satisfied, that the 
sample volume is longer than the vessel diameter, and can accomodate motion of the whole 
vessel in that dimension during the cardiac cycle. The necessity of this assumption is 
questionable given the fact that divergence of the beam away from a single focal point at 
the centre of the vessel would mean that more scatterers further from the centre would be 
insonated but each seemingly with proportionately less power. Thus the resulting spectrum 
would be the same as for a 'thin' beam. This raises the interesting possibility that PIWMB 
is valid for any shaped beam which is focused to a point at the centre of the vessel and is 
without sidelobes in the vessel cross section. This could be the subject o f further study.

Assumption (vi) - neededfor either IWMB or PIWMB to be valid:
The velocity profile is constant over the relevant extent o f the angled sample volume.

This assumption treats the intersecting volume of the beam and vessel as being 
representative of a cross section perpendicular to the vessel axis if the beam is 'wide', and 
as being representative of a diameter if the beam is 'thin'. The mean velocity through this 
cross section is then recoverable from the signal. This may not be justified near a stenosis 
owing to turbulence both upstream and downstream from the narrowing. The need for the 
sample volume to be at an angle to the cross section means that the mean spatial velocity is 
more properly being measured in a cylinder in the vessel and not through a cross section.
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On fig.2.2a the ends of this cyclinder are the cross sections at the points L and M. The 
output is then equivalent to the velocity waveform smoothed over the time required for the 
pressure wave to travel the distance between points L and M. This distance is of the order 
o f millimetres, say 5 mm, and the velocity of the pressure wave might be 10 m/s. So the 
time difference between the phases of the cardiac cycle at the two points is of the order of
0.5 milliseconds. As spectral analysis by Fourier transform requires that the mean velocity 
is calculated over a period of time anyway, which is often of the order o f 10 milliseconds 
duration, the effect of the separation of L and M is small.

Assumption (vii) - needed fo r  PIWMB to be valid:
The concentration o f  scatterers throughout the sample volume is constant.

The validity of this assumption leads to the idea that the (mean) intensity of the reflected 
Doppler signal in a given frequency range is proportional to the volume of blood (red cells) 
travelling with a velocity in the corresponding range, as proposed by Shung et al. (1992). 
This is a modification of the more commonly stated idea that the (mean) intensity is 
proportional to the num ber of red cells with velocities in that range. For a given 
haematocrit these are equivalent. However the assumption of proportionality with number 
is less robust because it is known not to be valid where the haematocrit is not fixed. I f  the 
derivation of PIWMB in chapter 2 was made using the assumption of proportionality with 
number rather than with volume then this assumption of a constant concentration of 
scattering centres would still be needed, as the derivation of (2.3) would show.

Assumption (viii) - needed fo r  both IWMB and PIWMB to be valid:
The scattering cross section is constant throughout the sample volume.

I f  low and high velocity blood components are to be weighted correctly then neither must 
be preferentially favoured by a larger scattering cross section. It has been suggested that 
red blood cells, which are not spherical but are disk like, may be aligned differently at 
different flow rates, so presenting different surfaces to the beam. However it would seem 
that if the scatterers are local fluctuations in red cell concentration, as in Angelsen's 
model (1980), this effect might not be relevant.

Summary of sources of error

The usefiilness of both IWMB and PIWMB is of course dependent on the accuracy of the 
spectral power estimates, p ^, as a description of the velocity distribution of scatterers in 

the supposed sample volume. Of course the same can be said about the spectrum from 

which these estimates are found, p { f ) ,  and the validity of IWMF -and PIWMF. Of 

fundamental importance is the accurate knowledge of the (representative) angle between
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the ultrasound beam and the direction of the vessel axis enabling an accurate conversion 
from frequency to velocity. Even for a spectrum with the correct form, an error in the 
calculation of this angle will lead to an error in measured mean velocity for both IWMB 
and PIWMB. Angle measurement and the associated error are briefly discussed in 
chapter 4.

For the purposes of error analysis in the rest of the thesis, it is useful to denote by P s i f )  

the spectrum that does mirror exactly the form of the velocity distribution in the sample 
volume. (The subscript S  is introduced here to signify the theoretical, i.e. ideal, signal.) 
An example of such a spectrum has already been given in fig. 1.3, where this notation 

P s { f  ) should now properly replace p { f  ) in the labelling of the y-axis. In addition to angle 

measurement as a source of error, there are a number of reasons why the array of spectral 
estimates, /?,., might not be those that would be found from this theoretical signal P s i f ) ,  

and so why IWMB and PIWMB might not lead to the correct measure of mean velocity.

(a) A source of error is the possible failure of assumptions made about the nature of the 
sample volume, i.e. the shape of the ultrasound beam. In particular IWMB will be in error 
if the beam does not uniformly insonate the vessel cross section, and PIWMB will be in 
error if the beam is not of negligible width compared to the vessel diameter (failure of 
assumption (iii)), or if the beam does not pass through the centre o f the cross section 
(failure of assumption (v)). These effects are studied in chapters 5 and 6. Furthermore the 
finite dimensions of the transducer and target in practice mean that there is no unique 
Doppler angle operating in the generation of the spectrum, i.e. in the conversion from 
particle velocity to Doppler shift frequency. The result is that the observed spectrum is a 
broadened version of that which would be seen with the desired single Doppler angle. The 
results o f this broadening are considered in chapter 7.

(b) Other errors may result from a cormption of the Doppler signal due to an external 
source. The presence of noise in the signal will alter both mean velocity estimates, and the 
use of a high-pass filter to remove the unwanted large amplitude signal from the pulsating 
vessel walls also has an effect. These sources of error are studied in chapters 8 and 9 
respectively.

(c) Under the important assumptions (vii) and (viii) above, the mean spectral power in a 
frequency range is proportional to the amount of scatterers with velocities in the 
corresponding range. However both IWMB and PIWMB are calculated from powers 
which are random estimates, /?,. , of these mean values, p , . Therefore both IWMB and 

PIWMB are liable to error due to statistical fluctuations. This is an important
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consideration in assessing the accuracy of any velocity estimate, and is addressed in 
chapter 10.

(d) The 'thin' beam estimator PIWMB has been derived for the case of an axi-symmetric 
velocity profile which is monotonically increasing from the vessel wall to the vessel centre. 
The failure of one or both of these profile assumptions will introduce error in the resulting 
velocity estimate. Presupposed in assuming the axi-symmetric nature of the profile is the 
assumption that the cross section is circular. This is a common assumption in work of this 
type where the blood vessel is arterial. Symmetry of the profile about the vessel axis is 
most likely to exist if the site of investigation is far away from sites o f curvature in the 
vessel and from vessel junctions. The effects of one form of asymmetry in the profile are 
discussed in appendix B. The assumption of monotonicity in assumption (i) is the most 
restrictive assumption, but will best be satisfied in the case of vessels feeding a low 
impedance vascular bed, e.g. the carotid or renal arteries. Effects of non-monotonicity are 
studied in appendix C, and in the context of volumetric flow and with real Doppler signals 
in chapter 12.

Standard velocity profiles

In each of the cases (a)-(d) above the resulting error in mean velocity would seem to 
depend on the actual form and scale of the velocity profile. Therefore to quantify the error 
it is necessary to assume a profile with a well-defined form. A commonly used family 
(Gill 1979)(Roevros 1974)( Angel sen 1980)(Aldis and Thompson 1992) of axi-symmetric 
velocity profiles is given by

(3.1)

Here the velocity v at a distance r  from the centre of the vessel o f radius R  decreases 
from the maximum velocity v,,, at the vessel centre to zero at the vessel wall. The shape of 
the profile is determined by the bluntness parameter n, as seen in fig.3.1, which shows the 
velocity profile for various values of n. When n = 2 equation (3.1) describes a parabola 
corresponding to the theoretical steady profile of a Newtonian fluid observed in a rigid tube 
a long way from the entrance. A Newtonian fluid is one whose viscosity is independent of 
the velocity gradient. This 'parabolic' flow, which has already been mentioned in chapter 1, 
is sometimes called Poiseuille flow. When n = m  the velocity is at all points in the cross 
section. This 'plug' form, which has also been mentioned in chapter 1, represents the 
theoretical profile at the entrance to a tube which is narrow compared to the feeding 
reservoir.
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velocity V

^=0.2

ü
distance from vessel axis r

R R

Fig.3.1 - velocity profiles following equation (3.1)

So if this equation is used to describe steady flow profiles in a vessel then values o f w ^  2 
should be considered. Values of 0 < » < 2 lead to profiles which are more peaked, as seen 
in fig.3.1, and lack physiological meaning in the context o f steady flow.

The mean velocity throughout the cross section, v , can by found by integrating the 
contributions of the lamina of circumference 2n-r from 0 to R, and dividing by the total 
area. So

J I n r v d r

TtR^

R^
(% + 2)

■2 )

(3.2)

which is a known result. So for parabolic flow, for example, the mean velocity is half the 
maximum, central velocity.
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Derivation o f  theoretical signal spectrum

If  the velocity profile and the shape and location of the insonating beam are known the 
associated theoretical Doppler power spectrum, P s{ f) ,  can be found. For any axi- 

symmetric profile v(r) this ideal spectrum must be

d ^ s i f )  àr dv
à f dr dv d f

(3.3)

where 0 g ( / ) is the cumulative power. For a profile given by (3.1) rearranging for r  gives

r = R\ 1

so that J :
n V I v„

Furthermore the Doppler frequency /  is proportional to the scatterer velocity v so that 

the quantity \dvldf\ is constant. The ratio v/v„, can be replaced by f  I f„  where is the 

maximum frequency in the theoretical signal, i.e. the frequency corresponding to v^.

The quantity \d 0 s{ f)jd r \ depends on the shape of the insonating beam. For uniform 

insonation throughout the whole vessel each elemental ring of thickness dr is fiilly 
insonated so that, because the density of scatterers is assumed to be constant, the 
incremental power d 0 g { f )  returning from such a ring a distance r from the centre is such

that \d 0 g { f) ld r \a :2 n r . So from (3.3) the spectrum for a'wide'beam is

= I n R  

1
o c -----

V
. - - 1

1 -  "
V,

0 < V < V .
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where t = Ijn .  However for a 'thin' beam the width of the sample volume at each point is 

uniform but negligible. Therefore | d 0 g { f  )!dr\ is constant as scatterers are assumed to be 

equally spread in the sample volume. So for a 'thin' beam

dv

R Ht
± .
A

0 < V <  V .

where now t = l/«. This is the same equation as for the spectrum with a 'wide' beam but 
with a different definition of t. Obviously in both cases the spectrum is zero above/,.

Letting the constant o f proportionality be 1, putting x 1 -  ̂ j  so that ~  and

integrating between zero and the maximum frequency / ,  gives

A I  A
- r |  x'~^dx

= t 

=  1

So the spectrum given by

£_
A o ^ / ^ A (3.4)

is the theoretically observed spectrum if the velocity profile follows (3.1) and if the beam is 
'wide' or 'thin', normalised to have a total power of 1. The form of the spectrum is defined 
by the parameter t. Note that for / < 1 the spectrum is undefined at f  = f„  . For the 
'wide' beam, i.e. where IWMF is appropriate, t = 2/» and the equation is well known 

(Gill 1979)(Roevros 1974)(Angelsen 1980)(Aldis and Thompson 1992). For the 'thin'
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beam, i.e. where PIWMF is appropriate, t = \jn . It is obviously helpful that the spectra 
derived for the 'wide' and 'thin' beams are defined by equations of the same family. As 
useful examples, the spectra for / = 1 (uniform spectrum, parabolic velocity profile with a 
'wide' beam), f = 0.5 (parabolic profile with a 'thin' beam) and f = 0 (spike spectrum, plug 
profile for either beam) are given by the solid lines in fig.3.2.

power p { f )

t =  0

t =  0.5

t =  1
1

0
frequency /

Fig.3.2 - examples of spectra following equation (3.4)

Derivation o f  the corresponding mean frequencies

The corresponding IWMF, , can be found by substituting (3.4) into (2.10) and again 

using the substitution % = 1 - s o  that /  = / „ ( l -  x) and = - / „  •

■J, tx ' ' dX

t + l

(3.5)
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Also the PIWMF, , can be found by substituting (3.4) into (2.11), using the same 

substitution and also the substitution = 1 - so that = ~f„

A = 2 j ; / — II du d f

“ 2 | / „ ( l - x ) f j c '  ‘ j^-J t y ‘ ^dy 

2 j ^ / „ ( l - x )  t x ‘̂ \ x ‘ dx

2 / .

dx

2 2 f + 1

2/
2f + I

A
2 / + 1

(3.6)

Comparison of (3.5) and (3.6) for the same spectrum shows that fg  < fg  in agreement with
(2.13), and that the difference between these frequencies is greater the higher the value of t,
i.e. the more uniform the spectrum if we choose f < 1. Substituting the definitions of t for 
'wide' and 'thin' beams into (3.5) and (3.6) leads to

f s n + 2 •A with a 'wide' beam and A n + 2 ■A with a 'thin' beam

which when compared with (3.2) confirm that if used with their appropriate beams IWMF 
and PIWMF estimate mean velocity accurately.

Discussion and summary

These profiles, spectra and mean frequency results are used in the following chapters, 
which as outlined above describe the errors in the velocity estimates IWMB (IWMF) and 
PIWMB (PIWMF) from various sources. Generally only profiles with n'k.2 are 
considered. However the case of the triangular profile given by w = 1 is also sometimes 
used with a 'thin' beam as then t = 1 and the spectrum has the mathematically attractive 
uniform nature. For simplicity each source of error is treated alone. It is not suggested 
that when two or more sources of error are present together the errors merely add. The
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somewhat idealised nature of the velocity profiles described by (3.1) suggest that the 
individual results only approximate those that occur in practice anyway.

Some errors are systematic, and predictable if the form of the velocity profile is known, so 
that they might be corrected for. This is so for the error in IWMF if the beam is not 'wide' 
or the error in PIWMF if the beam is not 'thin' provided the beam profile and position, and 
the vessel radius, are known. This is also true for the error due to high-pass filtering in the 
reasonable case that the filter transfer function is known. Again, knowledge o f the beam 
geometry and vessel orientation enables both the extent and location of the spectral 
broadening function to be known and so the error to be predicted. Other errors may also 
be systematic and repeatable so that they also do not cause problems in comparative 
studies, yet not be quantifiable. This is the case for the effect of noise in the Doppler 
signal, where though it may not be accurately known it is reasonable to assume that the 
noise level remains constant from one investigation to the next. A third type are random 
errors. These are unpredictable and show no consistency from investigation to 
investigation so, for a given level of accuracy, these errors are the most serious. Examples 
of these are the error caused by the random nature of the Doppler signal, the error due to 
misalignment of the beam, and the error due to failure to accurately measure the 
representative Doppler angle.

It may be helpful to recap the use of notation at this point, notation which is used 
consistently in the following chapters. The spectrum with a form that follows exactly the 
velocity distribution of scatterers in the sample volume is given by Pgi f ) -  It has a 

maximum frequency of , which corresponds to the greatest velocity, , o f particles in 
the sample volume. Therefore using the IWMF or PIWMF of this spectrum, together with 
its appropriate beam, leads to the correct calculation of spatial mean blood velocity through 

the cross section. This IWMF and PIWMF are denoted by A  f s  respectively. If  the 

profile has the form of (3.1) then P s i f )  is given by (3.4) , A  by (3.5) and A  by (3.6). 

The observed spectrum however is denoted by p { f ) ,  and has a maximum frequency of 

/max • This is also a deterministic spectrum as the finite duration of the practical data 
segment (leading to random spectral estimates) is ignored. The observed IWMF is denoted 

by /  and is defined by (2.10). The obsei-ved PIWMF is denoted by /  and is defined by 

(2.11). Many of the following chapters are therefore concerned with the relationships 

between the observed frequencies, /  and / ,  and the desired frequencies A  and A  • First 
however is a short treatment of the important question of angle measurement.

Notation for this chapter

0 s i f  ) cumulative power in the theoretical Doppler signal
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CHAPTER 4 - MEASUREMENT OF THE DOPPLER ANGLE

Although in this thesis it is discussed relatively briefly, angle measurement is considered 
before other potential sources of error because it is needed for the conversion of frequency 
to velocity, and so is fundamental to velocity measurement by ultrasound. The principles 
o f this short chapter are therefore applicable to both IWMB and PIWMB, and indeed to 
any form of velocity estimator derived from the Doppler spectrum. A given error in angle 
will produce the same fractional error in IWMB and PIWMB, so that in placing these 
estimators alongside each other, which is a major theme of this thesis, little is gained by too 
detailed a study o f angle measurement.

The need to measure the Doppler angle, 9, is clear when a velocity v is to be recovered 
from a frequency /  via the equation

-  (4.1)
2F COS 9

Again c is the speed of sound, and F  the transmit frequency. This is the inverted form of 
the basic Doppler equation, and has already been presented as equation (1.3).

Sensitivity to error

It is desirable that the Doppler angle should be low, because a given error in the 
measurement of an angle affects the cosine less when the angle itself is smaller. This 
follows from noting that the derivative of cos9 is -s in  0 ,  so that

cos{9+ w cos61- ^sin 9

where ^ is a small unknown error in angle, measured in radians. The resulting error in the 
cosine is proportional to sin 9  and so is small when 9 is small. This principle is 
demonstrated graphically in flg.4.1, which is based on a diagram given by Evans etal. (1989) 
and shows errors in measured velocity if the Doppler angle is overestimated by a small 
amount. Very similar but opposite errors are appropriate if the error in the angle is 
negative.

For Doppler angles between the typical values of k/6  and ;r/3, i.e. 30° and 60°, the

percentage error is approximately proportional to ^ and can be found from

E « f x ( l . I 5  + 2.4(^-^))x lO O %  or equivalently x(2 + 0 .073(^ ,-45))%

where 9  is also measured in radians, and and 9^ are the angles measured in degrees.

The dashed lines show these linear approximations to the curves.



4-2

error in velocity (%)
16

angle error = +4°
14

12

+ 2 °10

8

6 + 1

4

2

0
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D oppler angle (degrees)

Fig.4.1 - errors in the measured velocity if the true angle is overestimated 
by a small am ount (solid lines), and linear approximations to the errors 

over a typical range of angles (dashed lines)

In duplex ultrasound such an error arises if the direction cursor, which is visually aligned 
with the estimated axis of the blood vessel, is set at the wrong angle. This might occur for 
example if there is local curvature of the vessel. More commonly, this will occur if the 
discrete range of angles available does not allow the vessel axis to be well represented. For 
example on the Diasonics Spectra scanner with the 7.5 MHz linear array probe the possible 
angle readouts when the cursor is aligned with the vessel axis are spaced in steps of 3 
degrees. Assuming that the vessel axis is correctly identified, and that the cursor is 
adjusted to be most closely aligned with it, then the error in the angle measured between 
the beam and the vessel axis may be ±1.5°. If the correct angle is near 30° this corresponds 
to possible errors in the calculated cosine of ±1.5%, and if the correct angle is near 60° 
the error in the cosine may be ±4.5%. The error magnitudes in the calculated velocity are 
therefore very similar, and can be read approximately from fig.4.1.
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Definition of the beam direction

In addition to the problem of aligning such a cursor with the vessel axis visually, the cursor 
may not provide the best representation of the beam direction. For example when the 
transducer and the sample volume both have finite extent as is true in the practical case, 
what is 'direction' of the beam? It is suggested below that for a transducer with finite 
extent such as a linear array, and a sample volume which is a point target, the cursor is not 
representative if it is drawn from the centre of the transducer to the target. The geometry 
o f such a situation is shown in fig.4.2, in which the uncertainty about how to define the 
Doppler angle, 0, is made more obvious. The angular extent of the transducer at the target 
is I s ,  and the position of the target beneath the transducer is in part defined by a deviation 
of the angle bisector from the perpendicular, denoted by

tran sd u c er centre

ta rge t

Fig.4.2 -the geometry of a finite aperture transducer and a moving point target

The representative beam direction might be defined by the line which is drawn from the 
target to bisect the length of the transducer, i.e. the solid line. Alternatively it might be 
defined by the line bisecting the range of angles of insonation, so that the beam 'direction' is 
considered to be along the dotted line. It is not known how manufacturers define the beam 
direction in commercial duplex scanners. However it is thought likely than the solid length 
bisector is favoured. One reason for suggesting this is that the point where the angle 
bisector intersects the transducer generally alters if the beam is steered to insonate another 
target. So if the dotted line was chosen the point from which the beam is deemed to 
originate would not be fixed, which would seem undesirable.
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The range of angles o f insonation means that a scatterer with a unique velocity, v, gives rise 
to a Doppler spectrum which has a range of frequencies. If Q is defined to be the angle to 
the solid length bisector, as is thought likely, then two mechanisms exist whereby it is 
suggested that subsequent estimation of the velocity leads to an underestimate.

(i)

The difference between the two directions is the angle S, which can be shown to be 
approximately equal to ŝ<l> and so in general is very small. Nevertheless it is 

intuitive that for a non-zero value of ^ the dotted angle bisector lies closer to the 
perpendicular than the solid length bisector. It follows that, if each point on the 
transducer surface is equally active, the majority of the spectrum is obtained from 
angles greater than 6. In this way using 0  as the representative angle will result in an 
underestimate of the correct velocity, v.

(ii)

If, for example, the IWMF of the spectrum is obtained to estimate the velocity then, 
from (4.1), the mean cosine of the range of angles is more relevant than the cosine of 
the mean angle. If the mean angle is denoted by k  (which is equal to 0 +  Ô  and is 
shown in fig.4.2) then the mean cosine is given by

mean cosine = —  j  cos(/c+ y/)di//
2g

= —  f cosRTcos u /dw - —  r  sin srsin w dw  

= ^co sx r[s in  - ^ s i "  ^ [-c o s

sin s
cos AT ------

e

Because the 'mean cosine' is less than the 'cosine of the mean'. The

result is that the 'correct' representative angle is greater than k , and so the velocity, v, 
is underestimated further. Similar analysis for the PIWMF of the spectrum has not 
been carried out.
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These qualitative results are extendable to the situation where many velocities are present 
in the sample volume. A quantitative analysis of the effects of these mechanisms on mean 
velocity estimation, using either IWMB or PIWMB, requires a greater knowledge of the 
characteristics o f a 'multidirectional' beam.

As shall be seen in later chapters, there are other reasons why the Doppler angle should be 
kept low. The spectral broadening, which in chapter 7 is shown to affect PIWMF, is less 
influential at small Doppler angles. Similarly a low angle reduces the error caused by the 
filtering described in chapter 9.

Summary

The question of the estimation of the relevant Doppler angle has been discussed briefly. As 
the frequency and the angle appear independently in the Doppler equation, a given error in 
estimation of the single angle affects IWMB and PIWMB equally. It is desirable to keep 
the Doppler angle low for several reasons. A guide to the accuracy of the resulting 
velocity measurement is given by noting from fig.4.1 that if a 2° error is made when the 
Doppler angle is 50° the velocity is in error by approximately 4)4%.

Notation for this chapter

S  the difference in angle between lines drawn from the target bisecting the
length of the transducer and bisecting the angle subtended by the transducer 

£ half of the angular extent of the transducer at the target
7c the angle at the target between the direction of motion and the angle

bisector of the transducer 
^  error in the measured representative angle
y/ dummy angle variable
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Other factors notwithstanding IWMB and PIWMB give proportional measures of the true 
spatial mean velocity when the beam is 'wide' and 'thin' respectively. When the beam is not 
'wide' but insonates more intensely the centre of the cross section the resulting estimate of 
mean velocity found from the deterministic form of IWMB, , is generally too high, as is 
well known. This is due to the fact that the central portion of the cross section generally 
contains the faster moving blood cells. As indicated in chapter 2 this effect has previously 
been studied. By contrast if the beam is not 'thin' but the beamwidth is finite then the 

deterministic form of PIWMB, , in assuming the sample volume to be 'thin', weights the 

central, higher velocity, regions too lightly. The result is that using PIWMB 
underestimates the mean velocity.

This chapter discusses and compares the accuracy of both these estimators when the beam 
falls between the extremes of providing uniform insonation, and of being of negligible 
width. To achieve quantifiable results the beam is modelled as having either a Gaussian or 
more simply a rectangular (i.e. uniform) intensity profile, in each case with the centre o f the 
beam passing through the centre of the vessel. Attention is given to the nature of PIWMB 
as providing an underestimate of mean velocity. For the commonly used velocity profiles 
described by (3.1) numerical simulation with a computer is used to find the amounts of 
error incurred with IWMB and PIWMB. The results allow conclusions to be drawn about 
the superiority of one or other estimator for different ratios of beamwidth to vessel 
diameter, and the usefulness of a weighted mean of the two estimators.

Computer simulation

Numerical simulation using a computer was performed to find the errors in the 
deterministic values of both IWMB and PIWMB for beams with Gaussian or rectangular 
intensity profiles of various dimensions, and with various velocity profiles defined by (3.1). 
For both Gaussian beams, as shown shortly, and for rectangular beams it is sufficient to 
consider the projection of a single 'slice' of the beam onto the circular cross section. In the 
simulation the square enclosing this cross section was divided into a square 'checker board' 
array of 1001 x 1001 elements, and each element was assigned a velocity according to 
(3.1). The velocity scale was such that the spectmm occupied approximately 90% of the 
frequency range of 128 bins. For a given beam the elements in the array corresponding to 
the path of the beam were then considered. Each element was weighted by the beam 
intensity response at that point and placed in the bin to which its velocity corresponded. 
This provided the appropriate equivalent Doppler power spectmm. The weighted mean 
'frequency' estimates IWMB and PIWMB and their equivalent velocities were then
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calculated. The degree of departure of these estimates from the true mean velocity was 
found, for various beam and velocity profiles.

Gaussian beam

To justify the use of a single cross section in the simulation the three dimensional nature of 
the practical beam is considered and directions y ' ,  z ' and z" are defined in relation to the 
beam axis as in fig.5.1. The dimension into the page, i.e. perpendicular to both beam and 
vessel, is defined by y ' . In the plane of the page, the direction perpendicular to the beam is 
given by z' and the direction of the vessel axis by z " .

D oppler beam axis

vessel wall

Fig.5.1 - definition of directions

The Gaussian curve used is that of the beam intensity response, i.e. curve of intensity 
received at the transducer after reflection from the target. This curve is the square o f the 
received amplitude at the transducer, and consequently is less broad, with a standard 
deviation lower by a factor of V 2 . The curve of received amplitude at the transducer is in 
turn less broad than the curve of received amplitude at a target, e.g. a hydrophone used for 
the measurement of beam dimensions, because of imperfect focusing of the received beam.

The intensity response, /, o f a circular Gaussian beam, scaled to have a maximum response 
of unity, is given by

/  = e 2^

where a  is the standard deviation, the quantities y ' and z ' are distances in the directions 
defined above in fig.5.1, and the origin in the y ',z '  plane is at the centre of the beam. This 
is illustrated in fig.5.2 where separate 'slices' of the intensity response are shown.
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Fig.5.2 - slices of a Gaussian shaped intensity profile

By rearranging to give

the profile along the axis for any fixed z ’ value can be seen to be a Gaussian curve in one

dimension with the same standard deviation, but a reduced peak value of The
important property that the standard deviation of the profile is the same for any fixed z' 
value means that the shape of the Doppler spectrum returning from the whole sample 
volume is the same as the shape of the spectrum returning from any slice of the sample 
volume, corresponding to a particular z' value. Each slice, if it could be considered 
separate, and consequently the whole beam, would give the same mean frequency. 
Therefore for the Gaussian beam the variation of the beam response in the z' and z" 
directions need not be considered in deriving an estimate of mean velocity, either in theory 
or by simulation, and use of a single slice is sufficient. (If an elliptical Gaussian beam 
(Aldis and Thompson 1992) is used, defined by two standard deviations, this result is still 
valid provided that the y ' direction corresponds to one of the axes of the ellipse. In this 
case the relevant standard deviation for the following results would be the standard 
deviation along the axis.)

For Gaussian beams of various widths the percentage errors in the estimates IWMB and 
PIWMB for a parabolic velocity profile (i.e. a? = 2) are shown by curves A and B* 
respectively in fig.5.3. Curve A gives the overestimate associated with IWMB, i.e. a 
positive error. The maximum overestimate is 33j%  and occurs when the beam is 'thin'. 

This exact figure is derived in chapter 12, but can be found using (3.2) with n = 2 and (3.5) 
with f = 0.5. Use of PIWMB gives an underestimate, i.e. a negative error, which for 
comparison purposes is inverted to give a positive quantity and plotted as curve B*
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Fig.5.3 - errors for parabolic flow and a Gaussian beam profile

The abscissa is the true ratio of the standard deviation of the Gaussian curve to the radius. 
It is seen that PIWMB performs very much better than IWMB for ratios less than 0.2, and 
they have a similar degree of error when the ratio is approximately 0.4. This crossover 
ratio slowly increases as the profile becomes more blunt, i.e. as n increases.

The degree of overestimation associated with IWMB decreases to zero as the beam 
becomes broader. By contrast PIWMB is correct for a 'thin' beam, but otherwise 
underestimates the true value, and moreso as the beam broadens. This suggests that the 
true value could be better estimated by a weighted sum of these two statistics than by either 
o f the statistics individually. This combined statistic is denoted by CIWMB. The sum 
would be of the form

CIWMB = a.IWMB + (l-a )P IW M B (5 1)

where a  is a proportion that is equal to zero when the beamwidth is infinitesimal, equal to 
I when the beam uniformly insonates the vessel, and is expected to vary with both velocity 
profile and beam profile. It was observed that the combined estimate CIWMB was close to 
the tiue value over a wide range of beamwidths (and velocity profiles) if a  was chosen to be

(5.2)
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The percentage error incurred by estimating the true value by CIWMB, where a  has the 
above form, is shown on fig.5.3 by the dashed curve, C. However using this equation 
presupposes knowledge of the beamwidth and vessel radius (in which case IWMB or 
PIWMB could be used with a known correction factor anyway). The beam dimensions 
may be poorly known, and the vessel radius changes throughout the cycle (over a range of 
the order o f 10% for a carotid arteiy), so that this small level of error is not appropriate. 
Rather it is more realistic to suggest that the estimate of cr/i? used in (5.2) may be in error 

from the true value by a certain quantity. The upper dotted curve, D, is the error in 
CIWMB if the estimate of <j[R used in (5.2) is 25% above the tme half-beamwidth to 
radius ratio. Similarly the lower dotted curve, E, is the error in CIWMB if the estimate 
used is 25% below the tme ratio, so that the region between the dotted curves represents 
the error range if the estimate of the half-beamwidth to radius ratio is accurate to within 
± 25 % of the tme value.

It is perhaps more valuable to consider the variation in error over a range of profiles for a 
fixed beam dimension. The resulting curves are given in fig.5.4(a)(b) and (c) where the 
ratios of standard deviation to vessel radius are 0.2, 0.4 and 0.6 respectively. In each case 
the vertical error scale is the same though the position of the origin may differ. Curve A as 
before gives the error in the use of IWMB. Curves C,D and E correspond to the same 
statistics as used in fig.5.3. Cume B shows the underestimate of PIWMB as a negative 
error (i.e. without inversion) and is now preferred to the previously used curve B*. It 
should be remembered that only profiles with # > 2  are regarded as being physiologically 
meaningfijl.

For the case where the standard deviation to radius ratio is 0.1 (not shown) curves B,C,D 
and E are, as expected, all close to the x-axis. Clearly when the beam has a standard 
deviation of less than 0.2 of the vessel radius PIWMB estimates the tme mean frequency 
much more closely than IWMB throughout the range of velocity profiles. IWMB becomes 
in general a better estimator than PIWMB when the ratio increases to above 0.4. The 
dashed and dotted curves are bound by the solid curves for all beamwidths as the quantities 
a  and (1 -  a )  are bound between 0 and 1. It appears that the mean velocity estimation is 

improved by the use of (5.1) and (5.2) even if the beamwidth ratio estimate is ±25% in 
error, especially so for ratios in the 'transition' area of 0.4. As curve E is bound to be closer 
to the x-axis than curve B, the value of CIWMB will always be closer to the tme mean 
frequency than PIWMB if the beamwidth ratio is underestimated. Curve D on the other 
hand is bound to be closer than curve A and not curve B, so that for large overestimates of 
beamwidth CIWMB may not perform as well as PIWMB. In the case of a parabolic 
velocity profile this occurs when the overestimate is greater than approximately 40%.
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Fig.5.4a,b,c - errors for Gaussian beam profiles 
with standard deviation to radius ratios of 0.2, 0.4, 0.6
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A practical example

For the 7.5 MHz linear array transducer o f a Diasonics Spectra ultrasound scanner an 
approximate value for the standard deviation of a relevant Gaussian curve was obtained. 
The markers shown in fig. 5 .5 show the voltage of a signal observed at a hydrophone as it 
was moved in the Doppler beam. Because the voltage at the hydrophone is proportional to 
the amplitude of the pressure fluctuations, the intensity profile at the hydrophone is the 
square o f this curve. A Gaussian curve has a form proportional to

exp / I
2o:

and fig.5.5 shows that the main lobe is easily contained within a Gaussian curve with a 
standard deviation of 0.8 mm, given approximately by the solid line. Squaring this gives 
another Gaussian curve with the standard deviation reduced by -Jl ,  i.e. a standard 
deviation of 0.6 mm. (As stated earlier the distribution of intensity received at the 
transducer elements tends to be more peaked still. For example, according to the principle 
o f reciprocity, the standard deviation is further reduced by a factor of V2 if the transmit 
and receive focussing are the same.) For a 6 mm diameter vessel such as might be a carotid 
artery this standard deviation of 0.6 mm corresponds to a ratio o f standard deviation to 
radius of 0.2. So for this example beam and an artery of 6 mm diameter PIWMB is 
theoretically superior to IWMB.

p -p  v o lta g e

0 2 3 5 6 71 4
h yd ro p h o n e  p o s it io n  (m m )

Fig.5.5 - the amplitude profile of an actual 
beam and a Gaussian approximation
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Rectangular beam

The simpler case of a beam with a rectangular profile can also be considered using a single 
cross section. Again IWMB leads to an overestimate of mean velocity and PIWMB to an 
underestimate. The half-beamwidth is denoted by b. The percentage errors in IWMB and 
PIWMB against the half-beamwidth to radius ratio bjR  for a parabolic velocity profile are 
shown by curves A and B* respectively in fig.5.6, as in fig.5.3. PIWMB performs much 
better than IWMB when the ratio of half-beamwidth to radius is less than approximately 
0.4. The degrees of error are approximately equal when the ratio is 0.65.

