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From its first introduction, action
has always been looked upon as something
whose sole "raison detre” is to be
varied - and, moreover, varied in such a
way as to defy the laws of nature!

A.S. Eddington,
"The mathematical theory
of relativity."
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SYNOPSIS

Like any major breakthrough in thinking, the theory of
relativity caused a great upheaval in our attitude to science.
Seventy years after the advent of relativity we are still coming
to terms with the changes it has brought in our outlook. Part of
this process is simply the valid translation of pre-relativistic
laws and concepts into the 4-dimensional language of relativity -
a problem by no means as easy as would at first seem; the aim of
this thesis is to survey the ways in which the methods of analyt-
ical mechanics may be translated into a relativistic setting.

Chapter 1 provides an introduction to the work in the form
of a non-rigorous discussion of the historical and mathematical
development of electromagnetism, analytical mechanics and
relativity, and ends with a presentation of the basics of the
functional calculus. This is needed in the presentation of field
theory given 1in chapter 2. We see two possibilities for the
relativistic formulation of analytical mechanics, and field
theory represents the first of these possibilities. In the
absence of any real grounds for continuing on this tack we then
move on to the other possibility in chapter 3, where we review
the attempts of a number of authors to formulate relativistic
particle mechanics as a Hamiltonian system. This then leads in
chapter 4 to our own such attempt, based mainly on the work of
Synge, which we have named homogeneous mechanics. After the main
exposition of the theory the work of the remaining chapters 5 and
6 is then to apply the above theory (not always successfully) to
a number of cases where analytical mechanics has in the past
proven itself an invaluable tool: namely, the areas of sym-

metries and quantum theory.
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CHAPTER 1

NTRODUCTION

1.1 ec magnetis

The “golden age"” of Greek philosophical thought, spanning
the centuries from 600 BC to 200 AD, forms the basis for most of
present-day science, and the supposedly modern fields of electro-
magnetism and relativity are by no means exceptions. Amongst the
most prominent figures of this time was the philosopher Aristotle
{born 384 8C), who devoted his whole lifé to the search for a
conceptual model of the universe. His approach to the problem
was along the Platonic lines of pure reasoning, although in fact
his theories were to an extent "soiled” by some observational
evidence.

Aristotle’'s universe comprised five basic elements: earth,
air, fire, water and the supremely pure fifth element - the
aether. Without going into the complexities of the Aristotelian
description, it is relevant to emphasise the underlying philo-
sophy behind the model. As far as Aristotle was concerned, it
was self-evident that a sustaining force was required for the
continuous motion of the heavens. Consequently his universe was
permeated throughout by the aether in the form of a vast fluid
continuum whose endless swirling and eddying carried the planets
along their preordained courses. Yet this aesthetic picture
became increasingly unmanageable as observational astronomy began
to reveal the full complexity of the stellar motions. This
struggle between Aristotelian theory and observational fact
slowly became equated with the battle between ecclesiastical
orthodoxy and the rising hereticism of the Renaissance, until

matters reached a head with the findings of Galileo Galilei
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(1564-1642). Galileo showed from his experiments that natural
motion was not coming to rest, as was previously thought, but
rather wuniform motion in a straight line. This paved the way
towards a whole new conception of the universe as a sort of
receptacle into which objects could be placed, and within which
they could move unhindered but for interactions between
themselves. It was in the context of this conception that Sir
Isaac Newton (1642-1727) formulated his system of mechanics.

One notable difference between the Newtonian and Aris-
totelian systems was that Greek astronomy was geometrical, not
dynamical. With their obsession for "perfect” geometrical
figures the Greeks thought of the motions of the heavenly bodies
as uniform and circular, or compounded of circular motions; they
had no conception of force. Instead the various heavenly bodies
were fixed to celestial spheres which moved as a whole. Newton,
with his wuniversal law of gravitation, introduced a less
geometrical point of view, yet it is interesting to note that
there is a reversion to geometry in Einstein's general theory of
relativity, from which the conception of force in the Newtonian
sense has been excluded.

By the mid-nineteenth century the 1last remnants of
Aristotle's description had been expunged from physics, and the
Newtonian model held complete sway in all but one respect.
Newtonian physics saw the universe as a container in which
physical objects move, but the remaining space within that
container was still occupied by the Greeks' fifth element, the
aether. It had by now been established beyond all reasonable
doubt that light is a wavelike phenomenon, and while the aether
was no longer responsible for planetary motions it still

performed the useful function of carrying light from source to
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observer. The aether was supposed to be the medium through which
light was “propagated, just as sound waves travel through the air.

The undulatory nature of light acquired increasing Jjust-
ification in the late nineteenth century through its connection
with the work of James Clerk Maxwell (1831-1879) in electro-
magnetism. Maxwell was able to describe the entire electromag-
netic interaction by a system of four differential equations:

div E

-9B/9t ;

Q/e:o ; curl E
-- (1-1)
div B = 0 ; curl B

po(j + eoaglat).
where E, B are the electric and magnetic fields at a given point;
.0 the charge and current densities; and eo, uo the permittivity
and permeability constants of free space. In a region of space
containing no charge or current these equations admit a wave
solution in E and B, from which Maxwell concluded that it was
possible for a system of electric and magnetic disturbances to
propagate indefinitely through the aether with a speed
c=1/f(eouo). This conclusion was later amply confirmed by the
work of Hertz. From experimental values of eo and po this
formula gives c¢ = 2.998x108m/s ~ precisely the measured speed of
light, so the link between electromagnetism and light had now
been established.

An overriding feature of Maxwell's theory was the concept of
a field. The use of coordinates to label points in the absolute
space of Newtonian mechanics established the mathematical concept
of the field as a useful instrument in theoretical physics, but
it was not until Maxwell's theory of electromagnetism that the
field concept came into its own as a fully fledged dynamical var-
iable. It is precisely this feature of the theory which enabled
it to survive the aether theories and which provided a conceptual

environment favourable to the development of relativity. The
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overthrow of aether theories which relativity theory effected
would not have been possible without some new concept to replace
them - this was provided by the idea of a field.

The early studies of electromagnetic phenomena emphasised
their mechanical context, however. Thus the concept of the
charged particle came to play a central role in the development
of electromagnetic theory. Coulomb's formulation of the law of
force acting between charged bodies provided the means by which
the quantity of charge carried by a body could be determined by
mechanical measurements. Investigations by Faraday of the quant-
itave laws governing the electrolytic decomposition of chemical
substances 1led to the hypothesis of the atom of electricity.
Then early 1in the twentieth century Millikan succeeded in
verifying this hypothesis through his famous oil-drop experiment.
The universal quantum of electricity was thus established as a
physical fact: the total charge on any particle is always an
integer multiple of the charge on the electron, defined
arbitrarily to be negative - e = -1.6x10 '%¢.

The usual mathematical representation of the electric field
identifies the value of the field at a point with the mechanical
response of a charged test body placed at that point. The ass-
umption that this procedure actually measures the value of the
field 1in the absence of the test body is sometimes Jjustified by
defining the field value to be the force on the test body divided
by the charge in the limit of vanishing charge. Thus the elect-
romagnetic force on a test particle of charge e at rest is eE,
and this defines the electric field vector E. If the particle is
moving with uniform velocity v then it is a matter of experience
that the electromagnetic force can be written

F = elE + vxB). -- (1-2)
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This 1is the Lorentz force law, which defines the magnetic field
vector B.

One way of escaping from this mechanical approach 1is to
describe the charge present by a continuous field of charge
density @ and current density 7j. If p is the average charge
density in an element of volume OV which includes a fixed point
P, then the value of p at P is defined as the limit of g as 8V-+0
through the element shrinking to the point P. The current
density i may then be defined by the relation

d = ev,
where v is the velocity field of the charge distribution. These
two quantities obey a conservation law which is contained implic-
itly in Maxwell's equations (1-1):

div j + dp/0t = 0. -~ (1-3)
In this continous description charged particles appear as point
singularities in the field, which presents a problem in the
description of the field in the neighbourhood of the singularity.
In continuous charge distributions one is concerned only with the
charge contained within a given finite volume - the amount of
charge at a point has no meaning in this description. However,
if point charges are introduced into the theory then we must dem-
and the field at the point to be infinite. This so-called "self-
energy” problem is still unresolved, since the various methods of
eliminating the problem (eg, "renormalisation"” techniques) all
amount to statements on the internal structure of the charged
particle. Rohrlich (1965) avoids this problem by considering a
point particle to be one whose "radius” is too small to be
observed. This does not mean that the radius vanishes - simply
that it is undetermined; as a result the divergent terms do not

occur in the theory. Nevertheless, particle and field theories
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remain distinct from each other, despite the possible synthesis
of the two provided by quantum theory. This duality has been the
main motivation for this thesis: on the one hand the attempt to
treat the field as the fundamental entity has led to the study of
quantum field theory, while treating the particle as the fund-
amental entity has led to Dirac's (1928) relativistic theory of
the electron. In the research summarised in this thesis we have
tried to look at both the field {(chapter 2) and the particle
(chapter 3) approaches in the light of the canonical formulation
of mechanics (see section 1.2) and to assess their relative

merits as viable descriptions of nature.

1.2 Analytical Mechanics

At the same time as Newton was writing his "Principia” the
German philosopher Gottfried Leibnitz (1646-1716), together with
Christiaan Huygens (1629-95), proposed an alternative form of
mechanics 1n which the fundamental quantity was essentially the
kinetic energy, rather than the force. This form of mechanics,
based on the single scalar quantity of energy, then grew into

what is now called analvtical mechanics. D’'Alembert’'s Principle

may be considered the starting point of modern analytical

mechanics. This appeared in d'Alembert’'s "Traite de Dynamique”
of 1743, and commences from the fundamental Newtonian law of
motion:

F = dimy)/dt,

whence E - dimy)/dt = 0.
Now letting Il = -dimy)/dt,
we have F + I = 0. -- (1-4)

We know that the vanishing of a force in Newtonian mechanics

corresponds to a state of equilibrium, so (1-4) says that the



7

addition of the force of inertia I to the other acting forces
produces equilibrium. At first sight this seems to be a mere

rephrasing of the law of motion, but its importance lies prec-
isely in this apparent simplicity. By this device the complex
problem of a dynamical situation 1is reduced to a more easily
soluble problem in statics. ©D'Alembert's Principle is now exp-
ressed as follows:

The total virtual work done by the effective force F+1
is zero for all variations of position 8r which satisfy the
given dynamical constraints of the problem, ie:

oW = (E+I1).0x = 0.

Lagrange's development of this principle consists of def-
ining the Lagrangian L of the system as the kinetic energy minus
the potential energy:

L =T -V ; -~ (1-5)

it then follows from d'Alembert’'s Principle that

t2 2 t2

J oW dt = 8f°Ldt - [L mili.éll

t, t, i t,
= 0.

If we now choose a specific variation for which &r vanishes at
the endpoints of the path, then the boundary term vanishes and we
have
58I = dfLdt = 0, -- (1-6)

where I is the action of the system. (1-6) is called the Action
Principle, and states that the motion of an arbitrary mechanical
system occurs in such a way that the action I is stationary for
arbitrary variations of the configuration of the system, provided
the initial and final configurations are prescribed (ie,
6r(t1)=6r(t2)=0).

In the derivation of the action principle all scalar prod-

ucts have assumed implicitly that rectangular coordinates are
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used. However, the whole advantage of analytical mechanics 1is
that the coordinates are not restricted in this way: indeed it
might be considered the first step from Newton's mechanics to
relativity in that it commences the process of freeing mechanics
from a fixed frame of reference. In general the coordinates of
the system will be expressible in terms of N generalised
coordinates qA, and the potential and kinetic energies are
functions of the coordinates qA and the velocities dA. In this

case the necessary and sufficient conditions for the action

principle (1-6) to hold are

51 = &fLdt
=\f QLAbq‘ . QLAaq‘ dt
oq 4

{QLAaq“ . g_[gg 6q“] - g_[QLA]GqA}dt
oq dtldg dt|dq

J

J{m,,, ey satat « [gLAbq“] 2
9q dtldq 9q ¢
1

On the assumption that the variation 8q vanishes at the endpoints

of the path, the boundary term disappears from this expression

and we obtain the Euler-Lagrange equations of motion:

QLA _ g_[g; =0 . -- {(1-7)
3q dtlagh

The first major result which may be obtained straight-
forwardly from the action principle is the law of conservation of
energy. To derive this result we let the virtual displacement 38q
at each 1instant coincide with the actual displacement dq=qdt
which takes place during the infinitesimal time interval dt.
This variation alters the coordinates also at the two endpoints

t

1! t

2 so (1-6) is no longer valid and must be replaced by

51 = [aL/aq‘.oq“Jf

If we now adopt the notation



p aL/agh = (1-8)

A

then we have 51 [pAGqA]i
Assuming that our system is conservative (t does not appear
explicitly in the functional form of the Lagrangian), our expres-

sion for 8I becomes

dt.[L]ﬁ dt.(pAdA]ﬁ .

giving P,@ - L = E = const. -- (1-9)
Now the potential energy of the system is independent of the
velocities, so that pA=qu and the first term of (1-9) is simply
twice the kinetic energy. Hence (1-9) expresses the fact that
T+V=E, ie, that the total energy of the system is constant. In
the 1light of this the guantities Py defined by (1-8), will be
called the generalised momenta of the system.

W.R.Hamilton (1817-85) achieved an important modification of
analytical mechanics by transforming the Lagrangian problem of N
second-order differential equations into an equivalent problem of
2N  first-order equations. This he did by replacing the N vel-
ocities of the Lagrangian formulation by the N corresponding
generalised momenta, according to the following procedure:

i. Introduce the new variables P, = aLlan
ii. Introduce the Hamiltonian H which in the case of a con-
servative system corresponds to the total energy:
g - L . -- (1-10)
iii. Express the new function H in terms of the new variables

p by solving for the dA as functions of the gq's and

A

.

p's, and substituting into the expression (1-10) for the
Hamiltonian.
This transformation procedure, embodied in the equations

(1-8) and (1-10), is called a Legendre transformation. It has

the interesting property that variations of the Hamiltonian are
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totally independent of variations of the velocities q, since if
we vary the momenta alone then

5 = a*sp, + p, 8" - 5a".aL/3¢" S (1-11)

n

qApr

from (1-8), where an is the variation in the velocities brought
about by a variation of the momenta. So we see that 8H depends
solely on the variations 6pA. The Legendre transformation thus
forms an injection from the space of coordinates and velocities
onto the space of coordinates and momenta, provided the relation

(1-8) is nonsingular, ie, iff

-
.A,.B

99" 9q

The elegant dual nature of the Legendre transformation is dis-

# 0 . -- (1-12)

played in the following scheme:

Lagrangian formulation Hamiltonian formulation
L=t(a',...q".4"....d";t) Het(a',...a",p,....pyit)
A .
P, = dL/BY g" = an/ap
A
A A -- (1-13)
H = . - = 3 -
PAq L L pAq H

In addition we have the two relations
A
dL/aq® = -3n/aq" ; BL/dt = -BH/Bt . -- (1-14)
Using the momenta we can now rewrite the Euler-Lagrange

equations (1-7) in the form

b, = aL/aqh
= —aHlan ,
by application of (1-14). Thus we have finally replaced the

Lagrangian equations of motion by a new set of differential

equations called the canonical eguations:

gt - dH/3p, & b, = _aH/3q" . -— (1-15)

The coordinates and momenta are known collectively as the

canonical variables (q,p), the variables g and p being said to be
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conjugate. The 2N-dimensional space of all canonical variables
is called the phase space, and each point of phase space rep-
resents an instantaneous state of the system. The canonical
equations are entirely equivalent (assuming (1-12)) to the
original Euler-Lagrange equations, being merely a mathematically
new form. Yet the new equations are superior in a variety of
ways, not least of which is the easy transition to quantum theory
made possible by the Hamiltonian formulation. In addition the
Hamiltonian equations are of a more usable theoretical form than
the Euler-Lagrange equations, since the lack of dependence of the
Hamiltonian on the velocities means that all time derivatives
appear on the LHS of the equations. A solution (q(t),p(t)) of
the canonical equations will be called a trajectorvy.

If we make the transformation
qa-*-p i P=*gq -- (1-16)
then the transformed canonical equations become
-p, = aH/dq" ;&' = awsdp,
which are exactly equivalent to the original equations of motion.
Because of this it seems that neither position nor momentum may
be considered more fundamental than the other, and so we now
consider a more general type of transformation than was possible
in the Lagrangian case. Consider the following transformation,
in which all canonical variables are involved on an equal basis:
a -+ Q(aq,p,t) ; p =+ Pla,p,t) ;
- -=- (1-17)
H{g,p,t) =+ H(Q,P,t)
Clearly the most significant such transformations will be those
which leave the equations of motion invariant - such transform-
ations are called canonical transformations (CTs).

For a CT we have
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5[{p,g* - Hldt = 8J(p, o* - Hidt

0 = 6f(dF/dt).dt

for an arbitrary function F. Hence we obtain the following

sufficient condition that the transformation (1-17) be canonical:

tp,a" - H} - {PAéA - H} = dF/dt . -~ (1-18)
Here F will in general be a function of the &4N+1 variables
(qA,pA.QA.PA,t), but because of the relations (1-17) we can
reduce this to t and any 2N of the others. Condition (1-18) is
also necessary, modulo simple dilations and reflections of phase
space (see Sudarshan & Mukunda,1974). We now consider a number
of possibilities for the function F.
Case 1

Consider the case
F = F1(q.0,t) )

then dF, /dt = g*aF /3q" + oaF, /30 + BF, /3t

If we regard (q,Q,t) as independent variables we find

Pp, =98 F (g,@,t) ; P = -3 F (q.Q,t) ;
A an 1 A BQA 1
_ -- (1-19a)
H - H = 9 F.(q.Q,t)
at

This system is (in principle) soluble for (Q,P) as functions of
(q.p), so we see that F determines a transformation of the

canonical variables. Indeed, F may be shown (see chapter 4} to
be essentially uniquely determined by a given transformation, and

so0 1is <called the generating function of the transformation

(1-19a).
Case 2
We can obtain the case
F = thq,P,t)

from case 1 by applying the Legendre transformation

= A
F = F1(q,0,t) + Q PA '
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A

which has the effect of replacing the Q" by the PA' Considering
the same transformation as above,
tp,¢* - w1 - tp,@* - H} = dF, /dt

A
d/dt.{Fz - Q PA}

Continuing as before this leads to the transformation equations

p, = dF_/3q" ; o* = BaF_ /3P ; H - W = BF /3t —- (1-19b)

A 2 ' 2 A 2
Since we have considered the same transformation as in case 1, we
would expect these equations to be identical to the transform-
ation equations of case 1, and this is indeed so. The first and
last of each are identical since

3F1/3t = anlat and 8F1/6qA = an/an

and although the second of each appear different, they are in

fact rearrangements of one another. The remaining two cases are

essentially repetitions of the above working:

Lase 3
We obtain
A A -
a = -ara/apA L —aFa/ao i H - H = 6F3/3t -- (1-19¢c)
from the Legendre transformation
A
F = -
3(p,O.t) F1(q,0,t) P,Q
Case &4
We obtain
ot - -aF /9p, *® = 3F /3P ; H - H = 3F /Bt -- (1-19d)
4 A 4 A 4
A A
from F = -
4 (p,P,t) F1 (g,Q,t) + Q PA a’p,
Historically, the whole point of studying CT's was origin-

ally in order to transform the canonical equations into a more

easily soluble form. The Hamilton-Jacobi method explicitly
determines a generating function from which can be derived a

transformation to a new system in which

o* - const = uA ; PA = const = B
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The new constant quantities may be the 2N initial values (qo,p )
o

at t=0, in which case the transformation equations are precisely
the solution of the dynamical problem:
= ( . =
q ata,.p .t} i P pla_.p_.t)
Since we are at liberty to choose any of the above four cases to
represent a given CT we shall suppose that this special generat-
ing function, S, is of the type considered in case 2:
s = S(q,P,t) = S(q,B8,t) ,
and since the transformation is canonical we have
‘A _ . —- A
Q" = BH/aPA =0 ; P = -3H/3Q@ = 0 . -- (1-20)

A
If we now also require that the new Hamiltonian contain no

explicit time dependence (dH/3dt = 0) then H is a constant which
may be arbitrarily set to zero. In this case the equations
(1-19b) become

H{q,p,t) + 3S/3t = 0 ; p

A BS/an

=> H{q,3S/8q,t) + 3s/0t o . -- (1-21)

(1-21) is a first-order partial differential equation called
the Hamilton-Jacobi (H-J) equation; it may be written down
explicitly for any particular problem, since H will be a known
function of the (qA.pA,t). Since the H-J equation involves the
N+1 independent wvariables (qA,t), a complete integral (see
Pearson & Carrier,1976) of the equation will contain N+1 arbit-
rary constants. However, if So is a solution then clearly
S=So+const is also a solution. Thus we can reduce the number of
arbitrary constants to N, since only the derivatives of S appear
in the theory. These N constants may be identified with the BA;

S = S(q,B.t)
iff this substitution satisfies the relations (1-20). Our
derivation has shown this to be so for the first of (1-20), and

it is straightforwardly shown to be true for the second (see for
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example Goldstein,1981). The values of the constants BA are then

found by substituting the initial values of the problem - qA(to),

. A
P (to) - into pA=3$/an, and the &« may be calculated from

A
A
o =a5/aBA-

Jacobi saw the above method simply as a means of simplifying
practical problems, but in fact the H-J) equation may be developed
(Rund, 1966) as a third type of equation of motion, distinct from
the canonical and Euler-Lagrange equations. An indication of the

theoretical significance of the Hamilton-Jacobi theory is obtain-

ed by applying the condition (1-18) to the generating function S:

ds/dt = {p,¢* - W} - {pAé‘ - H}
- A _
= {pAq - H} =L
=> S = fLdt + const. -- (1-22)

Thus we see that up to an additive constant, S is simply the
action measured along the trajectory of the system. S is called
the 2-point characteristic function of Hamilton, of which more
will be said in chapter 5.

In the case where the Hamiltonian of a problem does not
involve the time explicitly it is possible to perform a sep-
aration of variables to obtain a simpler equation. Omitting the
explicit time dependence from (1-21) we have

9S/0t + H(q,3S/9q) = 0
The first term involves only t-dependence, while the second
involves only g-dependence. Therefore we can separate the time
variable by assuming a solution for S of the form

S(q,a,t) = Wlig,a) - BNt
Substituting this trial solution we obtain the time-independent
(H-J) equation:

H(g,dW/dq) = B , -- (1-23)

N

in which one of the constants of integration (EN) is thus equal
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to the constant value of H (usually the energy). Here W acts as
a generating function of a transformation to a system in which
one of the momenta is equal to the Hamiltonian:

P, = Hla.p) = H(Q,P)

A particularly simple example of a case 2 canonical trans-
formation is when F=PAqA. Here we obtain from (1-19b)

p=dF/dq = P ; Q = OF/AP = q ; H=H + dF/Bt = H, -- (1-24)
from which we see that this choice of F generates the identity
transformation. This enables us to generate infinitesimal
transformations by means of the small parameter € (independent of
q and p) and the arbitrary function G:
A
F=aP, + €6lq,P)

From this we have

A A A A
o = 8F/6PA = q + eaG/aPA PP, = O0F/9q = P, * £€9G/9q
=> 5qh - eBG/BPA ; 6pA = -eaGlan

Since &p is infinitesimal we may replace P by p in G to obtain

6a* = eg6(a.p) i 8p, = -edGla,p) . -- (1-25)

(1-25) is called an infinitesimal contact transformation, and it

is usual to call the function G the generator of the transform-

ation. As a particular case of the above, consider
€ = dt G = H |,
A . A
then &dq" = dt.aH/apA = dt.q ;

-- (1-26)

6pA

~dt.dH/3q" - dt.bA

Here the Hamiltonian is generating the actual changes which occur
in the system due to its motion. Thus the evolution of a system
may be regarded, in the words of Hamilton, as the "continuous
unfolding” of an infinitesimal contact transformation generated
by the Hamiltonian of the system.

The final aspect of analytical mechanics which we will look
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at in this resumé is the idea of the Poisson bracket. Let
F(g,p,t) be some dynamical variable of a system, then we can

calculate the rate of change of F along a trajectory:

%(q,p.t) = dF/dt
- 2r,a" v 25, o 2k
8q GpA
= [aF OH - Q_ OH ] +
aq ap 3
= {F,H} + aF/at . -=- (1-27)
where {X,Y} = Q& oYy - X 8Y -- (1-28)

d3q" dp, p, aq”

is the Poisson bracket (PB) of the two phase space quantities X

and Y. The following identities follow immediately from the

definition of the PB:

{xX,v} = -{vy,x} ; {I{x,x} = 0 ;
{x,vy+2} = {x,Y} + {x,2} ; {xX,YzZ} = v{x,zZ} + {x,Y}2Z
Also, {qA.qB} = {pA.pB} =0 {qA.pe} = 6; . -- (1-29)

Equations (1-29) are called the fundamental PB relations: from
them may be built up all other PB relations between dynamical
quantities.

An important property of PB's is that they are invariant
under CT's, ie, if X,Y are two scalar quantities defined on phase
space then

{x, v} = {x,v}’ ) -- (1-30)
where the PB is evalua?ed in the undashed and dashed systems
respectively. The quantities X,Y may have the same value, but
not necessarily the same form in the two systems, yet their PB is
still an invariant. The proof of (1-30) consists in proving the
invariance of the fundamental PB's (1-29) under each of the four
types of CT in (1-19), and hence (1-30) follows by building up

arbitrary PB's from these. In view of this invariance it becomes
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unnecessary to distinguish between PB's evaluated in different
systems and we can omit the dash in (1-30).

From (1-29) we see that provided F does not contain an
explicit time-dependence, it is a constant of the motion iff
{F,H}=0 (whether or not H is a constant of the motion). Special
cases of (1-29) are

qA A

= {g ,H} ; p = {pA.H} i H = 3H/0t -- (1-31)

A
which gives wus an alternative, more symmetrical, form of the
canonical equations. A further property of the PB is the Jacobi
identity:

{x,{y,z}} + {vy,{z,x}} + {z2,{X,Y}} =0 , -- {(1-32)

which may be used to construct new constants of motion from old

ones. For suppose Z=H, and X,Y are constants of the motion, then
{x,{y H}} + {y,{H.X}} + {H,{X,Y}} =0

=> {H,{X,Y}} =0

and so {X,Y} is also a constant. Note, however, that this method

of producing constants is rarely fruitful in practice, since the
constants so produced are often simply new combinations of old
ones.

The PB also enables us to express the contact transformation
equations (1-25) in a more symmetrical form. Let G be the gener-
ator of a contact transformation and let X be some dynamical
variable, then the change in X is given by (1-25) as

5Xx

qu.aX/an + apA.GX/apA

e.{X,6} . -- (1-33)

In the specific case where X is one of the coordinates or momen-
ta, we recover the contact transformation equations in PB form:
A A
5 = e.{q ,G6} ; p, = e.{pA,G} . -- (1-34)
Also, if X=H in (1-33), then BdH=e¢{H,G}; hence a constant of the

motion (for which {H,G}=0) generates an infinitesimal transform-
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ation which leaves H invariant. This is the basis of Noether's

theorem, which we shall look at more closely in chapter 5.

In this section we shall briefly outline the relativistic
model to be used in this thesis and the various notations and
conventions which we shall adopt. The model of the universe used
in general relativity is a &4&-dimensional manifold which amalgam-
ates the classical concept of space (coordinates x1,x2,x3) with
the fourth dimension of time (x‘:t)_ This amalgamation, first
introduced by Minkowski (1908), is in sharp contrast to the clas-
sical viewpoint as expressed in Newton's "Principia”:

"Absolute, true, and mathematical time, of itself, and
from its own nature, flows equably without relation to any-
thing external, and by another name 1s called duration:
relative, apparent, and common time, 1is some sensible and
external (whether accurate or unequable) measure of duration
by the means of motion, which is commonly used instead of true
time; such as an hour, a day, a month, a year."

In relativity time becomes for the first time a participant in
the transformations induced by the motions of the observer, and
is to be treated simply as one more dimension in the manifold.
Of course, certain properties do distinguish time from the other
coordinates, and this is expressed by the fact that we use a

Lorentz metric ga on the manifold with signature 2. If TP(M)

b
denotes the space of tangent vectors to the manifold M at the
point peM, then we can use the above metric to divide the

elements of TP(M) into three classes: a nonzero vector XeTp(M)

is said to be timelike, null or spacelike according to whether

gabxaxb is negative, zero or positive respectively (the Einstein
summation convention is taken to apply). In relativity timelike
vectors represent the instantaneous motion of physical observers,

and null vectors the possible paths of light signals. The set of
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all null vectors at p is called the null cone at p. A h er-
surface is a subspace of the spacetime manifold, which is termed

timelike if it contains one timelike direction; null if it

contains no timelike directions but one null direction; and
spac ike if it contains only spacelike directions.

The second notable departure from classical mechanics
concerns the "flatness” of the universe, referred to implicitly
in the Principia:

"Absolute space, in its own nature, without relation to
anything external, remains always similar and immovable."

It is assumed without question in Newtonian mechanics that this
"absolute space” is Euclidean, but in general relativity the
strict flatness of the Euclidean manifold is abandoned in favour
of a series of weaker restrictions on the manifold. For the
physical reasons behind the properties given in the following

definition, see Hawking and Ellis (1973).

Definition (1.1): A spacetime (M,g) is a connected, 4-dimension-
al, oriented, time-oriented, paracompact, Hausdorff

manifold M together with a global Lorentz metric g and

the associated Levi-Civita connection.

Hawking and Ellis also make the added assumption that the space-

time 1is ipextendible, ie, it cannot be embedded isometrically

into a larger spacetime. Hence we now make the following
definition:
Definjtion (1.2): The general theorv of relativity consists of:

(i) An inextendible spacetime (M,g) whose metric is at least
CZ. The points of the spacetime are called events.
(ii) Let Mo be a convex normal neighbourhood in M, containing

the points p,q & M, Then a signal can be sent in Mo
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between p and q iff p and q can be joined by a c! curve
lying entirely within Mo' whose tangent vector 1is
everywhere nonspacelike. This is the postulate of local
causality.

(iii) There exists a symmetric (0,2) tensor Tab (the energy-
momentum tensor) which depends only on the matter
fields, their covariant derivatives and the metric such
that:

(a) Tab=0 on an open subset U of M iff all matter fields
vanish on U.
{(b) If u® are the components of a timelike vector at peM

then

Tabu’ub < 0 -- (1-35)

and Tabub are the components of a non-spacelike
vector at p.
This is the dominant energy condition.
(iv) The metric coefficients at a point satisfy the following

set of second-order partial differential equations:

1
G £ R - TR = - -- -
ab ab 2 gab KTab' (1-36)
where G is the Einstein tensor, R = Rd is the
ab ab abd
Ricci tensor, R=Raa is the Ricci scalar and k is the

gravitational constant. The equations (1-36) are the

Einstein field egquations, and in the case where Tab=0

are called the vacuum equations.

A few remarks should be added to the above definition.

First of all we note that from the definition in (1-36), Gab has

zero divergence, so from the field equations we must have

b 6° = o. = (1-37)

-kT =
a ;b a ;b

Hence Ta also has zero divergence. We will see in the next
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section that Tab in fact represents the negative of the energy-
momentum density. This minor inconvenience comes about as a
result of our other conventions. The second point to note is
that Hawking and Ellis also consider a further condition on
spacetime called the stable causalitv condition. This requires
first of all that the spacetime does not admit any closed
timelike curves,. and secondly that this is also the case for
every "sufficiently small” variation of the metric. The idea of
this condition 1is to ensure that quantum fluctuations of the
metric do not violate global causality. Thirdly the paths, or
worldlines, of neutral, nonrotating physical bodies are the
timelike geodesics of M.

Finally we note the following notation conventions used in
this thesis. Round and square brackets denote respectively the
usual symmetrisation and antisymmetrisation of a tensor over the
enclosed indices. Ordinary partial differentiation with respect
to the coordinates x® will be denoted by a comma preceding the

derivative indices and covariant differentiation by a semi-colon.

All Latin indices (a,b,c,...) will run from 1 to 4 and block
indices (A,B,C,...) will run from 1 to N (see chapter 2). Greek
indices (a,B,¥,...) will run from 1 to 3 if Latin indices are

currently "being wused, and from 1 to N-1 if block indices are
currently being used - which of these cases applies will be made
clear from the context. We will also use the bare tensor symbol,
stripped of its indices, to denote the tensor in abstraction from
any coordinate system, and the underlining of a tensor will
always mean the spatial component of the tensor, ie, the first
three components. For example,

ra

H
"
"
S
"

]
~
[
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= (L.r").

The word "classical” will at all times be reserved to refer to

the mechanical structure underlying the theories of Newtonian,

Lagrange and Hamilton. That is, it will mean “discrete” and
“non-relativistic”, rather than the usual meaning of "non-
gquantum” . Thus the phrase "classical gquantum theory” will become

meaningful in later chapters.

When there exists a coordinate frame in which the metric
coefficients are constant, there is no distinction between
partial and covariant derivatives for a certain class of frames.
This 1is the case in Minkowski spacetime, where the metric is

given by

(g ) =1 0o o o} . -- (1-38)
ab
c 1 0 ©
0o o0 1 0O
0 0 0 -1

Here the special class of frames is the set of frames in which

(1-38) is true. The transformations between these frames are the
Lorentz transformations. All of the work in the remainderxr of

this chapter will be confined to Minkowski spacetime.

1.4 Electromagnetism in relativity

Maxwell's equations (1-1) can be expressed in covariant form
in Minkowski spacetime if we regard j and p as the components of

a 4-vector 3j° and E and B as the components of an antisymmetric

tensor Fab, such that
12 .3 . b
(3°,37.,37) =4 3 = o, -- (1-39)
(Fab) = (1] B3 -82 —E1 . -- (1-40)
_B -
9 (1] B1 E2
2 —81 0 -E3
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Throughout this thesis we shall use a rationalised system of
units 1in which My=4m and c=1. In this case €_=1/47 and the
equations (1-1) become
div E = 4wg ., curl E = -9B/9t,
div B = 0 , curl B = 4wi + QE/dt.

We can now express the first and last of these as

b .
F* by oC b3t -- (1-41a)
and the other two as
F[ab,c] = 0, -- (1-41b)
or alternatively, F + F + F = 0.
ab.,c bec,a ca,b

From here onwards we shall refer to the system (1-41) as Max-
well's equations - {1-41b) is the homogeneous Maxwell equation
and (1-41a) is the inhomogeneous Maxwell equation. It is also
possible to write the Lorentz force law (1-2) in the covariant
form
K, = F 3 —- (1-42)
b abj )

where the space components of Kb correspond to the density of

Newtonian force exerted by the electromagnetic field on the

charge distribution ja. In order to interpret the time component
of Kb we note that according to (1-42), (1-39) and (1-40)

K = - i

4 E.4d.

which 1is the classical expression for the rate of decrease of
field energy density due to work done by the field on the charge
distribution. For a charged particle e with &4-velocity ua,
(1-42) takes the form

K = a - -

b eFabu , (1-43)

where K is now the 4~force on the particle, rather than the

4-force density.
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Using the 1law (1-42) together with the Maxwell equations
(1-41) we obtain
K =F 3°

b ab
= 1 F__fF*°
/4w abF

= 1/4w.{(F as - as
abF )ls Fah'SF }.
Now Fo 8 = as
ab,s 1/2.F (Fab.s * Fbs.a)
= -1/2.F*%
Fsa.b
= 1/4.(F*%F
as ,b
and so K= 1/4m. {F F*" - 1/4.8°F F °} .
b sb b rs v a
We define €% = 1/4m.{F. F*® + 1/4.58°F F°*}
b bs b rs
so that K = -g?
b b y @

We call Eba the electromagnetic energv-momentum tensor. In the

form required for the Einstein field equations (1-36) it is given

by the clearly symmetric expression

E = ) s
ab 1/4w {FasF b

+ 1/4.9 F °F 1}.
a

b rs

In general Ea cannot express the entire energy-momentum content

b
of spacetime, since in the Einstein field equations Gab has zero
divergence, while we have just shown that Eab does not. However,
in the absence of charges and all non-electromagnetic matter
fields we have ja=0 and may represent the entire energy-momentum
field by

8

T = .
ab 1/4w {FasF b

+ /4.9 FFeF ), = (1-44)

b rs

for which Tab b = 0.

The Ffirst point to note about (1-44) is that it is mani-
festly traceless (Taa = 0). Indeed some treatments use the zero
trace of the electromagnetic energy tensor as one of a series of
defining characteristics, since it is related to the zero rest-

mass of the photon. In order to interpret the various components

of Tab we now write them out explicitly by substituting (t1-40)
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into (1-44):

Ty = 1/en. e’ e, ? -1e 02 w8 178,17 - (8,171,

Top = 18w L-(E 7 e(e, )7 (e 0)7 -8 17 (8,07 - 18,071,
Ty = 1/8m.0-(E )% ()7 s (e 12 - (8,17 - (8,17 + (8,171,
T, - ~1/8w.(8% + €%,

T23 = 1/411.[E253 + 8283]. T31 = 1/!.1r.[E3E1 + 8381].
T12 = 1/41T.[E1E2 + 8132].

T14 = 1/411‘.[5283 - 82E3], T24 = 1/41‘[.(5331 - B3E1].
T:”' = 1/4".[5132 - 8152].

We can interpret these terms in the following way:

S = 1/4nw.(B E) = (-T , - , -
S /4w. (B x E) ( 14 Tz& Ta‘)

is Poynting's vector of classical electromagnetic theory. It

represents the flux of radiant energy through a surface element

ds per unit time: S.ds

-T 1/2.174m. (€2 + 8%)

4 &

is the 1local energy density of the field and the pure space

components T represent the rate of flux of momentum through a

af

surface element ds:

aB
T""(ds) .
=B
The TGB form the components of the Maxwell stress tensor, intro-
duced in Maxwell's original theory. It is only a tensor with

respect to spatial rotations in the restframe of the observer.

If we contract -Tab with a velocity vector u® = dz® /ds,

where ds is the element of spacetime interval ds=f(dxadxa), then

we obtain a vector Pb. Choosing an observer for whom u® = 0 we
have
b
P = -1 -- -
a ap Y (1-45)
= (§ A-T‘4)-

which combines the above results into one tensor equation.

Because of this we assert in general that P represents the net
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flow of energy according to an observer with 4-velocity u in
Minkowski spacetime.

In order to express Maxwell's equations (1-41) in an
alternative form we now put
F = A - A , -- (1-486)

ab anb b.a

where the 4-vector A is called the electromagnetic potential for

the field. Such a potential always exists as a conseqguence of
the homogeneous equation (1-41b), and conversely any tensor given
by (1-46) will automatically satisfy (1-41b). Substitution of
(1-46) into (1-41a) gives the field equation for the electro-

magnetic potential

2 b .
VoA - = - -
a A ab low:]a , (1-47)
be
g

where VZA
a a,bc

According to (1-46) A is not completely determined by the
electromagnetic field tensor F. Indeed F remains unchanged under

the transformation

where B is an arbitrary scalar function. The above transforma-
tion ofthe electromagnetic potential is called a gauge trans-
formation, and may be used to simplify the field equation (1-47).

To do this we simply choose the function 8 such that

in which case we have
A = 0 . -~ (1-48)
Thus the electromagnetic potential for a given field can always
be <chosen in such a way that the Lorentz gauge condition (1-48)
is satisfied. With the use of this condition (1-47) reduces to
the inhomogeneous wave equation
2 .
VCA = 4wy . -- (1-49)
a a

According to the Maxwell equations the electromagnetic field
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depends on the presence of charges in the field, but even in the
absence of charges the field does not in general vanish, because
then (1-49) merely reduces to the homogeneous wave equation

VoA = 0 . -- (1-50)
A solution of (1-50) can be obtained by a superposition of plane
waves of the form
A, = a cos(1®x + &) , —= (1-51)

a a

where lb is a null vector. Since (1-51) must satisfy the Lorentz
condition (1-48) it follows that

1'a =0 . -- (1-52)
In order to examine the properties of these various components we

choose the space axes so that the null vector 1 is given by

b
1" = ¢(1,0,0,1) ,
where ¢ is a constant. In this case we have
Ab = a cos{c(x1-t) + &} -- (1-53)

and the Lorentz condition (1-52) takes the form
a1 + ab = 0 . -- (1-54%)
Using (1-53) and (1-54) we then arrive at the following

expression for the Maxwell tensor:

X ) 1

(Fab) = 0 a, a, ] 1 c sin{ci(x -t) + 86} . -- (1-55)
-a2 0 0 a2
-a3 0 0 a3

Thus even 1in the absence of charges the field can contain
(amongst other forms) plane electromagnetic waves whose energy 1is
given by substituting (1-55) into (1-44). One immediate point to
note concerning the expression (1-55) is that it admits the null
eigenvector 1 with zero eigenvalue. For this and other reasons

such a field is called a pull field. Using the form (1-40) we
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find from the above that

E1 B1 + E2 B2 + E3 B3 = 0 ; E1 = B1 = 0 ,
which shows that the electric and magnetic fields due to a plane
electromagnetic wave are perpendicular to each other as well as
to the spatial part of 1. The solution (1-55) represents a plane
wave moving along the positive x'-direction with the speed of
light. The direction 1 is thus called the direction of prop-
agation, and the 2-plane containing B and the spatial part of 1

is called the plane of polarisation of the wave.

1.5 The functional calculus

To end this introductory chapter we now give a short summary
of functional calculus. Classical Hamiltonian mechanics deals
with systems of an arbitrary but finite number of degrees of
freedom. For a system with a countable infinity of dynamical
variables qj, pj (j=1,2,...) the state of the system at a given
ihstant of time consists in a specification of all the countable
infinity of variables at that instant. However, this is often
not the most convenient way of characterising such systems, as,
for example, in the case of fields defined on 3-dimensional
Euclidean space. Here the state is specified by giving the
values of a set of functions at each point of space at a given
instant. The general time-dependent variables qj(t), pj(t) are
replaced by the functions wA(A:t). NA(ﬁ,t), where instead of the
discrete index Jj we now use the Cartesian position vector x to
enumerate the infinite degrees of freedom, and the block index A
numbers the field components (A=1,2,...,N).

These two ways of counting the degrees of freedom can be put
in correspondence, as we shall now see. Given the countable set

qj, pj (1€ j<») we define P(x), w(x) as the real linear combina-



30
tions
Pix) = L u (x)g : wilx) =L v (x)p , =-- (1-56)
in terms of some set of functions uj,vj vet to be determined.
Assuming these functions form a canonical set of variables we can
legitimately calculate the fundamental PB conditions (1-29) bet-
ween them, which by substitution from (1-56) yields the result

{m(x),w{y)} =0 ;’

{(P(x), Py}
fPix), m(y)}

L u (x)v (y)
i gy

We now demand that the linear combinations (1-56) be nonsingular

in the sense that we can solve them for qj, p. in the form
3
3
a, = fUu W) x ;5 p. = fV (x)mix)d x|, - (1-57)
b] S 3 S
where Uj,v_ is some appropriate collection of functions. Here S
h|

is some 3-dimensional spacelike hypersurface indexed by the
vector x relative to some fixed origin and on which Y and w are
defined. Now from (1-56) and (1-57) we must have the following
relations between the uj, vj, ; j;
Yix) = fst,u (x)U (1)¢(¥)d3y i omix) = f Z,V_(A)V.(i)v(iiday ;
i j S J 3 j
a = EiISUj(ﬁ)ui(ﬁ)qidsx i b, = [iISVj(ﬁ)vi(i)pidax

All these relations are satisfied if we choose uj, v. to be
b}

complete reciprocal bases for functions of x in the sense

U (x) = { sV = :
j X Vj x) j(21) uj(x)

Lyu (x0v (v) = 8% (x-w) ¢ fgu (v (x)dx = 5,
(Here 5ij is the Kroenecker delta and &° is the 3-dimensional
Dirac function.) This finally results in the fundamental Poisson
bracket relations
), i)} = {m(x),mly)} = 0; {Pix), i)} = 63(5-1).—— (1-58)
Thus we see a situation arising in which a system with an
infinite number of degrees of freedom is represented by a

Hamiltonian field system. In the transition from the discrete

system to the continuous we find the discrete index Jj replaced by
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a continuous index Xx. The summations become integrals and the

Kroenecker delta becomes the Dirac delta-function in the approp-

riate number of dimensions. This situation brings us to the
notion of a functional. Much of the initial work on functionals

was done by Volterra (1931), and while his work was far more
general than ours shall be, the generalisation to his work from
ours is straightforward.

Functionals are, by definition, functions of functions.
That 1is, a functional establishes a mapping from the space of
functions into some other set - maybe the real numbers or maybe
back into the original function space. The following example
illustrates this,

Example (1.3) -

1. FlPp;x) = Ppix) : In this trivial example F takes the
function Y and produces the same function evaluated at the point
x. The notation F{yY;x] means that F depends on the global shape
of the function Y as well as on the point x.

ii. FLyl = fxfyw(x)f(x,y)w(y).dydx : Here F takes the func-
tion y defined on some domain in RZ coordinatised by x and y, and
produces a number. The notation F(Y]l] means that this number
depends only on the overall shape of the function Y, and not on
the specific point x. Already in these two examples we see the
close correspondence between functional calculus and normal
differential calculus. Example (ii) is a qQuadratic functional of
P, and we see how integration over a repeated continuous index
(here x,y) eliminates that index from the value of the functional
in exactly the same way as summation eliminates discrete dummy
indices in the differential calculus. (ii) may be thought of as
providing a generalised norm of the function Y, with f(x,y)

forming a metric in function space.
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iii. FfwA(ﬁ,t).awAlat] = Is¢(wA,¢A'b).dr : This final example

illustrates the sort of functional we shall mainly be concerned

with. Here ¢(¢A,¢A b) is some scalar defined on Minkowski space
in terms of the variables wA. wA 5 and S is some spacelike
3-dimensional hypersurface with 3-volume element drt. The

integration over S will eliminate the space coordinates x* from
the result, so that F will be a functional indexed by t and

dependent upon the variables wA and their time derivatives wA .

Here it must be made clear that although the time derivative of

¢A is treated as being independent of wA. being a sort of gener-

/

alised velocity, the spatial derivatives wA are not new indep-

' B
endent quantities but are, in a generalised sense, functions of
the basic variables wA(ﬁ.t). This somewhat arbitrary separation
of the time derivatives from the space derivatives stems from the
use of the hypersurface S to eliminate all local dependence of F
on the spatial variables. Clearly if the numerical values of wA
are prescribed for all x at a given time t, then we also know the

values of ¢ at that time. It is important to realise this in

AR

order to calculate legitimately the "partial derivatives"” of F

with respect to its arguments.

In keeping with the close analogy between the functional
calculus and the ordinary differential calculus we now seek a
functional equivalent of the partial derivative. Rather than
finding the rate of change of a function with respect to the j-th
coordinate, we now wish to calculate the rate of change of a
functional FfwA] with respect to a small change in the argument

wA at the point X only. Accordingly we define the functiopal

derivative of a functional F[&A] with respect to the variable

¢A(A) by
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6f XM = lim L {F[ ..., )5 4 ....]-F[....9 --(1-59)
54*A =) 6u)A »0 OO>>A ~ A A

Here 4'!\ (") 1is defined all over a spacelike 3-surface S and 5>L4*A
is a variation of the A-th variable alone in the wvicinity of the
point ><eS . It is assumed that this variation is =zero outside

some e-neighbourhood of x. 6oiA is then the 4-dimensional volume

element contained Dbetween the 3-surfaces 4*A (™) and 4>A (™) +6 42 (y7.
X

(Note that these four dimensions are not all spacetime dimen-
sions , but rather three spatial dimensions parametrised by y and

one function dimension parametrised by 4 - see fig. 1.4).

S
fig . 1.4

S

In the limit SLUA—OO the surface 4*A+5X 4*A tends towards 43 in such a
way that e tends to zero, 6aJLA always containing the point U . It
is convenient to describe this process using the 3-dimensional
5-function :

5,4%.(14) - 5», 6 (Gy-"1), — (1-60)
which is consistent with the fact that the integral of 5 & &)

over the whole of S is simply 6uiA .

Now let us calculate the functional derivative of the

variable 4*A itself. According to (1-59) and (1-60) we have
M (V) = 6® 6~ (34—x) , - (1-61)
6*0 (X)

which 1s what we would expect, considering the analogies Dbrought
out earlier between discrete and continuous indices. For the
purposes of calculating actual expressions for functional der-
ivatives such as that in (1-61) we now look at the integral

6F[Ji] 6 1> lim /{Ft... "~6 X ...]1-F[.., ...H 6" (Ji-i<)dty

(/\) A % 6m -0 \ A * *
A A
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lim {F[...wA+6L¢A,..]-F[.-.¢ .1}

GwA_’o A:.

BLF

First suppose that there is no implied summation in this calcula-
tion, then GLF is the change in F due to the variation of the
A-th variable alone. But this means that summation over A gives
the entire change in F for arbitrary variations of wA at the
point x. Clearly we shall in general be concerned not Jjust with
variations at a single point, so to obtain the overall change in
F we must integrate over all the point variations:

oF

I8 Fd’x
X

j BELB] B ¥, (v)d’yd’
S, (y) =

JG_FLdLl {16 b, (v)d’x}d’y
5b, (v) T

BELL] 80, (y)d’y . -~ (1-62)
5, (y)

Now let wus return to the example (iii) above. We can

imagine altering the wA(A,t) and the "velocities” wA ‘=$A(5.t) by

small amounts 5¢A and 6$A respectively, these increments being
independent of one another at any one time, and computing the

change in F without altering the functional form of F. This

change is given by

5F =j _8F .89, (x,t) + _8F  .8p (x,t)]dr . -~ (1-63)
¥, (x,t) 59, (x,t)

Since, by definition, F depends on the spatial derivatives of {,

we will at first encounter in 8F terms involving the gradient

(6165)6wh, but by means of integration by parts all such terms
can eventually be put into the form (1-63) (see chapter 2). Thus
(1-62) gives wus a way of calculating the 6F/6tbA in terms of
partial derivatives, and in fact some authors define the partial

functional derivatives of F with respect to wA and wA as being
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the coefficients of the independent increments 6¢A, bbn in
{1-63). Clearly the exact nature of the change 8F will depend on
the types of variation &Y occurring in (1-63).
Before proceeding we note a convention which we shall adopt

for ease of notation. Since the spatial coordinates X and y

serve simply as dummy indices, with volume elements d3x, day

respectively, we shall omit mention of these variables whenever
the meaning is clear. Instead we adopt the convention that an
undashed quantity is a function of x (wA=wA(5)). while a dashed
quantity 1is a function of the independent variable x'
(¢'A=¢A(ﬁ')): the volume elements dt, dt' will correspond to the
elements d3x and dax' respectively. Note that, as we saw in the
derivation of (1-62), except in certain pathological cases we can
reverse the order of these integrations - Jjust as we may evaluate
the summation of repeated discrete indices in any order.