%  e r ro r

-10

-20
0 Œ2 O J  0 4  & 6 Œ7 0 ^  0 ^ 1

Flg.5.6 - errors for parabolic flow and rectangular beam profile

In this rectangular beam case, for parabolic and for other velocity profiles, it was observed 
that CIWMB was close to the true value over a wide range of beamwidths if a  was simply 
chosen to be

(S3)

Curves C, D and E in fig.5.6 are also defined as in fig.5.3, except that a  is now given by 
this equation (5.3) and curves D and E relate to 25% over- and underestimates of the ratio 
6 /^ .
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Summary

If  a centrally placed sample volume has a finite width less than the vessel diameter and the 
velocities are larger nearer the vessel axis then, other factors aside, PIWMB leads to an 
underestimate of mean blood velocity and IWMB leads to an overestimate. For Gaussian 
beam profiles with a standard deviation to vessel radius ratio of less than 0.4, PIWMB 
performs better over a wide range of velocity profiles than IWMB, and very much better 
when the ratio is less than 0.2. If  the beam is modelled as having a rectangular profile then 
PIWMB performs better for half-beamwidth to radius ratios less than approximately 0.65 
and very much better for ratios less than 0.4. It is suggested that in many situations, 
especially with linear and phased array transducers the beam may be better approximated as 
being of infinitesimal width than as insonating uniformly. If  a sensible estimate of the 
beamwidth to radius ratio can be made a further improvement can be achieved by obtaining 
a combined estimate CIWMB, which is a weighted mean of the two estimates.

Notation for this chapter

b half the width of a beam with a rectangular intensity profile
CIWMB an estimator of mean frequency bin number, being a weighted sum of

IWMB and PIWMB
y '  perpendicular distance from the axis of a Gaussian beam in the plane of the

circular vessel cross section 
z ' perpendicular distance from the axis of a Gaussian beam in a direction

perpendicular to y ' 
z"  (distance in) a direction parallel to the vessel axis
a  proportion of the estimate IWMB in the weighted estimate CIWMB
G standard deviation of the intensity response for a Gaussian shaped Doppler

beam
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No matter what the shape of the ultrasound beam, it is likely that its preferred alignment is 
such that its axis passes through the axis of the vessel. (A situation is described briefly in 
chapter 12, and more fully in appendix B, where it might be desirable for this not to be the 
case.) Correct alignment relies on operator skill and the absence of lateral motion of the 
vessel beneath the probe. This chapter discusses the effects on IWMF and PIWMF, and by 
implication on the deterministic forms of IWMB and PIWMB, when the beam axis does 
not pass through the centre of the vessel.

Error in IWMF

The effect of such a misalignment on IWMF, with a beam which when correctly aligned is 
'wide', is obviously linked to the actual beamwidth. Cobbold et al. (1983), using computer 
simulation, investigated the effect on IWMF of a rectangular or Gaussian shaped Doppler 
beam being displaced from the centre of the vessel, and, as already seen in chapter 2, 
suggested that, "when the beam width is roughly equal to the vessel diameter the estimated 
mean velocity is not a sensitive function of beam profile and position". Clearly if the beam 
is wide enough so that the vessel falls comfortably in a region of uniform intensity 
insonation then a small lateral movement of beam or vessel will produce no change in 
IWMF. Conversely the maximum sensitivity to displacement of an otherwise 'wide' beam 
occurs when the beamwidth is equal to the diameter, the beam has a rectangular intensity 
profile, and the velocity profile is as peaked as possible, i.e. when it is parabolic if we allow 
only the profiles of (3.1) with n >2. As the beam becomes displaced the slower scatterers 
at the periphery are missed so that IWMF overestimates. Results in agreement with the 
work of Cobbold et al. were obtained when computer simulation was applied to this worst 
case. The greatest amount of overestimate is approximately 9% and is observed when the 
displacement is approximately 0,6 radii. This worst case error is only appropriate in the 
unrealistic case that the beam is rectangular with the minimum width, i.e. one vessel 
diameter. In the more realistic case that the intensity profile is curved, a beam that 
insonates the vessel more or less uniformly would have a width significantly greater than 
the diameter, and the error with beam displacement would be considerably less.

Error in PIWMF

Attention is now given to the misalignment of a beam which othei-wise would be 'thin'. I f  a 
sample volume of negligible width is displaced then the high frequencies associated with 
scatterers at the centre of the vessel are absent from the observed spectrum. So intuitively 
using PIWMF produces an underestimate of the mean velocity. The degree of 
underestimation is shown here to be small for typical displacement values if the profile
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follows (3.1). The geometry is given in fig.6.1. As in chapter 2, x  is measured along the 
sample volume from the point opposite the vessel centre. The beam displacement is given 
hyy.

s a m p le
v o lu m e

Fig.6.1 - a displaced beam of negligible width

If the velocity profile is given by (3.1) then the velocity at a point (x, y) in the sample 
volume is

for (6 1)

and is zero otherwise. For a fixed value of y  this is a monotonie function of x. Evaluating 
PIWMF from the deterministic spectrum leads to the velocity that would be the mean 
velocity if the sample volume passed through the centre of the vessel and if the velocity 
profile along the sample volume was monotonie and axi-symmetric. So the mean velocity 
estimate calculated from PIWMF for the given displacement, y, can be found by integrating

over the dotted disc of radius -y ^  in fig.6.1, where the profile across its diameter is 

given by equation (6.1). Using r* as the radial distance variable in this disc, so that the 
circumference of the lamina at this distance is Irrr*, the calculated mean velocity, v ' is 
given by

1 -
r ' '  +y'

\ » / 2

dr*

2;rr*(/r'
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n + 2
(6.2)

The derivation of this result is given in appendix F. The true mean velocity, v , is given by 
(3.2) but can also be found here by setting y  equal to zero, and is

II 2 \ { nV = v„. 1  I = v_
n + 2 )  \n + 2

As w is positive the quantity in the square bracket of (6.2) is greater than 1 so that the 
estimate of mean velocity with a displaced beam, v ', underestimates the true mean 
velocity, v . The percentage error due to the beam displacement, negative and is

xlOW%

100-^^
l - f %

06 3)
%

This function is zero for plug flow, i.e. where « = oo, and is monotonie in n. Therefore, for 
profiles with forms between parabolic and plug, the error is bound between zero and the 
function resulting when the flow is parabolic. Putting n = 2 into (6.3) and changing to the 
inequality gives

-100 ^ 0 (6.4)

The error is therefore small for typical displacements. For example, if the displacement is 
10% or 20% of the radius the true mean velocity is underestimated by at most only 1% or 
4% respectively.
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Sum m ary

This chapter has considered the errors incurred by the use of IWMF with an otherwise 
'wide' beam, or PIWMF with an otherwise 'thin' beam, when the beam is displaced from the 
vessel centre. The results are obviously applicable to the deterministic forms of IWMB and 
PIWMB. Analysis o f the maximum error in IWMF if a uniformly insonating beam is 
misaligned requires the assumption of a very unrealistic beam profile. A uniformly 
insonating beam would tend to be much broader than the vessel so that errors due to 
misalignment would in fact be small. Errors are greater the more peaked the velocity 
profile, so that for flows ranging from plug to parabolic the worst errors in IWMF and 
PIWMF are observed when the profile is parabolic. For these flows, if a beam of negligible 
width is displaced from the vessel centre then PIWMF underestimates the true mean 
velocity, and the error is bound by equation (6.4). The errors are small for realistic 
displacements and these idealised profile shapes, so that even if some misalignment occurs 
both IWMF and PIWMF are still valid estimators with their appropriate beams.

Notation for this chapter

X  distance along sample volume from point opposite the vessel centre
y  displacement of beam from vessel centre
r* position variable in imagined circle
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CHAPTER 7 - SPECTRAL BROADENING

The derivations of IWMF and PIWMF have required the Doppler spectrum to accurately 
mirror the velocity distribution of scatterers in the sample volume. In general the Doppler 
spectrum is a broadened form of this desired spectrum, and subsequent velocity estimation 
may be in error. The vast majority of this chapter is concerned with the effect on IWMF 
and PIWMF of the broadening associated with the finite geometry of both the transducer 
and sample volume. Such broadening is called geometrical spectral broadening and is 
intrinsic to the measuring system. A less influential source of spectral broadening is 
discrete Fourier analysis of the signal, which is also briefly discussed. A third source of 
effective spectral broadening described is a change in the velocity distribution during the 
interval over which the signal is recorded. This is equivalent to the Doppler signal not 
being stationary over this interval.

It is shown that if the broadening of a frequency component is such that its mean frequency, 
weighted by intensity, is maintained then analysis with IWMF and a 'wide' beam still leads 
to the correct mean velocity. In contrast, for any such broadening, analysis using PIWMF 
and a 'thin' beam produces an underestimate of the mean velocity.

Geometry of insonation

I f  the transmitter and receiver are coincident point objects then an insonated group of 
particles moving with a single velocity, v, in one direction produces a Doppler spectrum 
consisting of a single spike at a frequency, fg ,  given by equation (1.2), which is expressed 

here as

(7.1)

A group of particles with a range of velocities would produce a range of frequency 
components. If the appropriate representative frequency, , is found then the mean 
particle velocity, v , is obtained from a rearrangement of the form o f (7.1) where the 
velocity and frequency are these values, i.e.

f  c
2 F co s0

For a 'wide' beam the representative frequency is IWMF, i.e. Xep = / ,  and for a 'thin' beam 

the representative frequency is PIWMF, i.e. = / .  So the mean velocity is recovered 

from the spectrum by calculation of the correct representative frequency and the 
assumption of the single angle 0.
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In practice the ideal spectrum corresponding to a single velocity component is broadened 
by the finite size of the transducer aperture and the sample volume, as no unique Doppler 
angle is appropriate. In other words a particle moving with a fixed velocity will give a 
Doppler signal with a finite bandwidth. This effect has been called geometrical spectral 
broadening and is recognised in both Doppler ultrasound (Newhouse et al. 1980) and laser 
fields. It is especially apparent if a large number of elements in an array transducer are 
activated when transmitting and receiving the Doppler signal.

As no single Doppler angle exists, the angle used in (7.2) to calculate mean velocity should 
be representative of the geometry of the beam and the motion of the particles. The identity 
o f this angle, and some associated sources of error, have already been discussed in 
chapter 4. This current chapter is primarily concerned with the effects o f the range of 
angles, and not the choice of a single angle. The nominal Doppler angle used might be the 
angle, called B, between the direction of motion and the line bisecting the length o f the 
transducer drawn through the centre o f the sample volume, as in chapter 4. (The angle 0 is 
defined in this way when the transducer has a finite length.) Alternatively the angle used 
might be the bisector, called k , of the range of a n g le s  of insonation, also as in chapter 4. 
I f  the dimensions of the sample volume are very small compared to the transducer length, 
the sample volume can be thought of as a point target, as in fig.7.1. This is the same 
diagram as fig.4.2 but with 6 defined unambiguously. At the target is a group of particles 
moving with a single velocity v.

transducer centre

target

Fig.7.1 -the geometry of a finite aperture transducer 
and a moving point target
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The transducer is regarded as being narrow in comparison in the dimension into the page so 
that the relevant geometry is described in the two dimensions of the page. The angle k  
bisects the angle 2e subtended by the transducer at the target, and the tranducer elements 
lie at angles to the direction of motion between K - e  and K + e  . The maximum and 
minimum frequencies observed in the Doppler spectrum are found by substituting these 
angles into (7.1) so that provided k > s  the Doppler spectrum will have a bandwidth, w, of

w = (cos(#c-g)-cos(AC+g)) (7.3)

The idealised spectral spike is therefore broadened to extend over a frequency range of w, 
an extent which is seen to be proportional to the velocity of the group of particles, and 
dependent on the direction of motion.

As stated in chapter 4, the angle S  is approximately equal to and is in general very 

small. So because k = 0 + S  the frequency of the desired spike corresponding to the 
velocity v might be defined either by fg  according to (7.1), or by the frequency, , which 

is analogously

=  cos AC

These frequencies are representative of the location of the broadened spectrum. If  is 
used then the fractional bandwidth of the received Doppler signal is given by

w  _ c o s { K - s ) - c o d , i c + e )

A  cos XT

_ (cosAC COS g + sin k  sing)-(cosAC cosg-sin  ac sing) 
cos AC

_ 2 sin g sin k  

cos AC 

» 2g tan AC

which agrees with a result o f Newhouse et al. (1980), and is a good approximation for 
g < 0.25 (æ 15°) . As J  is very small Accan be replaced by B in this approximate result, i.e.

^ » 2 s  tanB (7.4)
Je
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For a given transducer the extent o f the broadened spike is therefore minimised by 
minimising the Doppler angle 9. As explained in chapter 4, a low 0  is generally sought 
anyway to improve the accuracy of the frequency/velocity scale factor.

The work of Newhouse et al. was primarily concerned with determining the bandwidth of 
the Doppler signal returning from particles of a single velocity. In the context of 
continuous wave insonation they also point out that this geometrical spectral broadening is 
equivalent to the effect o f the particles moving through the sides o f the sample volume, i.e. 
'transit time broadening' where the transit time is not limited by the ends of the sample 
volume. The upper extreme of the broadened spectrum is also relevant in the 
determination of the maximum blood velocity. Knowledge of the maximum frequency 
returning from the blood sample and the minimum Doppler angle enables the maximum 
particle velocity present in the sample volume to be estimated. This principle has been used 
in commercially available scanners for maximum velocity measurement. However the 
estimation of mean velocity in the sample volume requires knowledge of the shape, as well 
as the extent and location, of the broadened spike from any single velocity component.

The shape of the broadened spike (or broadening function) depends on the relative power 
recorded at each receiver element. This is affected by transducer/target geometry, beam 
intensity profile, attenuation and transducer element weightings. The shape, not extent, is 
the same for each velocity present in the sample of scatterers, and the resulting spectrum is 
the sum of the broadenings of each velocity component. (The total spectrum cannot be 
thought of as a convolution of the theoretical signal with a single broadening function. 
This is because the width of the function is not the same for each component, being 
proportional to the velocity of that component as (7.3) has shown.)

The effect on IWMF

If  the beam is 'wide', and the power spectrum Pgi f ) ,  as introduced in chapter 3, is 

proportional to the number density of insonated scatterers moving with the corresponding 
velocity, then IWMF is proportional to mean blood velocity. The IWMF for this 
theoretical spectrum is denoted by f g , and for a single-sided spectrum is defined according 

to (2.10) and is

o . )

This spectrum, P gi f ) ,  is that which would be observed if there was a single angle, say 0, 

between the transducer and the motion. The correct mean velocity would be found from
(7.2) using this mean frequency f g  and the angle 0. The observed spectrum, which is
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broadened in practice, is given by p { f ) .  The corresponding IWMF is denoted by /  and is 

defined by (2.10) which is restated here

/ (7.6)

This frequency estimates the desired IWMF, . In relating /  to it is first noted that 
the denominators of (7.5) and (7.6) are equal. This is because the broadening o f a spike 
preserves power and so the total power in the spectrum is conserved.

Each velocity component corresponds to an idealised spike which is subject to a 
broadening function with a fixed shape. An example for a spike of frequency / ,  is shown 
by the solid line of fig.7.2. The nominal frequency / ,  is the frequency that would 

correspond to the velocity if 0was the single Doppler angle.

power

frequency

Fig.7.2 -a general broadening function

The resulting frequency extremes, and / , ^  , are proportional to the nominal 

frequency / ,  , e.g. for the insonation of fig.7.1

cost fC+ s )

cosO A and
c o s ( k ' -

COSÛ
■A

which are easily shown using (7.1) with the extreme angles /c+s  and f c - s  , and the 
nominal angle 0. This means that the IWMF of the broadened spike, / j , is also related to 

/ ,  by a third constant factor, say k, i.e. . Furthermore as the power of each spike

is conserved in the broadening process, and as the individual broadened components add 
linearly to obtain the total spectrum, p { f ) ,  and the numerators o f (7.5) and (7.6) are linear
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in P s i f )  and p { f ) ,  this same constant factor, k,  must relate /  to /^  , i.e. f  = k f ^  . At 

no point does this result depend on the form of the theoretical spectrum, so this factor is 
independent o f the blood velocity profile. However because the broadening function 
depends on the orientation of the artery, as suggested by (7.3) and (7.4), this factor is 
dependent on the orientation of the artery. This factor is the correction factor needed if the 
calculation of mean velocity is made using the angle 6. No correction is needed if / ,  is 

equal to / ,  which is only true if the IWMF of a broadened spike is equal to its nominal 

fi-equency, i.e. if /y  = / , .  In this case the measured mean velocity using (7.2) based on /  

and 0 would be correct for any velocity distribution of scatterers. Note that the broadening 
function need not be symmetric.

More generally an angle ^  exists such that

= (7.7)
COS  ̂ / ;

which is the desired correction factor. So 9^^ can be thought of as the effective Doppler 

angle, and the correct mean velocity can be found using /  in (7.2) with ^  in place of 0. 
Therefore, no matter what the velocity distribution of scatterers, for any fixed geometry of 
the artery, transducer and beam there exists an 'equivalent' Doppler angle, ^  , for use in

(7.2), such that the calculated mean velocity using the IWMF, / ,  is correct, despite the 
spectral broadening.

(The above analysis would show that these results are also valid for double-sided spectra 
where (7.5) and (7.6) would then have lower limits of integration of -oo.)

The effect on PIWMF

I f  the beam is 'thin' then PIWMF evaluated from Pg{f  ) is proportional to mean blood 

velocity. The PIWMF for this theoretical spectrum is fg  and is defined according to (2.11) 

by

A  = — -------- .  ,  —  (7.8)

where the maximum frequency in the spectrum is /„,. Under the above assumptions, this 

fi-equency, fg,  should be used in (7.2) to find mean velocity.
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With the observed spectrum, p { f  ), the PIWMF, / ,  is given by

w h e r e i s  the maximum frequency present in the broadened spectrum, and is therefore 
higher than the maximum frequency in the ideal spectrum/„. It is seen that the numerators 
of (7.8) and (7.9) are non-linear in the spectral densities p g i f  ) and p { f  ). An effect o f this 

is that the ratio of /  to the desired value fg  , which is the required correction factor, is 
different for different velocity profiles. This is shown in more detail in succeeding 
paragraphs. In particular it is demonstrated that if the broadening fonction is symmetric 

about the nominal Doppler shift frequency then /  underestimates the desired value f g  . 

(Qualitatively this can be inferred from the fact that, with PIWMF, the 'half of any ideal 
frequency component spread to be below its nominal frequency is weighted more than the 
'half spread above. As already seen, this unequal weighting is because lower frequencies in 
the signal are deemed to originate from scatterers further from the vessel axis, and hence to 
be representative of laminae of greater circumference and area.)

Again the family of velocity profiles given by (3.1) is considered. The corresponding 
normalised spectra are given by (3 .4), which is restated here

P s ( f ) = j r U - j \  0 £ / 5 / .  (7.10)

where t  = I jn  if the beam is 'wide' and t = \jn if the beam is 'thin'. Such a spectrum is 

uniform between zero and /„, when  ̂= 1, i.e. for parabolic flow and a 'wide' beam. It is 
intuitive that a given amount of broadening has less effect on the form of a uniform 
spectrum than the form of any other, as the broadening primarily affects the uniform nature 
at the 'edges' o f the spectrum. So the broadening has least effect when the spectrum is as 
uniform as possible, which, restricting the flow to be between plug and parabolic forms, 
occurs for parabolic flow. In contrast, with plug flow f = 0, the spectrum is a spike at the 
maximum frequency , and the effect of the spreading on the form of the spectrum is 
maximised. So for a given amount o f broadening, the amount of underestimate incurred by 

calculating PIWMF from the broadened spectrum, p { f ) ,  will be a maximum for plug flow 

and will decrease monotonically as t increases, towards parabolic flow.
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Forms o f the broadening function

Consider the two spectral broadening functions shown in fig.7.3. These are where a spike 
at a nominal frequency u, shown by the dotted line, is smoothed to give either a rectangular 
or an isosceles triangular spectrum with a mean frequency of bu and a width o f abu. The 
extent o f the broadening as a fraction of the resulting mean is described by a, and the extent 
o f the broadening as a fraction of the nominal frequency is described by the product ab. 
These rectangular and triangular broadening functions are idealised forms for mathematical 
description and manipulation, and are shown by the dashed and solid lines respectively. As 
suggested above the dimensionless parameters a and b are fixed by the geometry relating 
the artery, transducer and beam. The functions are scaled so that in each case the area 
beneath them is 1. The nominal frequency u is the frequency that would be present for a 
fixed target velocity if the transducer was a point transmitter/receiver at a position 
corresponding to the assumed Doppler angle. In cases where 6 = 1 the broadened spike 
has an intensity weighted mean frequency equal to the nominal frequency u and, as 
discussed above, IWMF is unaffected by the spectral broadening.

power abu

2
abu

1
abu

( l -% ) 6 u  u bu ( l  + \ ) b u

frequency

Fig.7.3 - a theoretical spike and two idealised broadening functions representing the 
spectrum arising from scatterers of a single velocity - (dashed line for 

rectangular broadening and solid line for triangular broadening)

The triangular broadening function approximates the function observed in practice, an 
example of which is given in fig.7.4. Theoretical justification for the use of a triangular 
form is given later in this chapter and in more detail in appendix E. The attractiveness of 
the rectangular broadening form is its mathematical simplicity.
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“ /fi 
4................ *
bandwidth

frequency

Fig.7.4 - a spectrum observed with a modern linear array transducer, 
from the insonation of a straight section of a rubber O-loop moving 

with a constant velocity at a nominal Doppler angle of 59°.

For both the rectangular and triangular broadening functions the observed spectrum, /? (/) , 

is found from the ideal spectrum, P s i f ) ,  as follows. A nominal frequency component, say 

at u, contributes to the observed spectrum between the frequencies (l-f)6M  and (l + f)6«. 

Therefore the observed power at /  is contributed to by nominal frequency components

between / and /
6(1 + ̂ ) 6 (1 - ! )

So the broadened spectrum can be written as

/ ’( / ) = ! (7.11)

where T { u , f  ) is the fractional contribution of the nominal component at « to the observed 

spectrum a t / ,  and is consequently zero outside these limits of integration. T{u , f )  is in 

fact the broadening function, so that, within these limits.

for the rectangular broadening of fig.7.3

and for the triangular broadening

The maximum frequency in the broadened spectrum is given by = ( l + ^ ) 6 /„ .
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Plug flow  -  Rectangular broadening

For plug flow V = v„ at all positions in the vessel, so that the theoretical Doppler spectrum 
is a spike at f  = f„ .  This can be scaled to have a total power of 1, and without requiring
(7.11) the observed spectrum can be seen to be

X / ) (7.12)

and zero elsewhere. If u is replaced b y i n  the annotation to fig.7.3 then the spike and the 
observed spectrum (dashed line) are shown in this figure. Substitution of this spectrum 
into (7.9) leads to an expression for the observed PIWMF of

/ = (7.13)

A derivation of this result is given in appendix F.

The percentage error due to spectral broadening incurred using PIWMF is defined by

/ - A
f s

xIOO%

In the absence of broadening PIWMF is the frequency of the spike, i.e. f s = f „ -  So the 
percentage error in the case of plug flow is

. 1 . - 1 xlOO% (7.14)

This error is shown as the dashed straight line in fig.7.5 for various values of a  in the case 
where the broadening does not alter the IWMF, i.e. where 6 = 1.
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■^PIWMF ^ rro r  (% )
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" '.V  1 p a ra b o lic  flow
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I  p a ra b o lic  flow
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re c ta n g u la r  
i b ro a d e n in g

p lu g  flow  
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,  ,  ,  I  broadei^ ing

0 &2 0^  &6 &8 1 L2 1^

bro ad en in g  w idth p a ra m e te r a

Fig.7.5 - errors in PIW M F for plug and parabolic flows arising from rectangular and 
triangular broadening where the IW M F is unaltered, i.e. where 6=1.

Plug flow  - Triangular broadening

For the same ideal spike spectrum the observed spectrum after triangular broadening can be 
seen, again without using (7.11), to be

X/) 2 | / - 6 A j (7.15)

and zero elsewhere. The observed spectrum (solid line) is shown in fig.7.3 if again u is 
taken to be /„ . Substitution of this into (7.9) leads to an expression for the observed 
PIWMF

(7.16)

A derivation of this result also is given in appendix F The corresponding percentage error 
is

xlOO% (7.17)

This is shown as the solid straight line in fig.7.5 for various values of a  with 6 = 1.
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Parabolic flow

In the case o f parabolic flow the theoretical power spectrum from a 'thin' beam, scaled to 
give a numerical total power of 1, is found by putting t = 0.5 into (7.10). This is shown by 
the dotted line of fig.7.6. The PIWMF in the absence of broadening is given by (3.6) and is

f s  = 2t ”̂ \  ’ parabolic flow is f s = ^  For both rectangular and triangular

broadening the calculation of the observed spectrum from (7.11) is possible, and leads to 
piecewise expressions involving inverse hyberbolic tangents of simple functions of 
frequency. (An example is given in fig.7.6 where the dashed line gives the result of 
rectangular broadening of the dotted theoretical spectrum with 6 = 1 and a  = 0.4.) 
However the substitution of these expressions into (7.9) to solve for PIWMF is difficult. 
The PIWMF of the broadened spectrum was therefore calculated by computer simulation 
where the continuous theoretical spectrum was treated as comprising 1000 discrete 
intervals, and where the mean in each interval was taken to avoid the problem that the 
theoretical spectral density is undefined at /  = / „  . For the case where 6 = 1, the resulting 

percentage errors due to the spectral broadening are shown against a  by the curved lines in 
fig. 7.5 for rectangular (dashed line) and triangular (solid line) broadening. As suggested 
earlier, the errors with parabolic flow are smaller in magnitude than the corresponding 
errors with plug flow.

pow er p ^ ( / )  p ( / )

r e c ta n g u la r  b r o a d e n in g

6  =  1 «  = 0 .4
JI th e o re tic a l 

j sp ec tru m

-

t  = 0 .5

" x  sp ec tru m  

1 , i , \
&2 &4 &6 &8 1

frequency
1.2

Fig.7.6 - the theoretical spectrum (dotted line) for a 'thin* beam and a parabolic 
velocity profile, and the corresponding spectrum (dashed line) resulting from 

rectangular broadening with 6 = 1 and «=0.4.
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Some practical results

In an experiment performed with a Diasonics Spectra scanner, equipped with a 7.5 MHz 
linear array probe, the spectrum returning from a straight section of a rubber 0-loop 
moving with a constant velocity showed an approximately triangular form. An example of 
this has already been seen in fig. 7.4. This broadening function can be treated as having a 
mean frequency which, to a first approximation, is equal to , the spike frequency 

expected in assuming the single nominal angle 6. Therefore 6 = 1 and the ratio of 
bandwidth to fg  is equal to a. So according to (7.4) we can write

a = —  o i2 s i m ô  (7.18)

An estimate of the bandwidth was made for several angles and different speeds by finding 
the frequency difference between the points where the tails o f the spectrum commenced, as 
defined by a visually noted change in the derivative of the spectrum, e.g. at the frequencies 
marked with the larger arrows on fig.7.4. In each case the 'average' Doppler frequency fg  

was also estimated. For the example given in fig.7.4, the ratio o f the bandwidth, defined by 
the larger arrows, to the average frequency isJ> flfg  «  0.62, and the nominal angle is 59° 

(be it ^  or /c - the difference is small). Applying (7.18) gives an estimate of s  of 
11° (0.19 rad) from this single example. The results for this and other examples appeared 

consistent with a value o f f *  13° (0.225 rad) for the linear array. This angle of g«*13° 

had previously been measured visually from the screen of the scanner, by noting the marked 
directions of the extreme rays insonating the sample volume. Therefore for the linear array 
putting f  *0.225 in (7.18) gives

a «  0.45 tan 6

So for example nominal angles of 0=50° and 0=68° we have a  * 0.54 and a  «1.11 
respectively. (The angle of 68° represents the highest for which the scanner displays a 
calculated velocity scale in preference to a raw frequency scale, as conversion to velocity is 
thought to be too prone to error at higher angles.) These values of a  are marked by the 
vertical lines on fig.7.5. The broadening function in practice is approximately described by 
the triangular form and the appropriate points of error on fig.7.5 are marked. It is seen that 
for profiles between parabolic and plug, with an example Doppler angle of 50° PIWMF 

underestimates the value with no broadening, f^ ,  by between 2% and 6% approximately, 

and with an angle of 68° by between 6% and 13% approximately, the smaller error in both 
cases being for parabolic flow.



T h e o r e t ic a l  fo r m  o f  th e  b r o a d e n in g  fu n c t io n

For a long thin transducer with each point (or element) equally active, and a sample volume 
which by comparison is small in extent an approximately triangular form is expected. 
This is suggested by considering the insonation and particle motion shown in fig.7.1. The 
highest Doppler shifted frequencies observed result from energy transmitted and received 
by the leftmost transducer elements, and the lowest frequencies from energy transmitted 
and received by the rightmost elements. Middle frequencies are favoured because they 
arise not only from energy transmitted and received by middle elements, but also from 
energy transmitted by a left-hand element and received on the right, and vice versa. The 
result is a near symmetric single-peaked spectrum.

A more detailed treatment is given in appendix E, where it is suggested that the broadening 
function for scatterers at the point target, or in the practical case near the centre of the 
sample volume, is more closely represented by the square of an isosceles triangular form, 
so that the halves of the function are parabolic. A triangular form and a squared triangular 
form are shown by the dashed and solid lines of fig.7.7 respectively. Both these forms 
approximate the observed spectrum shown in fig7.4.

1

f r e q u e n c y

Fig.7.7 - theoretical triangular and squared triangular broadening forms 

Discussion

The errors read from the dashed lines of fig.7.5, appropriate for the rectangular broadening 
form, are unrealistically large. This is because the broadening observed with the linear 
array transducer was much more triangular than rectangular, which is not surprising if the 
array has each element equally active. In addition, if triangular broadening is assumed and 
a  is estimated from the extremes of the broadening function, then the errors given by the 
solid lines in fig.7.5 are perhaps worst-case results. This is firstly because the theory in 
appendix E favours the more peaked 'squared triangular' form of fig.7.7, and secondly 
because if some elements were favoured they would naturally be those at the centre o f the
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array, e.g. Gaussian 'apodization', and so the form of the resulting broadening function 
would be even more peaked than the approximate squared triangle. Against this however 
is the effect o f the finite width of the sample volume, and the effect o f the beam not being 
uniform throughout this width. The Doppler spectrum is therefore made up of different 
strength signals from different positions along the section of the moving rubber loop. The 
result is an approximate convolution of the 'squared triangular' form with the beam profile 
across the sample volume, and so is more uniform than the 'squared triangle'. The tail 
structure observed in fig.7.4 is thus reinforced, and the spectrum is broader to some degree 
than that which would arise from a point sample volume.

It is not necessarily correct to regard the broadening as maintaining the intensity weighted 
mean frequency of each nominal component. That is, in practice the broadening function 
would have b ^  \ and so IWMF and a 'wide' beam would also lead to an error in mean 
velocity. For IWMF, the form of the function, and hence a, have no effect on accuracy. 
Equations (7.14) and (7.17) therefore suggest that the error incurred by IWMF is

,̂wMF = (6 -l)x lO O %

which also follows from recognising that the idealised factor h can be identified with the 
practical factor t  in (7.7)

Spectral broadening from Fourier analysis

Only spectral broadening due to the finite dimensions of the transducer and sample volume 
has been discussed so far. Another source of spectral broadening is the leakage o f power 
at any one frequency into neighbouring bins when analysis is performed by discrete Fourier 
transform. This leakage is not entirely symmetric and is reduced by the application of a 
window function. So the Fourier analysis itself introduces broadening which generally 
affects IWMF very slightly and PIWMF more. In this form of broadening the resulting 
bandwidth of a single low frequency component is as much as that o f a high frequency 
component, and so the broadening models of fig.7.3 where the resulting bandwidths are 
proportional to the nominal frequency u are not appropriate. The result is that this 
broadening may affect the spectrum at low frequencies as much as the geometrical 
broadening, but will not in general affect the spectrum as much at higher frequencies. For 
example, the spectrum of a pure sinusoid analysed by a 256 point Fast Fourier Transform 
using a Hanning window is, to a first approximation, an isosceles triangle with a bandwidth 
of 4 frequency bins. So for a component at the 10'th bin say the equivalent value of a  is 
approximately 0.4, and is comparable with the values of a suggested as typical above. If 
the signal occupies the whole frequency range of 128 bins then, for a high frequency 
component, the equivalent value of a is only approximately 0.03. At low frequencies a 
spectrum following (7.10) is relatively flat and is therefore largely unaffected by broadening
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even if the value of a is large. In the peaked high-frequency region the form of such a 
spectrum is susceptible to broadening, but as seen the appropriate value of a is small. So it 
is suggested that if the spectrum occupies a large number of the available bins the effects on 
IWMF and PIWMF of spectral broadening due to the Fourier analysis are small.

Spectral broadening due to non-stationarity of the Doppler signal

Changes in the velocity distribution of scatterers during the recording of the data segment 
will appear as a 'broadening' of the spectrum - a rectangular broadening if the accelerations 
are constant. This non-stationaiy behaviour of the Doppler signal would only give values 
of a  comparable with the typical values above if the velocity scale changed by 
approximately 50% during the recording time, which is typically 10 milliseconds. The 
effect is therefore negligible except perhaps at the onset o f systole. A more detailed 
discussion of the effect of non-stationarity is given in appendix D. The mean velocity 
estimated no longer is an 'instantaneous' value but is the average mean velocity during the 
collection of the data segment. It is suggested in appendix D that such 'broadening' does 
not introduce error into the theoretical estimate of mean velocity made from IWMF, but 
does affect the validity of PIWMF in the way described in this chapter.