Finally in this section we look at the generalisation of the
Legendre transformation to the case of functionals. Let F[uA] be
a functional of N functions uh(l) defined on the indexing
coordinates x. We introduce a new set of variables VA(X) on the

same index space by means of the following transformation:

VA o= 5F/5u, . = (1-64)
We assume the "Hessian” _QZE to be nonzero, thus ensuring the
6u_&u
B A
independence of the N variables VA. In this case the equations
(1-64) are soluble for the u, as functions of the vA (Volterra,
1931). A new functional G is now defined by
A
G = IuAv dr - F . -- (1-65)
We can express the uA in terms of the vA and substitute into
(1-65), and the functional G can then be expressed in terms of

the new variables vA alone:
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G = G(vh) | -- (1-66)
We now consider the infinitesimal variation of G brought
A

about by arbitrary variations of the v The combination of

(1-65) and (1-64) gives

f 86 5v'B gr

J{Ju 6v + jVAb—A T}Bv'BdT' - &F
Sv " B
A A 5F
\y{uAév + éuh[v - 5UA}}dT . -- (1-67)

Since G is a functional of the VA alone, we should express the u

oG

A

as functions of the v* jin (1-67). However, examination of (1-67)
shows that this elimination 1is rendered unnecessary by the fact
that the coefficient of 6uA is automatically zero from the def-
inition (1-64) of v*. From (1-67) we then see immediately that

uA = 6G/6vA . -- (1-68)

One further generalisation of the above occurs when F is a

functional not only of the u,, but also of a set of N variables

w o F=le"l H ] . =t, .., i
" ( ; “h u1 uN] The wK (K=1 M) are independent

of the u, . They occur in F as parameters but do not participate
in the transformation. We call uA the active, and wK the
passive, variables of the transformation and find

6F/6wK = -6G/6u& . -- (1-69)
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CHAPTER 2
FIELD THEORY

In this chapter we look at the description of fields as a
variational system. The methods of analytical mechanics pres-
ented 1in section 1.2 are easily generalised to a form which is
capable of describing systems of fields, although we shall see
that the step from Lagrangian to Hamiltonian field theory
presents certain problems. As a specific example of the methods
of field theory we shall make particular reference to the canon-
ical formulation of electromagnetic theory against the background
of general relativity. This approach is particularly convenient

for the study of symmetries and conservation laws.

2.1 Laagranqgjap field theory

Field theory is based upon a number of field variables ¢A(x)
(A=1,2,..,N) defined over spacetime. Here the block indices
A,B,... are very general, encompassing one or more small Latin
indices, as, for example, when the field variables are the metric
coefficients gab. Other possible field variables are the N
generalised coordinates of Lagrangian mechanics or the components
of the potential field Aa. We will at all times assume that the
¢A(x) are differentiable'and that the Lagrangian is a differen-
tiable function L of the ®A and their derivatives wA.a (we use
bold 1lettering for the Lagrangian for reasons which will become
;1ear later). L is a scalar quantity and is both local (depend-
ing only on the wA and their first derivatives) and conservative
(possessing no explicit dependence on the x°). The field

equations are assumed to be derivable from a variational prin-

ciple
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4
6I = 0 H I = - -
IVL(wA.wA.a)d x (2-1)
where V is an arbitrary fixed 4-dimensional region of spacetime.

The variation 8I in the action integral is caused by a completely

arbitrary variation of the wA - a variation which is assumed to
vanish on the boundary of V. We then find
_ 4
oI = fvad X

4
[ LT, +8, L (b, +80,) 1 - LG, b, _11d*x
j {QL_ﬁwA s _BL__6(0 )}d‘x
A.a
v

a‘bA al‘l‘,A.a
- j {QL_5¢A . [.QL 6¢A] - [ aL ] 6¢A}d‘x
v a\pA a‘bA , a . awA . a
= J {QL_ - [_QL__] }5¢Ad‘x + J‘{ oL GwA} a* x
v awA a"l',A,a , a v amA.a , a
= 0 .

where we have used the fact that the variation § commutes with
integration and partial differentiation with respect to the
coordinates x*. The right-hand term in the above vanishes by an
application of Gauss' theorem and by remembering that all var-
iations vanish on the boundary of V. Hence we arrive at the

following Euler-Lagrange field equations:

LA = 8L _ [ L ] =0 . -- (2-2)
a\bA ale'a »
If field sources are present then the field equations are mod-
ified to
LA = PA . -- {(2-3)

where the PA are agalin assumed differentiable and represent the
field sources. It is not assumed that L is an invariant density,
but it is defined invariantly in each coordinate system.

In an important paper Bergmann (1949) considered a very
general field theory derived from a Lagrangian containing only
the wA and their first derivatives, although the theory can

easily be extended to include second or higher derivatives. He
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showed how the assumption that L is an invariant density leads to
a set of identities (the generalised Bianchili identities) which in
turn vyield differential conservation laws for the system. It
would not be appropriate to go deeply into Bergmann's work here,
since we are concerned rather with Hamiltonian theory, but it is
worth noting that he turned Lagrangian field theory into a very
general and powerful tool. In his paper Bergmann made use of the

method of infinitesimal coordinate transformations of the form

x* +» x* = x* + E¥(x) ,
_ _ -- (2-4)
or to first order, x? = - Ea(x)

Now when this transformation has been carried out it defines a
new function ) according to the relation
Dix) = Pix) .

This function can then be applied to any point, including that
whose pew coordinates are x®. This produces the result (J(x) and
enables us to introduce the substantial variation &, defined by

Ble = ibA(x) - b, (x)
® measures the total change in functional form of wA(x); it is
far more restricted than the variation used to derive (2-2),
possessing only the four degrees of freedom represented by the

g, We can also express the substantial variation in the form

b, [mA&) - 0, ()] - [iI:AG?) - J, (x)1]

The first expression in brackets is the local variation émA, (Y]
called because it refers to the total change in wA at the single
geometrical point x under the coordinate transformation (2-4),
and can be evaluated by the known transformation law for the wA.
In all practical cases the local variation may be expressed to

first order as

8 . .
where the FAr are constants. This form is not a necessary
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consequence of the above, and so is not the most general law
which may be encountered in geometrical objects; it does, how-
ever, describe all types of tensors and tensor densities and also
spinors. On the other hand the above expression reflects only
the changes in wA brought about by the transformation (2-4). I1f
in addition we vary the §, independently of (2-4) then we must
include an extra term:

Bs_r
e} =
le FAr & .s‘bB' * 6O‘pl\
The term 6owA does not arise from (2-4), but is the independent

variation, describing only changes in the functional form of the

wA which are independent of the underlying index space - usually
a linear mixing of the ¢A among themselves. We shall give an
example of this type of variation directly. Collecting together

these results we have the following first-order expressions for

the variations:

6¢A &A(x) - wh(x)

_ _ r
- ble—— ‘bAnl‘E ' - (2_5)
where bwA = ﬁA(x) - wA(x)
Bs,.r
- FAr & .aws * JE’od’tx

A simple example of a pure independent variation of the
field variables is the gauge transformation of the first kind.

These transformations form a group, and are defined by

v, = -ieen(A)wA : 5 =0 -- (2-8)

where e is a constant which we shall later identify with charge,

and € is an infinitesimal constant characterising the transform-

. | . . .
ation. r](A is a sign function which takes the value 0 when ¢A

is real; if wA is one of a complex conjugate pair then n'A) takes

the value +1 or -1, depending on which of the pair is chosen as
the standard (see example 2.3). The brackets on thé index of

n(A) indicate that no summation is performed over the repeated
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index A: n(A’ is simply a constant factor determining the sign
of complex fields and eliminating real fields. For a given value

of & we see that

80, = Bu, = 50,

-ieen“‘).pA ,

"

expressing the fact that (2-6) is a transformation which merely
affects the functional form of Y. On account of the infinit-
esimal nature of this transformation we may write it in the

alternative form

+ éwA = [1 - ieen‘A)lw

A
= exp{-ieen'“}yA . -- (2-T)

b, = ¥,

This form reveals that the gauge transformation of the first kind
is simply a rotation in the complex wA—plane through an angle
~een‘A). We shall see later that these transformation are
closely 1linked with <charge conservation in the variational
formalism.

As an application of Lagrangian field theory we now look at
how the free-space electromagnetic field can be described within
the Lagrangian framework. We have already seen the basic
equations for the electromagnetic field in Minkowski space, and
we now seek a Lagrangian from which we can derive these equations
via a variational principle in the more general spacetime of
general relativity. MaxWell's equations (1-41) may easily be
expressed (see Adler,Bazin & Schiffer,1975) in general relativ-

istic form:

Fab
s b

u
~
=

(&)

-- (2-8)
F[ab.c)

and we shall see that these are derivable from the Lagrangian

L = -x/(-g) {1/8w.F F2P

ab

+ 2A 3%}
2 -- (2-9)
F

1)
>
]
>
"
>
!
>

ab a:;b b;a a,b b,a
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A full description of the dynamics of a charge distribution would
involve inclusion of an additional Lagrangian describing the
gravitational <field, but since this would take us too far from
our work we shall merely investigate (2-9). The homogeneous

equation in (2-8) is immediately valid as a result of the defin-

ition of Fab, sa it remains only to investigate the effect of
varying the four field variables Aa and their derivatives Aa b’
1.3 = ;g[ 9 (A dA"d - A, dA""}]
k/(-g) aAa.b 8w aAa.b
= —1/2m. (AP - APy o q/on P20,
so LA=L3=§L-[6!] = 0
o
Aa aAa.b .b
.a ab
becomes k {-23°/7(-g) +« t1/2w.(S(-g)F ) b} =0
=> (/(-g)F2P) R VAT P -- (2-10)

which 1is precisely equivalent (see Adler,Bazin & Schiffer,1975)
to the required equation (2-8). If we confine our attention to

the source-free field then we are dealing with the new Lagrangian

L = -k/8m./(-g)F  FP - (2-11)
which clearly yields the source-free form of (2-10). Note that
(2-11) also involves a dependence on the determinant g, so that

in a complete description including the gravitational interaction
we would be forced to take account of the gab as additional field
variables. In this context it is worth calculating the effect on

the action integral of varying the g using the standard result

ab'
for the variation of the factor /(-g) (see Adler,Bazin & Schif-

fer,1975):

5/(-g) = -1/2.f(-g).grs.égrs

= 4 a ab rs 4
=> 6vad X Kl‘"-IV{Fr Fas + 1/4.grsF Fab}f(—g)bg d x

x.fvf(-g)Trség’Sd‘x . = (2-12)
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We see that T _ is simply the energy-momentum tensor (1-44)
evaluated for a source-free electromagnetic field. Because of
this the Bianchi identities derived in Bergmann's work lead to

the well-known conservation law

2.2 Hamiltonian field theory

We have now seen that Lagrangian field theory represents a
very neat and powerful generalisation of the ideas of analytical
mechanics to continuous systems which has the advantage as far as
relativity is concerned of treating time on an equal footing with
the three space coordinates. When we come to the transition to a
Hamiltonian theory, however, we find that the theory becomes far
less aesthetically pleasing. This was, indeed, the original
motivation for this thesis, since while many textbooks proudly
display their respective treatments of Lagrangian field theory,
most fall strangely silent on the subject of Hamiltonians. This
silence has a disturbing effect on the student - he comes to feel
that Hamiltonian field theory must be an incredibly complex
theory to whose level he can never hope to aspire. In fact the
reason is simple: there exists, as yet, no convincing Hamilton-
ian theory which wholeheartedly accepts the basic precepts of
relativity as set out iﬁ chapter 1. In this section we shall
present the version most frequently used. It originates in the
work of Heisenberg and Pauli (1929;30), who were intent upon
producing relativistic commutation relations for the purpose of
field quantisation, following the work of Dirac (1927). Their
work was then developed by Weiss (1936;38a;38b), Fuchs (1939) and
Chang (1945;46) into a form which still constitutes a central

theme of quantum field theory today.
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Our exposition of the theory is based largely on the work of
Weiss (1936;38a), and considers the case of N field variables wA
dependent upon the four indexing variables x®, which we shall
assume form the coordinates for a Minkowski manifold. The theory
presented here is more restricted than that of Weiss in that he
considers a more general index space comprising v variables. He
does, however, require that space to form a flat Lorentz man-
ifold, so the generalisation to Weiss' theory is straightforward

from that presented here. We start from the action integraly

I = fyLte, b, d*x - (2-13)
where V 1s now the more specific &4-dimensional region contained
between two spacelike hyperplanes 51, S2 and a cylindrical time-
like surface intersecting both S1 and SZ' We assume Sz to lie at
some finite time later than 51. The Lagrangian L is now required
to be a scalar density, and is again both local and conservative.
We now cause a substantial variation of the action integral

(2-13) by first performing an infinitesimal transformation of the

coordinates:

x4 x* = x* o+ E(x) = (2-14a)

and simultaneously performing an independent variation 6omA of
the field variables (see (2-5)) to obtain
Pix) » Pix) = Pix) + EPix) . -- (2-14b)

Note that we are nﬁ longer requiring these variations to
vanish on the boundary of V. This is a point gone into in some
detail by Weiss. We include the timelike portion of the boundary
V because we wish to look at the time-evolution of the field
quantities wA. However, we wish to be able to ignore terms on
the timelike surface and reduce all boundary terms to dependence
on S and Sz' Now study of the Cauchy problem in rélativity

1

shows (see Pearson & Carrier,1976) that correctly set data for
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our dynamical problem has the following form:
i. Initial data, @A and 41'4, on the initial spacelike
hypersurface

ii. Boundary data, QA oJCc eﬁxl' on the timelike region.

iii. No data on the remaining spacelike region
Such data are called "mixed data". In order to set our data
correctly (and to enable a later smooth transition to the
Hamiltonian formalism) we therefore now choose a special coord-
inate system for the index space such that the x* coordinate runs
along the timelike tube and the x* coordinatise each of the
surfaces We arrange this system such that the cross-
section of the tube on both and has the same x* coordin-
ates, the two cross-sections differing only in the coordinate x*
(see fig. (2.1)). Thus we choose a slicing of spacetime such that

t=const. surfaces are Cauchy surfaces, giving a 3+1 decomposition

of the field.

fig.(2.1

In this coordinate system we are free to prescribe all the var-
iations (2-14) arbitrarily on , whilst setting them to zero on
the timelike region. It then follows that the time derivatives
of the wvariations are also zero on the timelike region and we can
therefore consider all boundary variations as arising solely from
variations on and

Let us now calculate the specific form of the variation 51
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brought about in the action integral (2-13) as a result of the
coordinate variations (2-14). Denoting varied quantities with a
bar, the general form of the variation is

51

FFLIb G0 1db % - f, L0 00 10

[SILIP001 - LI 1ra*x
- b= 4
+ JJLIbOa)1d x - JyLlb(x)1d"x ,  -- (2-15)
remembering that the coordinates of the boundary of V have
changed as a result of (2-14a). Noting that the Jacobian |3dx/dx|
is given by 1+E? . Ve have

fFLIb () 1" x

FLLIO (BN TC14EY ot x

F ALV OOT + (LE®)  1abx -~ (2-16)

with neglect of higher order terms. In addition to first order

we have
[FILBGOI-Lb GO Tt % = f ILEH(X) 1-LIb (x) 1}d*

‘I {QL Bb, + _dL_ (BY,) ]d‘x - (2-17)
Vv

A 1] b
where we have again neglected second order terms and above, and
remembering that, by definition, 5¢A b=(5¢A) b Hence, collect-
ing together (2-15), (2-16) and (2-17), and performing an
integration by parts, we obtain
&8I = L - oL Sy
v 3y g
v A A.b",b
. [ aL_ &y, + LEb] } a*x . -- (2-18)
'awA.b b

The second term of the integrand in (2-18) is the one we elimin-
ated in the Lagrangian approach of the previous section by trans-
forming it to a surface integral. Repeating this procedure now

we find the following form for the second term:

J‘{ L 5wA-+LEb} a* x FIS,) - F(s.)
\Y b

awA.b
where F(S) = Is(n“bawA + LEY) d3sb C-- (2-19)
and nAb =

aL/awA.b . -- (2-20)
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Hence by taking account of (2-19) and (2-5) we may bring (2-18)

into the final form

51 = I{B_L - [_QL__] ]Ble d* x + F(S,) - F(s )
v . b

a¢A awA.b
Ab

Ab -- (2-21)
where F(S) = fs{ﬂ 6, - (v "

b c 3
Ac GCL)E }d S, -

Having obtained this form for 81 we are now in a position to
apply the Principle of Stationary Action, which states, exactly

as before, that the only fields occurring in nature are those for

which the variation 58I is independent of variations 3y of the

field within V. Now from (2-21) we see that dI arises from two
distinct sources: (a) from variations at the boundaries S1, Sz'
and (b) from variations within the interior of V. Thus the

principle of stationary action requires that the volume integral
in (2-21) vanish:

51=f{gL-[aL]}amAd‘x=o
v a¢A a‘bA.b . b

The variations SwA are arbitrary functions independent of each
other, so we are left with exactly the same Euler-Lagrange equ-

ations as before

aL - [ oL = 0 -- (2-22)
3y,  [av

A,b ,b
and the following expression for 01I:
81 = F(Sz) - F(S1) . -- (2-23)

This form of the action is particularly useful for the study
of integral conservation laws, although we shall not be concerned
with these here. These laws are not new physical laws, but
follow as a consequence either of the field equations (2-22) or
directly from the action functional (2-13). To see this we look
at the expression (2-23) for &8I, which holds when Y is a solution

of (2-22). (2-23) represents the change in the action functional

as a result of the variations E® and 5 & of the index variables
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and the fields. It may happen that I is invariant with respect

to a certain group of infinitesimal transformations of the x* or

wA. In this case 6I=0 and

F(S1) = F(Sz) -- (2-24%)
for this particular type of transformation. Take, for example,
the gauge transformations of the first kind (2-6). In this case

the functional F(S) becomes

(A) [

F(S) = -ieen oL . ds

A b
S awA.b

Introducing the current-density vector

b . (A)

37 = -ien " _8L ¥, -- (2-25)
au’A [] b
and the scalar a(s) = Isjbdsb -- (2-28)
we can express F in the form
F(S) = €Q(S)

Thus if the action is invariant with respect to the gauge trans-
formations then we have the conservation law

0(S1) = Q(Sz) : -- (2-27)
which we shall later see is related to charge conservation.

We now return to the Lagrangian field equations (2-22) to
reformulate them in a way which is akin to the classical Ham-
iltonian formulation of particle mechanics. Making use of the
definition (2-20) the field equations become

aL/dy, - (') =0 . -- (2-28)

Continuing to use the convenient coordinate system described

above, we now define the momentum wA conjugate to wA

A Ab
L = aL/a$A.‘ -- (2-29)

L

and separate the field equations (2-28) into their "spatial” and
"temporal"” parts:

w = dL - { AL ] -- (2-30)
. b aw E——
A ’ B ’ B
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The Hamiltonian density is now defined as

A A
u(wA.wA'B,n )= w, - L, -- (2-31)

for which we have

5H = QﬂAénA + 2H BY, + OH 8V, , -~ (2-32)
ow oY, awA.B
A
=y &wt - [QL 59, + _dL  5¢ ]
A,k 3¢A A awA.B A, B
Thus QﬂA = wA s -9H = 9L ; -_9H = _ 9L -- (2-33)
am By, A, B, o B, g

and so, combining these with (2-30), we arrive at

oH - [ OH ] = -7
oY oY
and A AR B -- (2-34)

v 4

dn/dm® =

A, 4

This is our first form of the canonical field equations.
The equations (2-34) do not at first glance seem to resemble
the canonical equations of classical point mechanics. However,

their canonical nature may be brought out by the introduction of

two new notations into the formalism. First of all we introduce
the dot notation for coordinate time derivatives: FA=FA s for
any field quantity FA. This corresponds to the dot notation used

for total differentiation with respect to universal Newtonian
time in Hamiltonian point mechanics. The second notation we
introduce 1is that of the functional calculus, introduced in
section 1.5. From the work of that section we see that the RHS
of (2-30) is simply the functional derivative of the total

(integrated) Lagrangian:

L = fSLdT :
sL = 9L - [ oL ] i 8L = 2L . -- (2-35)
5, awA amA‘B 8 6¢A awA

Here we have adopted the convention which will hold throughout
this chapter, that a bold letter will denote a densify, while a

quantity written in normal script will be a tensor. Throughout
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the remainder of this chapter Tt will stand for the 3-volume
element of the hypersurfaces S. Thus in this notation (2-30)

becomes

A A M
nt o= eLsse, st o= BL/BY,

The transition to the total Hamiltonian

A
H = = -
ISHdT fw ¢A.4dT L

corresponding to (2-31) is simply a special case of the Legendre
transformations considered in section 1.5, with wA the passive

variables of the transformation and the nA replacing the wA.

Thus from (2-33) and (2-35) we have

S8H = O0H - [31'1 ] H ﬁA = ;bA .
6¢A awA awA,ﬁ .8 om
and this gives us our final form of the canonical field equations
(2-34):
5H/BY, = vt sHseT - {bA . -- (2-36)

Note that in keeping with its rdle as the total energy of the
system, we find from (2-36) and the definition (1-59) of the

functional derivative that

dH sH b, -+ BH, Y dr
dt 6¢A 5w

= 0

2.3 Bracket expressions and canonical transformations

Now let F=fJFdt be an arbitrary functional of the field var-

iables wA,mA B,n , g’ then we find in the general case

dF = 3F + ([8E §, + 3F, 7] dr
dt ot 6¢A omw

or, using the canonical field equations (2-36),

dF = 3F +\[[§£ SH, _ &F B3H ] drt
dt ot bwAbn on 6¢A
for physical fields. This algebraic expression closeiy resembles

(1-27), and for that reason we now define the Poisson bracket of
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two functionals as

{F,6l}

"

\[[QE 86 _ BF 56 ] dt -- (2-37)
Sb,6n"  &u" oY,

which yields the expression

O,

F = 8F + {F,H} . -- (2-38)
t 0

Q
e

If the functional F has no explicit time dependence then the term
OF /0t drops out of this expression, and one immediate consequence
of (2-38) is that any total Hamiltonian H possessing no explicit
time dependence will necessarily be constant in time.

In order to calculate PB's between the field variables ¢ and
T we express the variables in functional form in the following
way:

(x,t) = I¢A(ﬁ'.t)63(x—x')dr' :
A . 3 . .
T (x,t) = [ (x',t)8 (x-x')dt , -- (2-39)

so that 80 (x.t) = Qli(x,;) = Biéa(x-x')
Sy (x',t) BTV (k' t)

For convenience we shall adopt the convention in what follows

that a dash against a quantity signifies its dependence upon the
3-vector x', so that F=F(x,t), F'=F{x',t), and so on. The time
coordinate will at all times remain unaltered. Using (2-39) we

can now obtain the fundamental PB's:

W, b} = 1t w®y =0 -~ (2-40a)
W, . v % = 5y, sn® dr” = 58587 (x=x"180 8% (x"-x")at"
sy on
= Biéa(x-x') -- (2-40b)
{w'A'"B,B} = 6(1!8'8)/6“'A = 6i63(x-x')'b -- (2-40c)

and all further PB's are essentially obtainable from these by
algebraic processes. In particular it is easily seen that
A A :
{wA,F} = 0F/dw ; {w ,F} = —6F/6tbA , -- {2-41)

which gives the concise form of the field equations:
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A A

(b, ,H} = b (vt Hy = - (2-42)

A 3
We now turn our attention to transformations of the field

variables ¢ and w. As in section 1.2, if we make the substit-

ution

- TI'A"le

then the canonical field equations remain unaltered, which

suggests that we consider general transformations of the form

b, » vt ot s e
Note that we allow for a possible time dependence in this
transformation, even though t itself must remain unaffected. The
most significant such transformations will be those which leave
the field equations form-invariant, ie:

™ = -sh/eY, ¥, = sH/eT
where H = J{HB@B - L} dt
and L is a Lagrangian density which gives the correct field
equations with the new field variables Y ,T. Such transformations
will again be called canonical transformations (CT's), and amount
to a (possibly time dependent) relabelling of the 2N-dimensional
phase space spanned by the wA,nA.