Summary

Owing to the finite dimensions of the transducer and sample volume the Doppler spectrum 
received from scatterers moving with a unique velocity is in reality broad, and not a spike. 
The extent, and form of this spectaim is also dependent on the angle between the direction 
of motion and the beam. If  this broadened spike has an IWMF, which when combined with 
the assumed Doppler angle gives the correct unique velocity, then for any velocity 
distribution of scatterers in a 'wide' beam the IWMF when used with this angle will give the 
correct mean velocity. However the presence of non-linear terms in the expression for 
PIWMF means that this estimator is affected by any spectral broadening. For a broadening 
function which is symmetric and leaves IWMF unaltered, PIWMF underestimates the value 
found in the absence of broadening by an amount that depends on the velocity profile and 
the nature of the broadening function. The extent of the underestimate is increased if the 
theoretical spectrum becomes more peaked or if the broadening function widens which 
happens if the Doppler angle is increased. The broadening effect is then least when the 
Doppler angle is minimised, which is generally desired anyway. If  velocity profiles 
following (3.1) between plug and parabolic forms are considered then the error is least 
when the flow is parabolic and greatest with plug flow.

The results o f this chapter therefore lend support to the use of a 'wide' beam for mean 
velocity estimation, in preference to a 'thin' beam, as IWMF does not suffer from this 
broadening error.
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Notation for this chapter

a,b parameters defining the idealised broadening functions
Xep a frequency representative of the mean blood velocity
g(a,V) an error incurred by PIWMF due to the extent of broadening defined by the

parameter a and related to the velocity profile V  
V  the function describing the velocity profile
w bandwidth of the Doppler spectrum of a single velocity component
Ô the difference in angle between the bisector of the length subtended by the

transducer and the bisector of the angle subtended by the transducer, i.e. the 
difference between 0  and k  

s  half of the angular extent of the transducer at the target point
K the angle at the target between the direction of motion and the angle

bisector of the transducer 
0  the angle at the target between the direction of motion and the line to the

centre of the transducer 
^  the unique angle that would lead to the correct value of IWMF
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CHAPTER 8 - NOISE IN THE DOPPLER SIGNAL

The effect on IWMF and PIWMF of failures of the assumptions about the beam have been 
studied in the previous three chapters. Another source of corruption of the theoretical 
spectrum is the presence of noise in the Doppler signal. In this chapter the errors incurred 
by IWMF and PIWMF in the presence of additive noise are found and compared. The 
analysis takes no account o f the stochastic nature of the spectral estimates observed in 
practice, but is appropriate for deterministic spectra.

The model studied is that o f a theoretical Doppler signal with a single-sided power 
spectrum of P s i f ) ,  as introduced in chapter 3, contaminated by additive noise with a 

power spectrum of So the power spectrum of the total signal, p { f ) ,  is the sum of

the spectra o f the signal and noise independently, i.e. p { f )  = P s i f )  + PMif)-  The 

symbols S  and A  denote the total powers in the signal and noise respectively, i.e.

S = [ p s { f ) d f

and

Af = ! > » ( / ) #

so that the ratio S / N  can be thought of as a signal to noise ratio (snr).

The effect of noise on IWMF

The result for IWMF is known and can be derived as follows. From (2.10) the IWMF of 

the signal spectrum, , is

-  j ’ / p À / W  
A  y

and the IWMF of the noise spectrum, , is

A  =
N
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The IWMF of the observed spectrum, /  , can then be written as

I ^4 -AT

^  A^(l+ÿ

1 + snr 1 + snr

If  the definition of /  in (2.10), and consequently the above expressions for and , are 
extended to be valid for a double-sided spectrum by moving the lower limit o f integration 
to -00 then the same result is obtained, so that this equation is applicable to both single- and 
double-sided spectra. This equation is also the result o f Gerzberg and Meindl (1977) and 
Gill (1979). The IWMF is therefore a weighted mean of the IWMF values of the signal and 
noise spectra, with the weighting determined by the signal to noise ratio. This equation can 
be expressed as

/ = A + s n r %
1 + snr '

= (ÿ i;-i-sn r''Â f)(l-sn r" ' + sn r" \..)

If  f s  and Âf are of the same order and snr is high (ie. snr »  1 so snr ' »  snr"') then 
terms in snr"' and smaller can be removed to give an approximation for the absolute effect 
of the noise

/ ~ A + s n r  ' ( A - Â ) (8.1a)

The IWMF is seen to be shifted by an amount equal to the signal to noise ratio multiplied 
by the difference in the intensity weighted mean frequencies of the noise and signal spectra. 
The fractional effect is then given by

l + snr
7 /

(8.1b)
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The effect of noise on PIWMF

Low and high frequency noise

Some basic principles about the effect on PIWMF can be established by considering the 
effects o f low- and high-frequency noise. Because low frequencies, attributed to scatterers 
further from the vessel axis, are weighted more in PIWMB than in IWMB, low-frequency 
noise will affect PIWMB more than IWMB. The opposite is true for high-frequency noise. 
These principles, which are clearly valid for PIWMF and IWMF too, can be illustrated 
quantitatively by considering a discrete deterministic theoretical signal spectrum completely 
contained between the Z,'th bin and the H'i\\ bin inclusive, and scaled to have a total power

H
of 1. Therefore =1. The IWMB and PIWMB of this uncorrupted spectrum are

i=L

denoted by and ê^g. From (2. lb) and (2.9b) they are therefore given by

(8.2)

and (8.3)
i = L \  >=1 + 1 J

respectively. If a low-frequency noise component of mean power x  is introduced into the 
a'th bin, where x «  1 and a < L,  giving the situation of fig.S.la, then (2.9b) becomes

^  _ a .F (2  + ^)4-Bgg

(l-kF)'

using (8.3), where the new term in the numerator is the contribution of the a'th bin in the 

main summation. Using (l4-x)"^ = ( l - 2 x  + 3x' discarding terms in x ' and smaller, 

and recognising that the signal to noise ratio is 1/x gives

-  2snr (Agg -  a) (8.4)

Equation (8.1a) for IWMB in this case becomes

(8.5)

so the effect o f the low-frequency noise on PIWMB is of the order o f twice as much as the 
effect on IWMB, and is negative as is expected.
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power p. power p.

a L H
bin number /

L H a
bin number i

(a) (b)

Fig.8.1 - examples of noise below and above a signal spectrum

Similarly if a high frequency noise component of power x  is introduced into the a'th bin, 
where a > H ,  giving the situation of fig.8.Ib, then (2,9b) becomes

Br
Agg 4 - ^ y ,  .2x+a.jc '

using (8.3). Again terms in x'  = snr '  and smaller are discarded to give

+ 2snr ' (8.6)

using (8.2). From (2.12) B^g > B^g , so the high frequency noise raises PIWMB as would 

be expected. The frequency a  of the noise would appear only in terms in snr "' and smaller 
so that when compared with (8.5), which again is appropriate for IWMB, it is seen that 
very high frequency noise affects PIWMB less than IWMB. The effect on PIWMB is 

linked more to the difference between iî^g and è^g , which increases with a greater low- 

frequency emphasis in the signal spectrum, than to the location, a, of the high frequency 
noise.

Figs 8.1a and 8.1b represent simple extreme cases, and show that noise of a frequency 
below the signal has of the order of twice the effect on PIWMF as on IWMF, and noise of 
a frequency above the signal tends to have less effect on PIWMF than on IWMF. In the 
typical case where the signal and noise bands overlap, e.g. in the case of the white noise 
discussed in the next section, the effect on PIWMF for a given signal to noise ratio will be 
between the above extremes.
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White noise and theoretical spectra

A  situation of interest is where the noise is white (i.e. o f uniform power density) up to a 
maximum frequency, say f ,  which might for example be the Nyquist limit corresponding to 
the highest bin. To facilitate analysis the signal is assumed to correspond to a velocity 
profile following (3.1). The corresponding theoretical spectrum normalised to have total 
power of 1 has been derived as equation (3.4), which is restated here.

£  
A  I '  A

(8.7)

For the 'wide' beam t = I jn  and for the 'thin' beam t = Xjn . For such a spectrum the 

IWMF, f s  , and the PIWMF, fg  , have been found to be

and

f s

f s

r + 1

A  
2 / +  1

(8.8)

(8.9)

which are equations (3.5) and (3 .6) restated. An example of the relationship o f the signal 
and noise bands is given in fig.8.2. The signal spectrum is given by the dotted line and is 
that for r = 0.5. In this case it occupies approximately 70% of the noise band, the spectrum 
of which is given by the dashed line.

pow er p ^ f /)  ^ ( / )

t =  0 . 5

frequency /

Fig.8.2 - a theoretical spectrum with r=0.5 (dotted line) 
in relation to white noise (dashed line)



From (2.11) the PIWMF for the signal alone, fg  , would be
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f s (8.10)

the PIWMF for the noise alone, £  , would be

A AT'
(8 .11)

and the PIWMF for the total signal is

The total signal is divided into its components, and regions of integration where the signal 
is zero are ignored. So this last equation can be rewritten as

(^4-Ary

+ j ^ / P v 7 )  Pv

# (8 .12)

The first line of the right hand side can be seen from (8.10) to be equal to -^S^fg and the 

third line, from (8.11), to be equal to . The more difficult terms are the 'cross-

integral' terms making up the second line. For a signal with total power S  the spectrum of
(8.7), which has unit power, is multiplied by S. The noise spectrum is a constant, between 

0 andX , given by p ^ ( / )  = N / f  , so that the second line is given by

second line j U  ~ f ) d f  + ^ du
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It is usefiil to define the proportion of the noise band occupied by the signal as m, i.e. 

jn = £ ^ .  The integrations are performed by making the substitutions x = and

y  = 1 -  . Using (8.8) gives the result

second line = SN\ 1 A
m

(8.13)

The derivation of this result is given in appendix F. Substituting for the three lines of the 
right hand side of (8.12) gives

Therefore

2 1

which simply becomes

/  =
y^4-2snr-| 1 - — lA+snr" A

(l4-snr

Furthermore again ignoring terms in snr '  gives the approximation for the absolute effect 
o f the noise

/»yg-k2snr | I ^ -y :;:^ |A -A (8.14a)

This reduces to the form of (8.6) for a continuous spectrum when m is small, which is as 
expected as this corresponds to a noise spectrum effectively of frequencies all higher than 
the signal. The fractional effect of the noise is therefore given by

/ " " A l4-2snr (8.14b)
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Comparison of noise immunity

The most useful comparison between the effects o f white noise on IWMF and PIWMF for 
such spectra is made by considering (8.1) and (8.14). These equations are appropriate if 
the signal to noise ratio is high enough so that terms in snr"' can be ignored. We consider 
the fractional effects, called ^ iwmf , which are the second terms in the square
brackets o f (8. lb) and (8.14b) respectively. That is

îwMF "  snr ' -  l l  and A>iwmf 2snr ' f  1 -  -—- 1 ^ - 1

Making use of the fact that equations (8.8) and (8.9) are valid for any scale factor S, and 

-  f  f
also the obvious fact that A  = —  5  —  , leads to

2 2/w

and E p , w M F ' « 2 s n r - j h - - y ^ V l - H y ^ |- l

These fractional effects are plotted in fig. 8.3 for the uniform spectrum given by t = 1 (solid 
lines), the spectrum of fig.8.2 given by t = 0.5 (dotted lines) and the spike spectrum given 
by r = 0 (dashed lines). It is noted that m is bound between 0 and 1. Also, for flows 
between plug and parabolic, t is bound between 0 and 1 for a 'wide' beam and between 0 
and 0.5 for a 'thin' beam.

A number of conclusions can be drawn from these equations and fig.8.3. Firstly, if the snr 
is large, so that we are justified in ignoring terms in snr"' and smaller, the fractional effect 
o f the noise on each estimator can be regarded as being proportional to snr"'. Secondly 
the magnitude of the effect on PIWMF is less than or equal to snr " ' . Thirdly for IWMF, 
because curves A, B and C are asymptotic to the y-axis at m «  0, there is no limit to the 
effect of the noise as the signal frequency band becomes lower relative to the noise. The 
worst negative effect is -5 0  x snr"' % when the spectrum is a spike at the maximum noise 

frequency.

The effects on IWMF and PIWMF may be compared in two ways. Firstly the comparison 
may be made for a given spectrum, defined by t. This might be appropriate if the width of 
the beam is fixed and is such that neither IWMF nor PIWMF is obviously superior. In 
these cases the spectrum will generally not follow (8.7). In particular it is unlikely to be 
nearly uniform because, when the beamwidth is less than the diameter o f the vessel, a 
uniform spectrum implies that n < l .  However, such comparison of curves A and D shows
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that for a uniform spectrum the fractional effect on PIWMF is less than or equal to the 
effect on IWMF. Comparison of curves C and F shows that for a spike spectrum the 
modulus of the fractional effect on PIWMF is less in magnitude than the effect on IWMF 
only if the spike is at a frequency less than approximately 0.35 of the highest noise 
frequency, i.e. m <«  0.35. The point of equal error magnitude is marked on fig.8.3.

fractional effect

3 snr'

2 snr'

Isnr -1

-Isnr -1

_ A A  - IWMF ( = 1 (parabolic)
\  B - IWMF t =0 .5

\  C - IWMF t = 0 (spike)
\  D - PIWMF r =  1

E - PIWMF f = 0 .5 (parabolic)
F - PIWMF t  = 0 (spike)

_ c
D
E

F

2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

fraction of noise band occupied by signal m

Fig.8.3 - fractional errors in the estimators IW M F and PIW M F 
for white noise and three theoretical spectra

Secondly a comparison can be made for a given velocity profile, defined by n, where it is 
assumed that IWMF is used when the beam is 'wide' so that t = 2/w , and PIWMF is used 
when the beam can be thought of as 'thin' so that t = \/n . As the estimators are being used 

with the beams for which, other factors allowing, they are accurate the 'effect' of the noise, 
plotted and described above, can be thought of as the 'error'. For parabolic flow w = 2 and 
curve A is compared with curve E This shows that the magnitude of the fractional error in 
PIWMF is less than in IWMF when the highest signal frequency is less than approximately
0.8 of the highest noise frequency, i.e. m <« 0.8. Again the point o f equal error size is 
marked on fig.8.3. For plug flow both beams give a spike spectrum and curves C and F are 
again to be compared.

These results support the previous observations that high-frequency noise tends to have 
less effect on PIWMF than on IWMF, and that low-frequency noise has more effect on 
PIWMF than on IWMF.
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Summary

Comparison between the effects of noise on IWMF and PIWMF can firstly be made for a 
given Doppler spectrum, which might be appropriate for a beam falling between the ideals 
o f being of'wide' or 'thin'. In this case, as shown in chapter 5, neither estimator is accurate, 
and the effect of the noise is to alter the actual error in the mean velocity estimate. 
Secondly comparison can be made for a given velocity profile. If  each estimator is then 
used with its appropriate beam, so that, other factors aside, each is accurate, then the 
effects of the noise described here are the errors in the velocity estimates.

The basic principle affecting a comparison is the notion that for a given signal spectrum 
high-frequency perturbations tend to have less effect on PIWMF than on IWMF, but low- 
frequency perturbations have more effect. This is because high frequencies are interpreted 
by PIWMF as originating from scatterers nearer the centre of the vessel, (i.e. coming from 
radial positions contributing proportionately less to the cross-sectional area,) and low 
frequencies are interpreted as originating from nearer the vessel walls.

If  the signal to noise ratio is large the errors in each estimator are approximately 
proportional to the inverse of this ratio. PIWMF is affected to the order of twice as much 
as IWMF by perturbations in a given spectrum at frequencies below the minimum signal 
frequency, but tends to be affected less than IWMF by perturbations above the highest 
frequency. With white noise, a theoretical spectmm derived from the family of velocity 
profiles defined by (3.1), and a large signal to noise ratio, the modulus of the fractional 
effect on PIWMF is less than the inverse of the signal to noise ratio. There is no bound on 
the possible fractional increase in IWMF caused by the noise, but the greatest fractional 
decrease possible is half the inverse of the signal to noise ratio.

Notation for this chapter

a  bin number of an idealised noise component

^Ds , ̂ Ds IWMB and PIWMB of the deterministic signal in the absence of noise
/g upper limit of white noise band

, /jv IWMF and PIWMF of noise spectrum

H  the index of the highest frequency bin with non-zero spectral power
L  the index of the lowest frequency bin with non-zero spectral power
m ratio of maximum signal frequency to maximum noise frequency
N  total noise power
p j f )  power spectrum of noise
S  total power in signal
snr signal to noise ratio
X  mean power of an idealised noise component
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CHAPTER 9 - HIGH-PASS FILTERING OF THE DOPPLER 
SIGNAL

For both 'wide' and 'thin' beams the sample volume needs to be sufficiently long to insonate 
the scatterers adjacent to the vessel walls. A consequence of this is that added to the 
scattered signal from the blood are echoes from the relatively highly reflective, slowly 
moving vessel walls. If a high-pass filter was not applied this would cause an unwanted, 
high-amplitude low-frequency component in the Doppler signal. The removal o f this 
unwanted component means however that the low-frequency components o f the Doppler 
spectrum from the flowing blood are also removed. Intuitively this results in 
overestimation of the representative frequency of the Doppler spectrum and consequent 
overestimation of the mean blood velocity. The quantitative effect of such filtering on both 
IWMF and PIWMF can be found if the velocity profile and filter characteristics are 
idealised. In this chapter the familiar velocity profiles given by (3.1) are used to derive 
expressions for the errors in IWMF and PIWMF with the ideal high-pass, i.e. brick wall,
filter. This is implied to be the form of the filter leading to the greatest errors. Also the
effects o f a gradual ramp-shaped filter are discussed.

For a profile o f (3.1) the equations (3.4), (3.5) and (3.6) relevant to the corresponding 
normalised theoretical spectrum are restated. The spectrum is

where for the 'wide' beam t = I jn  and for the 'thin' beam t = \jn. The IWMF is

7 . = - 4 t  (92)/  +  1
and the PIWMF is

7 . = ^  (9.3)

These equations therefore define the 'correct' values of IWMF and PIWMF, i.e. the values 
that would be observed if there was no low-frequency component from the wall motion and 
no filter was applied.

Ideal high-pass filter model

The filter model chosen defines the response to be zero below a cut-off (brick wall) 
frequency,^, and uniform above this frequency at least to above the maximum frequency in 
the signal, / „ .  This step function is an ideal high-pass filter, and was used, in effect, by
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Gill (1979) for the case where a 'wide' beam is assumed. Gill considered velocity profiles 
given by (3.1) which, as seen above, give rise to normalised Doppler spectra, according to 
(9.1). An example of the filter transfer function, in relation to such a spectrum, is given by 
the solid line of fig.9.1.

1

0.5

filter
re sp o n se

sig n al
sp e c tru m

I t h

4
freq uency /

Fig.9.1 - an ideal high-pass filter (solid line) and a corresponding Vamp' 
filter (dashed line) in relation to a spectrum following equation (9.1)

The spectrum after filtering is given by (9.1) for frequencies greater than^J,, and is zero 
b e l o w T h e  relationship of the filter to the theoretical spectrum is characterised by the 
ratio o f the cut-off frequency to the highest signal frequency. This ratio is denoted by b,

i.e. 6 m A / / .

The effect on IWMF

The IWMF of the signal is defined by (2.10) and in the absence of the filter is Â  • The 

IWMF after the filtering is the observed value / .  If the unfiltered spectrum follows (9.1) 
then this IWMF is given by

/  =
A I  / A d f

A | — + —  "'v + i r + i

d f

(9 .4)

The derivation of this result is given in appendix F.
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Using (9.2) gives for the multiplicative effect of the filter

/ = / , ( ! + < * )

and using the definition of b gives for the additive effect of the filter

(9.5a)

/  = A + A / + i
(9.5b)

The effect o f the filter, for a given value of i, is to introduce a positive fixed absolute offset 
to the IWMF. This is true with any value of the maximum frequency , provided / „  > A  
o f course. Using the forms of equations (9.1), (9.2) and (9.5b) for uniform insonation (i.e. 
where /  = 2/» ) Gill reached the same conclusion about the effect o f this filter on the 
intensity weighted mean frequency.

The effect on PIWMF

The PIWMF is defined by (2.11) and in the absence of a filter is Â  

PIWMF is / .  So if the unfiltered spectrum follows (9 .1) this PIWMF is

The observed

/

f .

A //.J du d f

I 2/6
2 / +1  2 / + 1

(9.6)

The derivation of this result also is given in appendix F. The correct PIWMF is given by
(9.3) so that the multiplicative effect of the filter is

/  = Â (l-k2/6) (9.7a)

and using the definition of 6 gives the additive effect

/ = A + A 2 /

2 / + 1
(9.7b)
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As with IWMF, for a given value of i, the filter produces a fixed offset to the measured 
frequency estimator.

Comparison of immunity to filtering

As with the effects of noise discussed in the previous chapter, the comparison of the effects 
o f filtering on IWMF and PIWMF can either be made for a given spectrum, or for a given 
profile with the appropriate beams assumed.

(i) comparison fo r  the same spectrum

If  the comparison is made for a given spectrum, defined by t, then (9.5a) and (9.7a) show 
that the fractional effect of a filter on PIWMF is twice the effect on IWMF. From (9.5b)

2/4-2
and (9.7b) the absolute effect on PIWMF is a factor of -------  times as large as the effect

2 / 4 - 1

on IWMF. Therefore when applied to a common signal PIWMF is affected more by the 
ideal high-pass filter than IWMF. The results for a uniform spectrum are found by putting 
/ = 1. Putting / = 0 gives the trivial case of a spectrum which is a spike at /  = /„, , and the 

spectrum and the estimators are unaffected by the filter.

(ii) comparison fo r  the same profile

If  the comparison is made for a given velocity profile, and IWMF is used with a 'wide' 
beam, i.e. t s  2/« , and PIWMF with a 'thin' beam, i.e. / ' \jn  , then (9.5a) and (9.7a)

become / =  Â ^ l  + — j  and f  = + — j  • Thus the fractional effect of the filter is the

same on both estimators. Also with these appropriate beams the 'mean' frequencies, 

f s  and f s , given by (9.2) and (9.3), must be equal. So the absolute effects of the filter are 

also equal. This can alternatively be seen by noting that (9.5b) and (9.7b) become

7  = Â  + A I I and 7  = f s  + /fe| —̂  Therefore, when applied to signals derived
\ 2 - \ - n j  \ 2  +  n j

from beams for which they are appropriate, IWMF and PIWMF are affected equally by the
simple high-pass filter described. This is a sensible conclusion as perfect removal of low
frequencies corresponds to ignoring the scatterers further than a particular distance from
the vessel axis. In effect the estimators after the filtering both provide correct measures of
the mean velocity through this reduced but still circular cross section, with a truncated but
still monotonie profile, and so they will be equal. For a parabolic velocity profile the results
are found by putting n = 2. For plug flow « =  oo, the spectrum is a spike as above, and the
error due to the filter is zero.
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D is c u s s io n

For both estimators the fractional effect of such a filter is proportional to b which is the 
ratio of the cut-off frequency A  to the maximum frequency in the Doppler spectrum, A  • 
The maximum frequency is representative of the velocity scale so the fractional effect o f the 
filter is smaller at peak systole and greater during diastole, as might be expected. The 
absolute effect in both cases is proportional to the filter cut-off frequency, and is not 
dependent on the maximum signal frequency. As is intuitive, in every case the effect o f the 
filter is to produce an overestimate of mean blood velocity.

I f  the filter is adjustable the error will be minimised when A is equal to (i.e. just above) the 
highest frequency in the unwanted high-amplitude signal component. If  we assume this 
component is due entirely to motion of the vessel walls perpendicular to the vessel axis 
then, given knowledge of the maximum speed of the vessel wall, denoted by , this 
minimum filter frequency can be found. Using the Doppler equation (1.2) the minimum 

filter frequency, A_^ , can be seen to be

^ (9.8)

where sin 6  replaces the normal cosO as the vessel wall motion is perpendicular to the 
vessel axis. So another advantage of reducing the Doppler angle becomes evident, as with 
a smaller angle the filter frequency required is also reduced. Applying the Doppler 
equation to calculate /„, from v,„, i.e.

. 2 F v „co s^
 =------

leads to an expression for the lowest possible value of b, which is

tan^

If  the filter is adjustable the fractional error incurred is therefore proportional to the tangent 
of the Doppler angle.

It is implied in the previous chapter in equations (8.4) and (8.5) that fractionally PIWMF is 
approximately twice as sensitive as IWMF to additive noise of near-zero frequency. By 
implication this is true also for a subtractive effect. So it is not surprising that when 
comparing results for a given spectrum the factor 2 appears in the relative sizes o f the 
fractional effects on PIWMF and IWMF with the ideal high-pass filter, which is an example 
of a perturbation in the spectrum affecting only the lower frequencies.
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Other results in the previous chapter, i.e. comparison of (8.6) and (8.5), and fig.8.3, 
indicate that as the frequency of the perturbation becomes higher relative to the signal band 
the relative effect on PIWMF with respect to the effect on IWMF decreases, eventually 
becoming less than 1. So a filter without the sharp step at a well-defined frequency, 
because it would attenuate some higher frequencies partially without attenuating lower 
frequencies completely, would cause a fractional effect on PIWMF less than twice the 
fractional effect on IWMF. Therefore, for a given spectrum, if this measure of relative 
performance of PIWMF to IWMF is used, the ideal high-pass filter form gives the most 
unfavourable results.

Ramp Filter

A simple example of a filter without the step is the 'ramp' filter given by the dashed line in 
fig.9.1. This ramp is based around the same frequency f  . After the ideal high-pass filter 
this would be the first approximation to an actual filter characteristic. For a ramp with an 
extent, 2h, which is small, the ramp filter performs like the ideal filter already described. 
Furthermore as h increases the ramp becomes more horizontal until in the absurd limit it 
would be uniform with a value of 0.5, in which case it is obvious that both IWMF and 
PIWMF would be unaffected. Because it is intuitive that the effect of the filter on each 
estimator is monotonie decreasing with increasing h it follows that the effect on IWMF or 
PIWMF is greatest when the filter is of the ideal high-pass form.

Summary

When applied to a given spectrum a high-pass filter affects PIWMF more than IWMF 
because it alters the low frequency content of the signal, which with PIWMF is weighted 
more heavily. For a velocity profile following (3.1), the ratio of the fractional effect on 
PIWMF to that on IWMF is at its maximum value of 2 when the filter is of the ideal high- 
pass form, i.e. when the response is a step function. However if the estimators are each 
applied to beams for which they are accurate then, for a given velocity profile, the same 
ideal high-pass filter causes the same error in each estimator.

If, in the place of an ideal high-pass filter, a ramp filter is used, with the ramp positioned to
extend equally either side of the position of the response step, both estimators incur less 
error. By implication the ideal high-pass is the form of the filter leading to the greatest 
errors.

Notation for this chapter

b ratio of cut-off frequency of ideal filter to maximum frequency in signal
A  cut-off frequency in ideal high-pass (step) filter
h o half the frequency width of the ramp in 'ramp' filter
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CHAPTER 10 - BIAS AND VARIANCE IN THE MEAN 
VELOCITY ESTIMATES

Estimation of mean blood velocity is based on the principle that, for a fixed incident 
intensity, the expected power of the Doppler signal in the i'th bin, p, , is proportional to the 
number of scatterers in the sample volume with velocities in the corresponding range. In 
the actual case the stochastic nature of the signal dictates that the observed results of 
spectra! analysis are random estimates, p , , of these values, with these random values 
being dependent on the spatial distribution of the relevant scatterers. An example of a 
deterministic, i.e. expected, spectrum and a stochastic equivalent are given in fig. 10.1.

deterministic spectrum 

power p.

stochastic spectrum 

power p.

IMAX IM A X

bin number i bin number i

Fig.10.1 - examples of deterministic and stochastic spectra

So another source of error in mean velocity measurement is found in the random nature of 
the Doppler signal, which can be thought of as non-white noise. The spectral power 
estimates, p , , are random quantities, so that the mean velocity estimates themselves are 
random variables. This chapter presents a theoretical and computational analysis o f the 
associated bias and variance in IWMB and PIWMB.

Definition of IWMB

The IWMB if there was no randomness in the Doppler signal is the deterministic value 5^ 
given by

Br
I ' A
*=0
IMAX

U p ,

(10.1)



10-2

but the observed IWMB, B , is

Z ' p .
( 10.2)

Z p ,

These equations have already been introduced as (2.1a) and (2.1b). By definition p, is an 

unbiased estimator of p, , i.e. p, = B [p ,]  where £ [  ] is the expectation operator. 

Therefore, being linear, the numerator and denominator of (10.2) are unbiased random 
estimates o f the numerator and denominator of (10.1). However this is not necessarily so 
for the quotient. So in addition to the obvious non-zero variance the possibility remains 
that the mean velocity estimate found from (10.2) has non-zero bias.

Some work has previously been performed to investigate the statistical properties of 
estimators used for 'wide' beam mean velocity estimation. Gerzberg and Meindl (1980) 
gave an expression for the variance of the (intensity weighted) mean frequency by 
expressing both the numerator and denominator in terms of their mean values and fractional 
deviations. To evaluate this generally the covariance of the numerator and denominator 
needs to be known. This was reduced to a more simple form if the numerator and 
denominator were uncorrelated, which is not expected because both numerator and 
denominator are derived from the same spectral estimates, or if the estimator was unbiased. 
Angelsen (1981) obtained the variance of (intensity weighted) mean frequency estimators 
derived without complete spectral analysis, and found that the variability o f the estimators 
was inversely related to the duration of the signal analysed, and that the relative uncertainty 
in the mean frequency estimate was approximately inversely proportional to the square root 
o f the true mean frequency.

Definition of PIWMB

The deterministic form of PIWMB is appropriate for a 'thin' beam. It is denoted by %  and 

is defined by

MAX f  IMAX \

Z / Â  S 2 A + Â
i=0 \  y=:/ + l J

Z p .
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The observed form of PIWMB is the statistic B  which is

IMAX

Z p .

-  i  (10 .4)

These equations have previously been seen as (2.9a) and (2.9b).

Distribution of the spectral estimates

To find the bias and variance of these mean velocity statistics, B  and È, the distributions of 
the spectral power estimates, p , , need to be known.

The nature o f  the signal

The Doppler signal can be regarded as a Gaussian random process (Angelsen 1980) 
(Mo and Cobbold 1992) which is band-limited, i.e. non-white Gaussian 'noise'. This 
follows from noting the uniformly random phases of the signals from a large number of 
uncorrelated 'scatterers' randomly distributed in the same small target area, and considering 
the superposition of these contributions. This is appropriate for several different models 
proposed for the scattering from blood. An early model was to treat the individual 
scatterers as being independently distributed red blood cells. In this context the work of 
Brody (1972) has been cited. A more advanced model, taking into account 
interdependence of the cell positions that was known to exist, was given by Angelsen 
(1980) who treated the independent scatterers as being fluctuations in cell concentration in 
a continuous medium of blood. Mo and Cobbold (1986a) regarded the scatterers as being 
groups of blood particles with random sizes, and positions.

The nature o f  the estimates

In the simple case where a rectangular data window is applied to the sampled continuous 
Doppler signal, the spectral estimates are equally spaced ordinates of the periodogram, 
which is the squared modulus of the Fourier transform of the data. For a Gaussian white 
noise signal these estimates are uncorrelated, and except for those in the highest and lowest 
frequency bins, each such estimate has a variance equal to the square of its mean value, if 
there is a typically large number of points in the data segment. These results for Gaussian 
white noise hold approximately for non-white Gaussian signals, and quantitatively for a 
rather wide variety of signals following other distributions (Oppenheim and Schafer 1975). 
A more complete treatment (Priestley 1981) gives the result that for a zero-mean purely
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random Gaussian process (i.e. Gaussian white noise) the estimates, other than for the 
highest and lowest bins, are independently distributed and follow the form of the ^  

distribution with 2 degrees of freedom (2d.f), and each has a variance equal to the square 
o f its mean. For the extreme bins, corresponding to the constant component and the 
frequency component at the Nyquist frequency, the means are unchanged but the variance 
is doubled, and the distribution follows (Id.f).

Therefore, although the Doppler, signals modelled are non-white noise, for the purposes 
below all the spectral estimates p, are assumed to be independent and distributed such that

the statistic 2/?./^, follows the ^  distribution (2d.f), or p  ̂ = ^p . x l  ■ Both the mean and 

the standard deviation of /?, are equal to p, . As there are ideally a large number of bins 

the different distributions of the estimates of the extreme bins mentioned above can be 
ignored. Under these assumptions it is possible to find the biases and variances of IWMB 
and PIWMB.

The probability density function of the ^  (2d.f.) distribution, denoted by g(x), is an 

extremely simple exponential function, being = for %>0.  The power in a 

spectral component being distributed in this way is equivalent to the amplitude of the 
component following what is known as the Rayleigh distribution.

Further justification o f  the statistical model

This description of the distribution of the spectral estimates is supported by the results of 
Mo and Cobbold (1992). Earlier Mo and Cobbold (1986b) gave a theoretical basis for the 
modelling of a Doppler signal from the summation of closely spaced sinusoidal components 
with powers following such a ^  (2d.f.) distribution, and with random phases. They also 
estimated the power spectral density function (equivalent to the p, values) at peak systole 

from actual signals, and then synthesised Doppler signals which appeared similar in both 
the time and frequency domains to actual Doppler signals at peak systole.

The central limit theorem and the large number of contributions from independent 
scatterers to the Doppler signal suggest that the Gaussian distribution for the Doppler 
signal is theoretically appropriate (Mo and Cobbold 1986b). Anyway, because the spectral 
estimates from the Fourier analysis, /?, , are based on linear combinations of the signal 
values, departures from a Gaussian distribution will have little effect on the distribution of 
the spectral estimates when the number of sample points is large.

When the number of bins making significant contributions to (10.2) is large (say >50) the 

assumption of the %^(2d.f.) form  of the underlying distribution of these spectral estimates
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becomes unnecessary. In this case only the mean and variance of the /?, values need to be 
known as with a large number of independent bins both numerator and denominator of 
(10.2) are approximately normally distributed. It is suggested that the same principle holds 
for (10.4) also.

Velocity profiles and Doppler spectra

Again use is made of the standard family of monotonie, axi-symmetric velocity profiles 
given by (3.1). If  there is no spectral broadening the frequency spectrum mirrors the 

velocity distribution, and the corresponding Doppler power spectrum, P s ( f ) ,  is given by

(3.4) which is

= (10.5)

and zero elsewhere, where t = 2/n when the beam is 'wide' and t = l/n  when the beam is 
'thin'.

The following sections give derivations of the biases and variances in the two estimators in 
the mathematically attractive case where t = 1 and so the expected spectrum is uniform. 
For a 'wide' beam this spectrum corresponds to the useful parabolic velocity profile, i.e. 
M = 2, but for a 'thin' beam this corresponds to the less realistic case of the triangular profile 
given by « = 1. When t = 0, the flow is of the plug form for both 'wide' and 'thin' beams, 
and the spectrum is a delta function, so that all the spectral power resides in one bin. 
Therefore for plug flow the biases will be less than the bin quantization error and the 
variances will be zero. Results for the more complex intermediate spectra where 0 < t < 1 
required the computational approach described later.

Bias in IWMB

For any symmetric mean spectrum, and hence for a uniform mean spectrum, the bias in 
IWMB is zero. This can be inferred by noting that (10.2) is linear in both numerator and 
denominator, and the spectrum is symmetric about the deterministic IWMB. So the 
spectrum could be translated along the frequency axis to set the deterministic IWMB to 
zero without altering the absolute bias, which by symmetry must then be zero. For the 
uniform mean spectrum a more mathematical derivation of this result is given in 
appendix E.
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Bias in PIWMB

To find the bias in PIWMB we make use of the fact that the spectrum can be scaled so that 
the total mean power in the signal is I, without altering any representative frequency. If 
the signal occupies M  of the available IMAX bins, (so M  = H  + \ where H  is the index of 
the highest bin with non-zero power as in chapter 1,) and if each bin estimate p, is thought

o f as being its mean value p, plus a deviation, e ,, then, using = l - 2 x  + 3x^

equation (10.4) gives

B

M-\ . V

y=i+l

M-l ( M-\
H 'p .
f = 0

M-l

j~ i  + \

Af-I

>=»+!

which is true for all spectra. The first of the four terms of the second factor is recognised 

from (10.3) as For simplicity in the following description the other terms in this 
equation are relabelled, in the order in which they appear, to give

(10.6)

By definition ] = 0 , and as the p̂  values are independent = 0 if / Here and

elsewhere in this chapter use is made of these equalities and the equalities

( M - l ) M

Also in the case o f the uniform spectrum, p ^ = \jM  and £[e,^l = var/r, = l/Af^ ,

according to the statistical model. Furthermore considering the third moment o f the 
distribution leads to a result proven in appendix E, namely

= 2p^  = 2/  .
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These give

£[ûf,] = £ ■3ME[ef]
M

K - Y J P , 2 Z P / + A
y=i+i

M - \  %

I ' M
2  M  —  1 —  2 /

1
A/:

M

AW

1 ^ ( M - l ) M ( 2 M - l )
 2   -----------

( M - l ) ( 2 M - l )

6M

3 2 ^ & W

E[;g,] = E 2 % ^ ,  4-A
1=0 y y=ï+i

E \ p , ] = E Z 'A  2
f=0 y y=f+l yj

£ [ A ] = £
M - \

z « . 2 : [ x + f ,
I  /w + i  / _



10-8

£ [ o ,A ]  = £ 2 Z f , + A
1=0 1=0 y j=i+l

2

2 M - 1 - 2 /

A /-1  M - l

M

( M - l ) ( 2 M - l )

3M"

0 1=0

Also, as analysis given in appendix F shows.

A /—1 A /—1 f  A /—1

2Ẑ , Z'A 2Ẑ ,+", 
^0 3Af:

The expansion of a,/?j includes terms of the form e,ê Cj. where / # j  ^ k ,  and terms of the 

form efcj where i ¥= J, which both have zero expectation. The only other terms are of the 

form ef , so

_ 2 ( M - l )

The expectations of terms not evaluated in the expansion of (10.6) e.g.

and E\oL2Pi\ are of the order of M  ' or smaller. The dominant term, , is of the order

o f M ’, and the only terms of the order of M° are B^ x E [ a j \  - E [ a ,^ ,]  and

-É[a^P2\- Using these terms only in the expectation of (10.6) gives, correct to terms of 
order Af°,

e [b ] » + ( 4  X £[a, ]) + £[/;,] -  E [ a A  ] ~ £[«,A]

The bias is therefore of order M° and is

bias «  ( 4  X £ [ a ,  ]) + £ [ / ? , ] - £ [ « , / ? , ] - £ [
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Considering only the contributions to these terms of the order o f gives

r M  3 \  2 M '  1bias » —  X —  4----------------  — = —
I  3 M j  2 M  3 M ' 3M " 6

So

4 b ] » 4 + 1

Thus the expected value of PIWMB is larger than the true value by the small amount of 
approximately 1/6 of a bin unit. It follows that the relative bias in PIWMB correct to terms 
in M  ' is

4 4 - 4

and this is also the relative bias in the mean velocity estimate. So the mean velocity 
estimate from PIWMB for the uniform spectrum is asymptotically unbiased for large M  
As an example, with a signal occupying 50 bins the bias is 1%.

Variance of IWMB

To derive the variance of IWMB the spectrum is again scaled to have a total mean power 
of 1, and we again define = p, +e. . The numerator of (10.2) can be regarded as 

being made up of its expected value, which is seen to be the deterministic IWMB value

  M - l  M - l

Bjj = ^ i P i  , plus a deviation defined by AC = ^^/e, . The denominator can be regarded

M - l
as being its expected value, i.e. 1, plus deviation defined by AD = Therefore

14-AD

= (^0 4-AC)(l — A/0 4-( A/O) —..

;« % 4 -A C -5 o A D )

where terms of the second order in the deviations AC or AD have been ignored. So the 
variance of B  is

var B œ var A C -f var A D -2 E o C 0 v [A C ,A D ] (10.10)
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This result is applicable to all spectra. For the uniform spectrum = ( M - l ) / 2  and, 

making use o f the equalities stated earlier, the variance terms simplify to

var AC = var
NO

M - l

= var

,  M - l

( M - l ) ( 2 M - l )
6M

M - l

var AD = var
0

]^vare ,

As AC and AD are deviations with zero mean 

cov[AC,AD] = E[ACAD]

= E  

= E

M —1 M —1 

L 0 0

1 M ( M - l )  
"  '  2 

( M - l )
2 M

Making these substitutions in (10.10) gives

_  ( M - l ) ( 2 M - l )  ( M - l ) '  1
var B  * ---------------------  + --------------------

6M  4 M

and keeping only the terms in M ' as M  »  1 gives

K4 — 1 A/ — 1
" 2  2Â7"

^  M  M  M  M  
3 4 2 12
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In relative terms the variability of IWMB is best expressed as a ratio o f standard deviation 
to expected value. This measure of fractional variability is called the 'relative uncertainty' 
(r.u.). The statistic B  is unbiased so, under the approximation to terms in M ',

and the r.u. is

VvarE T2
E[B\ M / ( 10.12)

If  the same approximations are made, (10.12) is in agreement with the result derived from 
the expression of Gerzberg and Meindl (1980) where the estimator is unbiased. Also asM  
is proportional to the frequency scale of the spectrum this is in agreement with Angelsen's 
result (1981) that the r.u. is approximately inversely proportional to the square root o f the 
mean frequency.

Variance of PIWMB

Derivation of the variability of PIWMB using the same technique as used above for IWMB 
is difficult. However a less rigorous approach can be used. Scaling the spectrum again to 
have a total power of 1, we consider the effect on (10.3) of a variation in a single spectral 
estimate, say in the Æ'th bin, of -fĉ . . The observed statistic becomes

(10.13)

A derivation of this equation is given in appendix F. The first term in the numerator is the 

deterministic value Êg. The second is the added effect on the numerator of (10.3) 

corresponding to the bins below k in the main summation, and the third is the added effect 
corresponding to the Ar'th bin. The contributions from bins above k are unaffected. In the 
statistical model described above is of the order of p,̂  . So if the number of bins M  is 
large enough and the spectrum smooth enough «  1. The division is alternatively
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multiplication by ( l+ e * )  ' = ( l - 2 e *  + 3 e * So approximating by neglecting terms in

and smaller leads to

B  w Bn + 2e.
t-l

NO

Therefore the mean square error (mse) caused by this variation e* is the mean square o f the 
second term, i.e.

k - \ (  M - l  ^ ■
mse = 4 T pA_f=0 k /=* J

In this statistical model var/)j, = so as is small the mean square error

caused by g* is small. Therefore, as the spectral estimates are independent, an 

approximation to the total mean squared error (tmse) if there was a variation in every bin is 
simply the sum of the small mean square errors due to variations in individual bins. That is

M - l ( k ~\ f A/-1 ^ - 2 \

tmse »  4 ^ A ' Z 'A  +  t - B i2

\ NO I /= *  J - /

which is valid for all spectra. If again the mean spectrum is uniform, so that p̂ , = 1/M and 

M  1 1
from above

3 2 6M
, this becomes

4

M : 6

A

—  T
M : 6

1 A / M  1 1—  y I ------ > 1 — -----------------
M  6  M  6  I  3 2 6 M

A: . A:' M l  1
2 M  2 M  3 2 6M
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As A: is o f the order of M ' the 2nd 3rd and 4'th terms in the bracket are the largest, being 
of the order of M '. Retaining these and squaring gives terms in h F  , i.e.

4

4

4

^ A' M  
2M  3

Ar" 2AM t ' '  A:' M '
M  3 4M^ 3 9

A /-1  A M - l

k~ 0  k=0 4 M '

If the previous summation identities, and the further identities

^ x  + l)' %(% + l)(2jc + l)(3% '+ 3 jr-l)
30

are written as

h = l ... 4

which is correct to the highest order, then the terms in the square bracket all become 
proportional to M ' and

tmse
M '

M ' M M '  4M " M" M"
9 3 ^ 9  4 M "^ 2 0 M '

4 M
45

Furthermore the mean square error is the sum of the variance and the squared bias. From 
above, the order of the squared bias in È is only M°. Therefore for the uniform spectrum, 
correct to terms in M ',

var B I 4M
45

(10.14)

This is only marginally more than the variance of M/12 for B  with the uniform spectrum, 

given by (10.11). The r.u. of PIWMB is then

I A [,V var E  y 4M /
^45

E g M / (10.15)
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which is larger than the r.u. o f IWMB primarily because the expected value is smaller. 
Again the r.u. is approximately inversely proportional to the square root of M  and so to the 
mean frequency.

As suggested this method of derivation is less rigorous than the derivation of the variance 
of IWMB, var B  . However, as shown in appendix E, when var B  is derived this way the 
correct result, i.e. M /12, is obtained, which supports the use of this method.

Variability expressed in terms of the underlying parameters

It is possible to describe the r.u .'s and variances in terms other than of the number of bins in 
the spectrum. The bin width in discrete Fourier analysis, which is the frequency resolution 
and is denoted by A /, is equal to the reciprocal of the duration of the data segment, 

denoted by Ar.
4/  ̂= 1/Af

However this bin width is also the maximum frequency in the signal, / „  , divided byM  So

M  = / „  Ar

and therefore from the Doppler equation (1.2) we can write

The notation v '(g )  denotes the estimate of true mean velocity v made using IWMB, B . 

With a 'wide' beam (3.5) implies that with a uniform spectrum = 2v . So, substituting 

for M in  (10.12), the relative uncertainty in the estimate of mean velocity is therefore

Similarly v '(b ) denotes the mean velocity estimate made using PIWMB, B . With a 'thin' 

beam and a uniform spectrum (3 .6) implies that v„, = 3v and so from (10.15)
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The fractional precision of either mean velocity estimator is improved when any o f the 
terms in the denominators becomes larger, for instance when the Doppler angle is reduced, 
the duration of the data segment is increased, or during systole when the velocities are 
greater.

The variance of the mean velocity estimate v '(g )  can be found by multiplying (10.17) by 

its expected value, which is v as the estimate is unbiased, and then squaring. Therefore

Similarly with v ' [ B )  and (10.18)

A limit on the available precision

The variance of a final estimate of mean velocity could be reduced by finding the mean 
value o f a number of independent estimates of g  or g . If such estimates were made 
giving mean values of 'B  or g  say then the variances would be reduced by a factor o f N, 
and using (10.12) and (10.15) the relative uncertainties of 'B  and 'B  would be

V var'g 1 , Vvar'g
and

E['g] V sW  E['g] V5ÂÂ7

Therefore the variability of the velocity estimate is a function of the product NM. But from 
(10.16) M is  proportional to the duration of each individual segment, Ar, so the product 
N M  is proportional to the total duration of the segments. No reduction in estimator 
variance could be obtained by subdividing a single segment into N  independent contiguous 
sub-segments (if possible) as the product NM  would not alter. Neither would increasing 
the sampling frequency be helpful as it would only introduce frequency bins with zero 
contents above the maximum frequency in the signal, and the number of bins, M, making a 
non-zero contribution to the equations above would stay the same. It is evident that, if the 
spectral analysis is performed by Fourier transform, the precision of the mean velocity 
estimate is limited by the maximum allowable value of N A t, which is often taken to be the 
maximum length of time the Doppler signal can be thought of as being stationary.
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Variance of IWMB in an example practical situation

As an example of the precision in practice consider the case where the velocity profile is 
parabolic so that for a 'wide' beam the mean spectrum is uniform. The transmit fi-equency, 
F, is 6 MHz and the Doppler angle, 0, is 50°. The velocity of sound in blood, c, is taken as 
1580 m.s ' and the velocity at the vessel axis as 0.4 m.s '. If the interval in which the signal 
can be regarded as stationary is 10 milliseconds, and this interval is chosen as a single data 

segment, i.e. Ar = 1 0 's, then (10.16) shows that the Doppler signal occupies only 20 

frequency bins, i.e. M  « 20. Though M  is not large here we still use equation (10.12), or 
alternatively (10.17), found for large M, to find that the r.u. o f the appropriate estimator of 
mean velocity is

If  B  is treated as being normally distributed, it follows that, as the bias is zero, an 
approximate 95% confidence interval for the true mean velocity is within ±26% of the 
measured value.

As mentioned above Angel sen (1981) also found the variance to be affected by the duration 
o f the contributing signal. For 10 milliseconds of a signal with a uniform (mean) spectrum 
and a maximum frequency of 4 kHz, the estimators he studied had r.u. values of «0.084 
and «0.09 . Applying (10.12) in this case gives «0.09 indicating good agreement.

More general spectra and spectral broadening

Results have been derived above for the biases and variances in IWMB and PIWMB when 
the spectrum is uniform, i.e. where / = 1 in (10.5). More generally the spectrum is peaked 
towards , i.e. r < 1, and theoretical derivations of the biases and variances are more 
difficult. For the general spectrum computer simulation was used to investigate the biases 
and variances over a wide range of velocity profiles and frequency bin widths. To provide 
more useful results the spectra were broadened by the triangular geometrical spectral 
broadening function of chapter 7.

For a value of t < 1 the spectrum of (10.5) becomes undefined as /  approaches /„ . To 
provide a more manageable form the spectrum was smoothed to simulate the collection of 
power in discrete bins. The width in frequency of each bin is A / , and so the smoothed 

spectrum, p '{ f ) ,  is

= p À f ) d f  (10.21)
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which is nowhere undefined. This spectrum was then broadened numerically according to 
the triangular function of chapter 7 with the parameter a variable and the parameter b set 
equal to 1. Using (7.10) and (7.14) gives the smoothed and broadened spectrum /? (/)  for 

the simulation.

The broadening ideally should have been applied before the smoothing. However, as the 
theoretical spectrum of (10.5) is undefined at /  = / „  it is not suitable for broadening by 
numerical means, whereas the spectrum of (10.21) is. This reversal o f order is justified for 
spectra with n >  2, i.e. between parabolic and plug, as the broadening has much greater 
effect than the smoothing on the rapidly varying portion of the spectrum, i.e. the high- 
frequency end near . If the unbroadened spectrum occupies M* bins then the width of 
each bin is A/" = /„ ,/M *  and in this high-frequency region the smoothing over one bin 
described is similar to a broadening with a parameter of approximately 1/M *. The sum of 

the broadening and smoothing is therefore approximately a broadening with parameter 

a  + (l/M *), where M* is not generally small and, as seen in chapter 7, a  is o f the order of 

0.5. So the broadening dominates the smoothing, and the reversal o f the order of 
application is justified. The resulting spectrum of (10.22) occupies M  bins, which is a 
larger number than M*.

Computer simulation

For various combinations of n, a and M* the mean values, p, , o f the spectral estimates 

were found by the numerical evaluation of (10.22) at frequencies corresponding to the 
centres of bins of width A / . Independent random /?, values for each bin were generated 

such that the quantity followed a (2 d.f.) distribution. These /?, values were

used in (10.2) to calculate B . This was repeated 10 000 times to allow the variance of B  
and its bias with respect to B^ to be measured. As such a large sample was used the 

population mean and variance of B were able to be very closely approximated by the 
sample mean and variance. This process was also carried out to examine the bias and 
variance of ê  as defined by (10.4).

Results - bias

For the uniform spectrum given by a 'wide' beam with « = 2 and a  = 0, the bias observed in 
IWMB was zero within statistical variation, as predicted by the theory above. Similarly for 
the uniform spectrum given by a 'thin' beam with « = 1 and a  = 0, the bias in PIWMB was 
consistent with the value predicted by (10.9).
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For fixed a  and M* values, as n was made larger the expected velocity estimates became 
less than the deterministic values, with the biases being maximised at levels and n values 
dependent on the amount of spectral broadening. An example of this is illustrated in 
fig. 10.2 where the triangular symbols show the biases, expressed in terms of the ratios

and ^ [ ^ ] / %  , for various values of n where a  = 0.1 and M *  = 50.

(bias) relative uncertainty

V

0.2

0.99 0.15

0.98 0.1

0.97 0.05

o  o0.96
20 100

profile parameter n
1,000

Fig. 10.2 - A measure of the bias and the relative uncertainty observed in IW MB and 
PIW MB for different velocity profiles defined by n, where the am ount of spectral 

broadening is given by «=0.1 and the num ber of bins in the unbroadened spectrum
by M* = 50.

Considering the greatest bias for flows between parabolic and plug, i.e. for n '^ 2 ,  gave an 
indication of the worst-case bias throughout a cardiac cycle where n may fluctuate. For 
example with a  = 0.1 and M* = 50 as seen in fig. 10.2 the worst biases in IWMB and 
PIWMB were approximately -1 %% and -1% % . Fig. 10.3 shows the worst biases for 
various amounts o f broadening of spectra occupying M* = 25, 50, 100 and 200 bins, 
against M  As in fig. 10.2, the hollow markers are for IWMB, and the solid markers for 
PIWMB. The large square markers correspond to a  = 0, i.e. where only the smoothing is 
applied. The diamond markers correspond to a  = 0.1, which is a small amount of 
broadening, and the small square markers to a  = 0.5, which is perhaps more typical for a 
linear array transducer. The worst bias is reduced as the signal occupies an increasing
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number o f bins and is reduced quickly as broadening is introduced. The worst bias in both 
IWMB and PIWMB is smaller than -1%  when the broadening has the more typical value 
o f a  « 0.5. To conclude, the biases in the IWMB and PIWMB statistics introduced by the 
stochastic nature of the Doppler signal are very small for typical amounts o f spectral 
broadening, and can be ignored in comparison with the variability discussed below, and 
also with other sources of error in the mean velocity estimate.

minimum ratio of expected value to deterministic value (worst bias)

0.98

0.96

0.94

0.92

B B
a = 0 a ■
0 = 0.1 0 ♦
0 =  0.5 ° •

50 100 150 200 250 300
n u m b e r  o f  b in s  in  s p e c tru m  a f te r  b r o a d e n in g  M

Fig. 10.3 - The worst observed biases in IWMB and PIWMB with profiles of n ^  2, 
for various numbers of bins and various amounts of spectral broadening

It should be noted that the biases discussed here are calculated with respect to Bg and , 

and so are only true biases if these deterministic values are accurate estimators o f mean 
velocity. There are many reasons why this should not be so. Indeed, as shown in 

chapter 7, the very presence of such a broadening function means that Ag tends to 
underestimate the true velocity.

Results - variance

Similarly for fixed values of a and M* the maximum relative uncertainty (m.r.u.) was found 
for profiles between parabolic and plug. An example of the effect of changing n on r.u. is 
given by the octagonal symbols of fig. 10.2 where again M *  = 50 and a  = 0.1. In this case 
the m.r.u. values for both IWMB and PIWMB are observed with parabolic flow, i.e. w = 2.
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The observed m.r.u. results for various values of a  and M*, plotted against M  can be seen 
in fig. 10.4 with the markers used as in fig. 10.3. Results for the additional case o f a  = 1 are 
given by the 'plus’ sign markers. The dashed line represents the r.u. values for IWMB with 
a uniform spectrum predicted by (10.12), and is associated with the hollow markers. I f  a 
small or a typical amount of broadening is present all the spectra with w ^  2 are spread 
sufficiently for the m.r.u. to be observed when the profile is parabolic, as in fig. 10.2, and 
the results lie close to the dashed line.

maximum relative uncertainty (m.r.u.)

th e o ry  \  \  
u n ifo rm  \ \  
s p e c tru m  \  \0.15

0.1

0.05
i—0-----

0
0 50 100 150 200 250 300

number of bins in spectrum after broadening M

Fig. 10.4 - The worst observed relative uncertainties in IWMB and PIW MB with 
profiles of « ^  2, for various numbers of bins and various amounts of spectral

broadening

The solid line represents the r.u. values for PIWMB with a uniform spectrum predicted by 
equation (10.15), and is associated with the solid markers. Again with more than a very 
small amount of broadening the m.r.u., for flow between parabolic and plug, is observed 
for parabolic flow, but in this case it does not correspond to the uniform spectrum, which 
would be when « = 1. If the profile given by ft = 1 is included, the results for more than a 
little broadening lie close to the solid line, as shown by the x markers for a  = 0.1.

Comparison of the solid with the hollow markers shows that for realistic amounts of 
spectral broadening the maximum relative uncertainty of the velocity estimate PIWMB is 
somewhat greater than that of IWMB. With such broadening these variabilities are 
approximated by the theoretical equations (10.15) and (10.12) respectively.
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The effect of windowing

Typically a symmetric non-rectangular data window is applied which forces the data 
segment to zero at both ends, and so prevents discontinuities caused by the assumption of 
periodicity inherent in the use of the Discrete (or Fast) Fourier Transform. The effect of 
applying such a window is to convolve the complex transform outputs with the transform 
of the window shape, which is symmetric. The spectral estimates are then the squared 
magnitudes of the complex results. This introduces correlation between neighbouring 

estimates, in which case the theoretical treatment above for the uniform spectmm is 
inappropriate. The qualitative effects on the variances of IWMB and PIWMB can be 
inferred by noting that after applying the window the data points near the ends are 
weighted lowly while those near the centre are favoured. So the effective number of 
contributing data points is reduced. Thus the effect on the variance is similar to the effect 
of a reduction in data segment duration, namely an increase in variance.

This was demonstrated by calculating the Fourier transforms of 2000 sets of 256 zero- 
mean random variables, generated to follow an approximate Gaussian distribution, with 
various windows applied. The 'signal' was therefore approximately Gaussian white noise, 
with a uniform spectmm encompassing a frequency range of M  = 128 bins. From the 
resulting values the observed means and variances of B  and B  were calculated.

The effect o f a non-rectangular window on the mean value of B  seemed to be to increase it 
by the very small amount of ~0.1 bins (i.e. -0.2%), so that B  is biased by this negligible 
amount if such a window is applied. The effect on the mean value of B  was to increase it 
by an amount of the order of twice that much (-0.2 bins) so that, instead of the theoretical 
bias o f 1/6 of a bin derived earlier, the bias in È  with such a window is closer to 1/3 of a 
bin.

The variances are more interesting and are tabulated in table 10.1. If  B and È  are 
normally distributed then the recorded variances in all but the top row have approximate 
standard errors of 3%. The variances where no window is applied (i.e. in effect with a 
rectangular window) were found from the average results of 5 sets of 2000 and are slightly 
larger than the previously derived theoretical values of M/12 = 10.67 for B ,  and 
4M /45 = 11.38 for B. Little attention is given to this seeming discrepancy as the random 

variables followed a Gaussian distribution only approximately, and the variances are 
themselves random variables with, in this case a standard error of approximately IK % . 

The important point is that with non-rectangular windows the variances are increased as 
suggested above.
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window v a r /i var B K  50% o'lap K  75% o'lap

none (rectangular) 11.0 11.8 50% 75%
cos 16.1 17.4 31.8% 75.5%
triangular 19.3 20.6 25% 71.9%
cos' (Hanning) 20.6 22.1 16.7% 65.9%
cos^ 23.3 25.5 8.5% 56.7%
COS* 27.3 29.3 4.3% 48.6%

Table 10.1 - variances of mean bin numbers for different data windows applied to 
sections of near-Gaussian white noise data with a spectrum occupying 128 bins. 

The correlation data is taken from Harris (1978).

However another effect of the reduction in effective data length is that overlapped data 
segments can be treated as independent. This overlapping is desirable anyway to avoid 
wasting the data weighted lightly by the window at the end of each segment. 
Harris (1978), discussing the 'degree of correlation of the random components in 
successive transforms', computed a correlation coefficient, here called K, for various 
windows with the commonly used amounts of overlap of 50% and 75%. Some of his 
results are shown in table 10.1. As might be expected, the variances with the different 
windows are inversely related to the correlations, which themselves are clearly related to 
the window 'widths'. Harris notes that 'for good windows... transforms taken with 50- 
percent overlap are essentially independent.' So, if a window and overlapped segments are 
used, independent mean frequency estimates have greater variance but can be made more 
often. For example with the Hanning window the variance approximately doubles, but with 
a 50% overlap the number of independent estimates that can be made from a given amount 
o f data also doubles. The result is that the variance of the overall estimate of a mean 
frequency from that data stays approximately the same. The suggestion is that use of a 
window on overlapped segments does not greatly affect the precision of a mean blood 
velocity estimate.

For non-uniform spectra the effects of different windows were not calculated. The results 

given by the treatment o f the p, values as independent ^  (2d.f.) variables, (i.e where the 

data window is rectangular) are suggested as useful guides to the behaviour o f IWMB and 
PIWMB statistics in practice.
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Summary

In this chapter the spectral estimates in each frequency bin are modelled as being 
independent, with standard deviations equal to their means, and distributed according to 
the form of a distribution with 2 degrees of freedom. With velocity profiles between 

parabolic and plug forms, the biases in IWMB and PIWMB due to the random nature of 
the spectral estimates have been shown to be small (<1%) in the presence of typical 
amounts o f spectral broadening. For realistic amounts of spectral broadening the maximum 
variability o f IWMB or PIWMB occurs when the profile is parabolic. Approximate 
expressions for the maximum fractional variabilities are those derived for uniform spectra, 
namely equations (10.12) and (10.17) for IWMB, and (10.15) and (10.18) for PIWMB. 
The fractional variability is inversely proportional to the square root of the maximum 
frequency in the Doppler signal, so precision is improved if the velocity of the blood 
increases, the Doppler angle is made smaller or the transmit frequency larger. These 
factors aside, the limitation on the precision of an estimate of mean blood velocity is the 
maximum time interval over which the Doppler signal is recorded. This is often thought of 
as the maximum interval over which the signal can be regarded as stationary. Estimates 
made where a non-rectangular spectral window is applied to the data have larger variance. 
However the use of such a window permits the overlapping of data segments and so 
estimates can be made more often. The variance of the overall estimate of mean velocity is 
not greatly altered. With typical parameters the ratio of the standard deviation to the 
expected value of the mean velocity estimate might easily be greater than 10%. The 
stochastic nature of the spectral estimates therefore contributes a negligible bias but 
considerable variance to IWMB and PIWMB as estimators of mean blood velocity.

Notation for this chapter

a  width parameter of triangular broadening function, as in chapter 7
"B mean of a sample of IWMB measurements
'B  mean of a sample of PIWMB measurements
g, deviation from the mean power in the fth bin

' E\_ ] expectation operator

A/’ width of each frequency bin

K  correlation figure for overlapped and windowed data segments
M* number of bins in the unbroadened spectmm
M  number of bins in the obseiwed, i.e. broadened spectmm

v ' ( b ) , v ' ( b )  estimates of mean velocity made from IWMB and PIWMB

cCj, « 2  ,P\, A  temporary notation for more complex expressions
At duration of each data segment
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CHAPTER 11 - A DEFINITION OF PIWMB FOR MIXED FLOW

In this chapter the assumption of monotonicity introduced in chapter 2 is relaxed to include 
profiles which consist o f a central, forward (positive), monotonically increasing component 
surrounded by a single region of reverse (negative) flow. The whole profile is symmetric 
about the vessel axis. It is shown that if the profile in the reverse flow region can itself be 
assumed symmetric about the point o f greatest negative velocity then the previous 
derivation of PIWMB can be extended to give the correct mean velocity. An example o f a 
profile satisfying these criteria is illustrated in fig. 11.1.

velocity v

distance from vessel axis r

Fig.11.1 - a profile with a symmetric reverse flow component

The turning point in the negative velocity region is denoted by r, , and the profile in the 
region o f negative velocity is assumed to be symmetric about this point. The velocity is 
zero at a radial distance denoted by r,. Throughout this chapter, because flow in two 
directions is considered, the notation for maximum velocity is replaced by with the 
corresponding frequency b e i n g , and the notations and/T , are introduced for the 
minimum velocity and the corresponding minimum frequency, which are both negative 
quantities.

Consider minus IMIN frequency bins corresponding to the range of negative velocities. 
(Note that IMIN is a negative number). These bins are numbered IMIN to -1, where the 
IMIN'th bin includes the most negative velocities able to be measured. The range of 
positive and negative velocity components is then represented by three subsets o f the total 
set o f bins. Bins numbered 1 to IMAX represent increasing positive velocity. Bins 
numbered -1 to IMIN represent negative velocities increasing in magnitude. The zero'th
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bin represents both positive and negative velocities with magnitudes small enough to be 
contmned in this bin.

General IWMB statistic

The single-sided definitions of IWMB given by (2.1a) and (2.1b) are simply replaced by

Z ' f t
(II I»)

Z Â
NIMIN

and

Z'A
=IMIN
IMAX (11.1b)

respectively, where the * signifies a double-sided spectrum.

Development of the more general PIWMB statistic

For the single-sided case, equation (2.7) expressed PIWMB in terms of the sum, over all 
bins, o f contributions weighted by the areas of the corresponding rings of cross section, and 
normalised by the total area. When there is a region of symmetric negative flow the 
appropriate equation for PIWMB will be of a similar form, with once again the areas being 
found from rings bounded by known values, once again denoted by s) . In this case the

deterministic statistic is denoted by and can be written as

+ (U .2)

where C+ is a contribution from bins above the zero'th bin, C_ is a contribution from bins 
below the zero'th bin and Q  is a contribution from the zero'th bin itself. The total 

expected power P with this double-sided spectrum is

/’ = Z A  (113)

Note that this expression for P is different to that for the monotonie case given by (2.2).
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Positive bins

Consider the positive component, C+, represented by the bins above the zero'th bin. The 

derivation of the ŝ  values for / > 0 is the same as that in chapter 2. That is, from (2.3)

n  IMAX

where now P  is defined by ( I I .3). As in chapter 2, is defined to be zero, and the

mean frequency in bin units, is replaced by /, and so the contribution from the bins 
above the carrier bin is

IMAX

c . =  E f W ' 4 , )
i ~ \

so that, by making the same steps as in the derivation of (2.9a) from (2.7)

IMAX /  IMAX

'  1 = 1 j - i

(11.4)

Negative bins

Next the contribution, C_ , from bins below the carrier frequency is considered. Fig. 11.2 
shows only the negative portion of the profile and the region close to the zero'th bin, with 
the corresponding sector of the cross section above. As in chapter 8, the lowest indexed 
bin with non-zero contents is called the L'th bin. In this chapter however L  must be zero or 
negative. So scatterers with the most negative velocity present contribute to bin L, and 
A  = 0 for IM IN ^f < Z .

portion of 
vessel
cross section

vessel wall

corresponding
velocity
profile ÎJIJ

I  bin 0

Î  bin I

I bin L

Fig.11.2 - the reverse flow region of the cross section and profile
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First, expressions are derived for the radial positions r^and r,. The velocities corresponding 
to frequencies in the zero'th bin are bounded by the top pair o f dotted lines. Because the 
profile is smooth and the bin width is small it is reasonable to approximate the profile 
around the point r, between these dotted lines by a straight line segment passing through 
zero at r , . Therefore the section of the sample volume occupied by the scatterers o f the 
zero'th bin, giving a mean received power of Po, is a region extending an equal distance rj 

either side o fr ,,  and, by the symmetry assumption, a region extending the same distance tj 
in from the vessel wall, giving in total a distance 3 tj along the radius. As in chapter 2 the 
constant o f proportionality relating the length (along the radius) o f a section of the sample 
volume to the received power is R f P  . Therefore

- f t
Because the position -  // is the position of the outer extent o f the ring for the I'st bin, 5,, 
the position of the zero velocity point, r,, is

and from the symmetry r, must be midway between R  and r,, so

2

2 f

IMAX -  ^
A .
T.V y=i y

(11.5)

The group of scatterers with the most negative velocities, i.e. the scatterers of the L'th bin, 
must occupy a ring including this circle of radial distance r,. The symmetry assumption 
means that the limits of this ring are equal distances in front o f and beyond the radius r, as 
is shown in fig.11.2. The ring for the Z-'th bin is defined by the limits r, + and r , -  .