Now for form-invariance of the field equations we will
require the relation between the action integral before and after
the transformation to be such that if we have an arbitrary set of
solutions (Y,m) within a Qolume V of the form shown in fig.(2.1),
then the change in the action depends only on the boundary of V.
Due to the considerations at the beginning of this chapter the
only such contributions come from the spacelike surfaces 51,5

T(V) - T(V) = Flt ) - Flt,).
If this equation is to hold for all V then we can identify

integrands to obtain the following sufficient condition for form-

invariance of the canonical field equations:
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FTf% drt - W o= fuld,dv - H o+ dF/dt
= J;AJ Q&A @'B + QQA ﬁ'B dt ' 'dt + InAaw /ot.dT
. . B A
3 4 B om
- H + oF @'A + 6FA T *lac + dF/at
&Y’ om’
A
By remembering that nA is dependent upon x, and not x', we can

take the nA in the first term on the RHS under the integral over
T' and reverse the order of integration. By equating terms in ¥

and ' we then obtain

‘f-ﬂ'A@‘A - S Q.A - J}Béi% @'Adr dr' = 0 ;
5Y " 5y
- A
Qﬁ—Aﬁ'A + J"BE Aﬁ'Adr dr' = 0 H
5T &
H=H - InAawA/Bt.dT - dF/3t . -- (2-43)

The first two of these equations may be simplified by seeing that
the integrand of each must be zero and removing ¥' and T' from

under the integral over T:

TIIA

. B
5F/5Y - el /8Y Lat
A A A } —- (2-44)

5F/6m" A -fnaaws/an'“.ar

]

If the function F can be found, satisfying the equations (2-44),
then we can use it in (2-43) to obtain F. The necessary and
sufficient conditions for the existence of F is a set of three
integrability conditions:

_& . )
[U Ao J"BG dr] = b [n"c - j“agmA dr] -- (2-452a)
oy’
A

oyY"

c ) 4 A (e} 4 c
&
———C[ J"BG ydtf = —Q—A ‘fnaéi%cdt —~ (2-45b)
sm” am’ ST om”
—Q—C[U'A - J"9§£5 dt| = 5 fﬂagmﬂcdt -- (2-45¢c)
am" 6W'A GW'A &6m”

These immediately simplify to the following form:
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- B B
Sb, bsm  _ Bw, bw } dt = 0 -= (2-46a)
A

J [5Y", o¥" . BY" . &Y
r B B
\f glhaA Sw ¢ " Qﬂ%c 2n ,| @t =0 -- (2-46b)
F LY st s
EI st L1 &n’ dr = 88 (x'-x") -- (2-46¢)
) ..C .,C . T = C X =X - C
5y", o sm"C sy,

The characteristic structure of these expressions leads us
to define a new bracket called the Lagrange bracket (LB). If
w1(w.v)...,w2N(¢,w) is a set of 2N functions on phase space such
that the wA,nA can all be written as functions of the w's, then
the LB of two w's computed with respect to (Y, w) is defined by

B B

. N o] omw 5

(w k' ]l = ‘35 — - émB S dt . -- (2-47)

Sw'  dw" Sw” duw'
K L L K

where we reserve the indices K,L,M provisionally to run from 1 to

2N. The LB's and PB's of a set of 2N independent functions w,

form matrices which are essentially inverses of one another:

. . oAb g3 . _
L f[wK.w L]{wK.w yl dt = 8,8 (x'-x") . (2-48)

We shall prove this below as a theorem, but in the meantime

(2-48) enables us to write (2-46) either in LB form:

. " _ A LT . . W L A3
Y ' ¥ 1 = (W7, We7) = 0 5 LY, W71 = 8,8 (' -x") =-- (2-49)
or in the equivalent PB form:
. " . A " c . ” . ”
vy = am ety =0 gy 1% = 858 0 -xt) L -- (2-50)

In both cases the relevant brackets are computed with respect to
the original field variables wA,wA

Thus CT's satisfy the relations (2-49) or equivalently
(2-50). Only such transformations will leave the Hamiltonian
scheme invariant (modulo trivial dilations and reflections). If
we consider the identity transformation WA=¢A,UA=HA, equations

(2-49) and (2-50) are trivially satisfied; we therefore

characterise a CT by saying that it preserves the values of the
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fundamental PB's and LB's.

THEOREM

PROOF:

Ciy)

A

(2.2) - Given the 2N quantities w, we may calculate the
LB and PB of any two. These brackets then obey the

relation (2-48):

Z ' " = L .3 (I "
K f[wK.w L]{wK,w M} dt 6,87 (x'=-x")
where K,L,M = 1,2,..,2N. Note that from the definition
(2-47), the LB [wK.w'L] is contravariant in K and L.

Since this fact is not expressed in our notation, the L

symbol has been inserted for summation over K.

Using the definitions of the PB and LB, the LHS of

(2-48) becomes

c c

£, “mc(y)an (v) _ 8 (v)3n”(y)] 3,
Sw Suw’ dw’ Sw
K L K

L
X {\[[f—égk __%g:" - -—%2% ——QQ:M ]dsy'}dr
5¢A(y')6w (y") on (y')éwA(y')
Here we have used y,y' for convenience as additional
dummy parameters. Since y,y' are‘independent variables
we may multiply the two integrands together and integ-
rate the product as a double integral over dayd3y', We

also make use of the immediate relations

c
EK ﬂc(y)—fﬁw( dr = 0 ; I, M(y)—ﬂk dt = 0 ;
Sw, 5w (y') Sw, GwA(y')
N
R S D o S VAR
J wa 5¢A(y)
[ 51" (y)__ &
i
| = I dt = 6i63(y-y') '

J duw svt (y')

to arrive at the following form:

" A _ "
Sw 6C63(y-y - S (y)_dSw 6i63(y-y') dayday.
on (y ') Sw' B, (y")
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J[Qlc(y)_égln . Bb (y)_Bw", ] oy

. c .
Sw L Sw (y) Sw L 5¢C(Y)

L 3 . "
5M6 (x'=-x")
QED

Finally we now look back at the PB conditions (2-50) for a

CT:

B

A nBy W, 0’ b =0 ;. wP) = biba(x-x’) - (2-51)

{r
are the fundamental PB relations and, as seen earlier, are
preserved under CT's. Now by differentiating the second and

third of these relations with respect to x we obtain

Thy gb'gt =0 5 U w1 = 838 (x=x") 5 . -- (2-52)

Now let F(WA,wA,w be an arbitrary density and set

A.B)
F = [Fdx
Using (2-51) and (2-52) we can evaluate the PB's of wh and wA

with F to obtain the relations (2-41) quoted earlier:

- A - A -
v, . F} = dF/dn" ¢ {n".F} = (3F/BY, g) o - OF/V,
In this manner we can evaluate any PB's using solely the rel-
ations (2-51), the relations (2-52) being a consequence of
(2-51). It follows, therefore, that all PB's between arbitrary

quantities are preserved under CT's.

2.4 Examples

The canonical theory of fields may be developed further
along the lines of the previous section in a way which is exactly
analogous to the development of particle mechanics in section
1.2. Although it would be inappropriate to go into it in great
detail here, we have separately developed a formalism involving
generating functions and generators which is in every way anal-

ogous to that of section 1.2. We now give a number of examples
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which demonstrate applications of the above theory and end up
with a discussion of the merits of the theory. |
Example (2.3) - As our first example we consider the simplest
case of a non-interacting field, that is, a single real scalar

field ¢(x) described by the action functional

I = Jud*x ; L = -1/2.00 0" mel) -- (2-53)
where m is a real constant. From this we derive
L aL/a¢'4 = -t 2 b
Ho= @2 » 17200 o' + m 2 )

= 1/2.(1r2 + (ch)2 + anz)

in which case the Hamiltonian equations of motion are

@ = SH/OW = OH/OwWw = w
-1 = &H/5p = OH/dyp - (BH/3w ) |
=mly - Ve
=> (0 - m)p =0 -- (2-54)

where {0 is the d'Alembert operator, defined by
De = g%
,ab
Equation (2-54) is called the Klein-Gordon (K-G) equation, and
the operator C]-m2 is the Klein-Gordon operator. The K-G equ-
ation was first studied as a possible generalisation of the
Schroedinger equation for classical particles (see, for example,
Feshbach & Villars,1958); we shall come across the K-G equation
again in this context in dhapter 6.
A simple generalisation of the K-G field is the case of the

complex scalar field described by the Lagrangian

L = -(wfam“ A -- (2-55)
This again vields the K-G equation for each of the fields:

(O -mle =0 ; (O -me" =0

with w o= (.p* : 1]'* = (]J :

ok e 2 % *x
@ + myp ¢ + Vo Vo

H
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In this complex case we can define the phase transformations
¢ * expl-iee)lyp ;
x _ x ~-- (2-56)
p -+ expl+ieelyp .
This 1is a gauge transformation of the first kind and results in
the infinitesimal transformations
. * . x
S = -ieep ; O = +iecy

According to the definitions (2-25) and (2-26) we have

. * * *x %

I, = ~ie[ww'b - w.b] i Q = Jielow - 9o 7 )dr
as the expressions for the current density and total charge of
the field. Since the Lagrangian (2-55) is bilinear in ¢ and w*,
L is clearly invariant under the transformation (2-56), so that
charge is conserved:

da/dt = 0 '
with the differential form jb b = 0. In view of this conserv-
ation law we see that charge seems to be associated with complex
fields. The complex field ¢ is said to carry a charge e, while
its conjugate m* carries a charge -e.

The Lagrangian (2-55) in fact describes what is called the
charged scalar meson field, while the Lagrangian (2-53) describes
the neutral scalar meson field. Since experience tells us that
electric charge is conserved, we deliberately construct a Lag-
rangian which 1is invariant under gauge transformations of the
first kind and are led fo charge conservation: Q means total
electric <charge of the system. On the other hand we might con-
sider transformations such that protons and neutrons have

(A) . (A) .
n =+1, all pions have n =0 and antiprotons and antineutrons

have n‘A'=

-1. The corresponding 'charge’' in this case is called
the baryon number; experience tells us that this also is conserv-
ed, so in physical applications the additional constraint is

placed on the Lagrangian that it be invariant also under this



59

second, independent phase transformation.

Example (2.4) - We now look at the case of a 4-component field

Aa, where A 1s a real 4-vector. We take as our Lagrangian
a
L= -1/2.(A*'PA » M ATA ),
a,b a
where again m 1is a real constant. From this we obtain
7% - aL/da = -a'?
a,b
=D ™ = Aa :
s &
H = Aa Cud 2 c
'4Aa.4+1/2(A Ac'd+mAAc) ,

and the field equations are

A = dH/dn® = 2A + A Y
a a,4 a
= Aa.4 ;
T = AH/BA - (BH/BA )
a a:B DB
2 a a, B
=m A - (A
)‘ﬂ
Remembering that = (A? ‘) s we can rewrite this second field
equation as
(O - mz)Aa =0 . -- (2-57)

This is the vectorial K-G equation, and describes the vector
meson field. When m=0 it is simply the homogeneous wave equ-
ation, which is also satisfied by the electromagnetic potentials
Aa in free space. Thus the electromagnetic field in free space

is termed a massless vector meson field.

In this chapter we have been concerned solely with the
description of fields. We mentioned at the beginning of section
2.2 that historically the motivation for finding a Hamiltonian
formulation of field theory has always been to develop a gquantum
theory of fields, with the result that with the exception of
Weiss (1836) no author has taken the trouble to preseht a system-

atic exposition of canonical field theory as attempted in this
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chapter. In most cases, as soon as anything like a Poisson
bracket appears 1in the theory the author promptly uses it to
quantise everything, and the non-quantum theory is left in an
incomplete state of 1limbo. In our work we have seen that a
complete development of the theory is in principle possible, but
that 1is not to say that it is particularly plausible. Consider
the <canonical field equations (2-36). At first sight they seem
reasonable enough, but consider that their original form (2-34)
was decidely 1less convincing. The only reason that (2-36) is
more appealing is because the theory has been crammed into the
canonical mould by means of the introduction of the dot notation
and the functional calculus. Added to this basically aesthetic
objection 1s the fact that the splitting of the derivatives
implied in (2-34) (a) singles out time as a preferred coordinate
and (b) is totally unfeasible in general relativity. It must be
admitted that this theory has performed sterling service in many
areas of physics, but in the transition to the canonical form-
alism the elegant theory of section 2.1 has grown so clumsy that
we cannot accept it as anything like a reasonable description of
nature.

The question now arises: which way are we to turn next? In
answer we appeal to the original motivation for this work, which
was the problem of quantisétion. The only reason for attempting
to quantise fields is because of the wave/particle duality whiéh
arises in quantum theory. Yet historically this duality did not
stem from the study of fields, but rather from the study of the
electron. In moving from Heisenberg's quantum theory to quantum
field theory two changes of attitude are made: a change in the
object of study (from particles to fields) and a chahge in the

laws which are to govern its behaviour (from classical to relat-
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ivistic mechanics). Maybe the more pedestrian approach will be
more fruitful: (a) first attempt a relativistic Hamiltonian
theory of particles, and (b) only then investigate the possible
extension of the theory to the description of fields. (a) will

occupy our attention throughout the remainder of this thesis.
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CHAPTER 3

THE HOMOGENEOUS CANONICAL FORMALISM

One of the most far-reaching innovations involved in the
transition from Newtonian physics to relativity theory is the
inclusion of time as an additional coordinate in the 4-dimen-
sional spacetime structure. Now the canonical formalism offers
two possibilities for doing this. In chapter 2 we saw how the
structure of the Euler-Lagrange equations in field theory
suggests the idea of reducing the three space coordinates from
the status of field variables to join the time coordinate and
form a sort of "4-dimensional time parameter”. Thus in field
theory all four spacetime coordinates x* are relegated to the
background, or parameter, space, which led to the somewhat un-
satisfactory results of canonical field theory. In this chapter
we shall investigate the alternative possibility, where time is
elevated to the status of field variable and some other parameter
is adopted. We ought perhaps at this point to draw attention to

the fact that we shall from here onwards use the terms "“coordin-

ate” and "“field variable"” almost interchangeably. Each is
indexed by the block indices A,B,C,... introduced in chapter 2
and each obeys some kind of Euler-Lagrange equation. The

parameter space, on the pther hand, 1s the background space of
arguments of the field variables, and in this chapter will have
dimension 1.

Classical Hamiltonian mechanics is not parameter-ihvariant
in the sense that the action integral and the resulting Euler-
Lagrange equations are not independent of the choice of t (in

keeping with Newtonian "absolute, true and mathematical time").
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The coordinates, on the other hand, are completely arbitrary,
even though position and time are treated as geometrical entities
of the same kind in configuration space. We therefore look now
at the modi?ication’of the classical theory obtained by con-
sistently regarding time as an additional coordinate. We con-
sider initially the case of a Lagrangian L* dependent on the N-1

independent coordinates qu {x=1,2,...,N=-1), the (classical)

o

parameter t and the derivatives q° sdqu/dt (we use dashes here to

denote differentiation with respect to t for later convenience).

Let C:qq=qa(t) be any curve in the space BN of the variables
(qu,t) joining two points P1, P2 with parameter values t1, t2
respectively. The corresponding action integral

I = fCL*dt -= (3-1)

can now be written in a different form involving the new para-
meter T(t), with the restriction that t(t) be of class C1 with
dt/dt>0 at all points of C. We shall use a dot to denote der-
ivatives with respect to 1, rather than the usual meaning of
derivatives with respect to time, in which case we have
%=q"%(d1r/7dt)"'. Now we can rewrite (3-1) as

I = ICL*(t,q“,d“.dr/dt).dt/dr.dr
This suggests that we write t=qN, so that the coordinates of BN
can be denoted simply by qA=(qu,t) (A=1,2,...,N). We then have

by supposition dt/dr=qN¢0, so that (3-1) becomes

I

ch(qA,dA)dr
A -- (3-2)

. A ., * . . .
with Liah ey = L ig®t.6%gY) "

The integral (3-2) is identical with (3-1), but possesses the two
additional properties that it is (i) parameter invariant and (ii)
positively homogeneous of the first degree in the q‘, irrespec-

tive of the form of the given Lagrangian L*_ We shall see in the

following that parameter-invariant integrals are characterised by
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integrands of this type.
Having seen haw we can change to a scheme in which time
forms an additional <coordinate we now shift our attention
entirely to the N-dimensional manifold M of the qA, In this

manifold a set of equations of the type quqA

(t), where T is an
arbitrary parameter, represents a curve C in M. If these
functions are of «class C' then we can form the derivatives
qA=qu/dT forming the components of a tangent vector to C. The
Lagrangian 1is supposed to be an arbitrary (C3) function of the
coordinates and velocities: L=L(qA.qA). Given any curve C in M
we can form the action integral

1= futat ¢t rar —= (3-3)
about which we now make the following central assumption of this

chapter:

ASSUMPTION (3.1) - We assume that the value of the integral (3-3)

is invariant under arbitrary parameter transformations
of the form s=s(t), where the function s is ¢! and such
that

$ = ds/dt > 0 . -- (3~4)

This assumption means that the resulting theory will be invariant
not only under transformations of the coordinates but also under

transformations (3-4) of the parameter.

Performing the transformation (3-4), assumption (3.1)
becomes
1= J.uat, ¢ rar
= J.utat  dat/ds. srds/s
= J.Lia" da” sds)ds
for any curve C. But this is only possible if

L{g.Aq) = AL(q.q), for all A>0. -~ (3-5)
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That is, our central assumption implies the condition (3-5),
which says that L must be positively homogeneous of the first
degree in ¢gq. Conversely, assumption (3.1) is fulfilled if (3-5)
holds for all A>0. Thus we shall assume throughout this and the
following section that L(q,q) is positively homogeneous of the
first degree in ¢ and does not depend explicitly on the parameter
T. We have already seen above that this restriction is not as
severe as one might at first think, since any variational problem
can be reduced to one 1involving the homogeneous Lagrangian (3-2)
without altering the value of the action integral.

We shall now see that there are a number of fundamental
difficulties involved in moving to this homogeneous setup from
the classical theory of chapter 1, which will cause us to look at
an alternative picture due to Rund in the following section.

Firstly, by Euler’'s theorem on homogeneous functions we have

anglg).q = L(qg.,q) , -- (3-86)
Glel
where the derivatives BL/BQB are now positively homogeneous of
degree zero in ¢. Hence by applying Euler's theorem again we
obtain
2 . .
) Lsg.gz.qs = 0 -- (3-7)
g 99
2
=> det |_QAL_B = 0 -- (3-8)
34" 04

As we can see from chapter 1, this contravenes the fundamental
assumption (1-12) of the classical, non-homogeneous theory.
Furthermore, if we write DA=8L/an as the momentum and substitute
into expression (1-10) for the Hamiltonian, then we obtain
- LA .
H = P,a - Lt(q.q) = 0 , -- (3-9)
from (3-6). Thus we see that an alternative formalism is requir-

ed. The one we shall study in the following section forms the
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basis for all attempts at a Hamiltonian formulation of relativity
which we shall study in this thesis, and seems to originate in
the work of Carathéodory (1935). However, his work has been
developed more recently by both Rund (1959; 1966) and Synge
(1960), and we shall confine our attention to these more recent
developments. All these approaches are heavily dependent for

their theoretical basis upon the concept of a Finsler space.

3.2 Finsler geometrv and the theory of Rund

Definition (3.2): Let M be a real N-dimensional manifold

with tangent space T (M) at the point qeM. Let q*
(A=1,2,...,N) be local coordinates of q and uA, v be
the corresponding coordinates of u,veTq(M) in the nat-
ural basis for Tq(M). M is then called a Finsler space
if there is given a global scalar function F{g,u) on the
tangent bundle over M such that the following conditions
hold:
i. The function F(q,u) is positively homogeneous of degree
1 in u:
F(g,Au) = AF(q,u), for all A>0
i1i. F{q,u) is positive for all nonzero ueTq(M),
iii. The quadratic form

BZFZ[ u) VAVB

6uAauB

is positive definite (ie, positive for all nonzero v).
Note the appearance of F2 in this definition, rather

than the simple occurrence of F.

Example (3.3) - A particular case of a Finsler space is where the

function F is of the form
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Fl(gq,u) = [gAB(q)uAuB]1/2 )

where the gAB are the (symmetric) components of the metric ten-

sor, which is independent of the ub . M is in this case called a

Riemannian space. Forming the quadratic form of condition (iii)

above we find

B

2.2 A B _ A
o) = 29,5 (a)viv

F-(ga,u} v v
3UABUB

which is twice the square of the usual Riemannian norm.:

The idea of a Finsler space will form the basis of the homo-
geneous canhonical formalism. We shall need to be careful with
the definition as it stands, however, since we wish to express
the equations of mechanics in terms of a set of coordinates on a
Lorentz manifold, and the metric of such a manifold is not
positive definite, as required in definition (3.2). Hence our
model may need to relax the condition (iii) above, and consequ-
ently also condition (ii). Rund’'s solution to the problem is to
caonfine his attention to regions of M in which the metric is sign
definite; this is the same as looking only at either completely
timelike or completely spacelike trajectories. It is clear that
the Lagrangian L satisfying (3-5) is a suitable contender for the
rale of the function F. Thus we arrive finally at a model of
Lagrangian mechanics which consists of the space M together with
the function L(q,q), satisfying the homogeneity condition (3-5).
This model is valid since we can always regard an arbitrary
element of Tq as the tangent vector to some curve through q (see
for instance Hawking & Ellis,1973).

By analogy with example (3.3) we now define a set of

gquantities 9,g by the equations

L 2 2 )
9,p (0.4l = 197 L ta.qa) . -- (3-10)
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It follows directly from the definitions that the gAB form the
components of a rank 2 symmetric covariant tensor over M,
Carrying out the differentiation in (3-10) and applying (3-6) and

(3~-7) we obtain

9,pla.4) = AL L+ L &L
3" 5g° 3q" 8g°
=> gABdB = L aL/dg" -- (3-11a)
and g, 4" a" = L® . = (3-11b)
Now (3-11bh) 1is distinctly reminiscent of the case in Riemannian
geometry:
2 . .\ .A.B
L (CI.CI) = gAB(Q»Q)q q ] - (3_12)

except that now the gAB possess an additional dependence on the
velocities, rather than simply on the coordinates. Thus if we
define the magnitude of an arbitrary ueTq as

Jul = L{g,u)
then it follows from (3-12) that all magnitudes in Tq may be

expressed 1in terms of the 9,p which we shall regard as the

metric tensor on Tq. This interpretation throws a whole new
light on the significance of the action integral {(3-3). Since

the 1length of a small displacement dgq at a point geM can be
defined as

dw = |dq]| = L(g,dq) = [gw(q,ciq)(:lczlAc'!tzqﬂl1/2
in terms of the metric on Tq, it is now natural to impose a
metric on M by defining the length of a curve C:g=q((t) connecting

the two points q(r1),q(rz)eM as the integral

T
Lig,dq) = J°L{g.g)dT o (3-13)
T

1 1

g
]
-~
N

= I
We thus arrive at an interpretation in which the action I is

simply the 1length of the particular curve C chosen to connect
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q(T1) and q(rz), and our variational problem becomes identical
with the standard geodesic problem of differential geometry, with
the difference that the Finsler metric 9,pla.dq) depends not only
on the position q, but also on the displacement dq. A Riemannian
space with positive definite metric is therefore a particular
case of a Finsler space whose metric tensor 9,8 is independent of
direction.

The metric is said to be non-degenerate at g if there 1is no

nonzero vector ueTq such that gABuAvB=0 for all vectors veTq. In

terms of the metric components alone, the metric is nondegenerate

iff the matrix (gAB) of components of g is nonsingular, ie, iff
det (g,.) = 1 |8 (a.&@)] # 0 . - (3-14)

From now on we shall always assume the metric tensor is non-
degenerate; this assumption (3-14) is fundamental to Rund's
theory in the same way that assumption (1-12) was fundamental to
the classical theory. Note that in the strict Finsler space def-
inition (3.2) the possibility of a singular metric is prohibited
by condition (iii). However, Rund states the assumption sep-
arately and we must in any case always be aware of the fact that
we may want to relax this condition to enable the description of
relativistic mechanics. By virtue of (3-14) we may associate
with each arbitrary contravariant vector quq a unique covariant

vector p with components

_ .B
Py = 9,pla.00a -~ (3-15)
where we note that the directional argument of the 9,8 must co-
incide with the vector qB under consideration. It follows fraom
(3-15) that the P, are positively homogeneous of the first degree

in ¢. The momentum vector p at the point g is a covariant vector

* *
lying in the cotangent space Tq(M), or simply T .
q
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Before continuing further we note from the definition (3-10)

that the 9,p are positively homogeneous of degree zero in ¢, so

that we have

c C

99, ,(a.d4) ¢ = 9g9,.{9.4) ¢ =0, -- (3-16)
an an

where we have used the fact that the derivatives 8gAB/8dC are

symmetric in the three indices A,B,C. Now combining this result

with the transformation (3-15) we find

. C
4 + g .8 =g

so that the Jacobian of (3-15) is Jjust the determinant of the

matrix (gAB). In this case the transformation can be inverted to

give the qA as functions of the pA. Furthermore, according to

(3-14) the matrix (g _) possesses an inverse which by substit-

AB

ution for § can be written (QAB(q.p)) such that

AB . A
g (Q.p)gBC(q.q) = bc . -- (3-17)
whenever ¢ and p are related by (3-15). From (3-17) we can see

that the gAB must be positively homogeneous of degree zero in q,

and by combining this with the equations (3-15) we can solve

(3-15) explicitly for the g¢*® in the form

A
& - g“’(q,p)pB . —~ (3-18)

Again it 1s easily seen that the gAB form the components of a
symmetric second rank contravariant tensor.
The obvious symmetry between covariant and contravariant

tensor relations now prompts us to define the Hamiltonian

function

2 AB

H (g.,p) = g (q,p)pApB -- (3-19)
by analogy with (3-12). Substituting into this from (3-15) we

deduce from (3-17) that

2 LA 2 .
H (q.p) = gAB(q.q)quB = L (g,q9).
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Since the definition (3-19) is ambiguous with regard to the sign
of H we now require that the signs of L and H coincide, so that
H(g.p) = L(qg.,q) -- (3-20)
whenever p and ¢ are related by (3-15). This is Rund’'s sub-
stitute for the Legendre transformation.