In general the regions of the cross section with scatterers of a velocity appropriate to the 
fth  bin are rings bounded by r̂  + and r, + , and by r, -  and , as

shown in fig. 11.2. This is true for all bins below the zero'th bin, including the Z,'th bin and
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any lower empty bins if we define J, = 0 for IM IN<i < L. The combined area, , of 

these two rings, without the Æ factor is

4  = [(n + -  (r, -

= 4/; W,

IM IN ^ f < 0

In the sample volume the section of length t/, -  , being half the section of the radius for
the fth bin, contains p j 2  scatterers so that

and therefore

A = I M I N ^ / < 0
P

The contribution from the bins below the carrier frequency is

C = Z ' 4
IMIN

R
^ A= 2 4  Z 'A

where again / is used to replace the more correct / '.  Analogously to the case of positive 
bins described in chapter 2, the lower limit of the summation is chosen to be the fixed 
quantity IMIN and not the variable L as the terms for bins below L are all zero and 
contribute nothing to the summation. So, making use of the expression for r, in (11.5), the 

contribution to the numerator of (11.2) from the bins with negative indices is

n 2  /  IMAX -  \  - I

Z 'Â  (11.6)
'  k ,=i y ,=iMiN

Zero'th bin

Lastly the contribution to the numerator from the zero'th bin itself is considered. This is 
zero as i' is approximated by / which is zero. That is Q  = 0.
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The resulting statistic

When substituting for the non-zero terms C+ and C_ in (11.2) the factors in (11.4) and 

(11.6) cancel with the denominator to give

IMAX ( IMAX

=

\  /  IMAX R  \  - I

Z ' A | 2 Z f , - A  + + f  Z ' A
y  V M )  i^lMIN (11.7a)

Substitution of the summation for P , simplification and changing to the observed, i.e. 
stochastic, form give

Z 'A
(11.7b)

An alternative estimate of mean velocity is therefore available despite the presence of this 
symmetric area of negative flow outside the monotonie region of positive flow. The 
validity of this equation has been verified by the computer simulation technique.

The integral form of (11.7a) expressed as a PIWMF is

( 11.8)

which follows from increasing the number of bins without limit. The term related to the 
zero'th bin therefore vanishes.
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Properties of the PIWMB statistic

(i)

In the case where there is no negative flow the bins below the zero frequency are empty, 
i.e.

p  ̂ = 0 IMIN < /■ < 0

and the second term in the numerator of (11.7b) is zero. The summation in the first term 
can be extended to start at / = 0 without changing the result, to give

IM AX

showing that the more complex expression for both positive and negative components 
collapses to the result for positive flow only. Equation (2.9b) then is a special case o f the 
more general (11.7b).

(ii)

Consider the case where there is no flow in the positive direction. The first term in the 
numerator of (11.7b) is therefore zero, as is the second term in the second bracket in the 
numerator. The term pg/3 is also not relevant as it corresponds to the signal from 

scatterers with positive velocities but too small to be above the zero'th bin. In this case 
(11.7b) collapses to become

Z'A
= IM IN _  J g '

Z a

using (11.1b). So if there is no forward flow, and the negative portion of each half of the 
velocity profile is itself symmetric, then PIWMB is equal to IWMB. This is a consequence 
of the extra symmetry allowing all the scatterers to be effectively positioned at r,.
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(üi)

The positive flow component through the circle o f radius r ,̂ shown in fig. 11.3a, has a mean 

velocity denoted by %+ which must be the deterministic PIWMB evaluated from the 
positive frequencies only. In addition, the result of paragraph (ii) above does not rely on 
there being a central mass of fluid, such as is absent from the symmetric negative flow 
through the remainder of the vessel illustrated in fig. 11.3b. So this symmetric negative 
flow has a mean velocity which can be found from the corresponding IWMB called .

velocity

distance from axis

velocity 

^  0

V V

distance from axis

Fig.11.3 - positive and negative flow components

The relative weights for these mean velocities are the cross-sectional areas through which 

they flow. The total mean velocity is proportional to , which is given by (II.7a) but 

can therefore also be given by

Br (11.9a)

The observed form of this is

1 - 1 ^  I 1 5 (11.9b)

IMAX IMAX y

where P =  ^ P i  is the total observed power in the spectrum, P, = ^  p, + is the

total observed power in frequencies corresponding to positive velocities, and 5+ and B_ 

are the observed forms of 5^+ and 5g_. In effect the two terms of (11.9b) are the two
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terms of (11.7b). So if the cross section primarily contains forward flow, i.e. * R , then 
A 'as defined by (11.7b) behaves like its less general form B  defined by (2.9b). If the cross 
section is primarily filled with the negative flow, i.e. r, » 0, then J§* behaves like the simple 

intensity weighted form, B*, defined by (11.1b). These principles are useful when the 
phenomena studied in chapters 7-10, namely the effects of spectral broadening, noise, 
filtering and statistical fluctuations are considered in the context of the accuracy of (11.7b).

Errors in PIWMB

As indicated above errors in È* may arise from several sources. As the amount o f negative 
flow increases, e.g. as the point r, moves from R  towards the vessel centre, the actual mean 
velocity gets smaller. No matter what the source, the percentage error in PIWMB (or in 
IWMB) is large if the mean velocity is itself small.

(i) beam misalignment

Consider an axi-symmetric 'monotonie' flow and a corresponding mixed flow with profiles 
along the diameter given by the solid lines of fig. 11.4a and fig. 11.4b respectively. The 
reverse flow region in the mixed flow case is comparatively small. If the beam is 'thin' there 
is no error in PIWMB, but if the beam is of negligible width and is offset slightly from the 
vessel axis, then the profiles along the chords insonated will be like the dashed lines. In the 
monotonie case of fig. 11.4a the resulting spectrum is 'shrunk' and is located at lower 
frequencies, so PIWMB underestimates the true mean velocity as suggested in chapter 6. 
In the mixed case of fig. 11.4b the positive velocity components are similarly affected, but 
the negative velocity region of the profile is not altered in the same way, and instead 
occupies a greater proportion of the chord. The result is that PIWMB underestimates the 
true mean velocity by a larger absolute amount than in the monotonie case. Because the 
true mean velocity becomes less as the reverse flow region gets larger the amount of 
underestimate as a percentage must also be larger.

velocity

(«)

velocity I'

(b)

Fig.11.4 - (a) a monotonie profile and (b) a mixed profile interrogated by 
a narrow beam which is correctly aligned (solid line) and offset (dashed line)
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(ii) finite bemmvidlh

Referring again to fig. 11.4, if the beam is centrally positioned but has finite width, then 
both the diameter and neighbouring chords are insonated. So the 'profile' inferred from the 
Pf values is an 'average' of the solid line and neighbouring dashed lines, the concepts of the 

previous paragraph are again applicable, and the same conclusion can be drawn. 
Therefore, if the beamwidth is finite, PIWMB incurs more error, both absolutely and 
fractionally, when the profile has a moderate reverse component than in the monotonie case.

(Hi) spectral broadening

I f  a symmetric spectral broadening is assumed, e.g. where 6 = 1 in chapter 7, then the 
results o f chapter 7 show that the statistic will be correct for the mean velocity in the 

flow component of fig. 11.3b. However the statistic will underestimate the value of the 

mean velocity in the flow component of fig. 11.3a. The result is that overall statistic 5* of 
(11.9a) gives an estimate of mean velocity that is less positive, or more negative, than the 
true value, unless there is no foiv/ard flow.

(iv) noise

The principles of chapter 8 suggest that the effect of white noise on È* will depend upon 
the fraction of the total negative frequency range occupied by the negative frequencies, and 
the fraction of the positive frequencies occupied by the positive frequencies. Altering the 
number of available positive and negative bins, e.g. by altering a baseline frequency if 
applicable, will therefore affect the error in B* in the presence of this noise.

(v) filtering

If  the signal is subject to an ideal high-pass filter with a cut-off frequency less than both 

and then B,̂ _ will be less negative than is correct, and will be more 

positive than is correct. The effect on B* depends on the relative amounts of forward and 
reverse flow.

(vi) statistical fluctuation

The results of chapter 10 showed that the biases in B and B  are small. An implication is 
that the bias of B* in (11.9b) will also be small. To derive an approximate value for the 
variance in B* we make use of the results for uniform single-sided spectra obtained in 
chapter 10, i.e. that if the spectrum occupies M  bins then the variances of B  and B  are 
M /12 and 4M /45 from (10.11) and (10.14) respectively. These variances are very 

similar, and, as suggested in chapter 10, the variance results for uniform spectra hold 
approximately for some other spectra if there is a small amount of spectral broadening.
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So the variance of (11.9b) can be approximated by the variance of

B

where the observed IWMB for the positive flow component, , has replaced the observed 

PIWMB, è^. The quantity given by this expression is equal to the IWMB of the total 

observed spectrum, J9*, as it is the correctly weighted sum of the IWMB values o f the two 

component flows. Furthermore translating the spectrum by a frequency of to become 

single-sided can not affect the variance of a linear frequency estimator. So the variance of 
(11.9b) can be approximated by the variance of a uniform single-sided spectrum of width 
/max -/mm- Thc numbct of bins occupied is then found from the frequency bin width ùçf. 
Therefore, from (10.11), the variance of PIWMB with this form of reverse flow is

varJg' /max-Zm
12 AT

or alternatively VMg' # - 1  + 1
12

where, as before, H  is the highest non-empty bin and L is the lowest non-empty bin, and it 
is remembered that and A are negative.

Discussion

The following chapter suggests that if there is a triphasic mean velocity waveform, the 
velocity profile in the portion of the cycle where the mean velocity crosses zero going 
negative can be modelled as being monotonie with a symmetric reverse flow component. 
This is because the reverse flow near the vessel walls leads the reverse flow in the centre of 
the artery. An example of the evolution of the profile for such a waveform is seen in 
fig. 11.5.

time

\ , , /
■R R  -R R -R R

Fig.11.5 - evolution of a profile with reverse flow

So the instantaneous mean velocity in the first two stages shown can be correctly measured 
with the deterministic general form of PIWMB, i.e. (11.7a). Only if the reverse flow 
components become asymmetric, or if the entire flow becomes reverse as in the third stage
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shown will (11.7a) lead to error. This suggests that the instantaneous spatial mean velocity 
measured using (11.7b) will be appropriate for more than just the systolic phase of such a 
cycle. The fourth stage shows a case where the flow is monotonie and reverse, so that if 
the positive bins were considered negative, and vice versa, (11.7a) would again give the 
correct velocity. The accuracy of PIWMB throughout the cardiac cycle where the velocity 
profile changes in such a way is relevant to the question of the measurement of volumetric 
blood flow. This is the subject of the next chapter.

S u n u n a rp

If  outside a region of monotonie positive flow there is a region of negative flow symmetric 
about its own centre then PIWMB and PIWMF have more general forms and are accurate, 
other factors allowing. These forms are given by (11.7b) and (11.8) respectively.

Notation for this chapter

IWMB and PIWMB as defined by their more general forms with a 

deterministic spectrum
B* ,B* observed IWMB and obseiwed PIWMB as defined by their more general

forms

B ^ ,B ^ , Bjj^ observed IWMB, observed PIWMB and deterministic PIWMB for the

component flow with positive velocities only 
B_ , Bjj_ observed IWMB and deterministic IWMB for the component flow with

negative velocities only 

j  PIWMF as defined by its more general form
minimum signal frequency, corresponding to a scatterer with velocity 

A f  width of each frequency bin

H  the index of the highest frequency bin with non-zero spectral power
i ’ frequency equivalent to the mean velocity of scatterers in the ring

corresponding to the /'th bin, as in chapter 1 
IMIN minus the number of available bins corresponding to negative velocities

(a negative quantity)
L  the index of the lowest frequency bin with non-zero spectral power

total observed power in frequencies corresponding to positive velocities 

position of lamina of zero velocity 
r, position of lamina with most negative velocity
ŝ  calculated extent of radial position of scatterers with velocities in the /'th

bin and above with a 'thin' beam 
v̂ ax maximum blood velocity (a positive quantity) s  v„,

minimum blood velocity (a negative quantity)
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CHAPTER 12 - VOLUMETRIC MEASUREMENT USING A 
MODEL OF PULSATILE FLOW

Prior to chapter 11 the only velocity profiles considered were both axi-symmetric and 
monotonie and often were idealised to follow (3.1). In this chapter more realistic profiles 
are derived from a theoretical model of flow throughout the cardiac cycle, and the resulting 
errors in volumetric flow measurements using IWMB and PIWMB are estimated. First 
however some theoretical results, more fully described in appendices B and C, about 
departures from symmetry or monotonicity are given.

(i) A profile which is not axi-symmetric might be expected with flow near changes in 
vessel geometry. A simple model of such a profile can be obtained by allowing the 
point, E, o f maximum velocity to be a distance, e, from the vessel centre, C, as in 
fig. 12.1 and modifying (3.1) to be

v = v . | l - ( | |  I (12.1)

where v is the velocity a distance j  from E, and S  is the distance from E to the vessel 
wall along the same line.

Fig.12.1 - geometry for an asymmetric velocity profile

The form of the profile is defined by the parameters n and e/R  and the scale by the 
maximum velocity v„. Appendix B discusses the effects o f this model o f profile 

asymmetry on mean velocity measurement with PIWMB, but it is worth stating the 
surprising main results here, namely that the true mean velocity is independent of e 
and is therefore given by (3 .2), and that if the beam has negligible width and passes 
throught the point of maximum velocity E then using the deterministic value of 
PIWMB incurs no error.

(ii) In pulsatile flow the velocity profile might be expected to be non-monotonic at 
various stages of the cycle. As seen in chapter 11 a more general equation for
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PIWMB exists for when the non-monotonicity has a certain form involving some 
reverse flow. The situation of a non-monotonic but completely positive profile is 
discussed in appendix C. The main principle with such a profile can be inferred from 
fig. 12.2. Using PIWMB assumes that the particles with higher velocities are closer 
to the vessel centre. The result is that if such non-monotonicity exists then some of 
the higher velocities are underweighted, and some lower velocities overweighted, so 
that PIWMB underestimates the true mean velocity.

velocity v

R0
distance from cen tre  o f vessel r 

Fig. 12.2 - a positive non-moiiotonic profile

The remainder of this chapter shows how the form of the velocity profile at any point in the 
cycle can be modelled from the mean velocity waveform. Actual estimates o f mean 
velocity waveforms are then used to produce more realistic profiles appropriate to different 
points o f the cycle. These profiles, both monotonie and non-monotonic are used to 
examine the errors in mean velocity estimates made using the general form of IWMB 
defined by (11.1a) and the general form of PIWMB given by (11.7a). Volumetric flow 
measurements are primarily of use when made over an integral number of cardiac cycles. 
By summing mean velocity errors throughout the cycle estimates o f error in volumetric 
flow are made.

Steady flow

The starting point is Poiseuille's equation for steady flow of a Newtonian fluid in a rigid 
pipe, a long way from the entrance. A fluid is Newtonian if its viscosity is independent of 
velocity gradient. Blood is not Newtonian, but in major arteries, as the velocity scale and 
diameter are relatively large, the 'asymptotic' viscosity can be used, i.e. the viscosity at 
high velocity gradients (Evans et al. 1989). Poiseuille's work gives

8//

where Q is the volume flow per unit time, R is the internal radius of the pipe, // is the 
viscosity of the liquid, and A is the constant pressure difference per unit length of the pipe, 
i.e. the pressure gradient. If the radial position is described by the dimensionless parameter
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y s r / R ,  where r  = 0 at the vessel axis, then the velocity profile associated with this 
equation is the parabolic profile

= ^  ( l - / )  (12.2)

which is the familiar equation (3.1) with v = u, n = 2 and identified.

Sinusoidal flow

A more general case is where the pressure difference fluctuates sinusoidally, i.e. where the 
pressure gradient is given by the real part of where j  is the square root of -1 , a> is 
the angular frequency and as before r  is a time variable. The resulting profile equation is 
attributed to many authors by McDonald (1974), who makes particular reference to work 
o f Womersley (1955, 1957). A dimensionless parameter, a, can be defined by 

a  = = R{a>! v)'̂ " where p  is the density of the fluid, and v= p jp  is the

kinematic viscosity. As a result of a sinusoidal pressure gradient with angular frequency (o, 
the varying velocity of fluid in the lamina defined by y is the real part of

(12.3)

where the 'preceding prime' notation, e.g. '?/, is used here to indicate a complex velocity, 

and where Jo(-) is the Bessel function of the first kind of order 0, which in this case has 

complex arguments. It is seen that, as the time dependence is in the last term only, a 
sinusoidal pressure gradient gives rise to a sinusoidal fluctuation in the velocity at each 
point in the pipe, with the same frequency. The form of the velocity profile resulting from 
this pressure gradient is given by the term in the large parentheses. If a  is equal to zero, 
i.e. if the pipe radius is infinitesimal or the fluid has limitless viscosity, or the angular 
frequency is zero, this becomes the parabolic profile of (12.2) and there is flow according 
to Poiseuille's theory.

The instantaneous spatial mean velocity can be found by integrating over all the laminae in 

the pipe and dividing by the cross-sectional area of the pipe, nR?", and is the real part of

\ 1
u { a ) ,  t ) (12.4)

where J,(-) the Bessel function of the first kind of order 1. Equations (12.3) and (12.4)



12-4

can be combined to give the velocity in any lamina in terms of the spatial mean velocity, i.e.

(12.5)

remembering that a  is a function of ty. The term in the large bracket is complex and can be 

called y/{a,y), having magnitude | v/(a,>’)| and phase which for various values of

a  have been plotted by Evans (1982b). This term contains the only reference to>>, and so 
defines the form of the velocity profile produced by the pressure gradient. The scale o f the 
profile given by (12.5) is related to the other term, which is the spatial mean velocity.

Actual flow

In practice the pressure gradient will not be sinusoidal, but will be a waveform definable by 
a set o f^ i  values, where X* is a complex number describing the amplitude and phase of the 
Â 'th harmonic. However each of its harmonics will give rise to a separate case of equation
(12.4), each with its own amplitude and phase, and a> and a  values. In considering the 
complete pressure gradient these equations can simply be summed because the theory 
leading to (12.3) involving the viscosity is linear in the associated velocity gradient du/dy 
and hence in u, which is the real part of 'it. In this way McDonald (1974) applied the 
theory to the calculation of profiles from a pressure gradient made up of several frequency 
components. Evans (1982b) extended the theory to the calculation of profiles by Fourier 
analysis o f the associated flow, or spatial mean velocity, waveform. If the observed mean 

velocity waveform, v '(r), is decomposed into its harmonic components, cos(^û), r+ ^^ ), 
where k  is the number of the harmonic, is the angular frequency of the fundamental, and 

and A  are the results of the Fourier analysis, then

w'(r) = ^MtCos(A:(y,r+^J (12.6)

The component cos(^:(u, r + i s  therefore the real part o f the complex term

'w(to),, r) in the relevant evaluation of (12.4) or (12.5). With these equations a single 
value of a  is not appropriate for the different components. The definition of a* for the Æ'th 

harmonic is therefore

a* = (12.7a)

The value for the fundamental is or, and it is clear that

a ^ = J J - a ^  (12.7b)
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Therefore from (12.5) and (12.6) the instantaneous real-valued velocity profile estimate, 
v'{y, t), is given by

r) = -| v/(«A-,T)|-cos(/cûJ,r+ +C{a^,y))
A'=0

So from Fourier analysis of an estimate of the mean velocity waveform, v ' ( t) ,  and 

knowledge of the 'scaled profile' terms f//{cc,^,y), instantaneous velocity profiles can be 

constructed. It is important to note that the theory is based on the asumption that the site 
of investigation is far enough from any change in the geometry of the tube for the flow 
components to be established. That is, for a given pressure gradient, the velocity profile 
can be thought of as being independent of the axial position in the tube. It is apparent also 
that the theory fails to model the actual expansion and contraction of the arterial cross 
section, and allows no cui'vature in the artery.

Data collection and analysis

Examples of approximate mean velocity waveforms from various arterial sites were 
obtained from healthy volunteers. The mean velocity was assumed to be proportional to 
the IWMB of the Doppler signal received using a sector scanner, calculated from (2.1b). 
The sector scanner was chosen primarily because its separate Doppler beam was broader 
than the beam of our linear array transducer, and so would insonate more uniformly the 
vessel cross section, thus improving the accuracy of IWMB. These waveforms were used 
to estimate the instantaneous profiles according to the theoiy above, and so to test the 
accuracy of PIWMB as a means of flow calculation at these sites.

Mean velocity waveforms of single cardiac cycles were obtained from both the common 

and superficial femoral arteries of 13 young, healthy volunteers (age <45). In addition 

some examples of internal carotid, common carotid, brachial and radial mean velocity 
waveforms were obtained from the same group of subjects. Fourier analysis was 
performed on these waveforms, which were noisy and generally had a region(s) o f zeroes 
where the high-pass filter (nominally 200 Hz) had removed a large amount of the signal 
power. The constant component and the first 10 harmonics were retained to reconstruct a 
representative waveform, and were also used to derive the changing velocity profiles 
predicted by the theoiy above. For each of these profiles, computer simulation of 
insonation by a 'thin' beam allowed PIWMB as defined by (11.7a) to be calculated. Such a 
calculation was made at 60 points uniformly spaced throughout the cycle (i.e. every 6° of 
phase). Using the model assumption of an unchanging cross-sectional area, this led to a 
proportional estimate of volumetric flow. This was compared with the 'correct' value
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appropriate to the reconstructed waveform to find the error incurred through use of 
PIWMB.

Results

In most cases only one waveform from each site of each volunteer was analysed. For the 
few volunteers where more than one was analysed the result presented is that with the 
largest error magnitude.

Common femoral artery

As shown in fig. 12.3 the errors for the flows in the common femoral arteries ranged from 
+3.0% to -2.4% , though only two of the errors were more negative than +1.4%. This 
suggests that accurate flow measurement in the common femoral artery may be possible 
with PIWMB despite the triphasic nature of the flow at this site.

4
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B

Fig.12.3 - errors in volumetric flow for single cycles from common 
and superficial femoral artery recordings

The source of the typical 2%% overestimation can be seen by considering the waveform 
which gave rise to an error of +2.7% marked 'A on fig. 12.3. The relative amplitudes and 
phases of the first 10 harmonics of this waveform are listed in table 12.1. Also tabulated 
are the relevant a* values calculated from the vessel diameter and period according to 
(12.7).
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Waveform 'A' Heart rate (based on this single cycle) = 82 bpm 
Estimated diameter = 10mm

Assumed kinematic viscosity = 0.038 St = 3.8 x 10 ® m's ' (Evans et al. 1989)

Harmonic (k) Amplitude ) Phase (^*)°

0 1 0 0
1 1.120 2.5 7.5
2 2.262 60.8 10.6
3 1.173 120.9 13.0
4 0.212 157.1 15.0
5 0.249 129.2 16.8
6 0.249 129.0 18.4
7 0 188 120.9 19.9
8 0.242 188.3 21.3
9 0.092 232.0 22.6

10 0.113 144.7 23.8

Table 12.1 - parameters of waveform 'A'

The appropriate reconstructed waveform, called waveform 'A', is shown by the solid line of 
fig. 12.4, and the estimate using PIWMB is given by the dashed line, which for the majority 
o f the cycle is virtually coincident with the solid line. The overestimate of flow is seen to 
be caused almost entirely by PIWMB being less negative than the correct value during the 
phase of the cycle with negative mean velocity. The error in this region can be understood 
by making reference to fig. 12.5 which shows some of the corresponding profiles predicted 
by the theory. For clarity the profiles shown are spaced at intervals o f 18°, i.e. at intervals 
o f every 3 sample points. (The steplike nature of each profile is a reproduction artifact.) 
Consider, as an example, the profile at the 90° point. The negative flow regions are not 
symmetric but are skewed considerably towards the vessel wall. Using PIWMB in such a 
case assumes symmetry and therefore treats the most negative velocities as being present 
closer to the vessel centre. This assignment of the largest velocities to laminae which 
contribute less to the total cross-sectional area leads to a value of PIWMB which is 
numerically too small, i.e. in this case not negative enough. (The profiles not shown before 
36° are positive and monotonie, and the profiles towards the end of the cycle are small and 
contribute little to the volumetric flow. Such small profiles correspond to the late periods 
of small fluctuation in the reconstructed mean velocity waveform of fig. 12.4. These 
fluctuations, which are more evident in the waveform of fig. 12.6 to be introduced shortly, 
are artificially created by the truncation of the sequence of Fourier coefficients.)
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mean velocity

36 72 108 144 180 ^ 6
phase (degrees)

252 288 324 360

Fig.12.4 - The solid line shows waveform 'A ', which is the reconstruction of the mean 
velocity recorded in a common femoral artei^  throughout a cardiac cycle. The 
corresponding mean velocity estimated using PIWMB with a ’thin* beam is given by 
the dashed line. The dotted line gives the estimate using IWMB with a th in’ beam, 
discussed later in the text.

phase
degrees

velocity

-R

Fig.12.5 - velocity profiles during the cycle for waveform ’A’
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Superficial femoral artery

As shown in fig. 12.3 the errors for the flows in the superficial femoral arteries ranged from 
+0.7% to -8.3% with a single extreme value at -15.9%. So it would appear that PIWMB is 
less accurate in determining volumetric flow at this site than in the common femoral artery. 
The source of the underestimation typically observed is suggested when considering the 
waveform for the only female volunteer, which gave the error o f -8.3% marked 'B' on 
fig.12.3. The relevant Fourier amplitudes, phases and a* values are given in table 12.2.

Waveform 'B' Heart rate (based on this single cycle) = 83 bpm 
Estimated diameter = 4.2 mm

Assumed kinematic viscosity = 0.038 St = 3.8 x 10̂ ® m^s"' (Evans et al. 1989)

Harmonic {k) Amplitude ) Phase (^^)°

0 1 0 0
1 1.794 23.9 3 17
2 2.618 73.0 449
3 1.400 148.1 549
4 0.573 140.7 634
5 0.291 203.7 7.09
6 0.178 112.6 777
7 0.246 140.9 839
8 0.123 208.4 8 97
9 0.103 165.8 951

10 0.083 23.2 10.03

Table 12.2 - parameters of waveform 'B'

The appropriate reconstructed waveform, called waveform 'B', is shown by the solid line of 
fig. 12.6, and the estimate of PIWMB is given by the dashed line. The waveform is seen to 
be 'more pulsatile' than waveform 'A' in that the mean velocity descends from its maximum 
value more rapidly, and the reverse flow region occupies a greater proportion of the cycle. 
As with waveform 'A' PIWMB is not negative enough at approximately 90°, but this effect 
is swamped by the fact that between 108° and 196° PIWMB records a value that is too 
negative. Making reference to fig. 12.7, which is as in fig.12.5 but corresponds to 
waveform 'B', the greater pulsatile nature is seen in that beyond 108° the profile actually 
becomes monotonie in the reverse direction. In the absence of any positive flow PIWMB 
then treats the profile as being made up of two symmetric reverse regions with the greatest 
velocities midway between the axis and the vessel wall. In this way the most negative 
velocities are overweighted and so PIWMB is too negative.
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mean velocity

36 72 108 144 180 216
phase (degrees)

252 288 324 360

Fig.12.6 - The solid line shows waveform 'B ', which is the reconstruction of the mean 
velocity recorded in a superficial femoral artery throughout a cardiac cycle. The 
corresponding mean velocity estimated using PIWMB with a 'th in ' beam is given by 
the dashed line. The dash-dot line shows the estimate of the 'backwards' form of 
PIW M B discussed later in the text.

phase
degrees

36

90

velocity

Fig.12.7 - velocity profiles during the cycle for waveform B'
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Other sites

The example internal carotid, common carotid, radial and brachial artery waveforms (7 in 
total) all gave velocity profiles which visually were positive and monotonie at almost every 
stage of the cycle. The resulting flow errors measured were of the order o f 0.001%. 
Fewer examples of waveforms from these sites were taken as it was quickly apparent that 
the error was zero or negligible. The very small departures from monotonicity observed 
were in the form of small regions of reverse flow near the vessel walls. So it would seem 
that, with this model, this form of non-monotonicity occurs more easily than a non
monotonicity in a completely positive profile. The implication is that PIWMB could be 
used without error at sites where flow is entirely forward, i.e. where the spectrum is single
sided.

Comments

The error in PIWMB is linked to the 'pulsatility' of the waveform. Because their 
waveforms tend to be pulsatile, a group of young, healthy volunteers represent a worst- 
case sample, and so the errors in the recorded values of PIWMB are likely to be relatively 
large.

It is interesting to note that the extreme negative result of -2.4% for the common femoral 
artery and the extreme result of -15.9% for the superficial femoral artery were recorded 
from the same volunteer. From the same original recordings for this subject, other 
waveforms from single cycles were obtained giving results of -1.6% and -0.2% for the 
common femoral artery, and -15.7% , -14.5% and -13.8% for the superficial femoral 
artery, so that there was a considerable degree of repeatability in the extremeness of these 
results.

Entrance length effects

As suggested earlier the validity of the results depends on the degree to which the flow 
profile components can be regarded as being established at the site of measurement. If  the 
profile is taken as being of the plug form when the section of the artery is entered then an 
approximate expression for the length required in the vessel before the constant component 
of flow gives rise to the parabolic profile is

Ao«0.036/W„ (12.8)

(Caro et al. 1978) where d  is the vessel diameter, and is the Reynolds number of the
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flow. The Reynolds number for a given flow is

where U  and L  are representative velocity and length scales of the system respectively. For 
flow in a tube the Reynolds number can be defined by

(12.9)

where s is the spatial mean velocity. If a large reservoir feeds into a narrow tube then s  
will be the single velocity at the entrance to the tube. In practice the relevant distance may 
be the distance from the site of measurement to the previous major bifurcation, and the 
profile (2 diameters) downstream from this 'entrance' point will not have a plug form but 
may have an asymmetric M shape, with the highest velocities being on the side of the inner 
vessel wall. The distance required for the parabolic flow to be re-established after this 
bifurcation is comparable to the entrance length in the case of plug flow (Caro et al. 1978).

For an oscillating component with angular frequency co (in our case (o = ko)^ the 

instantaneous entrance length, if the initial flow is of the plug form, can be described by

(Caro et al. 1978) where % is the instantaneous core velocity. Throughout the cycle the 

largest value of this length is therefore given by

A, (12 .10)

where 5̂  is the maximum core velocity. It is assumed below that the developments o f the 

mean component and the various oscillating components do not affect each other so that 
(12.8) and (12.10) can be applied to the results of the Fourier analysis independently.

For waveform 'A' the mean velocity of the constant component was estimated, using 
knowledge of the Doppler angle (which was 39°), to be Mq » 8.1 cm. s ' .  This is the value 

o f J  for use in (12.9). So with r/ % 10mm and 3.8 x 10 ® m^s^' the Reynolds number 
is «200 , and using (12.8) the entrance length, , for the constant flow component is 

approximately 6 cm. The site of the recording of waveform 'A' was approximately 2 cm
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above the femoral bifurcation, and consequently was a long way from the previous 
bifurcation. So the constant forward component of the velocity profile could be regarded 
as being established at the site at which waveform 'A' was recorded.

For the Âr'th harmonic the maximum core velocity is proportional to w* . In addition, 
with a parabolic profile the velocity observed at the core of the vessel is twice the mean 

velocity, as can be seen from (3.2) with n = 2. From the plots of j^(a,_y)| given by 

Evans (1982b) and referred to above, the velocity profiles associated with the oscillating 
components can be seen to be blunter than parabolic, so therefore the maximum central 
velocity cannot be greater than the quantity 2 x ŵ,. So from (12.10) an upper bound for 

the entrance length for the t'th  harmonic is given by

For this artery this length is largest for the second harmonic and is approximately 7 cm. 
Therefore being only a few centimetres away, the site was too close to the bifurcation for 
all the oscillating components to be regarded as established at all phases of the cycle. At 
least 10 of the other 12 common femoral recordings were made at sites in the region of 
5 cm above the femoral bifurcation. However these tended to have larger maximum 
values of As indicated in fig.12.3 several of these recordings gave similar errors to 

waveform 'A. Their similar waveforms, and consequently similar profiles, incurring error 
in the same way, mean that although waveform 'A' was recorded at a site closer to the 
bifurcation it is regarded as an appropriate example.

Waveform 'B' was obtained at a site approximately 20 cm distal to the femoral bifurcation. 
Similar calculations to those performed for waveform 'A above show that the entrance 
lengths for the constant and oscillating profile components of waveform 'B' are given by 
X q w 1cm and A* <« 7cm. Therefore at this site flow is regarded as being established. 
The other recordings from the superficial femoral arteries were made from sites 
approximately 15 cm (or more) from the femoral bifurcation.

Errors in IWMB

The errors associated with incomplete insonation in the use of IWMB to estimate 
volumetric flow have been shown to depend only on the form of the constant component of 
the velocity profile (Evans 1985) This can be understood by considering that each 
oscillating component by its time-symmetry contributes no net flow throughout the cycle, 
and no net contribution to the measured flow no matter what the shape of the beam. If  the 
actual flow followed the theoretical model above then, as each component of the flow is
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assumed to be established, the constant component of the velocity profile would have a 
parabolic form. This profile can simply be expressed by

V = v„,(l-_y-)

which is (3.1) with y  ^ r jR  and // = 2. Estimating mean velocity using IWMB and a 'thin' 
beam is equivalent to finding the mean value of v along the diameter from ^  = -1  to = 1. 

So the estimate found would be

which is 33X% larger than the correct mean velocity of X found from (3.2). (This 
value o f follows also from (3.5) with t = 0.5.) Therefore, no matter how pulsatile the 

mean velocity waveform, with this flow model and with a 'thin' beam, use of IWMB would 
introduce a systematic error of +33%% which could be corrected for. In practice the 

beamwidth is finite, so that the percentage error would be less than this but would still be 
independent of the mean velocity waveform. Similarly, departures of the constant 
component from the parabolic form predicted by the model would alter the error. A 
correction factor therefore could only be accurately applied if the time-averaged velocity 
profile and the beam intensity profile were known.

For waveform 'A' the value of IWMB with a 'thin' beam, also calculated by computer 
simulation, is shown as the dotted line on fig.12.4. As expected IWMB overestimates the 
mean velocity throughout most (in this case all) of the cycle, leading to the overall flow 
error of 4-33 X% as demonstrated above.

Relevance of the flow model

The flow model above has been put forward to derive approximate values for the errors 
that might be incurred using PIWMB for the estimation of volumetric flow. If  this model 
accurately described the actual flow then, as seen in the previous section, the statistic 
IWMB might be used with a correction factor, and there would in fact be no advantage in 
using PIWMB, even if the beam was 'thin'. So, in the context o f flow estimation, the 
usefulness of PIWMB is linked to the inadequacies of the flow model. As seen above one 
such inadequacy might be that at the site of investigation the flow may not be established. 
A second, as mentioned, is that the theory is for flow in a tube which is rigid. If the model 
was in fact able to take into account the changes of cross-sectional area during the cycle, 
the flow errors derived would still be approximate. This is because, in the subsequent
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calculations, PIWMB was assumed to be proportional to the instantaneous flow, which is 
only true if the cross-sectional area is constant. Thirdly, as stated, the model also allows no 
curvature of the arteiy. The presence of local curvature would tend to violate the 
assumption of axi-symmetry necessary for the validity of PIWMB. Lastly, if the site of 
measurement was not far from a bifurcation, in addition to uncertainty about the form of 
the unestablished profile, some asymmetiy might remain from the asymmetry introduced at 
the bifurcation.

Finite beamwidth and/or displaced beam

In the practical case the beam fails to satisfy the assumption of infinitesimal width, and may 
be displaced from the centre of the vessel. In either case, with an axi-symmetric monotonie 
profile, the estimate of the mean velocity made using PIWMB is below the true value, as 
shown in chapters 5 and 6. So, for example, as the profile is typically positive and 
monotonie throughout a significant proportion of the cycle, the error with waveform 'B' 
might be expected to be more negative than the recorded -8.3%. Computer simulation was 
used to find the percentage errors in volumetric flow measurement with beams which are of 
finite width and/or which are displaced. The results are shown in table 12.3. The 
ultrasound beam is deemed to have a Gaussian shape which, in the same way as in 
chapter 5, is defined by the ratio of standard deviation of the intensity response upon 
reception to the radius, denoted by cr/A. The displacement of the centre of the beam from 

the vessel axis is given as a fraction of the radius. So the results for the 'thin' beam are very 
close to those given in the first row, where the beamwith is very small and the displacement 
is zero, and the results for a 'wide' beam are approximately given by the row for o/i? = 10. 
The errors tabulated are those incurred by the use of PIWMB for waveforms 'A' and 'B' and 
for constant flow as given by a constant parabolic profile, and those incurred by IWMB for 
any mean velocity waveform. The bracketed values are the exact theoretical values found 
from (6.4) and give an indication of the uncertainty in the values in the table.

The additional errors due to a finite beamwidth or a beam displacement are seen to be 
similar for waveforms 'A' and 'B' and the constant flow, and can be treated as being equal to 
a good approximation when these effects are small. For example with a centrally placed 
beam with a/R  = 0.2 the additional errors with 'A' and 'B' respectively are

(-1 .9% )-(+2 .7% ) = -4.6%  and (-1 2 .7% )-(-8 .3% ) = -4.4%

which are both close to the value of -4.3% for the constant flow. Similarly for a beam of 
negligible width but displaced from the centre by 0.2 radii the extra errors for 'A' and 'B' are 
both approximately -4% which is the value for the constant flow. Also, for small 
beamwidths and displacements, the individual errors can be treated as additive, as indicated
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by the row with beamwidth ratio = 0.2 and offset = 0.2. Comparison can also be made 
with the performance of IWMB which gives the same results for any mean velocity 
waveform, as only the shape of the constant velocity profile component is relevant, and 
these are all taken to be parabolic. For IWMB the errors are given in the last column of 
table 12.3. The most meaningful comparison between PIWMB and IWMB is made for a 
beam of finite width. As with the monotonie case in chapter 5, PIWMB performs 
considerably better than IWMB if the beam has a standard deviation to radius ratio of 0.2 
or less. In chapter 5 a ratio of approximately 0.2 was suggested as being appropriate for 
our transducer and a 6 mm diameter vessel.

beamwidth offset waveform 'A' waveform 'B' constant flow any waveform

( ct/ R ) (radii) PiWMB PIWMB PIWMB IWMB

'thin' « 0 0 +2.7 -8.3 0.0 +33.3

finite 0.2 0 -1.9 -12.7 -4.3 +28.3
width 0.5 0 -19.1 -29.6 +12.8

10 0 -34.2 -43.7 ^ ^ 3 +  0.1

offset « 0 0.2 -1.4 -12.1 -3.8 (-4) +28.1
* 0 0.4 -15.1 -24.5 -16.0 (-16) +12.0

both 0.2 0.2 -6.6 -17.3 -8.7 +23.4
0.5 0.4 -25.6 -35.8 ^ ^ 9 +7.2

Table 12.3 - Percentage errors in volumetric flow measurement for beams which are 
displaced and/or have Gaussian intensity profiles of finite width

Redefining the forward direction

The fact that the profile in the case of waveform 'B', shown in fig.12.7, becomes monotonie 
and reverse, e.g. at 144°, suggests that at this point in the cycle if the sense of direction of 
the frequency axis was reversed the resulting value of PIWMB would accurately give the 
instantaneous mean velocity. This could simply be achieved by calling the negative 
frequency bins positive, and vice versa, then applying (11.7a) and multiplying the final 
velocity by -1. However an alternative is not to renumber the bins, but to change the
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defining equation to produce the same effect. The resulting 'backwards' stochastic 

estimate, B l , would therefore be

-I /  .1 \  /IM A X  I „  \  IMAX

.  Z 'A 2 Z / ’.,-a M Z / > , + 2 S  A + t  Z'A
D* _  I=IMIN V m=IMIN J  \  ,=0 1 = IM1N ^  J  i= \  / i o  i i \

Z «
\ ,= IM IN

where the index m is used, as the usual j  or k  have other definitions in this chapter. The 
implication is that at some points in the cycle, in this example most notably in between 126° 
and 180°, this 'backwards' form of PIWMB follows the true mean velocity more accurately 
than the 'forwards' form. This is seen on the corresponding fig.12.6 where the value o f the 
deterministic form of (12.11) is given by the dash-dot line. If a procedure was available to 
detect such a region(s) in the cycle the estimate of volumetric flow could be improved. In 
this way a simple algorithm was developed which reduced the error in this example of 
waveform 'B' from -8.3% to +0.4%, but increased the error for some other waveforms. If 
such an algorithm were to be useful it would need to be robust enough to offer 
improvement with all typical waveforms, and with signals 'corrupted' by spectral 
broadening, noise, filtering and statistical fluctuation.

It is noticeable in fig.12.6 that the 'backwards' estimator is greater than the 'forwards' 
estimator at all points of the cycle. It is demonstrated in appendix E is that this is 
necessarily true for their continuous frequency forms. This suggests the result that, in 
every case

( 12.12)

Summary

The instantaneous velocity profiles for the testing of the more general form of PIWMB 
given by (11.7a) were derived from experimental mean velocity data, and the theory of 
pulsatile flow of a Newtonian fluid in a rigid tube. If this theory gives a useful 
approximation to the actual flow then the results imply that PIWMB as defined by (11.7b) 
can be used to estimate volumetric flow at sites where the flow has a low degree of 
pulsatility, e.g. the carotid, radial and brachial arteries, without incurring error due to 
invalid assumptions about the velocity profiles. In the common femoral artery the small 
positive error, with little variation between subjects, also supports the validity of PIWMB 
for volumetric flow measurements. PIWMB should be used with more caution in the 
superficial femoral artery as the errors measured at this site showed greater magnitude and 
greater variance.
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Notation for this chapter

È* PIWMB as defined by its more general form, (11.7b)

Bg PIWMB when frequency axis is reversed

j  square root o f -1

) Bessel functions of the first kind of order 0 and 1

k  harmonic index number
Reynolds number

% amplitude of /c'th harmonic component of mean velocity waveform

"u{co,y, r) complex velocity profile due to sinusoidal pressure gradient with

frequency co
'w(û), t) complex spatial mean velocity with a sinusoidal pressure gradient with

frequency co 
v{y, r) total velocity profile

v (r)  spatial mean velocity waveform

y  fractional radial position (=/'//?)

entrance lengths for constant profile component, /c'th harmonic 
component

a, %  parameter defining profile form for the (Æ'th) harmonic pressure gradient
phase of /c'th harmonic component in mean velocity waveform 

p  viscosity of blood

V kinematic viscosity of blood {= /.i jp)

p  density of blood
(J standard deviation of the intensity response for a Gaussian shaped beam
CO angular frequency
£0 , fundamental angular frequency of the mean velocity waveform

y^a ,y )  complex profile form for the pressure gradient associated with a

^ a ,y )  phase of the complex function t//{a,y)
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CHAPTER 13 - ERROR COMPARISON IN VOLUMETRIC 
FLOW MEASUREMENT

Previous chapters, chapter 12 apart, have concentrated on the accuracy of IWMB and 
PIWMB for the measurement o f instantaneous mean blood velocity. However such 
velocity measurement is most useful in the context of examining the total volumetric flow 
in a period of time, for example during an integral number of cardiac cycles. The 
usefulness o f the estimators are therefore best considered by integrating the relevant 
instantaneous errors throughout the cycle. The object of this final chapter is to provide a 
feel for the typical errors in volumetric flow measurements made using IWMB and 
PIWMB, and to suggest the factor(s) most affecting their accuracy.

Clearly there are many parameters and variables defining the accuracy, and it is necessary 
to assign example values to these to obtain quantitative results. In particular the flow 
throughout the cycle needs to be assumed. Therefore we consider the example mean 
velocity waveform given in fig. 13.1, which is an actual waveform recorded in the carotid 
artery in the same way as those given in chapter 12. It is therefore only an approximate 
representation of the true mean velocity waveform, being liable to errors, notably those due 
to non-uniformity of insonation and high-pass filtering. As the mean velocity is at all points 
considerably positive, it might be justified to consider the velocity profile to be parabolic at 
all points in time. The form of the spectrum is therefore regarded as being constant 
throughout the cycle, and the scale of the spectrum is proportional to the mean velocity 
which, from (3.2), is at all times equal to half the maximum velocity.

velocity (cm/s)

Fig. 13.1 - example of a 'mean' velocity waveform

The error sources of chapters 4 - 10 are considered separately, with example parameter 
values chosen to give a guide to the sizes of the errors involved. To a poor first 
approximation these errors can be considered additive. The accuracy of such addition is 
improved the smaller the errors involved.
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Errors with an example beam

As suggested in chapter 5, with our transducer and a 6 mm diameter vessel the beam 
intensity response profile can be approximated as being Gaussian, with a width defined by 
the ratio cr/R~0.2. For comparison of the accuracies of IWMB and PIWMB both 

estimators are assessed for this beam. The figures derived are tabulated in tablel3.1.

Angle measurement - chapter 4

The work of chapter 4 shows that for both IWMB and PIWMB a 2° error in the estimation 
o f a Doppler angle of 50° leads to an error in mean velocity measurement of ±4ÿ% . This 

percentage is unaffected by the changing value of the true mean velocity throughout the 
cycle, so it would also be the percentage error in volumetric flow.

Finite beamwidth - chapter 5

From fig.3.3 the error in IWMB for mean velocity estimation with this beam is 
approximately +29% and the error in PIWMB is approximately -4%. These percentages 
are constant throughout the cycle, so these are also the percentage errors in volumetric flow.

Displaced beam - chapter 6

If  a uniformly insonating beam with a realistic shape was offset from the vessel centre by 
the reasonable amount of 20% of the radius then I WMF would incur little or no error. 
However if this much thinner example beam was displaced by the same amount then, 
because of the parabolic profile, the centre of the beam insonates a maximum velocity

chapter no. error source % errors in volumetric flow using example beam
IWMB PIWMB

4 angle measurement ±4% ±4%
5 finite beamwidth +29 -4
6 displaced beam -4 to 0 -4 to 0
7 spectral broadening 0 -2
8 white noise +25 <4=1
9 high-pass filter +5 +7
10 stochastic signal ±2 4:2%
12 non-monotonicity 0 4^+ 2

Table 13.1 - example errors in volumetric flow measurement 
using IWMB and PIWMB
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reduced by 4%, and the spectmm as a whole could be thought of as being reduced in 
frequency by approximately this amount. So IWMB would incur an error of approximately 
-4% , offsetting in some part the large +29% error associated with the beamwidth itself. If 
a beam of negligible width was misaligned to the same extent, then according to (6.4) 
PIWMF incurs an error of -4% . This figure will be similar for the example beam. If  the 
correct radius is used these percentages will be the same when considering volume flow, 
and they will be smaller for smaller beam displacements. If however the radius is estimated 
from a related B-mode image, and the plane of this image is also misaligned with the vessel 

axis to the same extent, then the radius estimated will tend to be the quantity - y ^

indicated in fig.6.I. The cross-sectional area calculated will then be equal to ( l - ( ^ ) ^ )

multiplied by the correct value. The resulting percentage error in area is -1 0 0 (^ )^% . For 

small displacements this will add to the percentage error in the mean velocity estimate. 
With a parabolic profile the flow errors using either IWMF or PIWMF are thus doubled.

Spectral broadening - chapter 7

As shown in chapter 7, if our transducer is used with a Doppler angle of 50° then the 
broadening function is approximately triangular with a »  0.54. If the broadening is such 
that 6 = 1 then IWMF is unaffected and fig.7.5 shows that PIWMF with this value of a  is 
reduced by 2%. Again this percentage is not dependent on the mean velocity so that this 
percentage is appropriate to volume flow also.

White noise - chapter 8

If  there is white noise throughout the frequency range then for IWMF the relevant curve is 
curve B of fig.8.3, as the parabolic profile and the near 'thin' beam lead to a spectrum 
approximated by f = 0.5. If the frequency range is chosen so that at peak systole the signal 
occupies 90% of the available bins, i.e. where m « 0 .9 , then fig.13.1 suggests that at 
diastole the signal occupies approximately 20% of the frequency range, i.e. m »  0.2. So at 
systole the error is small and negative, and at diastole the error is large and positive. The 
waveform of fig. 13.1 can be roughly thought of as comprising a 'systolic' segment 
contributing half of the total flow and occupying the first third of the waveform, and a 
'diastolic' segment contributing the other half of the flow in the remaining two thirds of the 
cycle. So the error due to noise in the first third of the cycle can be ignored, and, from 
fig.8.3 with « /« 0 .2 , the error incurred in the remainder is approximately 
+2.5 snr“' x 100%. This represents an average error of +1.25 snr"' x 100% over the two 

'halves' of the flow so that for a signal to noise ratio of 50 this corresponds to an error in 
volumetric flow using IWMF of +2.5%.
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Curve E of fig.8.3 shows that the error in PIWMF at any point in the cycle is in the range 
o f -0.5 snr"' x 100% to +0.5 snr ' x 100%. So, considering the whole cycle, the overall 

error must also be within this range. For a signal to noise ratio of 50 this corresponds to an 
error in volumetric flow of less than ±1% which is small. Furthermore the instantaneous 
errors will partially cancel over the whole cycle so even this small figure overestimates the 
error magnitude.

High-pass filter - chapter 9

Equation (9.5b) shows that the ideal high-pass filter introduces a fixed absolute error to 
IWMF, which is equal to + /* /3  when f = 0.5, as is approximately so for a parabolic profile 
and a near 'thin' beam This results in an absolute error in instantaneous mean velocity 
which remains the same throughout the cycle, so that the absolute error in the mean 
velocity averaged over the whole cycle is also the same. The percentage error in 
volumetric flow is then given by

+ - ^ x l O O %

where is the frequency corresponding to this spatially and temporally averaged

velocity, . In practice a filter with a quoted (corner) frequency of 200 Hz might be

used, so we take « 200 H z. In the example of fig. 13.1 * 0.34 m s"' so that with a
transmit frequency of 6 MHz, a Doppler angle of 50°, and a speed of sound in blood of 
1580 m s"', the corresponding frequency from the Doppler equation is » 1600 Hz and 

the error in volumetric flow incurred using IWMF is therefore approximately +5%.

Equation (9.7b) shows that the ideal high-pass filter introduces a fixed absolute error to 
PIWMF, which is equal to + j^ /2  when / = 0.5. Analogously to the case of IWMF, the 

percentage error in volumetric flow is then given by

xlOO%

and so for the example parameters is +7%.

Application of (9.8) to the data above suggests that this figure of / j  » 200 Hz is sufficient 

to remove wall motions with velocities less than approximately 3 cm s"'.
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Statistical fluctuation - chapter 10

The amount of blood passing through a cross section of a vessel of radius i? in a small time 
At can be given by

where v is the spatial mean velocity appropriate throughout that small time interval. The 
average rate of flow of blood by volume, , throughout a cardiac cycle made up of N  

contiguous time intervals each of duration Ar can therefore be given by

where the j  subscript indices indicate variables appropriate to the / t h  such time interval. 
Assuming a constant radius R we can then write

So if the spatial mean velocities are estimated using IWMB, and the estimates are

denoted by Vj{b ) , then the resulting estimate of volumetric flow rate, QI^{b ), has a 

variance given by

v a r g L ( g ) . ^ i : v a r v ; ( g )
Jy j=\

if the v^{b ) estimates are independent. From (10.19) we have the working relationship 

that an estimate v ' j{b ) has a variance that can be given by

Defining the period of the cycle to be T = N S r ,  it follows simply that

12 F  cos 0 7 V ^  >=' y
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The bracketed term in the limit of large N  is the true spatial and temporal mean velocity 
throughout the cycle, . So

■QUiB) 12Fcosgr

Taking Q I ^ { b ) to be unbiased, as from chapter 10 the v ’{ b ) values are regarded as 

unbiased, and recognising that the true flow rate is given by the relative

uncertainty of the estimate of flow, r u expressed by

J v a rg ;^ ( a )

A^12Fcos^r

So, for a given transducer, geometry of insonation and velocity scale, the limiting factor on 
the precision of the estimate of flow rate is the duration of the cardiac cycle, T. This is an 
improvement on the situation of chapter 10 where the precision of an individual estimate of 
'instantaneous' spatial mean velocity was limited by the duration of the data segment, Ar. 
This precision could further be improved by measuring over more than one cycle. 
Putting F  = 6 MHz , c=  1580 ms"', 0= 50°, T = l s ,  and, as in the example of fig.13.1,

âve * 0.34 ms"' gives % 0.010= 1.0%. Allowing two standard deviations of

departure from the mean, an appropriate measure of the random error in the estimate of 
flow rate in this example is therefore ±2%.

An analogous derivation using (10.20) gives the relative uncertainty in the estimate of flow 

rate using PIWMB, Q^X^) ,  as

■QL(b ) I 2c
r.u.

A^lSFcos^r

which with the parameter values used above gives r.u.g, r ^ j» 0 .0 1 3 5 l.3 % . The 

appropriate uncertainty in the estimate of flow rate is therefore approximately ±2%%.
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Chapter 12 - non-monotonic flow at other sites

The assumption that the example carotid waveform of fig, 13.1 has at all times a parabolic 
profile precludes the possibility of the profile being non-monotonic, so there is no 
associated error in volumetric flow. If the beam is 'wide' IWMF is not affected by non
monotonicity in the profile anyway. Even with this example thinner beam no extra error is 
incurred with IWMF if the profile throughout the cycle is sometimes non-monotonic 
because, as stated in chapter 12, the relevant velocity profile is the time-averaged profile, 
which is thought to be monotonie and parabolic. A guide to the error with PIWMF with 
this near 'thin' beam in the actual case of pulsatile waveforms is given by the results of 
chapter 12, e.g. +2% and -8% in the common and superficial femoral arteries respectively.

Discussion

The errors of table 13.1 are rough guides and can only be compared accordingly. The 
dominant error in the use of IWMB is clearly that caused by the wrong assumption of the 
beamwidth. However, with knowledge of the tine beamwidth and vessel radius, this may 
be compensated for if, as in the example, the average velocity profile throughout the cycle 
can be assumed to have a particular axi-symmetric form. PIWMB is subject to more 
sources of error, and none is dominant. The negative errors due to the beam not being 
ideal, i.e. the errors of chapters 5, 6 and 7, cancel in part with the necessarily positive error 
due to filtering. Some knowledge of the physical parameters of the system might 
reasonably be held, and so some errors could be predicted and therefore in part 
compensated for. This is of course true for IWMB also. In particular the beam intensity 
profile, the spectral broadening characteristics, and the filter characteristics may all be 
known. It may also be appropriate to assume a certain noise level. Even if these 
parameters are not known they will remain constant from one examination to the next so 
that these errors need not affect the results of a flow comparison before and after 
administration of a drug, for example. The remaining sources of error might therefore be 
considered more troublesome, and so are highlighted in bold script in table 13.1. These are 
the uncertainties of the angle measurement and the positioning of the beam, the random 
nature of the Doppler signal and a departure from ideal behaviour of the velocity profile.

E rror comparison with beams of ideal widths

Another comparison might be made if the estimators are used with beams of the 
appropriate widths. In this case there are some differences to the errors tabulated in 
table 13.1. If the beam insonates uniformly, the error in IWMB corresponding to chapter 5 
is zero, and if the beam is broad enough the error due to it being displaced is also zero. 
However the relevant curve on fig.8.3 for IWMF is now cuive A with an increase in the 
error due to the noise to around +4%. If the beam has a negligible beamwidth then the 
error in PIWMB corresponding to chapter 5 is zero.
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C o n c lu d in g  r e m a r k s

The statistic PIWMB has been presented for use in the calculation of spatial mean blood 
velocity, and hence for measurement of volumetric flow, when the ultrasound beam is 
better described as being of negligible width compared to the vessel radius than as 
insonating the vessel uniformly. The validity of this statistic relies upon assumptions about 
the velocity profile which are invalid near to vessel bifurcations and at various stages of the 
cardiac cycle in highly pulsatile flow. Nevertheless if the beam is better modelled as 'thin' 
than as 'wide' then using PIWMB avoids the large error associated with IWMB, the 
statistic valid with uniform insonation. PIWMB suffers in the same way as IWMB from the 
well-known problems of uncertainty in the measurement of the Doppler angle, and the 
necessary high-pass filtering of the Doppler signal. In addition, PIWMB when used with a 
narrow beam is susceptible to sources of error not affecting IWMB when used with a broad 
beam, e.g. departures from the ideal profile forms, misalignment of the beam and 
geometrical spectral broadening. The suggestion therefore is that mean velocity and 
volumetric flow estimation are better carried out with a broad beam than with a narrow 
beam. However in duplex systems that use the same crystals for transmission of both the 
imaging and Doppler beams, the beam is not thought to be broad enough to uniformly 
insonate sizeable blood vessels and might be better modelled as 'thin'.

Notation for this chapter

a,b parameters defining the idealised broadening functions as in chapter 7
f  cut-off frequency in ideal high-pass (brick-wall) filter as in chapter 9
m ratio of maximum signal frequency to maximum noise frequency as in

chapter 8
N  number of time inteivals in the cardiac cycle

average rate of volumetric flow in the cardiac cycle

Q L X ^ ) ’QlX ^  estimates of the average rate of volumetric flow in a cardiac cycle

made using IWMB and PIWMB 
snr signal to noise ratio as in chapter 8
T  period of the cardiac cycle
Vgyg mean velocity averaged both spatially and temporally

Vj spatial mean velocity in the /th  time inteival

v'X^  ) estimate of the spatial mean velocity in th e /th  time interval made

using IWMB
cr standard deviation of the intensity response for a Gaussian shaped

Doppler beam as in chapter 5 
At duration of each time inteival
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APPENDIX A - REAL-TIME DIAMETER AND FLOW  
MEASUREMENT

Prior to the detailed study of PIWMB the general intention of this project was to improve 
the accuracy of volumetric flow measurements by taking into account the changing cross- 
sectional area of the blood vessel. On the assumption of circularity o f this cross section 
this is equivalent to evaluating the more correct equation

r+ r

T

instead of the commonly used equation

r+r
(A.2)

where R" is the single representative estimate of the true changing radius R{ r) throughout 

the cycle. These equations have previously been given as (1.6b) and (1.7b). The approach 
taken was to modify the duplex method described in chapter I in order to find 

corresponding changing radius and mean velocity estimates, 7?'(r) and v ' ( t) ,  with 

particular emphasis being given to the measurement of the changing radius. This appendix 
therefore primarily describes the measurement of the changing radius, to produce an 
estimate R'{ r) appropriate in time to the estimate of mean velocity, v '( r). The body o f the 

thesis has considered in some detail the measurement of the mean velocity.

Flow estimation by simultaneous velocity and diameter measurement

As described in chapter 1 velocity estimation using the duplex method is achieved by 
manipulating the sample volume to be at the correct position and of the correct size, as 
indicated on the B-mode images, and then switching off the imaging mode to allow all the 
machine time to be devoted to velocity measurement. Typically a single estimate of the 
arterial radius, R " , is found from one or several frozen images, and so, with the mean 

velocity estimate v '(r), an estimate of volumetric flow is given by (A.2). This estimate is 

therefore in error to the extent that R"~ is not representative of the instanteous true value 

R{ tY  throughout the cycle.

It is suggested that, to overcome this problem, future estimates of volumetric flow may be 
performed by the pseudo-simultaneous measurement of vessel diameter and velocity, and 
their combination according to (A. 1). The technique used would differ from the duplex
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method described in chapter 1 in that, as well as the Doppler operation, the B-mode 
imaging would be 'continuous' in order to obtain instantaneous estimates of vessel 
diameter. The term 'pseudo-simultaneous' is used to indicate that, if time-sharing in the 
scanner is necessary to provide both dynamic imaging and Doppler signals, then 
'corresponding' diameter and velocity data are not strictly measured simultaneously.

Assuming circularity, as is common, the problem of real-time flow measurement can then 
be broken down into three components, i.e. the measurement of continuous instantaneous 
spatial mean velocity, the measurement of the continuous instantantaneous internal 
diameter of the arteiy, and the accurate referencing in time of these two quantities. These 
have been attempted by processing the audio output of the scanner carrying the Doppler 
signal and the video output of the scanner canying the image information, and combining 
the results. Without going into great detail some principles, problems and conclusions are 
stated in this appendix.

Summary of system operation

The processing of the Doppler signal is performed in a digital signal processor purpose- 
built for Doppler signal analysis (Schlindwein et al. 1988) and the results sent to a personal 
computer (Research Machines Nimbus) which has an Intel 80186 microprocessor. The 
image information is transferred via a digital frame store designed for real-time image 
acquisition (Bush et al.) into the personal computer, where it is analysed to provide the 
diameter information. The time registration and combination of the velocity and diameter 
estimates are performed in the personal computer to make available the real-time estimates 
of volumetric flow.

Measurement of spatial mean velocity

In this appendix the method of calculation of v '(r)  is not relevant, that being the subject of 

the main body of this thesis. It is sufficient to say that, with the help of the Doppler 
equation (1.2), a real-time estimate of mean velocity throughout a vessel cross section can 
be made by processing the spectrum of the audio signal, which ideally is the uncorrupted 
Doppler signal. This real-time spectral analysis is performed on a segment of the Doppler 
signal, and enables a mean velocity estimate to be made which is representative of the 
interval over which the signal segment is acquired. In our system (Schlindwein et al. 1988) 
the spectral analysis was performed using a Fast Fourier Transform algorithm with a 
Hanning spectral window applied to segments of 256 data points sampled at either 1.28, 
2.56, 5.12 or 10.24 kHz. By overlapping successive data segments the required amount, a 
new estimate of mean velocity was available 160 times every second.
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Measurement of arterial diameter

Previous studies of the diameter of the pulsating vessel have concentrated on the precise 
measurement not of absolute arterial diameter but of changes in diameter. Examples 
involve the measurement of the time delay before the wall echo is received by amplitude 
(Hokanson et al. 1970) and phase-lock (Hokanson et al. 1972) techniques, the analysis in a 
multi-gate pulsed Doppler system of the low-frequency Doppler signal reflected from the 
moving arterial walls (Hoeks et al. 1985), and the updating of the data window position at 
the lumen/vessel wall boundaiy by the tracking of the phase of the reflected radio
frequency (RF) wave (Hoeks et al. 1990). The approach described in this appendix has 
more similarities to the work of Wilson et al. (1990), who 'averaged' and smoothed the A- 
lines through the region of interest in the image and used edge detection by differentiation 
to locate and track the vessel boundaiy and orientation, at a rate of 4 images per second.

The temporal and spatial resolution of a system based on the processing of B-mode images, 
such as the system described in this appendix, are poorer than in other systems due to the 
limited frame update rate, the discarding of the RF echo information in envelope detection, 
and other processing of the information making up the image.

Estimation of an absolute change in diameter, AD, requires no knowledge of the true 
diameter, whereas estimation of the relative change of diameter AD/D, given that the 
maximum changes are of the order of 10%, requires a first approximation to the diameter 
only. Determination of the diameter itself is a different question. Not only must the 
relevant echoes somehow be tracked throughout the cycle, but the echoes chosen must be 
identifiable in terms of the structure of the vessel wall. For flow studies the statistic of 
interest is the lumen diameter, which is the internal diameter of the blood vessel. This is the 
boundary between the lumen and the intimai layer of the vessel wall. If  the vessel is 
insonated from near to the perpendicular then this boundaiy may appear as a line on the B- 
mode image distinct from, and less bright than, the line representing the boundary between 
the media and adventitia of the vessel wall. The identification of these lines as representing 
these boundaries is due to Pignoli et al. (1986), who correlated the distance between these 
lines with a histologically determined thickness of the intima and neighbouring media. 
These lines are clearly visible in the distal (i.e. lower) wall on fig.A.l, where the 
reproduction fails to show that the shallower echo is duller than the main echo. The line 
structure of the proximal wall in the image is less well pronounced, as is typical. 
Measurement of diameter therefore consists fundamentally of measuring the distance across 
the lumen between the two inner lines.
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Fig.A.l - an example image of an arterial segment showing the distinct lumen/intima 
and media/adventitia boundaries sometimes observable in high resolution systems

Image processing

The fact that the boundary of interest provides a significant echo and is adjacent to the 
lowly echogenic blood is useful for diameter measurement by B-mode image processing. 
With an image of an artery orientated substantially across the screen the distal 
lumen/intima boundary can be flagged by locating the depth at which the echo level begins 
to exceed the very low level of echo from the blood. It is therefore not necessary for the 
lumen/intima and media/adventitia boundaries to be resolved. The proximal lumen/intima 
boundary may be flagged in the same way by starting in the lumen and processing up the 
image. A quantitative measure of lumen diameter can be made by calibrating the image 
scales and recognising that, due to the finite duration of the echo pulse, the true diameter 
exceeds the distance measured between the two flagged depths by approximately the 
extent in the vertical direction of the point spread function. This correction to the raw 
distance is essentially the same as that applied by Li et al. (1993) in their study of the 
accuracy of internal tube diameter measurements made using the on-screen calipers.

In practice image smoothing was applied in the direction of the artery axis by considering 
the mean of 7 adjacent pixels. The shape of this 'bar' of 7 pixels was such that it 
conformed in angle to the orientation of the artery, calculated from a set o f images 
acquired before the real-time process began. The walls of the artery were located by 
moving this bar either side of a starting point in the lumen, in a direction perpendicular to 
the artery axis, until the relevant thresholds were exceeded. The thresholds were 
calculated from a linear function which took into account estimates of the variability and 
(small) trend in the image brightness in the lumen to avoid falsely assigning the position 
of a wall to the lumen region. A schematic example of the brightness profile as a bar of 7 
pixels traverses through an artery such as that shown in fig.A.l is given in fig.A.2. The 
diameter is measured from the points where the profile exceeds the threshold line, which is 
calculated to not intersect the profile in the lumen region.
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Fig.A.2 - a schematic of an Image brightness profile perpendicular to the artery axis

As stated before, the distal lumen/intima boundary generally appears more pronounced than 
the proximal one. This is seen in fig.A,2, where at the distal wall this boundary is 
represented by the initial small maximum but at the proximal wall this boundary only 
appears as a change in the derivative of the slope of the main echo. There are several 
reasons why this is observed, one important one being that the echo pulse has a steeper 
leading edge than trailing edge so that the shallower edge of an image line is better defined.

Image calibration

The production of an absolute estimate of diameter requires calibration factors for the 
image extent in both screen dimensions. The fixed sampling rate of the digital frame store 
means that the image acquisition introduces an aspect ratio o f approximately 4:3 to any 
redisplayed digital image. For diameter measurement accurate calibration is more 
important in the vertical dimension because the vessel is primarily orientated horizontally 
across the screen. Vertical calibration is achievable using a signal injection system which 
generates bright bands on the image separated by a distance corresponding to a known time 
interval. Even though the image is made up of a finite number of discrete rows, applying 
the quadratic interpolation process outlined in the 'Image resolution' section below, and 
averaging over many frames enables a calibration factor to be found with an uncertainty 
that might be better than ±1%. A high proportion of this uncertainty is due to the 
uncertainty of the velocity of sound in blood. The velocity is dependent on the haematocrit 
which shows considerable variation among both males and females, and has different means 
for the genders. The calibration in the horizontal dimension can be achieved using test 
objects of thin wires separated by a known distance. This method of calibration is not 
generally as precise, but because the vessel is primarily orientated horizontally this is of 
limited importance.
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T im e  r e f e r e n c in g

Having made a diameter measurement, the volumetric flow rate follows from (A.l) using 
the measurement of mean velocity appropriate to the time at which the image of the artery 
was created. So the temporal resolution of such a system for measuring volumetric flow is 
limited by the available image update rate when in time-sharing mode. With our current 
scanner a rate of 17 image frames per second (fps) is achievable. Even if this could be 
increased, unless the normal format of transfer of video information is superceded the 
maximum frame rate for our system ainning in real tim e, is 25 fps, or 50 fps if the 
interleaving video lines are regarded as constituting a separate image.

In essence a lot of the problem of time referencing in our system could be put down to the 
presence of three asynchronous cycles needing to be accommodated, that is the image 
update rate of 17 fps (Hz), the video transfer rate of 25 fps (Hz) and the rate of acquisition 
of mean velocity information of 160 Hz.

Discarding redundant frames

A consequence of the images being created at a rate lower than the video transfer rate of 
25 fps is that the data in the region of interest of the frame may not have been updated 
between the transfer of successive images. The relevant data in one digitised frame might 
therefore be a copy of the data of the preceding frame. With a refresh rate of 17 fps this 
happens approximately every third digitised frame. To achieve a linear time scale these 
copied frames must be discarded. This can be achieved by the digital subtraction of the 
region of interest of one frame from that of the previous frame. Relying upon the presence 
of noise or moving 'speckle' in successive created images, and the motion of stronger 
scatterers such as the pulsating vessel walls, the region of interest is rejected as being a 
copy of the previous one if the results of the pixel-by-pixel subtraction show too little 
variance.