Now differentiating (3-17) with respect to q” we obtain

AB AB
QQD %% ¢ g QQEC = 0
9q 3q
- 3 AB AB -
> 55 % p9%c * QQHC g 0
Pe 94
Multiplying by dc and taking into account (3-15) and (3-16) this
leads to
AB
99" pyg., =0
apE

which in view of (3-14) gives us

QQAB Pg = 0 . -- (3-21)
apc
Thus if (3-19) is differentiated successively with respect to Py

and pB we find in complete analogy to (3-10) that

*%(q.p) = 1 %W’ (a.p) . - (3-22)
2 apAapB

It follows that H{q,p) is positively homogeneous of the first
degree in p, and we have from (3-18) and (3-22)
4 = HOH/Bp = 1/2.3H%/3p —- (3-23a)
as the counterpart to (3-11a) in the form
p = LAL/Bg = 1/2.3L°%/3¢ . -- (3-23b)
Finally, if we differentiate (3-20) with respect to qA
keeping the pA constant, we find from (3-15) and (3-23) that
8H = aL + 3L 34%(q.p) = AL + pgd [Ha_H].P
8a*  aq®  3g®aq* 3> b aq* B
But H is positively homogeneous of degree one in p and so sat-

isfies the relations
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P34 = H ; p _B'H =3
B anapB BqA
which then gives us

a_H=a_L+;[6_HH]

3q* 3aq* L aq"
=> QH(a,p) = - 3L(a.4) , -- (3-24)
3qh 3gh
where we have used (3-20), and (in analogy with the classical
canonical equations) we regard the (g,q) and the (q,p) as the
independent variables of the right- and left-hand sides
respectively. Furthermore, if p is a unit vector, ie, if
Hig.p) = 1 ,

then equations (3-23) become

p, = aLsag® ;&' = awusap, . -- (3-25)

The close similarity between the canonical relations (1-15)
of <classical mechanics and equations (3-25) is immediately
obvious, provided that the function H is interpreted as a Hamil-
tonian. Clearly the normalisation condition on p can always be
enforced by the choice of parameter t=w defined in (3-13), so we
have here a theory which provides a beautifully straightforward
geometrical interpretation of the relations (3-25). These
relations provide us with a correspondence between the tangent
space Tq and its dual T:, while from the point of view of mech-
anics they represent the correspondence between the velocity and
momentum variables of the dynamical system.

Having established the above analogy between dynamics and
Finsler geometry Rund's next step is to seek the geodesic curves
of the Finsler space. These are defined by the requirement that
the length of the curve C:g=q(t) be stationary under arbitrary

variations 6qA of the points of C which vanish at the endpoints:

51 = éfcdw
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= 6ch(q,dq)
= 8 Lla,g)dr = 0 . -~ (3-28)
But (3-26) is precisely the variational problem (1-6) of mech-

anics, and by exactly the same argument as in chapter 1 we arrive
at the Euler-Lagrange equations, which are now seen to charac-

terise the geodesics of the system:

QLA - g_[QLA =0 |, -- (3-27)
dq 3tl3dq
for an arbitrary parameter Tt along the curve. The curves C which

satisfy (3-27) are called extremals, and will hopefully corres-
pond to the physical evolution of systems occurring in nature.
We can express the equations (3-27) in a form which displays

more clearly the geometrical aspect of the situation if we

differentiate (3-12) with respect to qA, dA, taking account of
(3-16), in which case we obtain
oL = 13 84° . - B
oL, = 1 9g9;. 4'q ; 2L,= 1 g,.d
9q 2L 4 A g L
q
=> dL - d [ =1 [[L2 - 8g 1a%¢" - o, &P
aq* dr lagh L 2 A A" Bt AB
q dq 9q
-- {(3-28)
+ 1, dL gABdB
L2 dt

In analogy with the Christoffel symbols of Riemannian geometry we
now define the following 3-index symbols for the generalised

Finsler space:

Yypc = l[égea . Qgec ) Qggc] ,
219q 3q dq -- (3-29)
oo = d"(q.p) (q.d
BC - g qop YDBC QIQ) )
where, as always, we assume that g and p are related by (3-15).

Using (3-29) we can now express (3-28) as

AL - d [aL -1 9, (8" + v2 &%q" - 1 aud®
A T A AD BC
dq dt |94 L L dt

= 0 . -- (3-30)
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Now these equations are not in general soluble for g (Rund,1966),
but if we make the specific choice of parameter 1=w, defined by
{3-13), then we have L(g,4)=1. Consequently dL/dt=0 and (3-30)

reduces to

54"

2 A
Eggz-c-yA da da = 0 , -- (3-31)
BC

ow w
where 5qA/6w must be a contravariant vector, since the LHS of
(3-30) is such. The accelerations qA appear explicitly in
(3-31), but this is true only for the special choice of parameter
T=w.

The vector Gquﬁw is the generalisation to Finsler space of

the absolute derivative of QA. However, it must be borne in mind

that the y-symbols defined in (3-29) are not identical with the

Christoffel symbols of Riemannian geometry, and so cannot in
general be used to define the covariant derivative of an arbit-
rary vector field. The general expression for the covariant

derivative of a vector field x* is given by Rund (1959) as

A A C
X' gla.q) = Axg {A}X , -~ (3-32)

3q 8 C
. AD .
where A |(ag.q) = g (gq.p)[D,BC)(g.q) ;
B C
_ .0 E E E ..
[ALBCT = Yyp¢ G 1C,8Poc * Seacos CeacPoals
E E E H .G
Poa = Yoa T ConYea9 G (3-33)
E EG
c = ;
DH 9 CGDH !
¢ .12a. 182
GDH ~ 2 .. T4 .Gay.0a.H
q 94 94 94

It is easily seen that the formula (3-32) reduces to its Riemann-
ian counterpart under two important circumstances. Firstly, if
the metric is Riemannian, ie, if the 9,5 are independent of q,

then from the definitions (3-33) we see that

A Y(q) = Y;c(q) . o= (3-34)
B C
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Secondly, since according to (3-33) the CABC are homogeneous of
degree -1 in ¢, we have

C A Y «y _ C_A . . _
4 {BAC (@.4) = a P la,4) = 4 Y5 la.d4) (3-35)

so that (3-31) does indeed represent the absolute derivative of g
along the curve in Finsler space to which it is a tangent vector.
It also follows from (3-35) that the geodesics (3-31) are ob-
tained by parallel displacement of the tangent vector g, exactly‘
as in the Riemannian case.

Returning now to the Euler-Lagrange equations (3-27) for the
homogeneous problem, we can rewrite them in terms of the pA using

the expression (3-23b):

3q®  dtl agh dt 194
=> bA = dp = LﬁA + _qg[ggﬂ] . -- (3-36)
dt 9q dt |94
Now, using (3-24) and making again the special choice of para-
meter T=w, we have H = L = 1, so that we obtain
A
DA = -0H/dq

This combines with the relations (3-25) to give the homogeneous
counterpart of the canonical equations for the specific choice
T=w:

gt - dH/dp, i b, = -3Hsdq" . -— (3-37)
We should perhaps draw attention here to the fact that Rund
(1966) gives an alternative pair of equations to (3-37), includ-
ing a sign ambiguity in §q and p according as H is positive or
negative (the possibility L=0 is excluded). This arises from the

fact that Rund permits negative values of L, so the normalisation

condition H{q,p)=1 must be replaced by the condition |H(qg,p)]=1.
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However, the restriction to positive Lagrangians {and Hamilton-
ians) will suffice for our purposes in this chapter, and has the
advantage of eliminating this sign ambiguity.
Using the canonical equations for a general parameter T we
can now find the homogeneous counterpart of the Poisson bracket
(1-28). Let Fl(g,p) be some ¢! function of the canonical var-

iables (qgq,p) and consider its derivative with respect to 1 along

some extremal (geodesic). We have, using (3-23a) and (3-36),
dF = 3F, 4" + 3F p
A A
dt dq BpA
= @.EA[HQﬂ] + JF [LQ_A + ﬂQ_L_A]
3q apA apA dq dt 94
: H[@_EA@_H - a_AQE] + p,.dH JF
dq apA 9q apA H dr apA
along an extremal. Using the definition
{F,G} = 9F 96 - QF 396G -- {3-38)

A A

9q apA apAaq

of the Poisson bracket (PB) of two functions F and G, the expres-
sion for dF/dt now becomes

dE = H{F,H} + p, BF .H 'dH . -- (3-39)
dt apA dt

Applying the usual normalisation condition H(g,pl)=1 this becomes
finally

dF/dw = {F,H} -- (3-40)
illustrating once again that the choice of paraméter T=w ensures
that the homogeneous formalism coincides with that of the class-

ical (nonhomogeneous) canonical formalism of chapter 1.

3.3 A modification of Rund's theory
We now explore a possible simplification of the theory
presented above and developed by Rund (1959;66); the resulting

modified theory is a formalised version of a relativistic
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Hamiltonian formalism proposed in a number of textbooks, for
instance in Goldstein (1981). This simplification arises mainly
from an attempt to develop the theory of canonical transform-
ations within Rund’'s formalism, where it turns out to be more
convenient to study the invariance of the integral of LZ, rather
than the action integral itself. However L2 is no longer homo-
geneous of degree 1 in ¢, but of degree 2. Because of this we
now look back maore closely at the assumptions of parameter
independence leading to the homogeneity condition (3-5).

In assumption (3.1) Rund requires the action integral (3-3)
to be invariant under arbitrary parameter transformations, but
this assumption may be questioned on two counts. Firstly we are
not in fact concerned with the actual value of the action
integral, but simply its first variation, or equivalently the
corresponding Euler-Lagrange equations. Secondly the general
type of parameter transformation considered by Rund is not
altogether appropriate to the relativistic situation. General
relativity is based on an affine geometry of geodeéics on which
the parameter 1is defined wup to linear transformations.
Consequently we shall try restricting our attention to affine
parameters o, T on the possible trajectories, where o and 1 are
related by transformations of the form

g = at + b -= (3-41)
and a,b are constants. These transformations are characterised
by the fact that do/dt is a constant - a fact which will now be
seen to be of some importance.

The above two considerations suggest that we consider a far
less stringent situation than that of Rund's theory, embodied in
the following.

ASSUMPTION (3.4) - We assume that the action principle:
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5f Lta.q)dr = 0
for extremals C:q=qf({t) is invariant under all (non-

singular) affine transformations of the parameter T.

Performing the affine parameter transformation, assumption (3.4)
becomes

&f.Lta.q)dt = 0 <=> 8[ L(q,q")do = 0
where a dash signifies differentiation with respect to o and a
dot differentiation with respect to T. This is satisfied if L is
positively homogeneous of any degree n in ¢, where n is a pos-
itive integer, since then

5fL{g.4)dt = dfL{g,q'c)da/a

5fL{q.q' 15" "do

u

°n-1

o 5fLt(g.q')do

o being a constant for the affine parameter transformations under
consideration. Thus the requirement that the action principle
(as opposed to the action integral) be affine parameter indep-
endent can be satisfied by the condition that L be positively
homogeneous of any degree 1in ¢,
Since we are now free to choose the degree of homogeneity of
L, we make the specific choice n=2 and define the quantities
2
Opp la.d) = —E— - (3-42)
39" 3q
which form the components of a rank 2 symmetric covariant tensor.
From Euler's theorem on homogeneous functions we have
a*avsagt = 2L - (3-43)
and since aL/an must be homogeneous of degree 1 in § we must
also have the following identity:

3% .
—“;L—; & = oL
3qg" 3q 3q —= (3-44)
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_ .B
= 94

Finally, by substituting (3-44) into (3-43), we find
g,ga"a> = 2L

We see that the situation developing here is very close to the
theory of Rund, with the difference that L no longer represents
the metric function on M, but rather half its square:

Lta.q) = 1/2.9, (a,a)a"q" . —= (3-45)
Again we can define the length of a curve C:g=qf{(t) in M as the
integral

w = [./]2L(q,dq)]| = J/12tta,a) [ . -- (3-486)
If we now specify that w is to be one possible parametrisation of
c, this will ensure that all parameters obtained from w by the
transformation (3-41) will in fact be affine in the usual sense.

Again we shall assume that the metric gAB is nondegenerate,

and we note that this key condition now corresponds exactly to
the assumption (1-12) of the classical theory. By virtue of this
condition we can associate with each contravariant vector quq a
unique covariant vector peT: with components

_ .. .B . _
p, = gAB(q.q)q . (3-47)

A

where again the directional argument of the gAB must coincide
with the vector ¢ under consideration. By an exact repeat of the
arguments of section 3.2 we find that we can invert (3-47)

explicitly to obtain the qA:

A AB

4 =9 (a.plpg

AB( ) ( . . 5A -- (3-48)

g a.plgg. (a.q) = &,
whenever ¢ and p are related by (3-47). We define the Hamilton-
ian by analogy with the relation (3-45):

AB
Hig.,p) = 1/2.9 (q,p)pA,pB , -- (3-49)

and by substituting into this from (3-47) we arrive at the

identity
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H{g.p) = L(a.,q) . -- (3-50)
Because of this identity we can write (3-45) in the form
Hia.p) = a"p, - Llg.&q) - (3-51)
which is simply the Legendre transformation corresponding to the
change of variable implied by (3-47):

aLsagt . -~ (3-52a)

Py

A

The inverse equation q aH/BpA -- (3-52h)
follows in precisely the same way as (3-23a) of Rund's theory,

and as before we obtain the relations

2

*Biq.p) = —@;ﬁ—; ; -~ (3-53)
34" 3§
d3H/3q* = -dL/dg* . = (3-54)

Note that the key equations (3-52) are already in the classical
canonical form for the general affine parameter T: the specific
choice of parameter T=w 1s no longer required to produce the
canonical form. Indeed our original interest in the affine
parameter approach arose from a desire to eradicate the factor L
from the expression (3-23b) to bring it into the more canonical
form (3—525). We still have the desirable correspondence between
the geometrical and dynamical viewpoints, characterised by (3-47)
and (3-52) respectively, but now the dynamical equations (3-52)
and (3-54) give a canonlical interpretation for any affine
parameter,

The problem of finding the extremals with the second degree
Lagrangian 1is essentially the same as that of section 3.2, but
with the difference that we no longer have the straightforward
geometrical interpretation of the integral which was possible in
Rund's theory. Since any affine parameter T may be obtained from
the arclength parameter w by a linear transformation (3-41), we

see that
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5[1/2.g dgAng W’ dw
AB
dw dw w

dfL(g.a)dT

1/2.w 8fdw
so that the variational condition
51 = &fL({g,4g)dTt = 0O -- (3-55)
is still equivalent to the geodesic condition
8fdw = 0

despite the fact that the action can no longer be identified with
the arclength w. The extremals are still the (non-null) geod-
esics of the space.

By the usual argument we obtain from (3-55) the Euler-

Lagrange equations

ng - d_ QLA = 0 -- (3-56)
dq dt 199
for an arbitrary affine parameter 1T on the extremal. All the
definitions (3-29), (3-32) and (3-33) carry over into the

modified theory provided every occurrence of 1/2.L2 in Rund's
theory is replaced by L in the new equations. Hence by the same

argument as before we can obtain the geodesic equations

- A 2 A A B c
89" = dga, + v, dada” =0 , -- (3-57)
61 dr dt d=
which now hold for the general affine parameter T. In particular

we once again find that

A |lqgq) = ch(q)
B C

when the metric is Riemannian, and (3-57) again represents the

absolute derivative of ¢ along the extremal. The passage from

the Euler-Lagrange equations to Hamilton's equations is now im-

mediate as in the classical theory. Collecting together (3-52),

(3-54) and (3-56) we arrive at the canonical equations of motion:
A

a" = ansdp, ;i b, = -dH/dgY . -~ (3-58)

We have now developed a formalism based on a Lagrangian
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homogeneous of degree two in the velocities to the same level as
our exposition of Rund’'s theory in the previous section. The
slightly more general nature of the parameter involved in the
canonical equations (3-58) seems to recommend the second degree
theory, but the final test of any theory must be its practical
application to physical problems. For this reason we now compare
these two theories in the case of a relativistic charged particle

in an electromagnetic field.

3.4 Relativistic particle mechanics

In this section we restrict the general considerations above
to the specific case of relativistic particle mechanics in which
a single particle is describe by the four coordinates z%(s),
where s is the proper time defined by -d52=gabdzadzb. The comp-
onents of the 4-velocity of the particle are u®=dz®/ds, amongst
which holds the following relation:

vy o= -1 -~ (3-59)
But this immediately poses a problem for the formulation of a
relativistic Hamiltonian theory. For in the calculus of var-
ilations it is assumed that the coordinates and velocities
appearing in L are independent, which in (3-59) is certainly not
the case. One way of dealing with this problem is via the theory
of constraints, but this suffers from a similar disadvantage to
that of the field theory of chapter 2, since it involves picking
out a preferred coordinate to be dependent on the others and so
is suited only to special relativity. An alternative approach is
to demand that the Lagrangian be at least affine parameter
invariant. For an arbitrary affine parameter 1 the quantities
2*=dz® /dt are not related by (3-59), but rather by

2z = -(ds/dt)? = -k®* = const. -— (3-60)
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The constant k 1is dependent upon which affine parameter we
choose, but until we have specified our choice of parameter it
remains undetermined. Thus the demand of affine parameter
invariance gives us precisely sufficient freedom for the z* to be
independent, but leaves no leeway for variation of the parameter
after the Ffour velocity components have initially been given.
This is a very satisfactory state of affairs. Note that in
Rund’'s theory this problem does not arise, since he does not
demand - that 1T be affine. Since Rund's parameter is completely
arbitrary the velocities obey no relation of the form (3-60),
ensuring that a properly set variational problem ensues.

However, there is still a second obstruction to the develop-
ment of a variational formalism. The requirement of affine
parameter invariance specifies only that the Lagrangian be
homogeneous of degree n in 2. Thus from (3-60) we may multiply L
by the factor (—1/k2.2aia)m without altering the value of L or
the action integral. On the other hand such a multiplication
would certainly affect the Euler-Lagrange equations of motion.
The choice of any specific degree of homogeneity for the Lagrang-
ian eliminates this problem, since any homogeneity properties
would be destroyed by multiplication with powers of (—k'z.zaza).
This means that both Rund's first degree theory and the modified
second degree theory ensure uniqueness of the Lagrangian. Having
settled these difficulties we now look at the problem of the
relativistic particle and its treatment according to the two
theories presented above. Since we have already seen that the
Euler-Lagrange equations are in both cases capable of defining
geodesics in general, curved, Finsler space, we will now content

ourselves with the simpler case of Minkowski space, where the gab

are constants.
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i. The second degree Lagrangian

In the second degree theory the free particle is described

by the following Lagrangian:

L = m/z.zaz'a . -- (3-61)
This leads to the momenta
p. = dL/dZ® = mz
a a

and the first canonical equation

ba = -dH/32* =0 ,
as expected for the free particle. The second canonical equation
then yields the trivial equation

za

6H/apa = 1/2m.a(gbcpbpc)/apa

1/m.g%%p

b

These results for the free particle are satisfactory, but
this was to be expected since the second degree Lagrangian (3-61)
is of precisely the same form as the pure kinetic energy Lagrang-
ian 1/2.mv2 of classical mechanics. Indeed Qhen we study the
second degree theory in the practical context of relativistic
mechanics we find that it is simply a naive wholesale transfer of
classical expressions into a covariant phrasing (see for example
Goldstein, 1981). But the crucial failing in this theory lies in
the very triviality of the above example. Having decided upon a
Lagrangian which is homogeneous of degree two in the velocities
we cannot now add interaction terms of any degree other than two.
Hence the simple case of a charged particle in an electromagnetic
field proves the theory to be unusable, since there does not seem
to exist a satisfactory interaction term based on the electromag-
netic potentials Aa which is homogeneous of degree two. It seems

that despite certain desirable features this theory must be

abandoned. Yet it must be remembered that the choice of a second

degree Lagrangian was prompted by the wish to remove the awkward



85
occurrence of the factor L in Rund’'s expression (3-23b). If we
are going to abandon the affine parameter theory in favour of
Rund’'s then we must accept the frequent L's scattered throughout
our equations.

ii. The first degree Lagrangian

In Rund's theory the general problem of the relativistic
particle is described by the Lagrangian
L =L + L , -- (3-62)
where Lo is the free particle Lagrangian
Lo(z,dz) = —m(—gabclzadzb)”2 -- (3-863)
and LI is the interaction Lagrangian. Rund (1966) has shown that
the variational problem defined by (3-63) in fact yields maximum
values of the action integral for extremals z({(t), due to the
hyperbolic nature of the Lorentz manifold. The interaction
Lagrangian depends on the type of external field considered, for

example:

a. The scalar field depending on position only is charac-

terised by the Lagrangian

L - B a.b  1/2
I k( gabz z ) plz)

where k is some coupling constant.
b. A vector field such as the electromagnetic field may be
derived from the Lagrangian
L. = ¢ (2)2°
I a
c. A tensor field described by a symmetric tensor wab(x)

.a.b 1/2

again needs the factor (-gabz z ) inserting to
restore the correct homogeneity:
-a.b -1/2 .c .d
L = - a
I k( gabz z ) wcd(z)z z

As a concrete example of the above we look now at the
extremals of a charged particle of mass m and charge e moving in

Minkowski space in the presence of an electromagnetic potential
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Aa(z). The Lagrangian we shall use is of the type b:
L = L + L
[¢] 1
.a.b 1/2 .
= -m(-g 2%z ) / + eA 2° , -- (3-64)
ab a

which yields the canonical momenta

P = LaL/az®
_ _ .a.b -1/2 .b
= LI{ 9,,2 2) mg, 2z o+ eAa]. -- (3-65)
Multiplying (3-65) by the contravariant tensor gac we may
rearrange it to the form
22 = (-g 33972 3P (p + enHA ) —- (3-66)
cd b b
mH
which gives z® in terms of P, - Note that 9.4 is therefore

definitely not the Finsler space metric, since the part played by
9. in (3-65) and (3-66) is very different from that played by
the metric in (3~15) and (3-18). The metric in Finsler space may

be obtained directly from (3-64):

- 2,2 _ 2 2 N R B
hab_.j_ 7L = -mg . +eAaAb +meAcz zazb(zzd)
2 227 p3° c. \-1/2
+ (=272 ) mel(A 2z + z A )
c a b a b
[
+ meAcA 9 ) (3-67)
a complicated expression depending on both z and 2, Life can be
made simpler by taking the Riemannian modulus of (3-66):
.c.d
g 232b = L—chz—l—lg gaegbf(p + eHA ){(p_  + eHA )
ab 2.2 ab e e f f
m- H
2 2 ab
=> H = =-1/m" . - -
/ g (pa + eHAa)(pb + eHAb) . (3-68)

Here we see a pattern arising in which the 'free' momenta p, are
replaced by the 'interacting' momenta P, +eHA , yet the appearance
a

of the Hamiltonian H on the RHS of (3-68) marks the failure of

Rund's theory. The objection to the occurrence of the factor H
in (3-23) was purely aesthetic, but its appearance in (3-68)
causes a more serious problem, Equation (3-68) does not give an

expression for H2, but rather represents a quadratic which must
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be solved for H. However, we can see that Rund's theory gives
the 'right' answers by studying the Euler-Lagrange equations for

the Lagrangian (3-64):

aL - d [BL ] =0

3q*  dtlogt
_ .a .a .c.d -1/2 .a
= eAa'bz eAb'az a {f 9.42 2 ) mg_, 2 1.
dt
Choosing T1=s, so that gcdécid=—1 we obtain

b . a
z = - -
b eFabz (3-69)

This 1is a vindication of the basis of Rund's theory in first
degree homogeneity, but a satisfactory and soluble Hamiltonian
formalism 1s only obtained in the case H=L=1, Thus Rund's theory
also suffers from distinct disadvantages: why bother with a
parameter-invariant theory when any practical situation demands a
highly specific choice of parameter? The theory presented in the

next section offers a possible answer to this question.

3.5 IThe theory of Synge

There exists an alternative to Rund's theory which has been
developed by Synge (1954;1960). This theory is again based on
the idea of a homogeneous Lagrangian function defined on some
manifold M, but it avoids the uncomfortable duality of Rund's
theory, where the equations of motion are derived from L, whilst
defining the momenta in terms of L2 (see (3-23)). Synge keeps in
mind at all times the decomposition into the classical Lagrang-
ian, which serves as a guiding influence throughout the theory -
at times to the detriment of the relativistic formalism.

We start with the parameter-invariant Lagrangian positively
homogeneous of degree 1:

L(g,ad4) = alLlq,q§) i (o > 0) , -- (3-70)

from which are derived the parameter-invariant Euler-Lagrange
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equations:

ﬂ.& - d [BLA] = 0 . -- (3-71)
dq dr |99

These equations are not all independent, since using the homogen-

eity of L we find

o oL, - aren]l - a*aL, - d_[dAQ_L;A +a'aL,
oq dt |94 dq dt 94 a4
= dlL/dt - dL/drx
=0 . -- (3-72)

Thus we must recognise that the homogeneous formalism adds no new
information to the classical formalism, since the number of in-
dependent equations of motion is reduced to N-1: precisely the
humber of classical equations. However, this "slack" 1is taken up
by only demanding that we can determine the ratios of the vel-

1

ocities q :4°:...:q . This is reminiscent of the state of

affairs in relativistic mechanics, where uaua=-1, and only the

. 1 2 3 4
ratios u :u :u :u need be solved for.

Now since we may use any parameter for the description of

mechanics, one possible choice is T=qN. Denoting the action by
1 = fLdt ., -- (3-73)
we then have dI = Ldrt
= L(ql‘,<:|‘1...,q"~'_1 ,1)qu .

where a dash represents differentiation with respect to qN:
A A, N
q = q /q

*
Defining the function L by

* 1 N-1 1 N-1 A 1 N-1
L (g ,...q ,t.q Y o ) = L(g ,q , e 1)
N -~ (3-74)
t = q
we obtain the c¢lassical decomposition of (3-73), which now
becomes
*
I = fL dt . -- (3-75)

* *
We shall call L the classical lLagrangian. The functions L, L
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determine one another, since by equating the differentials of

(3-73) and (3-75) we have

* . . - .
Lig.q) = L' (a*.a'",...a " "t
* A .1 ,.N N-1 .
=L (q.,9 /g ,...4 /qN)qN ) -- (3-786)
which is of homogeneity 1, as required. To find the correspond-

ence between the partial derivatives of L and L* we vary gq,q in

(3-786):
aL sat + aL sgt - "c[@ﬁéq"‘ + ol st _iiﬁaéq'“] + Lot
dq 349 dq ot dq’

where we have adopted the convention that Greek indices o,f,.

run from 1 to N-1. But

a'® = g%t 5 8g® = 58°/F - ¢%stsEd

so by equating coefficients we find

. * . *
AL = taL ;oL = taL :
agq® 3q> ag" 3t
- (3-77)
aL = aL” .oaL = Uf - g%t
3% 3q'® ag" ag' %

Substituting these into the equations of motion (3-71) yields the

usual classical equations of motion for the first N-1 components:

a_L*_d[a_L*]=o .

aq“ dt aq'“

while the N-th equation gives the corresponding relation to

(3-72):
q'® B_L;_Q_[B_L* ] = 0
dq dt Bq'u

We have constructed above a system which admits at least two

equivalent descriptions: the classical description in terms of

*
L and the homogeneous description in terms of L. At this stage

Synge is able to transfer to a Hamiltonian description by defin-
ing the momenta in the usual way:
p, = dL/3g" . —- (3-78)

Synge’'s momenta are more natural than Rund’'s definition (3-23b),

but as a result the momenta (3-78) are now homogeneous of degree
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zero in the dA and so we cannot invert the transformation (3-78)

uniquely, because of the resulting equation {3-8). Given the

momenta, all we can ascertain are the N-1 ratios q1:q2:..:qN.

Elimination of these ratios from the equations (3-78) yields an
equation which we write
A

Qlq .DA) = 0 . -- (3-79)
Equation (3~-79) is a constraint equation, confining the possible
values of p at a given point q of M to an N-1 dimensional hyper-

*x

surface 1in the cotangent space Tq; Synge calls it the energy
equation, and the function Q is the energy function. The 2N-1

dimensional hypersurface defined in the cotangent bundle by

(3-79) is called the energy surface.

Along any curve with parameter T and tangent d=dqg/dt, the

element of action is

dI = L(g.q)dt = §*.aL/0¢" .dt

A
PAdq '
where we have used the homogeneity of L. This .expresses the

element of action entirely in terms of the canonical variables

(q,p), and therefore provides a form of the action principle
sulitable for the canonical formalism - this is known as the
Pfaffian form of the element of action. We require that the

action integral be stationary with respect to all variations of
the path of integration for which the endpoints are kept fixed:

o1

Gprqu

f{&pAqu + pAﬁqu}

[{&p, dq* - 6qupA} -0 . —- (3-80)
Here we have performed the usual trick of integrating by parts
and then eliminating the contribution from the endpoints. In
addition to the physical constraint of the action principle

(3-80) we suppose that physical paths are also constrained by the
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energy equation (3-79). By making use of the method of Lagrange
multipliers (see Goldstein,1981) we therefore have

(L - AQ)dT = 0
where A 1s a Lagrange multiplier. From this we obtain

GpAqu - E»qupA - AdT[QQAéqA + 09 épA] =0

oq Py
=> B, = -AQ/3gh
. -- (3-81)
g = AdQ/dp,

These form Synge's version of the canonical equations of motion.
It must be remembered that they do not hold throughout the cotan-
gent bundle, but only on the energy surface, and so must always
be supplemented the energy equation Q(q,p)=0. By transferring to
the special choice of parameter dw=Adt these are reduced to the
conventional form

~3Q/3q"

dpA/dw
A -- (3-82)
dq /dw

n

anapA
A curve with a vector p attached at each point which satisfies
(3-81) or (3-82) is called a trajectory.

The special parameter w cannot be altered once the energy
function Q{qg,p) has been given, for dw is determined by the
element of action:

dI = p,dg* = pAdw.qu/dw = p,dw.8Q/dp, , -- (3-83)
but the element dw clearly has different values for different
assignments of the energy function. If we have two different
energy equations Q=0, =0, both expressing the same relationship,
then the corresponding parameters satisfy

‘dw/dw = dQ/dd
If we choose Q in such a way that (Q+1) is homogenecus of degree
1 in the pA, then

pAaQ/apA = pAB(Q+1)/'3pA = (Q+1) = 1,
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so that from (3-83) w is simply the action I of the trajectory
under consideration. This indicates a relationship with Rund's
more geometrical approach.

In the case of Synge's Lagrangian dynamics we were able to
give a straightforward decomposition of the homogeneous theory
involving L into the classical theory involving L*. The same 1is
possible for the Hamiltonian formalism developed here. Making

use of the decomposition equations (3-77) we see that

* *
Py = aL/aq“ = dL /aq'“ =Py
N N o % o . -- (3-84)
Py = oL/d§q =L - g' 9L /3q' = -H
X *
where p u'H are the classical momenta and Hamiltonian respect-
ively. In addition we can (in principle) solve the energy

equation (3-79) for one of the momenta, say Py to give
A
pN + w(q :pu) = 0 1

*

or H = w(qu,t,pu). -- (3-85)

thus expressing the classical Hamiltonian in terms of (qu.t.pu).

as 1s the case in the classical theory. The action principle
(3-80) now takes the classical form

o1

A A
I{GpAdq - &q dp, }

* *
[{op da® - &adp, - &H dt + StdH }

= g
But from (3-85),
BH = 3H 5q™ + BN 5t + AN &p_ .
3q% dt 3p. ©
o
.
so &1 = &p [dqOl - Qﬂfdt] _ Bqu[dp + 9H dt
o o o
apq dq

* *
+ Gt[dH - OH dt}
ot

The variations 6qa,6t,6pu being arbitrary, the action principle
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therefore yields Hamilton's equations for the trajectories:
. *x *
a'® = W /3p. : p'_ = OH /3" -- (3-86)
o o
and in addition we obtain the equation
* *
dH /dt = 9H /3t
which tells us that the time-dependence of the classical Hamil-
tonian is simply its explicit time-dependence. We have seen in

(1-31) that this fact is a consequence of the classical equations

(3-86), so that these equations present themselves clearly as a
system of 2N-2 first-order equations. However, the homogeneous
system (3-82) apparently consists of 2N equations. The reason

for this is that we have first divided the equations through by
qu/dw to make t the independent parameter, and then applied the
energy equation to obtain the constraint (3-85). Each of these
steps reduces the number of independent equations by one, to
yield the classical (2N-2) order system given in (3-86).

In «classical dynamics the Lagrangian and Hamiltonian form-
alisms represent two equivalent descriptions of the same state of
affairs, and we wish now to see whether the same holds for the
homogeneous formalisms. We have already shown how to move from
the homogeneous Lagrangian system to the Hamiltonian setup
described above, so it now remains to be proven that, given some
energy equation

Qlg,p) = 0 , -- (3-87)
we can transform to a homogeneous Lagrangian which describes the
same physical situation. On an arbitrary curve quqA(r) the
velocities ¢ are automatically determined by the equations of
the curve. Tﬁe momenta P, may be assigned arbitrarily except
that they must obey the energy equation, but Synge restricts them

somewhat further to what he calls the pnatural momenta by imposing

the equations
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A
q = ABQ/apA \ ~- (3-88)
where A 1is some undetermined multiplier. This restriction is
simply the requirement that the momenta satisfy the second of the
canonical equations (3-81). We can now solve (3-87) and (3-88)

for p, and AN as functions of the qA,dA and define a Lagrangian

A

Lta.q) = p,a" . —- (3-89)
The element of action may then be written

d1 = p,dq” = pAquT = Ldt

to give the Lagrangian form (3-73) of the action principle.
Finally, it is clear that if the equations (3-87), (3-88) and
(3-89) are satisfied by a certain set of values (L,qA,A) then
they are also satisfied by the set (kL,kqA,kA) for any number k,
so this ensures that the Lagrangian (3-89) is homogeneous of
degree unity in the q‘. Thus we have arrived, as required, at
the Lagrangian formalism we started with at the beginning of this
section.

In accordance with the Hamilton-Jacobi theory of classical
mechanics we now define the following function on the manifold M
which 1is important in the dynamical development of a system in
Synge's theory.

Definition (3.5): Let I' be a trajectory connecting the
point QeM to the point q. Then the 2-point character-

istic function S(Q,q) is defined as the action measured

along ' from Q@ to g, ie:

$(Q.q) = J.Ldt = frpAqu

Since the 2-point function is a global function it may well be
that the trajectory I' crosses from one coordinate patch of M into
another. In this case we need to distinguish between functional

symbols at @ and q, which we do by use of a bar:
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Lla.4) ; L(Q,Q) ; Q(g.p) = 0 ; {(Q,P) = 0

Note that the function S is not necessarily single-valued, since

there may be more than one trajectory connecting @ to q. How-
ever, in practice we are interested in a given arc of a known
trajectory. In the cases where S is potentially multiple-valued

we shall always assume that some prescription has been given to
specify the particular trajectory along which S is to be meas-
ured. Thus S(Q,q) will always be assumed single-valued.

We can obtain an expression for the variation of S(Q,q) by
repeating the derivation of (3-80) above, remembering that we are
now also varying the endpoints of T

6s

frt8p,da® + p, 5da™}

A2 A A
préq ]1 + fr{f)pAdq - bq dpA} )
where the indices 1 and 2 label the endpoints of N at 11,12
Since ' 1is defined to be a trajectory the integral expression

here vanishes, so that we are left with

5s

A2
[pAéq 1
A A
= pAéq - PASQ . -- {3-30)
If the variations 6qA,60A are independent this gives

. as/a® = -p = (3-91)

aS/an = pA A

which on account of the energy equation (3-87) leads to Synge's
form of the H-J equation for the case when the initial point is
held fixed:

Q(qg,0s/dq) = 0 . -- (3-92)
These equations may also be expressed in classical form, remem-

bering that

By (3-90) we have

- o * *
&S = puéq - H ot - PuGQ + HOT
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*
=> 3s/3q% = Py  9S/3t = -H (q%.p .t) ;
— _ -~ (3-93)
3s/3@% = -p_ . B3s/dT = H (Q%,P_,T)
o o
Finally, {3-93) leads to the usual classical form (1-21) of the
H-J equation (3-92):
*
3s/3t + H (q%,3s/3q%,t) = 0 . - (3-94)

Having seen how Synge's theory is developed, we now look at
its application to the variational description of relativistic
dynamics. First we must note a few facts about the special

choice of parameter s, the proper time, which arises naturally in

relativistic dynamics. If 1=s then

L(z,2)dt = L(z,dz) = L(z,u)ds ,
where u? = dz®/ds is the L-velocity of a particle with coordin-
ates z°. The action is then

I = JL(z,u)ds

and Lagrange's equations read

AL _ d _[aL = 0 -- (3-95a)
3z? ds|du?
with the special relation
a

u u = -1 . -- (3-95b)

In relativistic dynamics we can use the &4-velocity form (3-95a)
of the Euler-Lagrange equations, but we must be careful not to
apply the constraint (3-95b) until after all partial derivatives
in (3-95a) have been calculated.

For a single particle of mass m and charge e in an electro-

magnetic field we assume, as in Rund's theory, that

1/2

L{z,u) = -m(-g uaub) + eA u° , -- (3-96)
ab a
where for simplicity we suppose the gab to be constants. Then
_ c  _ _ a b .-1/2 d
P, = OL/du = m{ 9 ,u ) 9. 44 ¢ eAc
= mu o+ eA -- (3-97)
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=> = )
bb mo, o+ eA  u

Also aL/dz" - oa u?

so Lagrange's equations become

mu® = eF W -~ (3-98)
ab

precisely the required equation of motion. To obtain the energy
equation Q{(z,u)=0 we combine the expression (3-97) for the

momentum with the special condition (3-95b):

29 Qah(pa - eAa)(pb - eAb) + m2 = 0 . -- (3-99)

Remember that in Synge's theory the energy function is in no way

unique, so that there is an infinite number of choices for Q;
(3-99) simply happens to be Synge's choice. The canonical

equations are now

dz® /dw = 3Q/3p, = p° - eA : -~ (3-100a)
a b
dpa/dw = -9Q/9z" = elp, - eAb)A . -- (3-100b)
of which (3-100a) is the canonical version of (3-97), while
(3-100b) corresponds to (3-98). It seems that Synge's choice of

Q is fortunate, since w=s now gives the correct relativistic
equation of motion, but it must be born in mind that this choice
is still essentially arbitrary. Finally, the energy equation
(3-99) together with (3-92) gives us the H-J equation for

relativistic dynamics:

*Pras - eAI[B3s - eA ] +md =0 . -- (3-101)
2" 2 azb b

Synge's theory suffers from a number of disadvantages,
notably the ambiguity in the energy function and the need to res-
trict ourselves to the special parameter w. However, we see here
that its answers to the problem of a charged particle in an
electromagnetic field are far more satisfactory than those of the

two theories considered earlier in this chapter. We therefore
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feel that it constitutes the most satisfactory existing canonical

formalism to date.
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CHAPTER &
HOMOGENEOUS MECHANICS

4.1 A svypthesis of existing theories

The major feature lacking in Synge's theory, developed in
section 3.5, was the geometric viewpoint so clearly brought out
in Rund's theory. We saw at the end of chapter 3 that the equ-
ations of Synge's theory are more elegant and lead to more
convincing results, but the geometric simplicity of Rund's theory
cannot be denied. Consequently we shall endeavour in this chap-
ter to approach Synge's theory in a different manner in an
attempt to bring out the geometric aspect more explicitly.

Since Synge's Lagranglian is positively homogeneous of degree
one in the velocities q we can again construct a Finsler geometry
using L(q,dq) as a metric function. In this case all the work on
Rund’'s theory up to and including equation (3-14) can be carried
over 1into the present work, and in particular we can define a

metric function

2 2

gAB = 1 Q—-L—(-g—l-g-)- -- (4-1)
satisfying gABﬁB = L aL/aq‘ : -=- (4-2a)
A.B 2
9,50 a4 =1L . ~~ (4-2b)

Using Synge's definition (3-78) of momentum it follows from (4-2)

that

] A .B - (4=
P, = oL/9q = 1/L.9Aaq . {4-3)

giving the zero degree homogeneity required of the momenta in
Synge's theory.
Now let us look more closely at what is involved in the

transformation (-3). It is clearly singular, since the pA are
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homogeneous of degree zero 1in the velocities (see equation
(3-8)) . From (4-3) we can see why this is: given an arbitrary
velocity q, the effect of the transformation is first to divide g
by its Finsler magnitude L (q,q) to collapse it onto the unit
sphere SL in Tq (see fig. (4.1)). This sphere is then mapped by
the Finsler space metric g*™" across to the corresponding surface

SH in T;. Thus everv contravariant vector lying on the same

*

half-ray as 4 is mapped to the same momentum peT , and p is def-
S
ined solely by the direction of , not by its magnitude. This

means that the half-rays in T form equivalence classes which are

g
the fibres of the mapping (4-3); the range, or image space, of
the mapping 1is the surface SHch. Synge calls the surfaces Sl’ H
the Lagrangian and Hamiltonian surfaces respectively, while in
CaratheodoryMs (1935) terminology they are respectively called
the indicatrix and figuratrix. These two surfaces are represent-

ed by the equations

L(CIrq) =1
- (4-4)
Hl
where g”™® 1is the inverse of Iy and veT
fig . (4.1
Now since (4-3) splits the tangent space naturally into

equivalence classes, we are essentially interested only 1in a rep
resentative member from each class. Our aim will be to define a

bisection between the tangent and cotangent spaces which we can
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justifiably <call a Legendre transformation, so we wish to pick
out a uniqgue member from each half-ray which is to be mapped to p
by the transformation. In this way it will be possible to then
invert the transformation, returning to the same representative
from which we started. Clearly one way of picking out these
representatives 1is by means of the Lagrangian surface SL‘ This
surface cuts across all the equivalence classes and so picks out
a member q from each class which is such that tL(g,d)=1. We can
generalise this method of picking representatives by defining an
arbitrary surface S& which cuts across all the classes, thus
identifying a unique member from each half-ray (see fig.(4.1)).
The choice of the surface S& is quite irrelevant to the system
being described, since no one member of an equivalence class
contains any more or less information about the system than any
other. However, we shall see that the choice of Sﬁ has a drastic
effect on the way in which the system is to be described: indeed
the choice of Sﬁ defines the language being employed to describe
the system. The reason for this lies in the consequences of a
particular choice of parameter. If differentiation of the
coordinates with respect to a specific parameter 1 leads to a
specific velocity vector q, then clearly a change to the
parameter tv/2 will yield the new velocity 24q. That is, a change
of parameter moves us from one member of an equivalence class to
another. Thus the choice of S‘.1 for all g defines uniquely the
choice of parameter to be used in describing the system. We
shall assume the function S&(q) to be twice differentiable with
respect to both gq and q.

We now turn to a point glossed over to some extent by both
Rund and Synge: the question of how to define an invertible

Legendre transformation leading from the Lagrangian to the
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Hamiltonian formulation. Rund abandons the classical Legendre
transformation from L to H after noting equation (3-9), settling
for the straightforward equivalence (3-20), while Synge makes no
attempt to establish a transformation law between his two basic
quantities L and 2. Yet in neither case is any reason given for
this peremptory decision. Rund (1966) merely remarks that "we
are forced to conclude that the left-hand side of [3-9] cannot
serve as Hamiltonian function”. But how justified is Rund in
discarding out of hand a zero Hamiltonian? The Hamiltonian he
uses to achieve his central results is identically equal to 1,
while Synge makes no bones about basing his entire formalism on a
function which is identically zero.

There is a further point to note. As Synge brings out so
clearly, the specification of a mechanical problem does not Jjust
consist of choosing a Lagrangian, but of choosing a Lagrangian
with the property that it is homogeneous of degree 1 in q, and
this property corresponds in some way to the fact that Synge's
"Hamiltonian" obeys the equation Q(q,p)=0. But suppose we take a
general function L(Q.,q) (not necessarily homogeneous) and form
from it the Hamiltonian

H = a*.au/0¢" - o
If we now apply the new energy equation H(q,p)=0 then we obtain

precisely the condition that L be homogeneous of degree unity in

d, so we see that the conventional Legendre transformation

p

A aL/aa“ H -- (4-5a)

A .
Hlq.p) = 4"p, - L(q.q) -- (4-5b)
induces a direct correspondence between the energy equation in
Hamiltonian mechanics and the homogeneity condition in Lagrangian

mechanics. We must bear in mind, of course, that the simple

(q,p) dependence given in (4-5b) is reliant upon the existence of
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an inversion procedure for (&4-5a) which will give ¢ as a function
of p: q(p). This is a question which we will take up presently,
but we first note another property of the energy equation.
Like Synge's equation (3-87), our energy equation defines an

N-1 dimensional hypersurface (the energyv surface) in each cotan-

*
gent space Tq to which the momenta are confined. Now we have
*x
already defined one surface, SH‘ in T , and we would like to
q
relate this to the energy surface. To do this we now investigate

the corresponding surface in Tq which results when the energy

AB Gf the

surface 1is dragged back into T using the inverse g
Finsler metric (4-1). The equation of this surface will be
Hlq,p) = qA(p)pA - L(qg.,4(p)) =0

but we are supposing that p is obtained from some vector ueT by

q
the equation pA=gABuB In this case we can use (4-5a) and (4-3)
to obtain
B _ - X A
9,gu =P, = oL(4(p))/og
=g _3°/L(q)
h q
=> Liard® = ¢ p)

so the energy equation H=0 becomes

Liarutg, u® - Liq.Ltard*y = o
=> L(Q).{gABuAuB - L(q.uA)} = 0
- A B Ay
=> gABu u - L(u ) =0
=> L2 (u*) - Lty = o
=) L(q.U) = 1 '

where we have in some places suppressed mention of the coord-

inates ClA in the interests of lucidity. But this is simply the

equation of the Lagrangian surface defined in (4-4), and so we
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find that the Hamiltonian surface SH(q) is just the restriction
to T: of the energy surface H(g,p)=0. The energy surface is thus
given by qu"SH(q).

The question of the inversion of (4-5a) brings to light what
is in fact an essential difference between the theories of Synge
and Rund. This difference may be summarised as follows:

a. Synge's theory has the advantage that it retains the
well-known form (4-5a) for the definition of momentum,
but the disadvantage that it maps an entire half-ray in
Tq to a single value in T:.

b. Rund’'s theory has the advantage that it prescribes a 1:1
correspondence between points in Tq and points in T:,
but the disadvantage that it does not yield the standard
formula (4-5a) relating p and ¢.

The singularity of (4-5a) means that any veTq lying in the same
direction as 4 is also mapped to the same peSH. Hence we must‘be
sure that when we invert the transformation and return to Tq, we
recover the velocity vector q and not some arbitrary vector lying
on the same half-ray. Fortunately (4-5) ensures that whatever

R * .
vector is used to pass to Tq will be recovered when we return to

Tq. To see this we must define exactly what steps are to be
taken in implementing (4-95). The procedure we shall adopt is as
follows:

i. First choose a surface S& in T which picks out a
q
specific member ¢ from the fibre of each momentum vector
€S
P N
ii. Use this representative ¢ to define the momentum via
. . * . .
(4-5a). The mapping into Tq of points in Tq not on Sé

may now be prescribed arbitrarily, provided the mapping

* o 3
Tq-’Tq taken as a whole is injective and C1. The mapping
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can therefore now be inverted to give meaning to (4-5b)
and the equation H(q,v)=0 now defines an energy surface
SH in T:, where v is an arbitrary element of T:. Note
that from the point of view of mechanics we do not in
fact need to define the mapping all over the tangent and
cotangent spaces - it merely needs to be defined within
a finite shell around the surfaces SL and SH.

For each point qeM we now carry out the following calc-
ulation on the energv surface S (q): Let v again be an
arbitrary element of T:. then, suppressing all mention

of the coordinates, we have

Hiv) = v,a* (v) - Lig(v))
=> AH(v) = aP (v) + vB.QgP(v) 8a° (v)
avA avA 949 aVA

Thus when v=p, ie, when v lies on the energy surface,

this second term cancels and we find

H = gt | - (4-8)

9
pA H=0

(4-6) now tells us that the inverse mapping of (4-5a) is
provided by

p =+ 8H/3pl _. .
and this delivers the gsame representative velocity §
which was used in (4-5) to define H, ie, that element of
the half-ray which lies in S&_ In other words (4-5) so
arranges things that no matter what parameter is used,

the Hamiltonian is such that A=1 in Synge's equations

(3-81).
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Thus we have now defined a Legendre transformation between the
surfaces Sﬂ and SH which we have shown to be invertible. We lose
no information in the tangent space by confining our attention to
Sﬁ' as we mentioned earlier, and covariant vectors other than
those on the energy surface play no part in the mechanics of
either Rund or Synge: such vectors cannot be considered as
physical momentum vectors. Similarly, the choice of S£| immediat-
ely robs all other elements of Tq of any physical significance
(at least as far as the particular descriptive language defined
by S& is concerned). However, although these vectors play no
part in mechanicsythey must still be defined, at least within a
finite shell around the surfaces Saand SH' since otherwise the
derivatives in the inverse transformation (4-6) will have no
meaning.