Time delay adjustments

With the above image generation rate of 17 fps, video information displayed at any one 
time may be approximately 60 ms old, depending on the phase relationship between the 
asynchronous creation and transfer of fresh video data. The accurate synchronization of 
the diameter and velocity information needs to take continual account of this and any other 
'delays' such as the time difference between the transfer of video data at the top and bottom 
of the image, the time required to acquire the digital images and the duration of the data 
segment from which the mean velocity estimate is made. Furthermore there may be hidden 
delays in the time registration of the video and audio outputs of a commercial machine as 
synchronization to the degree of accuracy desired may not have been a design 
consideration.
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Pseudo-sinniltaneity and Doppler signal synthesis

It is thought that, by” considering factors such as those in the preceding paragraphs, the 
problem of relative time registration of the audio and video information has been solved to 
approximately 10 ms. However even if the video and audio signals are referenced well in 
time an error exists as the B-mode and Doppler operation are not strictly simultaneous. 
Both modes of insonation use the same linear or phased array transducer and so the 
available time is shared. In practice the Doppler signal corresponding to the time spent 
during creation of an image might be synthesised by extra/interpolation from adjacent data. 
A trade-off exists between the two modes of insonation so that if the number of images 
created per second is maximised, such extrapolation of the Doppler signal is required more 
often and overall quality is reduced. It is ironic that, after solving the difficult problem of 
synchronization, the section of the audio signal corresponding to the time a diameter 
measurement is made is found to be extra/interpolated, and hence to be an approximation. 
Furthermore the 'true' Doppler signal corresponding to time when the images were not 
being created is discarded. A more sensible approach might be to use a 'true' portion of the 
Doppler signal and interpolate between diameter measurements, or accept a small error in 
time registration.

Factors affecting image and audio signal quality

Beam width

The use of electronic array transducers has considerably improved the rate at which 
successive images are created. The pulsed Doppler beam for the velocity measurement can 
also be generated from the same array of transducers. However there are at least two 
trades-off between image and Doppler signal quality when insonating blood vessels. Firstly 
the optimum B-mode beam is 'thin', with the dimension in question being the dimension of 
the width of the transducer. In this way the vessel walls are clearly defined in the image 
and not smeared. This is illustrated in fig.A.3a. However the ideal Doppler beam is 
regarded as being 'wide', as in fig.A.3b, so that each scatterer in the cross section 
contributes to the Doppler signal equally. This then is a problem if the same array is used 
for both purposes as there is generally no control over beam focusing in this dimension. 
The determination of mean blood velocity when the beam is 'thin', thus providing a solution 
to this problem, has been the main subject of this thesis.

Beam angles

The quality of the images of the vessel walls deteriorates as the transducer is tilted on the 
skin surface because the vessel wall is no longer insonated perpendicularly and specular 
reflection is not obseiwed by the transducer. (In this case the two lines of Pignoli visible in 
fig.A.l generally become indistinct, although this in itself is not a problem.) However this
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tilting is necessary with our linear array to produce an acceptable Doppler angle for the 
quantitative measurement of blood velocity. The ability to steer the beam electronically is 
not sufficient in itself to produce a low enough angle. This would not be a problem it there 
were separate imaging and Doppler transducers as might be found with a mechanical sector 
scanner. Our sector scanner however has a duplex image update rate o f only 4 fps, and the 
mechanical rocking of the crystal producing the image causes interference in the Doppler 
signal.

im age
viewing
direction

'thin' imaging beam 'wide' Doppler beam

(a) (b)

Fig.A.3a - a 'thin' imaging beam is optimal to avoid smearing of the artery walls In 
the image

Fig.A.Sb - a 'wide' Doppler beam is optimal to insonate equally the red blood cells 
passing through any point in the cross section

Doppler cursors

Diameter measurement in the cross section of the vessel intersected by the Doppler beam is 
complicated by the overlaying on the image of the cursors defining the Doppler beam 
direction and the sample volume extent. If these cursors cannot be removed, a solution is 
to measure the diameter through a point on the image a short distance from where the 
mean velocity is measured, and assume that the measured diameter is accurate.

Image resolution

It might be thought that the image resolution is limited by the pixel scale. Typically the 
pixel-to-pixel distance in the depth dimension might be ~0.2 mm. For example, in any one 
column of an image, the depth where the echo amplitude exceeds a certain threshold might
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be taken to be the shallowest row where the pixel brightness exceeds the required value. 
However linear interpolation from the pixel value in the row above can simply be used to 
determine more accurately the depth at which the threshold is exceeded, as in %.A.4a. 
This depth will be represented by a fractional number of rows, x. Such interpolation 
effectively improves this depth 'resolution'. The algorithm for the location of the vessel 
walls used a similar technique.

pixel value

th re s h o ld

n - \  X  n

(a)

pixel value

d ep th
(row s)

u-1 n  X  « + 1  d e p th  
(row s)

(b)

Fig.A.4a - determination of depth, x, where a threshold is exceeded by linear 
interpolation back from the first row where a higher value is observed, n.

Fig.A.4b - quadratic interpolation to determine the depth of maximum response, x, 
from the highest observed value (i.e. at row n) and those above and below

Alternatively it might be desirable to locate the depth of maximum echo amplitude in a 
column. An obvious estimate of this depth is simply the row co-ordinate o f the pixel with 
the greatest value. However an improvement can be made on this by considering the 
values of the pixels immediately above and below this brightest pixel. A quadratic fonction 
can easily be fitted to the three points, and the position of the turning point found. This 
gives a fractional number of rows which is a more accurate estimate of the depth of 
maximum response. This is illustrated in fig.A.4b. This quadratic interpolation method 
was tested by following the path of (the brightest point of) an object boundary as the object 
sank smoothly in a water bath. The motion of the object was measured to be much 
smoother when the interpolation was applied than when the simple brightest row method 
was employed. So, as with the linear interpolation above, this quadratic interpolation 
improves the depth 'resolution'. It can easily be applied to locate the depth o f maximum 
rate o f  change of brightness, by first taking the row-to-row differences.
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Image interpretation

The simplest, and perhaps best, image processing is performed without assuming that the 
pixel values lie on a scale with physical meaning. To suggest, for example, that the 
digitised brightness scale is linear with the echo amplitude implies that the enveloping of the 
echo signals is understood, that the transfer function chosen for the generation of the video 
signal is linear (whereas the default setting may be of a sigmoidal form), and that the A/D 
conversion in the image transfer is linear.

Audio response

The audio output of the scanner is ideally a true representation of the Doppler signal. At 
least two important factors affect the fidelity of the audio output with respect to the 
displayed 'sonogram' summarizing the Doppler signal. The sonogram may have the ability 
to be baseline adjusted, e.g. positive frequencies above the Nyquist limit can be correctly 
displayed on the sonogram by lowering the baseline. The sonogram frequency range is 
therefore equal to the value of the sampling frequency. However frequencies above the 
Nyquist limit do not appear correctly in the audio signal and are aliased. So, for example, 
high frequencies at systole may be seen on the sonogram using the baseline adjustment, but 
may not be heard in the audio signal. The appropriate technique is therefore to allow no 
baseline adjustment in the sonogram, and instead increase the Pulse Repetition Frequency if 
the maximum velocity is seen to correspond to frequencies above the Nyquist limit. 
Secondly the audio output must not have been internally filtered. The use of a variable 
frequency, fixed intensity, signal injection source allowed the audio-output transfer fonction 
to be examined. The extent to which this transfer function departed from uniformity in our 
scanner was alarming. Clearly errors in mean velocity measurement will result if this audio 
signal is assumed to be the true Doppler signal.

Summary

On-line and real-time volumetric flow measurements may well be performed in future by 
simultaneous B-mode image and Doppler signal processing. A real-time system based 
around a personal computer with an 80186 microprocessor, digital signal processor and 
digital frame store has been developed with some success in principle. However a robust 
system would require more processing power and better quality image data, as provided for 
example if the arteiy can be orientated horizontally on the image. Such orientation would 
require greater flexibility in the steering of the Doppler beam. A major limitation is the rate 
at which fresh B-mode images are created when operating in duplex mode, and/or
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transferred to the computer. With our scanner images are available at a maximum of only 
17 frames per second, and with our frame store images are transferred at 25 frames per 
second.

An intermediate step or approximation to this approach may be to treat the diameter 
measurement and mean velocity measurement problems one after the other. For example 
the changing diameter throughout an average cardiac cycle could be found with a 
horizontally orientated arteiy before the duplex operation was commenced. This would 
provide greater accuracy and higher temporal resolution in the diameter measurements. 
Subsequently the probe is tilted, the imaging rate is minimised subject to the need to 
monitor any global motion of the artery, and the Doppler operation is performed. The 
velocity data and diameter data could be combined by matching points in the average 
cardiac cycles, according to (A.l). Alternatively a single time-averaged diameter estimate 
might be calculated for use in (A.2), in accordance with the small error reported by 
Eriksen (1992) and described in chapter 1.

Notation for this appendix

Gave , Gave average volumetric flow rate in one cardiac cycle, and its estimate

i?(r),7?'(T) instantaneous internal radius of blood vessel, and its estimate

R"  a single estimate of internal radius
T  period of cardiac cycle
v ' ( t) estimate of instantaneous spatial mean velocity
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APPENDIX B - A MODEL OF ASYMMETRY IN THE VELOCITY
PROFILE

When the beam is 'thin' the estimator PIWMF has been shown to be accurate for monotonie 
axi-symmetric velocity profiles. The family of monotonie axi-symmetric velocity profiles 
given by (3.1) has been used in the context of quantifying the errors from various individual 
sources. This profile equation is restated here.

(B .l)

Errors in PIWMF will in general also arise if the velocity profile is asymmetric. This 
appendix describes the effect on the accuracy of PIWMF if the profile has an asymmetric 
form related to the form of (B.l). This asymmetric profile form was briefly introduced in 
chapter 12.

Model of asymmetry

If  the point, E, of maximum velocity, v„, is a distance, e, from the centre of the vessel, C, 
as in fig.B.l, an asymmetric form of (B.l) is

' - ' I (B.2)

where v is the velocity a distance 5 from E, and S  is the distance from E to the vessel wall 
along the same line. Fig.B. 1 and equation (B.2) can be seen to be the same as fig. 12.1 and 
equation (12.1).

- geometry for an asymmetric velocity
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Clearly S varies with the position around the vessel circumference, and with the 
displacement e, so that the profile is not axi-symmetric, but the profile is still monotonie, 
and is symmetric about the line joining C and E. The form of (B.2) is defined by n and the 
fraction e/R, and the scale by For n>  1 this asymmetric profile surface is continuous 

and has a derivative continuous at every point in the cross section. The equation describing 
the surface in Cartesian coordinates is derived later. An example of the profile surface with 
e = OAR and w = 2 is shown in fig.B.2a and the corresponding velocity contour plot is 
given in fig.B.2b. The contours of velocity are seen to be non-concentric circles as 
discussed below.

It follows from (B.2) that the profile along any chord passing through the maximal point is 
piecewise and consists of two 'halves', each of the form defined by the single value of n, but 
with different length scales. It is debatable how well this approximates profiles observed in 
practice. While the profile along any one line from E to the circumference might be 
definable by a single value of n it is presumptuous to assume that the same value o f n 
describes the profile along every such line, in particular the line in the opposite direction.

n=2 e /R = 0 .4

E 0 .8

p osit ion  (radii)
posit ion  (radii)

Fig.B.2a - an asymmetric profile
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n=2 e/R=0.4

0.6

0 .41

- 0.2

-0 .4

D
position (radii)

Fig.B.2b - the corresponding velocity contour plot 

Mean velocity with the asymmetric profile

The first step in an analysis of mean velocity is to derive the equation of the velocity 
contour defined by a fixed value of the ratio f i=s /S .  The velocity is then given by

V = v „(l -  /?” ). The locus of the contour must be an enlargement o f the circle o f radius R

about the fixed point E, with an enlargement factor of /?. The contour is therefore a circle 
of radius fiR, which obviously has an area independent of e. This is shown in fig.B.3 where 
in this example 0.7.

v e lo c ity  c o n to u r

K

H

Fig.B.3 - a circular velocity contour in the vessel cross section
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By symmetry the centre, B, o f this contour circle is on the line joining C and E and can be 
found from known distances, i.e.

ICBl = = (l-;g)e (B.3)

Velocity contours cannot intersect each other so that the area between the velocity 
contours defined by two different values of p  is the difference in the areas o f the 
corresponding circles, even though the circles are not concentric. It follows that the 
proportion of the cross section containing scatterers with velocities between these contour 
values is also independent of e, and so must be equal to the proportion found when e = 0, 
i.e. when the profile is axi-symmetric as in (B.l). This result means that any amount of this 
form of asymmetry does not alter the mean blood velocity through the cross section, 
provided the maximum velocity stays the same. The mean velocity for the profile of 

(B .l) has been found to be given by equation (3.2) and is

(B.4)
H +  2

and this is therefore also the mean velocity for any profile given by (B.2). This result has 
been previously stated in chapter 12.

General surface equation

The equation in Cartesian coordinates of the general asymmetric profile, defined by e/R,  n, 
and v^,  can be found with the help of fig.B.4.

G

K

H

Fig.B.4 - the geometry for the derivation of the surface 
equation in Cartesian co-ordinates
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This shows the cross section scaled in units of radii, so that the dimensionless 
displacements x  and y  are bound between -1 and 1. The asymmetry is defined by the 
dimensionless parameter g  = e/R,  which is between 0 and 1. The points C, B and E have 

the same meaning as above. The velocity at a general point P defined by x  and y  is 

calculated by finding which is |PB|. This is achieved by applying the 'cosine' rule to the 

lengths of the sides of the triangle PCB and the angle PCB, which states that

+ y  ) cos(ZPCB)

but this cosine is

cos(ZPCB) ^

and therefore

+ ( l- /? y g ^ -2 g y ( l- /9 )  

which becomes the quadratic equation

(l - )  + /?(2g)(g-  - ( g - )  = 0.

Solving this, for 1, gives

(B.5)

P - -
1 - g '

As is non-negative the square root quantity must be not less than |%-g{ which

is not less than g { x - g )  as 1. Therefore only the positive square root gives a

positive value of p. The velocity at the general point defined by x  and y  for the profile 

defined by M, g  and is v = v„,(l- /? ”), and is therefore

(B.6a)

For g  = 1 solving (B.5) gives

yg= 1-% +
2(1-%)
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SO that for g  = 1 the profile is

1-X +
2(1-%) (B.6b)

which must be the limiting form of (B.6a) as -> 1. So, remembering that x, y  and g  are 

displacements normalised to the radius, the asymmetric profile equation expressed in 
Cartesian co-ordinates can be found from (B.6a) and (B.6b).

Errors incurred by PIWMF

Refer again to fig.B.3 or fig.B.4. When the beam is 'thin', i.e. is of negligible width mid  
passes through the vessel centre C, it is suggested that the highest value of PIWMF will be 
found when the beam is along the line GH and the lowest value when it is along JK. This 
might be intuitive but has been too difficult to prove.

The maximum value o f  PIWMF

An example profile along the diameter GH is shown in fig.B.5 where the values of the 
parameters are the same as in fig.B.2, i.e. e = OAR and n = 2. The 'halves' o f the profile

velocity g/R = 0.4
n = 2

R R
H

position along diameter GH 

Fig.B.5 - the asymmetric profile along the diameter GH
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have the same form, defined by n, but the half between G and E is extended over the length 
R  + e and is given by the equation

s'

and the half between E and H is extends over R - e  and is given by the equation

where s ' and s"  are measured from E. From these equations it follows simply, using 
similar steps to that applied when manipulating (3 .1) in chapter 3, that

ds' _ ( R  + e) f
and

dv nVm ( " . j dv nVm

If  the sample volume with the 'thin' beam is this diameter GH then the fraction of the 
sample volume occupied by scatterers with velocities between v and v + Sv where Sv is 
very small is

+ ds' —  +
R R R

2&
(B.7)

which is independent of e, so the velocity distribution of scatterers in the sample volume is 
the same as it would be if e was equal to zero, i.e. the same as it would be in the axi- 
symmetric case. Therefore the spectrum from insonation along GH is the same as that for 
the axi-symmetric profile with the same maximum velocity. This leads to the same value of 
PIWMF, which must be the correct value as it has been seen that the true mean velocity is 
not affected by e. Therefore, whatever the amount of asymmetry, the error incuired by 
PIWMF when the beam is along GH is zero. It is therefore suggested that the maximum 
observed value of PIWMF for a 'thin' beam is the correct value.



B-8

Furthermore (B.7) is independent of the length of the diameter R. A similar analysis can be 
performed for any chord passing through E, e.g. LM on fig.B.3, to give the same equation, 
which is independent of e and the length of the chord. This follows from redefining the 
directions s ' and s"  to be along the chord LM and replacing R+e and R-e by 
|LE| and |EM| respectively. Therefore there is the interesting result, already given in 

chapter 12, that for any beam of negligible width passing through the point o f maximum 
velocity E the estimator PIWMF incurs no error. It is suggested without proof that a beam 
that does not pass through E must give a lower PIWMF. A proof is available for beams 
not passing between C and E.

The minimum value o f  PIWMF

It follows that if PIWMF is in error it must be in the form of an underestimate. With 
reference to fig.B.3 or fig.B.4, the worst underestimate for a 'thin' beam would appear to be 
when the beam is along JK, as suggested earlier. Furthermore the profile is most peaked, 
and therefore the error at its greatest, when n is at its minimum value. The symmetric 
profiles of (B .l) considered have often had ii> 2 . In the asymmetric case it is reasonable 
also to choose the minimum value of n to be 2. Therefore the equation of the profile along 
this diameter leading to the minimum value of PIWMF is given by (B.6) with x = 0 and 
n = 2, and is

(B.8)

So the mean velocity estimate corresponding to this minimum value of PIWMF, denoted by 

^'(/min)> would be the mean velocity if this monotonie profile along the diameter was axi-

symmetric about C. This velocity could be found by integrating over the cross section and 
normalizing. Therefore if this axi-symmetric profile is v(r)

\2K r ■v{r)c/r f 2r-v(r)c/r
= i  = :»_______

mm /  R j^2

j2 rrr dr
0

Using y  = r fR  this becomes

= (B.9)
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which in combination with (B.8) yields

1  1- (B.IO)

The analysis leading to this result is given at the end of this appendix. As the true mean 
velocity with « = 2 is v = v „ ,/2  the percentage error is

xlOO%

i _ M + ^  
3 3 0 + g )

xIOO%

This error is tabulated for various values of g  in table B .l. The tabulated value when g =  1 

is the limiting value of (B.l 1). Alternatively it is evident that (B.6b), which is true for 

g  = l, gives P={y^ + \ ) l l  when x = 0. Subsequent substitution of v = v„,(l-/5^) into 

(B.9) leads to the tabulated value, which is exact.

g  0 0 1 0 2  0 3  0 4  0 5  &6 0 7  0 8  0 9  1 0

0 -0 3 - 1 2  -2.6 -4.3 .6 .2  -8.2 -10.3 -12.4 -14.6 -16%

Table B .l - the largest negative percentage error in PIWMF for an asymmetric 
profile with « ^ 2 if the beam is 'thin'.

Summary error expression

The error bounds for PIWMF and a 'thin' beam are then given by combining (B .ll)  with 
the suggested result that the error is never positive. This can be stated as

— 7?PIWMF — ^

The greatest negative error j(g) can be found from (B.l I) or read from table B .l.
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Summary

Based around the often used family of symmetric blood velocity profiles given by (B.l), a 
family of asymmetric profiles can be defined by (B.2) with reference to fig.B.l. The point 
of maximum velocity is displaced a distance e from the centre of the vessel of radius R, and 
the form of the profile is defined by the parameters /? and g  = e/R  . If a beam which is of 
negligible width compared to the radius of the vessel passes through the point of maximum 
velocity the value of PIWMF is an accurate proportional measure of spatial mean blood 
velocity. It is suggested that evaluating PIWMF for any other position of such a beam 
would give an underestimate. In particular if the beam is 'thin', i.e. it also passes through 
the centre of the vessel, the error is bound according to (B.12) for profiles with n > 2 .

Notation for this appendix

e displacement of the point of maximum velocity from the centre of vessel
g  displacement of the point of maximum velocity from the centre of vessel as

a fraction of the radius, i.e. g  s  e/R. 
s  displacement from the point of maximum velocity
s',s" displacements from the point of maximum velocity along the line through

the centre of the vessel 
S  the distance from point of maximum velocity to the circumference
X horizontal displacement from the centre of the vessel as a fraction of the

radius
y  vertical displacement from the centre of the vessel as a fraction of the radius
P  fraction of the distance from the point of maximum velocity to the

circumference, i.e. p = s fS
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Derivation of equation (B.IO)

We can rearrange (B.8) to give

= ( l - 2 g ^  + g '* )-(g *  + y '{ i - g ^ ) - 2 g ^  + g^)

= ( l - 3 g ' ) - ( l - g ' ) /  + 2 g ^ ^ g ' + / ( l - g ' )

Therefore (B.9) can be written as

2 ( l _ g : y  4 ( ] - 3 g ^ ) j y ( / ) ,  -  4 ( l - g - ) j / ( / y  + 8g^ + y ^ l - g ' ) 4 K

4 (1 - 3 g : - 4 ( 1 - g " )

8 g '^ 1 - g

+ 8g' y  +
( l - g ' )

(1

l - 5 g  +
3(1

, . , 8gXl-gXl + g + g\= 1-Sg- +
X i- g X i  + g)

3 3(] + g)

which leads directly to the desired result (B.IO).
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APPENDIX C - DEPARTURE FROM A MONOTONIC PROFILE

A possible source of error in the mean velocity calculated from PIWMF is the presence of 
one or more sections in the velocity profile where the velocity is not monotonically 
increasing from the vessel wall to the centre. This appendix investigates the error incurred 
by PIWMF in cases where there is flow in only one direction but the profile is not 
monotonie.

Generalised non monotonic profile

An example of a velocity profile which is at all points positive, and is monotonie except in a 
known region, is shown in fig.C.l. The limits of this region are r=b and r=a where r  is 
measured from the vessel centre. (Between these limits there may be any number of 
sections of non-monotonicity so that within the corresponding dotted rectangle the velocity 
profile can take any form.)

velocity  w

V,

y"
v'

L I

d istance  from  c e n tre  o f vessel r

Fig.C.l - an axi-symmetric non monotonic unidirectional profile

The use of PIWMF to calculate the mean flow assumes that the particles with higher 
velocities are closer to the vessel centre. So, for a 'thin' beam, if the velocity profile is 
given by the solid line then the calculated PIWMF will give the mean flow appropriate to 
the profile given by the dashed line, where both profiles give the same Doppler spectrum. 
The result is that if non-monotonicity exists the higher velocities are underweighted, and so 
PIWMF underestimates the true mean velocity. This is the principle stated in chapter 12.
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As any frequency range in the Doppler signal has a corresponding velocity range, and as 
both the solid and dashed profiles give the same spectrum, it follows that the fraction o f the 
radius occupied by the dashed line between any two velocities, v' and v", is equal to the 
fi-action of the radius occupied by the solid line between these velocities, that is 
I, = /, + 4  4-/3 . It was shown in chapter 3 using (3.3) that the power spectrum p { f )  for an 

axi-symmetric profile and a 'thin' beam is such that

X /) (C.l)

So the dashed line can be 'constructed' from the true profile by noting that on this line at 
any velocity v" say, marked by the hollow circle, the modulus of the derivative dr/dv, which 
is proportional to the power at the corresponding Doppler frequency, must be equal to the 
sum of the moduli of the derivatives dr/dv at each of the points in the true profile where the 
velocity is v", marked by the solid circles.

An extreme form

Given a region of non-monotonicity between r = b and r = a, the worst departure from 
monotonicity, leading to the greatest error in PIWMF, will be when the profile has 
velocities as high as possible close Xo r = h and as low as possible close to r  = a . This 
unrealistic 'rectangular' form is given by the solid line of fig.C.2. Obviously w is a length 
less than { h -a ) .  The velocity at r = a  is v_ and the velocity at r = b* is

velocity v

0 b-a-¥wa

distance from centre of vessel r

Fig.C .l - 'rectangular' form between the known values
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The true mean velocity, v , for an axi-symmetric velocity profile v(r) is

f 2nr.v{r)dr
(C.2)

Once again using PIWMF gives the mean velocity that would be the case if the profile 
followed the dashed line. Therefore for the true (solid) and false (dashed) profiles of 
fig.C.2, with the monotonie sections cancelling, the difference in the true and false mean 
velocities, v and v ' , is

2rv^£/r + J  2rv^dr + ̂  2rv^drJ_

(C.3)

This is a positive quantity so, as suggested above for the general case, PIWMF 
underestimates the true value in the presence of this departure from monotonicity. 
Differentiating (C.3) with respect to w shows that the difference between the true and 
estimated mean velocities is maximised when

w —------
2

and so the maximum difference is

Worst case form

In particular the least favourable case is where h=R , a=0 and = 0  as shown in fig.C.3 
where is relabelled as the maximum velocity . Equation (C.3) becomes

v -W  = -^(2w y< -2w -)

which is maximised when m> = R/2  to give

f -  - A  Vy  — V } =  ——
2
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velocity v

0 w R-w R

distance from centre of vessel r 

Fig.C.3 - worst case unidirectional profile

The true mean velocity is

1

2w,

2r dr

2

2 \

so that the percentage error using PIWMF is

v ' — V
X 100%

2 # - 2 w
2 R -W

X 100%
(C.4)

If  the radial distance where the profile departs from monotonicity and starts to decrease 
towards the vessel centre is denoted by r^ then with this rectangular shaped profile 
r = R - w marked on fig.C.3.
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The error given by (C.4) can then be expressed as

X 100%

This percentage error is plotted against on fig.C.4 and is shown by the dashed curve.

(The solid curves are described later). As approaches 0, the error approaches 0. As
approaches R  this error approaches the worst value of -100%. This corresponds to the 
unrealistic case of the extreme outer lamina being the only moving layer o f blood. As seen 
above the absolute underestimate is greatest and equal to v^Jl when = 0.5.

^  P IW M F  ^

-40

-60

-80 worst-case 
rectangular 

_ model

-100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=  0.8 

v jv^  =0 .6  

M,/%n = 0 .4  

= 0.2 

%,/X. = 0

Fig.C.4 - error in PIW M F with a non-monotonic unidirectional proiile 
- dashed line - worst-case rectangular model (see text above)

- solid lines - parabolic model (see text below)

_____
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’Parabolic' profile model

The 'rectangular* velocity profiles above represent unrealistic extreme cases. An idealised 
example of a more sensible profile with no negative flow but with a large departure from 
monotonicity is given in fig.C.5. The function describing the profile is piecewise and 
comprises sections of three parabolae, labelled A, B and C, with each section having as one 
end point the vertex of its parabola. The derivative of the function is continuous, and 
sections A and B are rotationally symmetric about their joining point. The velocity at the 
centre o f the vessel is w„. The point is as defined above, and is now the unique point o f 

maximum velocity. The sections are described by

v = Vo+2(i 0 < r  <
/•

Section A (C.5)

and

<r < r, Section B (C.6)

and

/ c \ 2\
r -

1 —
R-

V \ p j y
Section C (C.7)

rJR  =0.6

0.6

0.4

0.2

0 0.2 0.4 0.80.6 1

Fig.C.5 - a velocity profile made up of parabolic segments
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The maximum velocity and radius are scale factors so that the form of the profile is 
completely defined by the parameters and r j R .  The example profile of fig.C.5

corresponds to the parameter values of Vq/v„, = 0.7 and r^jR  = 0.6. The profile is not 

dissimilar to the theoretical profile shown in fig. 12.7 at a phase of 180°, which was derived 
fi’om actual experimental data.

Using the velocity profile the true mean flow, v , was numerically estimated from (C.2) by 
treating the profile as being made up of 2000 steps of equal radial extent for various values 
of these parameters. The measured mean velocity, v ' ,  was found from the form of the 
spectrum, according to (C.l). (For mean velocity calculations the scale of the spectrum is 
irrelevant.) The quantity dr/dv can be found by differentiating the velocity profile v(r) and 
taking the reciprocal. The relative magnitude of the spectral densities from the three 
individual sections of the profile, (C.5),(C.6) and (C.7), are found to be

= — r  Section A

PsC/) = n '  - T: - ; ",  ̂ < /  Sections

A
R V A - / o V / - A

A
R V A - / V A - / o

2 ( / ( - A
R V Â v r - /

P c i f  ) = ---------- M r.Æ.......T 0 ^ /  < /», Section C

where /a n d  /„  are the Doppler frequencies corresponding to v and , and each spectrum 
has zero density outside the limits given. The total spectrum is the sum of the spectra from 
the three regions, i.e.

X /) = /7A(/) + fD ( /)  + ;7c(/)

From its definition in (2.11) PIWMF is given by

X/)f
PIWMF = —^ ^ ^  (C.8)

' t M

and the estimate of mean velocity, v ' , is calculated simply by conversion back from 
frequency to velocity. This velocity estimate was also evaluated numerically from (C.8) 
where the continuous spectrum was approximated by 2000 equally spaced frequency bins.



The simulation was made for various values of the parameters Vg/v, and r^jR . The 

resulting percentage errors £pi\\w are given by the solid lines of fig.C.4. Clearly as 
rp approaches zero or as approaches the error becomes zero.

It is instructive to compare the curve where Vg/v„, = 0 with the dotted curve which 

corresponds to the rectangular profile of fig.C.3. In both these cases the non-monotonicity 
is such that the velocity is zero at the vessel centre. The effect of introducing the parabolic 
model is that for the same value of r^the error is reduced to about 60% of that if the profile 
were rectangular. This figure of approximately two thirds is not surprising given that the 
area beneath a parabolic segment, y  = kx~, with one end as its turning point is one third of 
the enclosing rectangle, i.e. in fig. C.6 the shaded area is one third of the rectangle.

3̂
V — k.x̂

3

Fig.C.6 - parabolic segment as two thirds of a step function

Inverting this parabolic curve in the enclosing dashed rectangle gives a parabolic segment 
which 'according to this measure' is two thirds of the enclosing step function.

Summary

In the presence of an axi-symmetric velocity profile that is positive but not monotonically 
increasing from the vessel wall to the vessel centre, use of PIWMF leads to an 
underestimate of the true mean velocity. The amount of error depends on the form and 
extent of the non-monotonicity. If the fraction of the radius over which the profile is 
problematic is known, and if the limits of the velocities in this radial range are known an 
upper bound can be put on the amount of error incurred. This upper bound is not 
approached in practice as it corresponds to the case of a profile with an unrealistic form. A 
guide to a more realistic estimate of the error incurred by a region of non-monotonicity, 
based on a profile model of parabolic segments, would be 2/3 of the value incurred if the 
region had the least favourable, i.e. rectangular, form.

Notation for this appendix

a,b boundaries of region of non-monotonicity
radial position where velocity starts to decrease towards vessel centre 

w width of rectangular perturbation in velocity profile
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APPENDIX D - NON-STATIONARITY OF THE DOPPLER 
SIGNAL

The meaning of a spatial mean velocity estimate is compromised if the segment duration is 
longer than the time over which the Doppler signal has a fixed frequency content, as no 
single 'instantaneous' mean velocity is appropriate. This interval o f 'stationarity' is also 
usually regarded as being the longest interval appropriate for Fourier analysis because of 
the theoretical basis o f the analysis. As suggested in chapter 7, non-stationarity o f the 
signal, in the form of a change in the underlying power spectrum representing a change in 
the velocity distribution of scatterers, is manifested as a type of spectral 'broadening' in the 
single spectrum observed from this period. The relevant mean velocity is not appropriate 
to any instant but is clearly the average mean velocity throughout this period. The nature 
of the 'broadened' spectrum appears to be such that an estimate of this mean velocity can 
legitimately be made using IWMB, but not using PIWMB. This is supported by the 
following non-rigorous demonstration.

Theoretical analysis

Consider a zero-mean semi-infinite stationary signal A (t), as in fig.D.la. This can be 

represented as a sequence of equally spaced samples Aj where the sampling rate can be 

increased without limit. The autocovariance function of this sequence is denoted 

^ Y /aa ("*) and is

where w is an integer shift parameter, and the expectation, E[ ], is found by considering all 

values of j .  Similarly a second zero-mean semi-infinite stationary signal B{-^, as in 

fig.D.lb, has an autocovariance function of

These signals can be placed back to back to create one zero-mean non-stationary signal of 
infinite length C(r), as in fig.D.lc, with an autocovariance function of

rcÀ>") = K[c,c,..]

where -oo <y < 0 0  and we define j  = 0 where the signals are joined.



(a)

( b )
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A ( t )

-  OO

T = 0

B ( t )

- /A,/-\]-----►
oo

T =  0

(C)

C ( t )

(d)

C

y)' B'

Fig.D.l - stationary and non-stationary signals
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If  we choose Q  to be equal to then the value of this last function for any shift m is

recognising that the second summation term has only a finite number, m, o f contributions 
and so vanishes in the limit, and the first and third terms, divided by N, in the limit are the 
individual autocovariances.

The power spectra of the stationary signals X(r) and B(r) are denoted by p j , f )  and 

P e if) -  For a stationary signal the power spectrum is defined as the Fourier transform of 

the autocovariance function. If the 'power spectrum' of the non-stationary signal C, P c i f) ,  

is defined similarly then if follows that

/^c(/) = X k  ( / )  + /)« (/))

as the Fourier transformation is distributive and scalable. So the power spectrum of the 
infinite signal is the average of the power spectra of the semi-infinite 'halves'. The 
implication of this is that, as a finite signal segment A ' can be used to estimate the power 
spectrum of A, and an equal length finite segment B' can be used to estimate the power 
spectrum of B, so a segment C  made up of ,4 ' and B' back to back, as seen in fig.D.Id, can 
be used to estimate the mean power spectrum of A and B. Because IWMF is linear in the 
spectral intensities, if follows that the IWMF of the segment C' can be used to estimate the 
weighted mean IWMF of A and B. If the IWMF of a (semi-) infinite signal is proportional 
to the corresponding mean blood velocity during this time, as in the case of a 'wide' beam, 
then the IWMF found from the segment C' can be used to estimate the overall mean blood 
velocity. The same can not be said for PIWMF because PIWMF is not linear in the spectral 
intensities and so using the mean spectra found from C  leads to errors. It is reasonable to 
extend these suggestions to the more general case where /I ' and B' are of different lengths, 
so that C  provides an estimate of the weighted mean power spectrum of A and B. The 
estimate of mean blood velocity resulting from the IWMF of C' is then an estimate of the 
mean blood velocity in the time interval from which the segment was taken.
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In chapter 10 it was seen that the IWMF o f A ' can generally be thought o f as an unbiased 
estimator o f the IWMF of A, and likewise for B' and B. However the analyses leading to 
the results o f chapter 10 assumed a stationary signal. It is therefore not possible to state 
that the IWMF resulting from C' leads to an unbiased estimator of the overall mean 
velocity.

A simple example

The suggestion is that non-stationarity of the signal does not invalidate an estimate of mean 
blood velocity made from IWMF, yet does for an estimate made from PIWMF. A simple 
idealised example can help to illustrate this. Consider the Doppler signal resulting from a 
scatterer moving with constant velocity v throughout an interval of'stationarity' A t . At the 
end of this interval the scatterer accelerates immediately to Sv, and remains at this speed 
throughout another interval of the same duration Ar. The cycle is then repeated. The 
overall mean velocity is clearly 3v. The Doppler signal in one period of length 2A r can be 
idealised as the concatenation of two sinusoidal segments, with the appropriate frequency 
ratio o f 1:5, shown in fig.D.2.

0 AT 2AT

Fig.D.2 - the idealised Doppler signal returning from 
single scatterer with a change in velocity
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If discrete Fourier analysis is applied to this signal of length 2 A t and no modifying window 
is applied, and if the sampling rate is 256/Ar and the frequency corresponding to v is 
10/At, then the half of the power spectrum below the Nyquist frequency is shown in fig.D.3.

power

'PIWMB
IWMB

i
50 60 70 80 90 bin number 

velocity

Fig.D.3 - the power spectrum resulting from the 
single scatterer with the change in velocity

The mean velocity calculated from the IWMB of the spectrum is 2.99v, which is very close 
to the true value of 3v. (The error is in part due to the finite nature of the power spectrum 
at the edge of the spectrum near zero frequency.) In the context o f estimation using 
PIWMB, the spectrum can be approximated by two spikes of equal power at fi*equencies 
corresponding to v and 5v. Application of (2.9b) then shows that the estimate of mean 
velocity following from PIWMB is approximately 2v as marked, giving a large negative 
error. This near accuracy of IWMB and large error in PIWMB can be explained by noting 
that the variation in time of the velocity of the scatterer has appeared in the spectrum as a 
"broadening" of the spectrum, in this case the addition of another spike. These spikes in 
reality correspond to "scatterings' which are coincident in their axial distance from  the 
transducer but are separated in finie. However use of IWMB and PIWMB assumes these 
"scatterings' are coincident in time but separated in space, i.e. separated throughout a 
vessel cross section. IWMB weights these spikes appropriately despite this, but PIWMB 
assigns a lower weight to the higher velocity as it treats this velocity as being appropriate 
to scatterers nearer the vessel axis.
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D is c u s s io n

The non-stationarity of the signal is due to different velocities being appropriate to the 
same point in the sample volume at different times during the recorded time interval. The 
amount of error in PIWMB will be dependent on the extent of this variation of velocity as a 
fraction of the average velocity at that point in the cross section. A rectangular broadening 
fonction representing a steady change in velocity would be a rough approximation to the 
spectral broadening introduced, and this fraction could be thought of as an effective value 
o f the parameter a defined in chapter 7. For this fraction a to be in the region of 0.5, 
leading to a negative error of a few percent as described in chapter 7, large relative changes 
in velocity would have to occur within the time interval. Typically the data segment might 
correspond to 10 milliseconds of the signal. Large velocity changes in such an interval 
might occur at the onset of systole, but for the rest of the cardiac cycle a  will be very small 
and so PIWMB, as well as IWMB, can be thought of as incurring negligible error.

Summary

If  the velocity distribution of the scatterers changes during the time interval over which the 
Doppler signal is recorded then the relevant mean velocity is the average spatial mean 
velocity in that time interval, and the data segment can not be regarded as being sampled 
from a stationary source. Spectral analysis by Fourier transform is usually performed under 
the assumption that the signal is stationary. However even if non-stationarity exists IWMB 
with a 'wide' beam could be used to estimate the mean velocity with only a negligible error. 
The nature of the changing velocity distribution as a source of spectral broadening means 
that use of PIWMB with a non-stationary signal, even with a 'thin' beam, incurs some error 
in the manner described in chapter 7, but this error is small.

Notation for this appendix

£■[ ] expectation operator

j  index of sample in time series - an integer
m shift parameter - an integer
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APPENDIX E - JUSTIFICATIONS OF RESULTS IN THE TEXT

Some peripheral results in the text have merely been stated, and reference has been made to 
this appendix for their justification. They are treated here in the order in which they appear 
in the text. For each section the symbol notation is that of the relevant chapter, unless it is 
new in which case it is listed at the end of this appendix.

Bounds on PIWMB - equations (2.12) and (2.13)

In chapter 2 bounds on PIWMB and PIWMF were given in relation to IWMB and IWMF 
and the highest signal frequency. The results stated were

.  -
—— < B < B  and analogously —  < / < /

which are (2.12) and (2.13) respectively. The first of these results is stated in terms of the 
observed statistics B and B but can also be written using their deterministic forms, Bg and 

èjj, simply by considering instead of /?, throughout. To prove both these results 
consider the statistic PIWMB, B.

Upper hound

PIWMB assumes that the profile is monotonie, and so weights the low-frequency 
components more, i.e. those from the scatterers near the vessel walls. So an upper bound 
for PIWMB must be the value of IWMB. This can be proven analytically by noting that, if 
summation without limits means summing over all the bins, alternative expressions for 
IWMB and PIWMB are

^  and B

The two are equal only if all the power in the spectrum is contained in one frequency bin, 
corresponding to the presence of a single velocity among the blood cells. This can be 
proven by examining the ratio
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where the numerator and denominator have been retained and expanded. The only 
difference between the numerator and denominator are in the third terms. Both these terms 
contain one and only one term of each possible combination p^pj where f #  j  . In both 

cases these combinations are multiplied by the index /, but in the numerator i is the lower 
index and in the denominator / is the larger index so that, as each / and each /?,. value are 
non-negative, the numerator can not be larger than the denominator. Therefore è ^ B . 

The numerator and denominator are equal, and hence PIWMB and IWMB are equal, if and 
only if PiPj = 0 for all possibilities of / ^  j . This is the case only if all the power is

contained in one frequency bin as described above. This argument is valid for any total 
number of frequency bins and with the p̂  values replacing the p̂  values, so that the result

must be true for the continuous estimators PIWMF and IWMF also. So /  ^  /  , and these 

are equal only if the spectrum is a spike. These relationships are consequences of the 
proportionately lower weighting given to high Doppler frequencies if the beam is 
considered thin'.

Lower bound

If, as in chapter 2, H  is the index of the highest bin with non-zero observed power then a 
lower bound for the observed PIWMB statistic is given by

(E.1)
H

To prove this it is helpful to denote the total observed power by P, i.e.

IMAX

whereupon both sides of the inequality (E. 1) can be multiplied by the non-negative quantity 

IH  to give the equivalent inequality

The numerators of the bracketed terms in (E.2) are the numerators o f (2.9b) and (2.1b). 
Furthermore, as the bins above H  are empty, the divisions by H  can effectively be achieved 
by defining i" = / / / /  and j "  = j / H  and using the indices /"  and j "  summed from 0 to I, 
instead of / and j  summed to IMAX. So (E.2) can be written as

' r  "i r  ' "i"
^ . (E.3)

=0



E-3

Consider a spectrum which contains no power below a frequency bin defined by i"  = b, 
and which satisfies (E.3), i.e.

Z ' 2 + A"  ̂ Z '
i"= b  \  j " > i" y \ i " = b

(E.4)

to which a spectral component of any non-zero power is added to the bin defined by 

i"  = a below the lowest frequency, i.e. where a <b as in fig.E.la.

power p.. power p.„

0  a h \

adjusted bin number i"

(a)

0 1

adjusted bin number i ”

(b)
Fig.E. I - hypothetical spectra 

The inequality which we want to demonstrate is (E.3) which can now be expressed as

% z Z f r  + Z '" A "  2 Z i^ 'r  + A" %  + Z ' ^ ' '
y r=6 y y

(E.5)

The last term of the left hand side is greater than or equal to the last term of the right hand 
side as these are the terms of (E.4). The second term of the left hand side is greater than or 
equal to the second term of the right hand side as the only difference between these terms is 
the presence of the /" indices in the right hand term, which are all less than or equal to 1. 
The first term of the left hand side is greater than the first term of the right hand side if 
0 ^ 0  as a  is below 1. So the whole inequality is satisfied, and the spectrum resulting from 
the addition of the component at a must also satisfy (E.3).
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Next consider a spectrum that is zero everywhere except the H  th  bin, i.e. except where 
i"  = 1, as shown in fig.E.lb. Equation (E.3) therefore is

which is true as both sides are equal. So this 'spike' spectrum satisfies (E.3), and fi-om the 
preceding analysis, the subsequent introduction of any component in a bin below the if 'th  
bin gives a spectrum which also satisfies (E.3). Furthermore any shaped spectrum can be 
built by adding the highest frequency components first, so (E.3) and hence (E .l) must be 
true for any spectrum (of non-negative frequencies). Analysis o f (E.5) shows that the sides 
of the inequality are only equal if a  = 0 and 6 = 1. So the sides of (E .l) are equal only if 
the power is shared between just two bins, the zero'th bin and the // 'th  bin, or if the power 
is entirely in the //'th  bin.

By considering an infinite number of frequency bins we can draw analogous conclusions for 
the continuous frequency case. So if is the maximum frequency in the signal then

and there is equality only if the spectrum is a spike at /  = with or without a spike at

/  = o.

Combined bound expression

Therefore PIWMB is bound in relation to IWMB and the highest bin with non-zero power 
by

Analogously, as the Doppler shift frequencies are defined to be positive, PIWMF is bound 
in relation to IWMF and the highest signal frequency by

and these are the stated results (2.12) and (2.13)
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The correction for the continuous monotonie profile - equation (2.14)

The correction term associated with the treatment of the profile as being piecewise and 
linear between the 5, values was given in (2.14) by

This result can be shown by starting with the final form of equation (2.6). This gives the 
mean frequency in bin units over the whole cross section for the monotonie profile, and is

m e a n  f r e q u e n c y  in  b in  u n i t s

Z / '( ^ ; - ^ 'A , )
(=0_________
IMAX (E.6)

In the derivation of PIWMB / was subsequently substituted for / ' , thus introducing a 
small error. As stated earlier, in general /' < /. More particularly they are only equal for 
every bin if the velocity profile has the unrealistic discontinuous form shown in fig.E.2a. In 
this diagram the ordinate is given in terms of frequency rather than velocity.

freq u en cy  f ( r )  

(b in  un its)

( +  1

/

0

d is tan ce  from  vessel c en tre

(a)

frequency f ( r )  

(b in  un its )

u 1 n

dis tance  from  vessel c en tre  r

(b)

Fig.E.2 - (a) an unrealistic form and (b) a more realistic form 
of a velocity (frequency) profile
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A closer approximation to the actual smooth profile is shown in fig.E. 2b, and earlier in 
fig.2.6, where the profile is thought of as being a series of contiguous line segments. For 
the general value of i this profile passes through the frequency / -  X when the radial 
distance is J,. There are no discontinuities in the profile, and for the /'th bin / remains the 

mean frequency as measured in the sample volume. The ordinate f { r )  is a continuous 

measure of frequency in bin units, so that the mean frequency over the ring corresponding 
to the /'th bin is

j lT r r  f { r )  dr

;r(J. -  r

The frequency / ( r )  between and s., is linear from / + >< to / -  X , and so

/( /- )  = / + X

so the contribution of the /'th bin to the numerator of (E.6) can be written as

/ + x

/ + X+

J 2r dr -  {— —̂  j j I r '  dr

Factorising the differences of squares and cubes and simplification leads to

f W - -̂ i) = f W - + X W - 4,) - X W + + î)
= / (a/ -  a;:;,) -  X -  2ŝ ,

= / (j /  -  ) -  % ( )
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The denominator of (E.6) is equal to so that the contribution to (E.6) o f the i'th bin is

The first term is the 'uncorrected' result. The second term, the correction term, is simplified 
by making the substitution, following from (2.3)

SO th a t

4 , )
'A

1 . ^
6

This is applicable to every bin contributing to (E.6) except the zero'th bin and the bin 
containing the highest signal frequencies, as the frequency profile in these two bins will not 
have the form shown in fig.E.2b. The effect of these extreme bins will however be small. 
The correction to PIWMB is therefore approximately

IMAX
E P

7 "

which is the term observed in (2.14).
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An alternative frequency bin configuration - equation (2.15)

Equation (2.15) stated that if the bin configuration was such that the lower edge o f the 
zero'th bin was at the zero frequency point, as in fig.2.4b, then the appropriate estimator of 
mean blood velocity would be

(E.7)

This can be shown mathematically by first noting that with this configuration the frequency 
in bin units corresponding to the centre of the /'th bin is / + )< • Using the g, substitution of 
chapter 2, equation (2.9b) in this case becomes

B
( IMAX

Z a
1=0

IMAX lîvIAX

Z ^ A 9 ,  X Z A < 7 .
_  1 - 0 ________I____ 1=0

/IM A X  /iM A X

Z a  Z a\ ^ o  y

(E.8)

Now

Z  A * = Z  A 2 Z A + A
1=0 1 = 0 j ~ i \ \

IMAX IMAX

Z a =  +2 E  p, Z p .
f-0 1=0 y=; + l

Z a

SO that the second t e r m  o f  t h e  r i g h t - h a n d  s id e  o f  (E.8) is  e q u a l  t o  % . The result (E.7), 
which is (2.15), f o l l o w s  immediately.
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Theoretical form of the broadening function - chapter 7

As suggested in chapter 7 there is theoretical backing for expecting a broadening fonction 
with a form which is the 'square' o f an isosceles triangle. This can be demonstrated by 
again considering a target group of particles with a single velocity v insonated by a 
transducer with angular extent 2s, as in fig.E.3. The quantities x  and // are defined to be 
the distance and angular distance along the transducer of a variable point from the point 
opposite the target, and y is the Doppler angle appropriate to the point defined by x  or jn. 
Note that x = L tan//.

h

tr a n s d u c e r

2e

target

Fig.E.3 - further geometry of a finite aperture 
transducer and a moving point target

I f  <p(%) is the cumulative transmitted power as the points on the transducer are traversed, 

say from left to right, then allowing each point on the tranducer to be equally active means 
that between the ends of the transducer d < l j { x ) fd x  = constant. Also d fx jdy= \ and, due 

to e  being small, the derivatives dxld/.i = L sec' // and dyJdcosY -  -1/sin y  can, to a 
first approximation, be treated as constants throughout the relevant range o f angles. 
Therefore the quantity

(/cosy (/cosy (/r ((// (/y (/cosy

which is the power density with cosine, is approximately uniform throughout the range of 
cosines, as seen if fig.E.4.



power

cosT

Fig.E.4 - distribution of cosines for a scattered 
ray with a single angle of incidence

So the cosine of the angle of incidence is distributed uniformly with power. Similarly, by 
the principle of reciprocity, the cosine of angle of reception is distributed uniformly. The 
power spectrum of transmitted and received radiation is therefore some 'combination' of 
these uniform distributions.

When a point transmitter insonates a moving target with an angle of incidence of *0 the 
motion, and a separated point receiver is situated so that the angle of scattering is to 
the motion, then the Doppler equation (7.1) becomes

/  = — (cosay + cosaR)

Therefore for the strip transducer of fig.E.3 the power density observed at any particular 
Doppler shift frequency is found by 'summing' the rays transmitted and scattered at angles 
such that their cosines add to the same quantity. Consider now the practical case where the 
sample volume has finite dimensions. At the point of greatest intensity in the sample 
volume the contributing incident rays are coherent, so that this 'summation' involves adding 
amplitudes. The result is that the approximate form of the amplitude spectrum is a 
convolution of these two identical uniform functions, which is an isosceles triangle 
fonction. The power spectrum, which is the broadening function, is therefore 
approximately the square of this triangular form, which is the suggested result. A 
triangular form and a squared triangular form are shown in fig.E.5 which has already been 
seen as fig.7.7. The halves of the squared triangular form are parabolic segments.

A more complex theory is given by Newhouse et al. (1987) for a slightly different situation. 
They consider a focused long strip transducer, with particles moving across its finite width 
through the focal line in a completely transverse direction. The unimportant difference 
between this geometry and that described here is that in the dimension not considered their 
transducer is infinite in extent and in this work the extent is infinitesimal. Further they 
make the assumption that the finite extent of the transducer is small compared to the
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distance to the target, that is, in the terminology of fig.E.3, h «  L.  They consider the 
diffraction pattern resulting from the superposition of contributions from the points on the 
transducer face and derive a uniform amplitude/power spectrum for the radiation received 
by a moving particle, as above, and an isosceles triangular form for the amplitude spectrum 
received at the transducer, as above if coherent superposition is appropriate. The theory is 
extended for oblique motion of the particle by Censor et al. (1988), but the same basic 
result remains.

f r e q u e n c y

Fig.E.5 - triangular and squared triangular broadening forms

In terms of the ray model (and oblique motion) proposed here the addition of amplitudes is 
valid if the received rays are coherent. This is appropriate if the transmit and receive 
focusing are equivalent and the target is at the point of exact focus so that the phases of the 
rays from the different elements are the same. If the target is not coincident with this point 
the received rays will be somewhat out of phase. If the phases are thought of as being 
distributed randomly and uniformly then the correct convolution would be that of the 
uniform power spectra to give a triangular power spectrum. So from particles at the exact 
focus the received intensity is greatest and the broadening function has the squared 
triangular form. From particles at other points in the sample volume the contributions are 
less and the broadening functions are more triangular. This is consistent with the observed 
broadening function of fig. 7.4 showing a form between triangular and squared triangular.
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T h e  u n b ia s e d n e s s  o f  I W M B  w ith  a u n ifo r m  m e a n  s p e c t r u m  -  c h a p t e r  1 0

As stated in chapter 10, for any symmetric mean spectrum, and hence for a uniform mean 
spectrum, the bias in IWMB is zero. In this section a mathematical proof is given for the 
case of a uniform spectrum.

The spectrum can be scaled so that the total mean power in the signal is 1 without altering 
the mean frequency. If the signal occupies M  of the available IMAX bins, and if each bin 
estimate p  ̂ is thought of as its mean value plus deviation, p, +e, , then, using

(l + x)~' = 1-Jc + x ^ -... , the observed value of IWMB in (10.2) is

where the summations are over all the non-empty bins, i.e. from 0 to M-1. As the total 
mean power is 1, the first term can be seen to be the deterministic statistic Bg . 
Furthermore when taking the expected value of this expression the second and third terms 
become zero as the e, values each have zero mean. Expanding the remaining bracketed 

summations and multiplying leaves only the terms in e /, e / etc. because, as the spectral 

estimates are uncorrelated, all terms with mixed indices, e.g. if j ,  have expected 

value of zero. Up to this point the analysis is valid for all spectra. If the spectrum is

uniform and etc. are independent of / and can be taken outside the

A f-I

summations. Recognising that ^ /  = ( M - l ) M /2  gives the terms in order

But for this uniform spectrum the deterministic mean statistic is clearly the midpoint of 

the bins occupied by the spectrum, i.e. = ( M -  l)/2  , so the 4'th and 5'th terms cancel, 

as do the 6'th and 7'th etc. The bias in the case of a uniform spectrum is therefore zero.
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The expected value of the cube of the deviation, g. - equation (10.7)

The deviation of the observed estimate /?, about its mean value of is given by e, , i.e.

Pf s  +e,. The expected value of the cube of this deviation, , can be found by

considering the moments of the ^  distribution with 2 degrees of freedom, which is the 
form of the distribution of /?, .

Theory

For the random variable X  the moment-generating function is given by E^e^^ ] , and the 

a'th moment about the origin, , is given by

IfX  follows the distribution then the moment-generating function is

E [e ''']  = ( l -2 ; ,) - '

These results have been taken from Walpole and Myers (1978).

Application

The first moment of the distribution about the origin is the mean, denoted by p, and is

(/y

= 2 ( l-2 ) /) ' '|

=  2

where % is again a random variable following the distribution.
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The second moment about the origin is

8 (1 -2y)

and the third moment about the origin is

6 / '( l-2 ) ,)

4 / '

48(1-2}/)

48

Now the third moment about the mean is

which then evaluates simply to

16

The distribution of /?, is the distribution scaled such that /?, = so that the third
moment of /?, about its mean /3, is given by

but Pf - p ,  is the deviation e, , and for the uniform spectrum of M  bins scaled to have unit 
total power, = 1/M, so equation (10.7) is proved, namely

E [e /] = 2 f /  = 2 /M '
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The variance of PIWMB with a uniform mean spectrum - further 
justification of equation (10.14)

The method of derivation of the variance of PIWMB, varB , given by (10.14) is less 
rigorous than the derivation of the variance of IWMB, var B , given by (10.11). However, 

as stated in the text, when var B  is derived in this less rigorous way the correct result, i.e. 
M /12, is obtained, so supporting the use of this method. This is demonstrated by again 

setting the total power in the mean spectrum to be 1. The deterministic statistic o f (10.1) 
after a variation in the &'th estimate of +e. becomes an observed statistic of

where terms in and smaller have been removed. As = the total mean

squared error due to a variation in every bin is



For a uniform spectrum = 1/M for each bin and = ( M -  l)/2  . So
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M -1w-i/ ,

I' 2
1 M -11 ^ - * ( M -  l) +

( M - l )

1

M"
(M -  l)M (2M - 1) (M  -  l ) M  ̂ M (M -1 )' '

Taking the contributions to the bracket of order M^ and recognising that varB % tmse, 
correct to the highest order, gives the result (10.11) derived more rigorously in chapter 10,

^  1 ( M ' M ' M '

_ M
“  12

This supports the validity of (10,14) as the expression for the variance of PIWMB.
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A property of the 'backwards* form of the estimator PIWMB 
- justiBcation of (12.12)

The form of the estimator PIWMB appropriate when the velocity profile is monotonie but 

completely negative is denoted by ê*g and given by (12.11). In this section it is shown that 

this 'backwards' estimator is greater than or equal to the general 'forwards' estimator ê* 
defined by (11.7b), so that the result given as (12.12) is justified.

This is demonstrated by considering their integral forms, denoted by f g  and /* . Using 
the notation P,  and f  for the total powers in the whole spectrum, in the positive 
frequency and in the negative frequency parts of the spectrum, (which is as in chapter 11 

but now in the context of a continuous spectrum,) the integral form of PIWMF /*  defined 
by (11.8) becomes

/ * p2 (E.9)

and the integral form of the backwards estimator (12 .11) is

/ ; p2 (E.10)

If  we write and / ,  for the IWMF and PIWMF values that would be calculated from the 

positive frequency part of the spectrum alone, and /L and % for the corresponding 

negative values that would be calculated in the 'backwards' fashion from the negative 
frequency part o f the spectrum alone, then from the basic definitions of IWMF and 
PIWMF, namely (2.10) and (2.11), these equations (E.9) and (E. 10) can be written as

P ' / '  = P " l + { P ^ + 2 P j - P j -

= P ; f . + ( P - + 2 P , p ) l

and

P ‘ / i  = P - f - + { P , + 2 P ) - P j .

= P_’ l + ( p ^ + 2 P , p ) f ,
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SO t h a t

P " [ f ‘. - f ’) = P - f ^ + 2 P J ’-) h - P l K  +{Pl +2P,P.) Â

However from (2.13) we know that /+ ^ / , .  and consequently /_  > f_  as these are 

negative. Therefore, removing the terms in P / and in , we have

f & 2 pM i - i )

The right-hand side must be greater than or equal to zero as /_  is not greater than zero. So 
the left-hand side is greater than or equal to zero. This establishes the relationship that

It seems reasonable to extend this to the discrete case (especially if there is no power in the 
ambiguous zero'th bin) to give the result that the analogous deterministic PIWMB values 
are similarly related. It follows that the corresponding stochastic values satisfy

as in this analysis the spectaim p { f  ) can have any form and the random nature of the 

signal plays no p a r t. This is the stated result (12.12).

Notation for this appendix

£ [  ] expectation operator

f { r )  the Doppler frequency arising from scatterers a distance r from the centre of

the vessel
minimum frequency in observed Doppler signal 

7* PIWMF as defined by its more general form, (11.8)

f g  PIWMF when frequency axis is reversed

,7+ IWMF and PIWIVIF calculated from the positive frequencies alone

/_  ,7- IWMF and PIWMF calculated from the negative frequencies alone
i"  , j "  bin numbers expressed as fractions of the bin of the highest frequency

present
total observed power in the positive frequencies 

P_ total observed power in the negative frequencies

) cumulative transmitted power as successive transducer elements are

included
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APPENDIX F 
EQUATIONS

MATHEMATICAL DERIVATIONS OF

Several equations in the text have been derived from those preceding without the statement 
o f intermediate steps, and reference has been made to this appendix for the necessary 
proofs. The mathematical derivations are therefore given here. The equations are proved 
in the order in which they appear in the text. In each equation the notation is that o f the 
relevant chapter.

Derivation of equation (6.2)

The derivation of (6.2) from the preceding equation is given here. We have

( ( *2 2 1
1 r '  + y -

P "  1
V ^ ^  )

j2;rr* dr'

2nv,
«/2 \

[ r r '
r  +}/

dr*J J
I  0 0 \  ) y

;r(P" - y - )



The first integration is straightforward. The second can be performed by making

L 2/-' .substitution u = — so that ----- = — and so

F-2

the

Therefore

K‘
dr* = Jr* t r -  —— du 

du

yy + 2

yy + 2
r '  +)/-

m/2+l

+ const

V '
2v_ 2v.

f— 1
V /

\ b /2+1

~ yy + 2 ( , / ( - - /

f

which is equation (6.2).
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Derivation of equation (7.13)

The proof of (7.13) is most easily performed by considering the first rectangular spectrum 
shown on fig.F.I, which has a total power of 1, so that the denominator of (7.9) is 1. The 
PIWMF of this spectrum is therefore

PIWMF = 2J J / . f  ( / ) [  (A/ d f

2 1 " /  -h- '  h e

_2
Q- Jo'

2

The broadened spectrum of interest is given by (7.12) and is shown by the second 
rectangular spectrum. The corresponding result can be found by putting e - a h f ^  and

shifting the spectrum to the right along the frequency axis by , which must raise

PIWMF by the same amount as (7.9) is linear in/ .  PIWMF for the broadened spectrum is 
therefore

/ + I

= I

which is equation (7.13)

power

f r eq u e n cy

power

(1+ frequency

Fig.F.I - rectangular broadening



Derivation of equation (7.16)

The proof of (7.16) is best achieved by finding the PIWMF for the first triangular spectrum 
shown on fig.F.2. The total power is again equal to 1, and the spectrum is

p ( / )  =  i . £ ± X

X / )  = l . f z / 0 ^ /

and zero elsewhere. Therefore from (7.9) the PIWMF is

PIWMF = 2j" / .  X / )

+ z jy  X / f

d f

g g

I e + /

+2

g g 

g - /

Jo g g J;

-f/g g

2  
2 .

1 e - u

du

d f

du

d f

power

0 e-e
f r e q u e n c y

power

frequency

Fig.F.2 - triangular broadening
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The first o f  these terms is

first term = 2 f  /  . l . f J lZ .
J-e g g \ j f e  g J

j _ y  (g + /  )[ (g + f/) (A/j fÿ"

g g

g

J  f
g

J  f°
g

gf/ + —  I d f  
2 1/

5 4 3

3g' 2g'
5 ^ 4

12 ^  40 
60 60 60

-7g
60

The second term is

f  0 1 g  +  f
second term = 2j / ---------

1 fO

î l L ^ l l
2 3

ĝ  ĝ  
2
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The third term is

third term 1 e - f du d f

2

g4 JO

df

! > ( < ' - / )  

'  \ > - f )g- JO

d f
f

 e f  -I \(^f
2 2 '

2 4 5

1 r g' ; 3g' g'
g \  2 4 5

, 10 20 15 4
.20 20 20 20

e

Adding these terms shows that PIWMF is 

PIWMF
7g g g
60 6 ^

7g lOg 3g 7g
60 60 60 30

The spectrum resulting from triangular broadening is given by (7.15) and is shown by the

second spectrum in fig.F.2. The corresponding result can be found by putting e = —^  ,

and shifting the spectrum to the right along the frequency axis by 6/„, which must increase 

the PIWMF by the same amount as (7.9) is linear in/  Therefore

/  =
-7
30 2
. 7a

4 - ^

60

which is equation (7.16).
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Derivation of equation (8.13)

The expression to be simplified is

second =rzf (' -%ï -z) +r/ff . A
du

The proportion of the frequency range occupied by the signal is defined to be w ;

Making the substitutions x = \ - - ^  so that f  = f„ , { l - x )  and = •

= so that = gives

A
7 .

and

second line + dx

dx

The first term of this expression is

(Ar

V .

L

t + l  /+ 2
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and the second term is

second term = £  ( l - x ) Ely' ^dy ok

?+ l t + 2

^ f J  L l
/ ,W  + I 1 + 2 )

Adding these terms gives

second line = 5/.> ^ ^ ( ) / , - | ) + (2 -  J ^ , ) ^ +  

"I t + 1 t + 1 t + 2

W .
/ mi m  w( t  + 2 — 1)

(1 - o t )  +  ( w -  1) -------4---------- +
t +1  t +1  t + 1 t +  2

+  m -  m +  -

^"^"(C” 4 7 T r ) ^ 7 7 ï)

t + 2 j

'“^■{Ttï-KTTT-TTj])

1

1
t + l (t + i)(t + 2)

At + 2

f
where the last step follows from (8.8), i.e. f g  = The result is equation (8.13).
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D e r iv a t io n  o f  e q u a t io n  (9 .4 )

The derivation uses the substitution x = 1 -  so that /  = and = ~ /*

/
A I  / A

-T y,(i-x)tx' 'okJl-6 _____
-  rJl-6

j],'

Jo

A
t

t + l
(1- 6)'

A
^ ( l - 6 ) ' - y ^ ( ] - 6 ) '

(1- 6)'

' v+1  t + U

which is (9.4)



F-10

D e r iv a t io n  o f  e q u a t io n  (9 .6 )

The derivation uses the substitution x =  1 - - ^  so that /  = / « ( l - x )  and = ,

and the substitution y  = 1 - so that

f
(!> (/)< //)

du d f

dx

ok

(i: / x'"' ck

2Aj]

¥ v f

continuing



and restating the last result
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/
2/mJg

2A
^2'+l

2 2t+ll

(l-6y

^ (1 -6 )"  t ( ] - 6 y
2A 2 / + 1

A I
2 t ( l -6 )  

2 / + 1

' 2; + 1 21+ \ )

which is (9.6)
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D e r iv a t io n  o f  e q u a t io n  (1 0 .8 )

The derivation of the expected value of the term a, is a little more involved than the 

derivations for the other cross product terms in (10.6), and is set forth here.

\ 4 ~ \  M - \  f  M - 1  ^

i - 0  1= 0  y  y = M  1 y

M — 1 M - 1  A / -1

i - 0  1= 0  y =1+1

E

E[y] + Æ[Z]

+ E
M —1 M —1

where the terms have been renamed for simplicity. Taking these terms individually

M - l  A /- 1  M - 1

/=0 /=0 J=I +1

M

Â7

W - l  M - l  A f - I  \

/= 0  \  f = 0  j = h I  j

M - l  / A / - I

z 4  Z'(‘' I " ^ ^ (  + 2 - ^ M - l  .

A/
-E z«,

M

2

A Y -I M - l

^ ( M - l ) M ( 2 A / - l )  ( M - l ) M ^

( A / - l ) ( 2 M - l )  ( M - l )
3M- M-



and
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E [Z] = E
M - \  M - \

=0 <=0

2 Z wA 1

2 ( M - l ) M  
M '  2

( M - l )
M"

So

E [a ,)g J  = E[y] + E[Z] 

which is equation (10.8).

Derivation of equation (10.13)

Equation (10.13) is

( M - l ) ( 2 M - l )
3AA

M - l  /  M - l

B = 0  \  y = f + l  y

Equation (10.3), where the uniform spectrum is scaled to have a total mean power of 1, is

Br
Z  'A  Z ^ A + A

V

The derivation of the denominator of (10.13) from the denominator of this latter equation 
as a result of the variation of +ê . introduced in the A;'th bin is trivial, but the derivation of
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the numerator is more complicated. The main summation in the numerator is made up of 
contributions from bins below the A-'th bin, from the Â 'th bin and from bins above the Ar'th 
bin. The contributions from bins below the ^th bin are affected by the extra 
+2et in the bracket term. The contribution from these bins is therefore

 ̂ j=i+\ J f - 0  \  ! J i=0 (i)

The contribution to the numerator from the *Xh bin becomes

f  M - l  \  f  M -l A

y, J = k + \  J \  j = k  + \ J
/  w-l \ (Ü)

The contributions to the numerator from bins above the /r'th bin are unaffected, and sum to

A /—1 ^

Z ' A  i ' L P j + p <
i ~ k ^ \  y  J - i + \

(Hi)

The first term of the right-hand side of (i), the first term of the right-hand side of (ii) and 
the right-hand side of (iii) add to give the first term in the numerator o f the equation 
(10.13) (which is the deterministic value B). The second term of (i) is the second term of 
the numerator of (10.13), and the remaining terms of (ii) add to give

2 l . P , * h

which is the third term of the numerator of (10.13). This completes the derivation.
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