The non-injective nature of (4-5) is directly related to the
fact that the Lagrangian theory is specifically constructed to
have the same form for all parameters T, while the Hamiltonian
theory, as we saw in Synge's work, seems to pick out a special
parameter w in the canonical equations (3-82). This raises the
question posed at the end of section 3.4 concerning the meaning

of parameters other than w. It seems as though w is more approp-

riate to relativistic mechanics, and Rund makes no real use of

the other parameters available. Synge, however, demonstrates
that other parameters can also be useful - for example, the use
of qN=t as the parameter. Looked at in this way the arguments in

section 3.3 for an affine parameter are no longer valid, since
the change of parameter w»t is by no means linear in general. We
need the completely general choice of parameter v to admit both
cases, since T now seems to be not a physical parameter, but

rather a meta-physical onhe representing the transition from
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classical to relativistic mechanics. Whereas the form of L
determines the nature of the system under consideration, the
choice of parameter determines the mode of description to be
used. This placing of the action principle on a higher level

than mechanics 1is quite in keeping with classical mechanical

theory, since neither Lagrangian nor Hamiltonian mechanics
actually makes wuse of the calculus of variations. Only the
equations of motion are required for a dynamical theory - the

calculus of variations merely supplies them in a particularly
elegant way. The composite theory to be developed in this
chapter, comprising an expression of both the mechanical system
and the language used to describe it, will be termed homogeneous

ec ics. We shall now commence an exposition of the theory of
homogeneous mechanics, starting with the dynamical viewpoint and
then moving on to the geometrical viewpoint.
a. The dvynamical picture

From the homogeneous Lagrangian we obtain the equations of

motion as before:

oL —_d_[ﬂ_]=0 . - (4-7)
dq* dr adA

and by applying the Legendre transformation (4-5) we obtain im-

mediately the canonical equations:

q° = aH/apA lH:(J :
. A -- (4-8)
DA = -3H/dq lH=0
together with the energy equation
H{q,p) = 0 . -- {4-9)

(4-9) is implicit throughout homogeneous mechanics, and indeed
expresses the very homogeneity of the theory. Because of this we
shall in future omit this stipulation in dynamical equations such

as (4-8). We must also bear in mind that (4-8) and (4-9) come
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with the proviso that a choice of Sa must still be specified to
give them full meaning. Consequently we must eliminate this
ambiguity by making a specific choice of parameter. As soon as
this 1is done the velocities are unique and we have in effect
chosen a particular surface Sﬁ on which to construct our
description of the system. One such choice is the one made by
Rund, which corresponds to choosing the surface SL:

Sé = S ¢ Lig.q) = 1 . -- (4-10)
Note, however, the difference from Rund's theory that once we
have chosen this particular descriptive system we apply (4-10)
throughout dynamics as a supplementary condition in the same way
that condition (3-95b) was applied in Synge's description of
relativistic mechanics. Indeed the choice (4-10) defines Rund's
theory of dynamics: another choice of parameter would define
another descriptive system. One such alternative system is

classical dynamics, following from the choice T=qN=t demonstrated

in section 3.5. Here the equations of motion are
aL* _ g fat =0 |, -- (4-11)
3q® dt[aq'“]

where L - L(qA.q'a.1)

and we use the same notation as in section 3.5. Here the surface

on which we construct our description is defined by

s,: q =1 . -- (4-12)

q
In each of these two cases the specific choice of parameter
"takes up the slack” of the redundancy implied by (3-72) by
reducing the number of independent tangent space variables from N
to N-1. As we saw in section 3.5, both of these choices lead to
parallel Hamiltonian formulations with equations of motion (4-8)

in the case of Rund’'s theory. In the classical case Synge's

correspondence (3-84) continues to hold:
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P = p ;7 P, = -H , -- (4-13)
together with the 'alternative (Pfaffian) form of the action
principle:
81 = [{dp do" - 5qdp,} = 0 . = (4-14)
Again we can in principle use (4-9) to solve Py as a function of

the classical variables q“,t,pu:
* o )
H = w(g ,t,p ) -- (4-15)

o
and obtain the classical canonical equations

QL * * ol
q = OH /dp : p' = -0H /dq :
a o -- (4-16)

aH* 7dt = an*/at
Finally, by defining the 2-point characteristic function S(Q,q)

as before we obtain again the relations

ds/aa* = -p - (4-1T7)

3s/3q* - P, \

which lead to the H-J equation
H(q,9S/3q) = 0 -- (4-18)
and its classical form
3s/dt + H (q%,8s/8q%,t) = 0 . = (4-19)
Thus we see that the considerations at the beginning of this
chapter 1lead to a theory as general as that of Synge, with the
advantage that we now have a transformation law (4-5) from the
Lagrangian formulation to the Hamiltonian. It must be remembered
that the key equations (4-7), (4-8) and (4-18) are all non-
specific ones. That is, they hold independently of the £ype of
dynamics chosen to describe a system. This choice is made
afterwards by including a supplementary condition of the form
(4-10) or (4-12).
Before moving on to the geometrical viewpoint of homogeneous
mechanics it is worth mentioning briefly another class of exist-
ing relativistic Hamiltonian theories which we did not mention in

chapter 3. These theories are exemplified by that proposed in
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chapter 21 of Sudarshan & Mukunda (1974), and effectively consist
in treating the energy equation as a constraint on the full
2N-dimensional system represented in phase space. The theory
thus arrived at is very similar to that of Synge, but now the use
of the <constraint function as the Hamiltonian can be defended
more rigorously by means of Dirac’'s theory of systems with
constraints. We shall not go into Dirac's work here since it
would merely be a reproduction of the somewhat lengthy exposition
in <chapter 8 of Sudarshan & Mukunda (1974). What Dirac does is
to show that Synge's choice of the energy function as the
fundamental quantity of Hamiltonian mechanics 1is essehtially
unique in the sense that any such quantity must equal the energy
function on the energy surface, and also that its first partial
derivatives with respect to the canonical variables must equal
those of the energy function on the energy surface. We see from
the above work that the energy equation is a constraint equation
which specifies the points in phase space which are relevant to a
given system. If the system is now further constrained by, for
instance, confinement to a physical surface, then this is simply
one more constraint necessary to the specification of the prob-
lem. Thus the prescription of forces implicit in the choice of
Hamiltonian is on a par with the prescription of physical
constraints; the distinction made in classical mechanics between
these two types of condition is an artificial one necessitated by
the clumsiness of the classical decomposition.

we now move on to see how homogeneous mechanics leads to a
geometrical picture in the same way as Rund's theory of section
3.2.

b. The geometrical picture

Equations (4-1) to (4-4) summarise the way in which Rund's
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work brings out the geometric nature of Lagrangian and Hamilton-
ian mechanics. We have seen that by using the transformation
(4-5a) we involve the complication that any given momentum
corresponds to an infinity of values for the velocity, which
causes difficulties for a geometric correspondence between Tq and
T:. However, in our study of dynamics we eliminated the problem
of the non-injective nature of (4-5a) by choosing a particular
surface Sﬁ in Tq and arbitrarily requiring p to be mapped back to
the corresponding point on Sﬁ in the inverse transformation. The
obvious candidate for this surface is SL - the one used for
Rund's description of dynamics, and from (4-10) we see that on SL

(4-3) reduces to

P =g .4 . -- (4-20)

A AB
Equation (4-20) is fundamental to Rund’'s geometrical picture of
mechanics. He required a bijection between the tangent and
cotangent spaces, and opted for (4-20), but it is important to
note that he obtains (4-20) o9only by giving up (4-5a). In
homogeneous mechanics we take the alternative route: in retain-
ing (4-5a) we sacrifice the neat geometrical picture offered by
(4-20). Yet we see that (4-20) still obtains on the Lagrangian
surface, exactly as Rund's dynamics yielded (4-5a) when T was
chosen such that L({(g,q)=1. On SL (4-20) gives a linear trans-
formation from Tq to T: which exactly duplicates the action of

the Legendre substitution (4-5a). In addition we stated above

that the effect of the Legendre transformation on points not on

S& may be prescribed arbitrarily. Clearly in some cases one such

prescription will recommend itself more than another, and Rund's

dynamics 1is precisely such a case. (4-20) maps the whole of Tq
. . . *

linearly and injectively onto Tq, but only on sL does it rep-

resent (4-5a). However, since Rund's dynamics only gives useful
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results on SL this will be sufficient - (4-20) will provide a
Finsler space model of dynamics exactly as in section 3.2. The
relationship of this model to the dynamics of the system will
only be apparent if Rund's descriptive language is used, but this
does not invalidate the fact that dynamics contains an innate
geometrical aspect. We shall now investigate this geometrical
aspect further.

Using (4-20) we can define the natural parameter w on SL

which is such that

dw = L(qg,dq) . -- (&-21)

This parameter is the one specified by condition (4-10), and so

in fact defines Rund's dynamics. We assume that (gAB) is non-
singular, in which case we can form the contravariant metric
AB . .
tensor g satisfying
AB A
9 "9g¢ = &
AB
qA = g pB H -- (4-22)
2 _ _AB
L (a.q9q) = g9 Py, Py
As before, these definitions ensure that the geodesics in the

Finsler space model are precisely the extremals of the Rund

dynamical problem, satisfying the following equations on SL:

%LA - d_[gg] = -9, & + v a%a%1 = 0 g me (4-23)
q dw

¥ 1 AU[QQeB + éﬂéc - QQ?C]
0q dq oq

The corresponding equations in T  are the canonical equations
(4-8) wusing the special parameter w. Again Rund's dynamics is
constructed on the special surface SH in T:, the equation of

which 1is simply the energy equation (4-9). Since, however, we

have said that p lies by definition on the energy surface, (4-9)
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expresses a property of p rather than defining the energy
surface; to obtain the equation of SH we should properly sub-
stitute into this equation the general covariant vector veT: {not
necessarily on SH);

H(g,v) = 0
The energy equation then defines the energy surface SH' In the

particular case of Rund's dynamics this equation reduces to

H=VAq—L
=v,¢" -1 =0
=> s : v =1, or g*® v = 1. = (4-24)

This is just the equation already given in (4-4).

5.2 Relativistic dvnamics

We have now defined two different modes of description of a
dynamical system: Rund's dynamics defined by (4-10), and
classical dynamics defined by (4;12). Since our central aim is
to find a Hamiltonian description of relativistic dynamics, we
now seek a choice of parameter which will yield such a descrip-
tion. Clearly classical dynamics is unsuitable, since T=qN is
dependent on the coordinates chosen. On the other hand we know
from Rund's work that the choice T=w will not be an easy one to
study, as a glance at the metric (3-67) shows. There is also a
second disadvantage to working in the full Finsler space of
Rund's dynamics. We wish to be able to describe at least all
particles moving with timelike velocity u':i', yvet we mentioned
(and passed over) in section 3.2 the fact that the barrier L=0
presents a problem. The transformation (4-3) only has meaning

when L is nonzero, so Rund's dynamics is only of use with

particles for which 2z satisfies
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L{z,2) = -m(-g 2a2b)1/2

+ eA 2 2 0 . -- (4-25)
ab a

Because of the term eAa}za it is by no means clear whether this
will encompass all timelike 2. Hence we are led to select a
third special choice of parameter which will define relativistic
dynamics. This choice 1is simply the proper time s calculated
from the Riemannian metric gab appearing in the Lagrangian
(4-25). This parameter is clearly a natural choice in a
relativistic Hamiltonian theory, yet Rund ignored it completely,
and in Synge's work it arose almost by accident as the value of w
for a relativistic charged particle. The definition of proper
time now becomes an alternative supplementary condition which
defines the surface S, on which relativistic dynamics is
constructed:

P e SN B - (4-26)

S'z: uaua - gab

In this way we split the Finsler space on which Rund's dynamics
is based into a (Riemannian) "geometric"” part based on the metric
9.p and a "field" part in Aa representing the anisotropic
properties of the Finsler space metric.

To see relativistic dynamics in action we now study the case
of the single relativistic charged particle, using the Lagrangian
(4-25) together with the supplementary condition (4-26). We

assume the 9a to form a metric field on spacetime in the usual

b

relativistic sense, in which case g b(z) is independent of the
a

velocities and we obtain

P = 3L/B2* = m(-uSu )7 "%g W 4+ ea
a [4 ab a
=mg  u® + eA - (4-27)
ab a
by application of (4-26). (4-27) can easily be inverted to give
u as a function of p:
W= 1/m.g*(p, - oA ) —— (4-28)

where gab is the usual inverse of the metric 9, - The Hamilton-



ian is given by

H = paua - L(z,u)

1/m.pa(p'-eA°) + {-(pa-e:Aa)(p"*—eA')}”2

- e/m.Aa(pa-eAa)

1/m.(pa—eAa)(p'-eAa) * {—(pa—eAa)(pa—eAa)}1/2, -=- (4-29)

from which we can calculate the canonical equations:

(p* - ea®)
OH = 2 (p* - eA?) - B 2 " b 1/2
e} - - -
P m { (ph eA Y(p eA”’ )}
= 2u® _ u®
= u? ] -- (4-30a)
a a
8H = -2e (P* - oA )A , » elp - ed JA .
oz m ' {-(p, - eAa)(pil - eA’)}
+ 1/2m.g%9 y(P. - eA )lp, - eA,)
= - a a cd _ _
e/m.(p eA )Aa'b + 1/2m.g ‘b(pc eAc)(pd eAd)
= -eA a c_.d
e a.bé m/2.gcd'bz 2
= -bb
_ s€ .d € _ 52
= mgbc'dz 4 mgbcz eA .az

(4-30b)

=> M[Eb + b 12529 = er?P: . -
cd :

Thus we obtain the Lorentz force law in Riemannian space exactly
as required. The energy equation takes the form
_ a a a a 1/2
H= 1/m.(p"-eA )(pa—eAa) + {-(p -eA )(pa-eAa)) = 0

=> (p* - eAa)(pa - eAa) s+ m =0 , -- (4-31)

which 1is precisely Synge's energy equation (3-99), with the
advantage that it is now unique in the sense that the Legendre
transformation gives an explicit recipe for transfering from the

homogeneous Lagrangian (4-25) to the energy equation (4-31).
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(4-31) also gives the same H-J equation (3-101) that we found in

Synge's work:

9*Pfas - eA 1[3s - eA ] +m =0 . -- (4-32)
oz 21182 b
Example (4.2) - Consider a special relativistic particle of mass

m and charge e moving in the purely magnetic field B=(0,0,8B),

where we adopt the rectangular coordinates (x,y,z,t) in space-

time. For simplicity we have aligned the z-axis with the
magnetic field. The Maxwell tensor for this field is
Fab = 0 B 0 O .
-8 1] 0 0
0O 0 0 O
6 0 0 O

so that a possible 4-potential is

Aa = B/2.(y,-%x,0,0) . -- (4-33)
This leads to the following expressions for the Lagrangian and

momentum of the particle:

Liz,u) = -m(-udy )1/2 + eB/2.(yu1 - xuz)
: -- (4-34)
Pa = (mu1+eBy/2, muz—eBxlz. mua, mu‘)
and the canonical equations (4-30):
a ab b . .
u = g /m.(pb - eAb) i mz2 = e(-8y,Bx,0,0) . -- (4-35)

Thus the relativistic case of the uniform magnetic field is
essentially the same as the classical case, with the coordinates

satisfying the following equations:

As + B ;
-~ (4-36)

..

X

-eBy/m z

V Cs + D .

eBx/m H t
These are precisely the classical equations (with t replaced by

s) and are satisfied by the solutions

r sin ws .
-- (4-37)

X = r Ccos ws ; VY

where r const. and w eB/m

This 1is the equation of motion of a particle following a circle
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of radius r and proper angular frequency w in the (x,y) plane.
By a suitable choice of geometry we can reduce the constants of
integration A,B,D to zero, and to evaluate C we apply the rel-
ativistic supplementary condition (4-26):

rZwZ - C2 = -1

=> C = J(1 + r2y?)
This 1is wexactly what we should expect from a particle with

constant (proper) speed wr.

A major problem throughout the history of analytical
mechanics has been the description of systems of two or more
particles, and the problem becomes more complex in relativity
because in the absence of absolute Newtonian time we need to find
a parameter which will serve for two particles on completely
separate worldlines. We shall now indicate briefly how homogen-
eous mechanics may be used to describe such systems, although we
shall not develop this far because it brings to the fore another
far-reaching problem, namely that of interaction. In the single-
particle theory presented above we ignored the problem of the

"kickback” caused by energy radiated by the particle (see

Teitelboim,1970), but in the many-particle formalism far more is
swept under the carpet. Not only is radiated energy ignored, but
also the problem of interaction between distinct particles. It

may be possible to encompass such interactions by allowing the
potentials Aa to depend on coordinate differences (21-22)

(although not according to the "No-Interaction” theorem - see
pp.535 et seq. of Sudarshan & Mukunda,1874), but we shall not
follow up this possibility here. We are intent simply upon

showing how a single parameter may be defined for all particles

of a system on their separate worldlines.
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During the following discussion we suspend a number of
conventions used elsewhere in this thesis, but we shall revert to
the former conventions from the end of this section. We are
working with an N-particle system, so the indices A,B,C,... will
now label the distinct particles. All summations over these
indices will be made explicit by the use of a [ signh: the
summation convention will be confined to the 4-indices a,b,c,...
Using these conventions we can concatenate the 4-coofdinates z?

of the particles into a single 4N-component position vector

Z:eMN, where MN is the Cartesian product of N replicas of the
spacetime manifold M. We then assume that some universal

parameter T has been chosen, so that the velocities 2: =z dz:/dr

have meaning, and use the N-particle Lagrangian

A 1/2 a,b,1/2
L(z = - -
Nk ) (ZAmA) { ZBmBgab(zB)zeza}
+ I 33 - _
AeAAa(zA)ZA . (4-38)
where mA,eA are the mass and charge respectively of the A-th
particle. From (4-38) we can calculate the 4N components of the
momentum:
_ _ 1/72 _ .2 4,-1/2
Py, = 2 = (EAmA) mAZAa{ XBmBzB} + e, A (z,). -- (4-39)

922
A
Now this was the crucial point in the exposition of relativistic

particle mechanics above. There we were able to reduce (4-39) to

the form

p + eAA (z,) -- (4-40)
a

Aa T M4, A

by choosing T to be the proper time along the worldline of the

particle. But this is still possible here if we choose T such
that
(Em 2 - (-rm3*s V2
A A A A A Aa - (4-41)
2

ie: dt

2 2
dao” = [AmAdsA/ZB"h ,

where SA is the proper time along the worldline of the A-th
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particle. We see that this special choice of parameter element
do is a sort of RMS value of the proper time along each of the N
particle worldlines, where the masses of the particles appear as
frequencies, or weightings, of each particle. As in the single
particle case, this then gives the Lorentz force on each part-
icle:

aL/az': = e, A (zA)z:
=> 9L _ Q_[QL ] = eAz":[Aa (z,) - A (2,01 - mz = 0

32P do azb
A A

b = e Fab(z )3

m z
A A A AzAa

' -- (4-42)
where for simplicity we have assumed the gab to be constants.
Note that the choice (4-41) of parameter, like all such
choices, is not necessary - it merely makes life easier. In the
development of homogeneous mechanics carried out in the rest of
this chapter we shall at all times assume that some specific
choice of parameter has been made, defining the descriptive
system to be used and giving the canonical equations (4-8)
meaning. In general we shall not need to know the specific form
of the supplementary condition involved in this choice, but in
order to apply the formalism it is necessary to assume that some
such condition holds. The above remarks on many-particle systems
demonstrate how best to make the choice of parameter in practical
situations: first derive the expression (4-39) for the momenta
from the tLagrangian (4-38), and then choose a supplementary
condition like (4-41) which reduces the momenta to the manageable
form (4-40). Again, this form is pot in principle necessary, but

in applications may turn out to be so from a pragmatic point of

view.
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4.3 Canonical trapnsformations
As in classical dynamics, it is often convenient to conéider
the complete cotangent bundle T*(M) over the manifold M, rather
than simply M itself. M is the N-dimensional configuration space
of events, coordinatised by the set {qA}, while the cotangent

bundle is referred to by Synge (1960) as the 2N-dimensional space

of states and energy, coordinatised by the canonical variables
*
{qA.pA}. Since, however, T is the fundamental entity of homo-

geneous mechanics, we shall refer to it as the phase space of the
system under consideration, in line with the terminology of
classical Hamiltonian theory. The energy equation (4-9) then

represents the (2N-1)-dimensional energy surface U (q)cT*(M),

quSH
to which the physical states of the system are confined. In such
a space it is natural to look at all transformations of the

canonical variables

o* = o*ta.p) 1 P, =P (a.p) - (4-43)
which leave the action integral invariant. Hence, using the
homogeneity of L, we require that the integral

I = fLdt = faApAdT = (b-4b)

remains invariant under the transformations (4-43): such trans-
formations are called ganonical transformations {(CT's). Note
that the form (4-44) of the action integral is only true on the
energy surface, but this does not matter, since we are not
concerned with what happens to non-physical systems which do not
obey the energy equation (or, equivalently, whose lLagrangian is
not homogeneous). A simple way of ensuring the invariance of
(4-44) is to demand that

~A

Q
PA

dApA + dF/dt .
-~ (4-45)

F(q.p)

where F

is the generating function of the transformation.
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Because we assume the new canonical variables to be indep-
endent we can imagine F,q and p to be expressed in terms of them,

in which case (4-45) becomes

dAPA = pA[_a_g:(.la + _aj_hl;a] + OF (':IA + OF F;A

A
oaQ L 2Q - 9P,
=> P, - p.3a® = 3F ; -p.8d® = BF -- (4-46)
A - Pgggy = £5, i TRy = L&
o0 9Q oP oP
A A
by equating coefficients. The necessary and sufficient cond-

itions for the existence of the function F are the three

integrability conditions:

8 [P, - pda’] =3 [P, - pyda’]
aoc[ A Baa" | ao‘[ ¢ Ban]
2 [.aagg‘*T = 2 [pagga] ;
Pe aPA_ aPA apc
A Pgda ] = -2, [pa.a_g“ :
aPc 9Q" | 0Q opP

which immediately simplify to

30°30, _ 3d°3p,] . ,
[30* 30" 3atao* )

rn B B
84 8o, _ 2a'lp,] . 4 ~- (4-47)
(3G apc apcao ]

B B
[Qg Sp, _ ég.ﬂaa] -0
orP
oP apcaPA
As 1in section 2.3 we again have the characteristic structure in

these equations which leads us to define the Lagrange bracket

(LB). If A1(q,p),...A2N(q.p) is a set of 2N functions such that
the QA.pA can be written as functions of the A's, the LB of two
A's computed with respect to the canonical variables (q,p) is

defined by

8 B
[AK,AL] = [J_Q_pﬂ __a_ggg_a] =0 |, -- (4-48)

o)
0A
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where the block indices K,L,M will be reserved for the moment to
run from 1 to 2N.
Similarly, we <can define the Poisson bracket (PB) of two

functions F and G:

{F,G6} = [QE 96 _ 96 OF . -- (4-49)
99" 3p,  3q“ap,

permitting us to express the tT-derivative of a function Fl(q,p)

along an extremal in the following way:

dF Qﬁlqh + 9F p,
dt oq BpA

[QE OH _ 9H OF ]
3qA8pA BqAapA

"

{F,H} . -- (4-50)

The fundamental PB relations between the canonical variables are

b= {p,.pgl = 0 {qA.pB} = 6: , - (4-51)

{a* . g8

from which all further PB's are in principle obtainable by

algebraic processes. In particular it is easily seen that

A

ta" ,F} = 3F/3p, : {p,.F} = -dF/aq® - (4-52)

which leads to the following concise form of the canonical

equations (4-8):

ta vy = ¢" 5 tp, MY =, . -~ (4-53)

It 1is clear that all the above work is essentially the same as

that of section 2.3. As before, the LB's and PB's of a set of 2N

independent functions Ay (K=1,..,2N) form matrices which are

inverses of one another:

L
ZK[AK,AL]{AK,AH} 5, - -- (4-54)

The proof of (4-54) 1is the same as that of theorem (2.2),
although now simplified due to the absence of hypersurface
integrations 1in particle mechanics. (4-54) enables us to write

the condition (4-47) for a CT either in LB form:

A

te* ,e®1 = (P, ,P.1 =0 ta*.p.1 = & —- (4-55)

A ’ B ’
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or in the equivalent PB form:

P} =0 ; {a*,p

A 8B
te®, 0% = tp,.P,

} = % . -- (4-56)
In both cases the brackets are computed with respect to the
original canonical variables (q,p). As in section 2.3, we
characterise CT's by saying that they preserve the values of the
fundamental PB relations (6-51). Again all PB’'s between
arbitrary quantities are in fact preserved under CT's,.

In deriving the conditions (4-47) for a CT we considered the
function F in (4-45) as a function of the new variables (Q,P) and
used this to derive a set of integrability conditions. An
alternative way of viewing F is as a given generating function,
from which a particular CT may be derived. F will in general be

A

a function of the 4N variables qA,pA,Q ,P but in view of the

A"
relations (4-43) we can reduce this to any 2N of these. We now
look at four different choices of independent variables.
CLase 1
Consider the case F=-F,(q.Q), where we have inserted the
minus sign purely for convenience. Then
?1 . q“.ar1/aq“ . é‘.aF1/ao‘

=> {p, - 6F1/6qA}qA - {p +.aF1/ao‘}é‘ = 0

A
by substitution into (4-45). Since qA,QA may be regarded as

independent variables we find

p, = OF /3" ; P = -3F /30" . —- (4-57)
For a given function F (q,Q) these equations completely define a
CT. We must solve the first equation for QA in terms of (q,p)
and then substitute this into the second equation to obtain PA in
terms of (q.,p). In order to carry out the first step the

necessary and sufficient requirement which F1 must satisfy is

that



2
det |2 E-] 4+ o
3q” ag*
so provided F1
uniquely define

equation does not invalidate this determinantal condition,

a CT is a transformation of the entire phase space,

the energy surface.

Case 2
The
section 1.2,
F =
Z(Q.P) F1(q.0)
=> p, = dF. /3q"
A 2 '
Case 3
Fylp.Q) = F,(a.Q)
=> qA = -0F_/dp H
3 A '
CLase &
F4(p.P) = F1(q,0)
=> a* = -aF /dp ;
4 A !
Example (4.3)
i. F=PAqA is clearly an
function, for which we
p. = dF/3q" = p
A A

Hence this choice of F

satisfies this condition the equations

the CT generated by F1.
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(4-57)
Note that the energy
since

not Jjust of

work for the remaining cases has already been done in

so we shall merely quote the results here.

A
+ Q Py ;
A aF sap —— (4-58)
2 A )
o Ap -
ap,
p. = -3F_ /30" -~ (4-59)
A 3
A A
+ PAQ - pAq ]
o* = 3F sap -— (4-860)
4 A

instance of a case 2 generating

have

A

A g

aF/aPA = q . -- (4-61)

generates the identity transform-

ation.
ii. F=fA(q)PA is also case 2, where the f' are arbitrary
independent functions, so
p, = 3F/da" = p3f%/aq" ; o = aF/ap, =  (aq)
Thus F here generates the general point transformation
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of the a* alone.

To <close this section we now look briefly at the classical

view of the above work. Letting r=t=qN, pN=—H* the general phase

space function may be written F(qu,t,pa,H*), for which we have,

from (4-62),

*

é:BFq'a+QE+_a_£p'+aFg_ﬂ

3q® at  dp, K dt
* x %
= 8F + 9F 8H + {F,H } -- (4-62)
t OH At
where {F,6}" = dF 36 _ BF 3¢ -- (4-63)

o «
3a-dp dp 24q

{F,6} + OF 96 _ OF 96

at aH* ~ an'at

1

is the classical P8. Since we can always use (4-15) to express
*x

H in terms of the other phase space variables on the energy
surface, we may rewrite the dependence of F as F(qu,t,pa), in

which case we arrive at the classical expression (1-27):
° x %
F = 9F/3t + {F,H }
Using (4-62) and (4-63) we can compare the fundamental PB's

(4-51) with their classical counterparts:

{ = a * = a H

q .pB} {q ,pB} 63 ;

o - o * % - . N - *
{q Pyt = -{a ,H} o ; {q .pﬁ} {t.pB} ;
ta" pyt = -Le WY e 1 - e aw"

OH At
=_[d_t_gz__t_*§.u" e 1 - 2t BN
dt ot OH 3t OH. Ot

The generated transformations (4-57) to (4-60) also have their
classical counterparts, for example the case 1 transformation

reads
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8F1/at ;
- (4-64)
-8F1/6T

F1 (qultnoa.T): p

n
L]

aF1/aq° -H

o

P
o

]
1]

-0F, /0% ;  -W
Here the symbols (T,R") represent the transformed values of the
pair (t,H"). To obtain the classical case, in which time is

unaffected by transformations, we apply a Legendre transformation

to the N-th argument of F1 to obtain

“ 1y, -— (4-65)

u* e}
f = ~-tH & F1(q ,t,0
where f 1is now a case 2 generating function in the N-th compon-
ents of its arguments, but case 1 in all other components. In

this case we obtain the classical equations (1-19a):

P = d3f/3q% = 6F1/8qa :

o
Py = -8¢/80% = -3F /80”
o AR o= (4-66)
-H = 98f/0t => H - H = aF1/at :
T = -3F/8H = t

where we have used (4-58) and (4-64).

4.4 Hamjilton-Jacobi theory
In definition 3.5 we defined the 2-point characteristic
function S(Q,q) on a manifold M as the action measured along a
trajectory I' from @ to q:
sta,a) = Jridr = fep,da® -- (4-67)
noting that S may well be many-valued and deriving the results
as/aQ = -P, i 88/8q = p

, i8S = p 83" - P osa" . ~- (4-68)
In order to extend these ideas further it will be helpful to
recall a series of definitions drawn from topology.
Definition (4.4):
i. A circuit is a closed curve in M.
ii. A circuit is reducible if it can be reduced to a single

point in M by continuous transformations within M;

otherwise it is irreducible.
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iii. Two circuits are reconcilable 1if they can be transformed
into one another by continuous transformations within M;
otherwise they are irreconcilable,
iv. Two irreducible circuits are independent if they are
irreconcilable with each other.

v. A manifold M is n-tuolv connected if it possesses
precisely (n-1) 1independent irreducible circuits; 1if it
possesses none then it 1is simplv connected.

vi. A congruence of trajectories is an (N-1)-parameter
family of trajectories covering a region R of M in such

a way that precisely one passes through each point of R.

As an example of these definitions, a torus 1s triply connected,
since it contains the two independent irreducible circuits (a)
and (b) shown in fig. (4.5). The circuit (c¢) 1is reducible. A
possible congruence of trajectories on the torus would be the
l-parameter family of circuits of type (b), covering the entire
surface of the torus in such a way that none of the circuits

Cross

fig. (4.5
Now consider a congruence of trajectories filling some
region R of M. Throughout R we can associate a covariant vector
field with each point by means of the rule
= OL(q,q) /6q* , --  (4-69)
where g 1is the tangent vector at the point g to the trajectory

through d. We say that the congruence 1is coherent if for every
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reducible circuit C in R we have

Jrprdg - 0 — (4-70)
Inparticular we see from (4-66) that the family of all traj-
ectories drawn from agiven point Q form a coherent congrence.

The importance of coherent congruences of trajectories arises
from the fact that they enable us to define a path-independent

action function which 1is single-valued.
Definition (4.6): Let a coherent congruence of trajectories
be defined on R as above. Choose some fixed point Q in
R and let g be any other point in R. Now Jjoin Q to g by
an arbitrary curve C, thenthe 1l-point characteristic
function U(g) is defined by

U(gq) = / p dg* , -— (4-71)
where we must be careful to note that p is here the

momentum (4-69) defined by the congruence . and not by

the curve C (see fig. (4.7)).

fig. (4.7)

coherent congruence
In the above definition we have defined U(g) in terms of some

arbitrary curve C, but we see from (4-70) that the choice of C 1is

irrelevant to the value of U provided all such choices are
reconcilable with one another. Hence 1if R 1is simply connected

then U(g) 1is single-valued, while if R is multiply connected then

U(gq) 1is multiple-valued. Also note that from (4-71) we have

P~ = 8U/8qg~*
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so that using (4-9), U must satisfy the H-J equation:
H(q,9U/d3q) = 0
-- (4-72)
or du/dt + H' (g%, t,8u/8q%) = o

Given a coherent congruence of trajectories we can define

the surfaces of constant action by the equation
U(gq) = const. ~= (4-73)

These surfaces cut the trajectories orthogonally in the sense
that for an arbitrary displacement 6qA within one of the surfaces
(4-73) we have

p,8q" = 85U =0 —- (4-Th)
where we have used (4-71). (4-74) is the closest we can get to
an orthogonality relation between the trajectories and the action
surfaces, since only on SL do we have a metric with which to test
for orthogonality between the contravariant vectors ¢ and &q.
Note that due to the coherent nature of the congruence the change
in action in going from one action surface W to another W is
equal to the integral IPAqu taken along any curve in M drawn
from any point in W to any point in W. In particular the change
in action may be measured along any trajectory from M to W.
Bearing in mind the close analogy brought out in Rund’'s theory
between geometrical and dynamical quantities, the surfaces (4-74)
are therefore said to be geodesically egquidistant.

We shall now see that the action surfaces possess a wavelike
nature brought out by Huygen's construction of geometrical
optics, in which the wavefronts are the envelopes of equidistant
surfaces drawn from each point of a preceding wavefront. To

carry this construction over into the realm of dynamics we

suppose an action surface W to be generated from another surface

W, as in fig.(4.8).

Let O be some point on W. wWe construct trajectories I' from Q in
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all directions in M and measure off on them an action
A = U(q) - U(Q) .
where q is the point at which the trajectory through Q cuts W.

This construction gives us an (N-1)-dimensional subspace V with

equation

S(@,q) = A
which 1is itself a wavefront with Q as source. Now it is clear
from the definition of V that g lies on it. Also, if we displace

g by an infinitesimal amount 6g along the surface W, then the
change in S is given by (4-68) as p,5q": this is the amount by
which S(Q,q+dq) exceeds A. But by (4-74) this is zero. Hence,
to first order, q+8q lies within V, proving that Vv is tangential
to W at q. The subspaces V drawn from each point Q of w with
constant A therefore form an envelope which is the surface W;
these waves W are known as Hamilton's waves. This establishes
the connection between H-J theory and geometrical optics which
forms the basis of primitive quantisation. In chapter 6 we shall
take an alternative route to quantisation based on more recent
work 1in quantum theory, but primitive quantisation first
established the close link between quantum mechanics and the
Hamiltonian formulation (see addenda in Somerfeld,1928).

We now shed some light on the significance of the H-J
equation using the material developed in section 4.3 on generat-
ing functions. The canonical equations (4-8) define a set of

trajectories, precisely one of which passes in each direction
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through each point of a region of M. If, however, we extend our
interest to the cotangent bundle T*(M), we find that the
trajectories fill a region with a natural congruence: one
trajectory through each point of phase space. Given a general
covariant vector veT: the canonical equations imply that
H(g,v)=const. along a trajectory, so we are assured that a subset
of these trajectories fill the energy surface

quM{SH(q):H(q.v)=0}
This congruence on the energy surface presents a much simpler
geometrical picture than is the case in M, since now a single
point on the energy surface defines a unique trajectory passing
through that point. The effect of a canonical transformation is
to change these curves by performing a point transformation in
phase space, the PB conditions (4-56) ensuring that the resulting
curves still represent the trajectories of the system. It is
therefore desirable to find a canonical transformation
(g,v)*(Q,Vv) which transforms the natural congruence into a
congruence of parallel straight lines.
Let G(q,V) be any solution of the partial differential
equation
H(q,0G6/3q) = VN , - (4-75)
this solution being such that

3% ¢
A
oq vy

det £ 0

Then from (4-58) the equations

v, = a6/3q* ; ot - 36/3v, -- (4-786)

define a canonical transformation for which the new Hamiltonian
E(Q.V) satisfies
H(Q,V) = H(q.v) = H(q.d6/dq) = Vv, . - (4-T7)

The new canonical equations therefore read
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éu

= aH/avq =0 ; Q = aH/aVN = 1 :

V = -8H/30% =0 ; Vv = -3H/3q" =0

o N
which on integration give

o a N

Q" = a ; VA = bA ;7 & = T, -- (4-78)
where au.bA are constants and we have neglected the constant of
integration in . Thus we see that the solution of equation

(4-75) 1leads to a Gaussian coordinate system in which the
parameter 1 becomes one of the coordinates and in which all other
canonical variables are constant along the natural congruence of
trajectories. The family of trajectories defined by the equation
VN=0 cover the energy surface H=0, which has therefore been
transformed to a plane. In this case (4-75) becomes

H(q,9G/9q) = 0 , -- (4-79)
which is clearly of identical form with the H-J equation (4-72),
with the difference that (4-79) involves the function G(q,V),
while (4-72) involves the 1-point function U(q).

We may easily show that (4-79) is in fact a general form of
the H-J equation. We first note that since VA=const., the
effective dependence of G(q,V) is only on the qA. If we write
(4-79) in its classical form then we find

36/3t + H' (q%,t,86/8q%) = -A"

and using the same trick as in (4-65) to write

G = -Ht + u(q®, t) -- (4-80)
we see that U must satisfy

du/at + H (q%,t.,d8u/8q%) = 0
which is precisely the classical form of (4-72). Thus the
1-point characteristic function U(q) may be used to generate a
canonical transformation via (4-80) to a set of co-moving

(Gaussian) coordinates for phase space of the form (4-78). The
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physical momentum vectors - ie, those 1lying on SH - are those

satisfying PN =V, = 0, and are obtained by the straightforward

substitution G=U.

4.5 Transformation generators

As we saw in chapter 2, the action principle not only offers
us a compact statement of the equations of motion but can also be
used to deduce conservation laws characteristic of the system.

These are consequences of the symmetry properties of the Lagrang-

ian, and follow from its functional form. The sine qua non of

all such methods is contained in the following generalised form
of Noether's theorem.

THEOREM (4.9) - Let " be a trajectory of a system and define the
following infinitesimal transformation on configuration
space:

a-+*q + dq ,

-- (4-81)

where 5q* e.EA(q.d)

is a specific, rather than arbitrary, variation of the
coordinates, Here the E* are specific functions of

(q,4) specifying the transformation and € is a small
parameter independent of both coordinates and veloc-
ities. The transformation (4-81) represents a mapping
of configuration space onto itself, which when applied
to the curve I yields another curve differing infinit-
esimally from [I. The variation of the velocity brought
about by the transformation is given by the t-derivative
of (4-81):

54" = d(sq*r1/ar
which allows us to calculate the Lagrangian on both T

and its image curve. Suppose that the change in L under
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this transformation can be expressed as the total deriv-
ative of some function:

5L = L(a+6q,9+84) - L(g.q)

= € dF(q.,q)/d~ , -- (4-82)
then L is said to be guasi-invariant under (4-81) and

the quantity E'p, -F(q,q) is a constant of the motion

along ', where p is the momentum corresponding to q.

We know from (3-90) that the variation of the
action integral under (4-81) 1is given by
3I(r) = (p, 5q*1 1113
provided [ is a trajectory. On the other hand &I is
also equal to the integral along " of the variation &L
of the Lagrangian, and we suppose that this is given by

(4-82):

8I(M) = [.5L(q,4)dT = [eFlq.q)13
equating these two ways of computing 3I(l') we obtain an
identity valid for all paths [:
(p, 80" - eF1? =0 ,

expressing the quasi-invariant nature of L. Thus the
bracketed factor has the same values at both endpoints
of I' and so also at all points of a given state of
motion. Using (4-81) we therefore obtain

EA(q.Q)pA - F(g,q) = constant of motion. -- (4-83)

QED

(4#.10) (Noether's theorem) - If F=0 in theorem (4.9)

then L 1is said to be simply invariant under (4-81) and
we obtain
EA(Q.C'{)DA = constant of motion . -- (4-84)

If the EA are chosen to depend only on the coordinates
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qA then (4-81) describes a point transformation, and the

resulting constant of the motion will be linear in the

conjugate momenta P, -

One immediate application of Noether's theorem is in looking
at infinitesimal generators, but in order to do this we shall
first have to backtrack slightly to the work of section 4.3, In
(4-61) we saw that the choice of the case 2 generating function

F2=qAPA generates the identity transformation. Hence we can

generate infinitesimal transformations by means of the infinit-

esimal parameter € and the arbitrary function G:

_ A
Fz =q P, + €G(q,P)

From this we obtain

A _ = A ]
o? - aFZ/aPA q + eaGlaPA :
A A
P, = 3F2/6q = P, + €dG/0q
and hence to first order in ¢
5a* = eBG/pr : 6pA = —eaelaqA . -- (4-85)

or in an alternative notation, using (4-52),
5a* = ef{q*.6} 5p, = elp, .G} . ~- (4-86)

Equations (4-85) and {4-86) describe an infinitesimal contact
transformation, and G is the generator of the transformation.

We shall now look at the generators of a number of
infinitesimal transformations arising from possible symmetry
properties of the Lagrangian. We consider three distinct
symmetries: these are associated with the requirements that
there be no preferred origin of the coordinates, no preferred
orientation of the axes, and no preferred zero of the parameter
T. The first two of these correspond to the symmetry

transformations of translation and rotation, which constitute the

inhomogeneous Lorentz group. In order to make this
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correspondence clear we shall imagine the coordinates q to be the
concatenation of the spacetime coordinates g® of a system of N
particles in the manner described in the discussion of many-
particle systems at the end of section 4.2. In this case the
coordinates will be labelled q*®, the block index labelling the
particle and the 4-index labelling the spacetime coordinates of
each particle; again we shall make all summations over block
indices explicit. We now study in turn the effect of each of the
above mentioned transformations on this system.

i, Iranslations
We assume the Lagrangian to be unaffected by a translation
of the coordinates which is the same for all particles:

Lia*?+e? ,4) = L(q.q) . -- (4-87)
The transformation qA'-qua+ea is an example of a geometric, or
point, transformation in configuration space, and thus leads to a

constant of the motion according to Noether's theorem which is

linear in the momenta. Since €* jis assumed arbitrary we obtain

from (4-84)

.Aa __ _
. tApAa = [AaL/aq = const. (4-88)

p

1)

where Pa is the total momentum of the system. On the other hand

for an arbitrary function F(qg,p) we have

a a Ab
€ {F.Pa} [Ae 9F/dq .aPa/apAb

eaEABF/BqAa . -- (4-89)
which is the total change brought about in F by the spacetime
translation €*, je, precisely the transformation in (4-87). Thus

Pa is the infinitesimal generator of the translations (4-87).

ii. Rotations

An infinitesimal rotation of the spacetime coordinates is

represented by the infinitesimal antisymmetric tensor wab=—wba

s0 we accordingly assume
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A Ab LA . .
L(g a+wabq . 9 a+waqub) = L(gq.,q) . -- (4-90)

Once again this is a point transformation, and so by (4-84) leads

to a constant of the motion linear in the momenta. Since the wab
are arbitrary this constant of the motion may be written as
wbaM ., where
ab
M = L q pA = I qA oL = const. -- (4-91)
ab A%[a" b} A [aanbJ
Mah is the total angular momentum of the system, and is the
infinitesimal generator of the spacetime rotations (4-90):
wPA{F,M ) = obcr [RE M, Qﬁibéﬁ
ab A anCa a Ca
pAc Q pAc
ba A A
= w I
A [QEA[bqa] - QE [apb]
9q dp,
- w“zA [QEA[qu] + AF [pr ]] . -- (4-92)
aq a apA a

which 1is the total change brought about in F by the spacetime

rotation (4-90). From the above considerations we see the

importance of the infinitesimal generators Pa, M b since they
a

represent the Lorentz nature of the spacetime manifold. The

system of particles q** forms a 4N-dimensional manifold which has
no inherent relationship to spacetime: it is the generators
which "group the coordinates into 4's” and yield the transform-
ation properties required of spacetime.
iii. Parameter transformations

The final transformation we shall look at is generated by
the Hamiltonian H. To obtain this transformation we substitute

6t and H for € and G respectively in (4-85):

ﬁAaGT :

sqh? - GTBHIBpAI

5p 51dH/AG

Aa

[}

pAaGT

n

or alternatively
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Aa Aa

5q = &6t {q °,H}
-- (4-93)
& =
Pa R {pAa,H} .
where we have made use of the canonical equations. Thus we see

that H is the infinitesimal generator of the dynamical develop-
ment of the system with respect to T; the evolution of a system
may, as in the classicgl case, be considered as Hamilton's
"continuous unfolding” of a contact transformation whose
generator is the Hamiltonian. Now suppose the Lagrangian is
parameter-invariant:

L{q+48t,4+q8t) = L(g.q) .,

then Noether's theorem says

.Aa
Lya Py

const.
a

and hence H [AdAap - L = const. ,

Aa

which is in any case clear from (4-50).

Note that a form of Noether's theorem may be expressed
within the Hamiltonian formalism in a very straightforward way.
Suppose the Hamiltonian is unchanged by some transformation
generated by the quantity G, then 3H is proportional to {H,G},
which 1s therefore zero. But this is precisely equivalent to
saying that G is a constant of the motion:

dé/dt = {G6,H} = 0
Thus the relationship between symmetries and conservation laws is
immediate in Hamiltonian mechanics. We shall look at this in
more depth in chapter S.

Up to now we have looked at the infinitesimal contact
transformations defined by (4-86), but each of the examples
considered above also possesses a finite form: the finite
translations and rotations and the development of a system along

a finite parameter interval. Suppose we are given an initial
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state of a system (qo,po) and its infinitesimal change in terms
of an infinitesimal contact transformation
A A
59" = b5e{q" ,G} 5p, = be{pA,G} ,

and we wish to calculate this change for some finite value of the

parameter e. We can do this by means of a Taylor expansion in e€:
sa* = etqh .6} + £¥{{a".61.6} + ...
2!
but there is a problem to be overcome here. Both the generator G

and the PB's themselves are evaluated at the point (g.p) in phase
space, which will change as we move away from the initial values
(qo.po). However, we know that the PB is invariant under canon-
ical transformations, so we cah equally well evaluate it using

the (qo,po) system. In addition the generator G is a constant of

the transformation, since from (4-85)

dG(q,p) Q_QAQ_QA + 96 do,
de 99" de apAde

=§_§.A.i‘3_ _ 96 26
9a"3p, dp, dq

= 0

and so can also be evaluated at (qo,po), In this way we can view
the values (q,p) as being generated from (qo,po) by a finite
transformation built up from a succession of infinitesimal

contact transformations:

. 2 .

Q= a, + e{qo.G(qo.po)} + %l{{qO,G(qo.po)},G(qo.po)} + ...
= 2

P Po + e{po.G(qo.po)} + %'{{po.G(qo.po)}.G(qo.po)} + ... )

all PB‘S being evaluated at (qo'p )‘ We can also develop a
o

similar expansion to represent functions on phase space. Let
F(q.p) be such a function with a specified functional form and

define F =
e o'F(qo'po)' Then we have

5F(q.p) = [QE 86 _ AF 36 ]| &
aq“apA apAan
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= 8¢ {F,G} -= (4-94)
- - 2
=> F(a,p) = Fo + e{Fo,G} + %|{{FO,G},G} + ... , =- (4-95)

all functions and brackets on the RHS being evaluated at (qo,po).
The finite transformation of the canonical variables (q,p) is
clearly a special case of (4-95), obtained by taking F(q,p)=q and
F(g,p)l=p respectively.

Sudarshan and Mukunda (1974) give a more compact notation

for expressing these results. Given the generator G(qo,po) we

define the 1linear partial differential operator G(g_,p_)
o'"o

associated with it in terms of its action on an arbitrary phase

f ti :
space function F(qo,po).

G(qo.po)F(qo.po) = {G.F}(q . -- (4-96)

O:Po)
The operator GEG(qo.po) is designed to act on functions of
(qo.po). in which case it yields the PB of GOEG(qo.po) with these

functions. The canonical transformation generated by Go takes FO

into Fl(qg,p) according to (4-95), which using (4-96) can be

written
Fl(a.p) = F - eG F + ng G F -
o o 0 21 0 0O

= exp{-£6 , , -- -97
o} F(qo po) (& )

with the special cases

= exp{-e6G . = - - -

a pi o} a, i P exp{ eGo} . (4-98)

Combining (k—97) with (4-98) we can write the simple equation
F[exp{—eéo}(qo,po)] = exp{—eéo}F[qo,po] . -- (4-99)
Using this notation it is clear that the set of all canon-
ical transformations generated by some generator G(q,p) form a
coAtinuous group. One important example of such a group is
provided by the dynamical development of a system. We saw in

(4-93) that the Hamiltonian is the infinitesimal generator of
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this development, and we now see that the equations of motion
describe a continuous 1-parameter group of transformations in
phase space such that

(g.p) = exp{—réo}(qo,po) . -- (4-100)
As (qo.po) is allowed to vary over all of phase space, so
exp{-réo} acts as a t-dependent canonical mapping of phase space
onto itself. If F(q,p) is a dynamical variable with a given form
then its parameter dependence is given by

Flg{t).,p(t)]l = exp{-rQO}F(qo,po) . -— (4-101)
This formalism leads to two major subject areas which have
developed out of Hamiltonian mechanics. In the first place it
forms the basis of a form of perturbation theor; developed by
Kilmister and Reeve (1966), although their notation is slightly
different from ours. In the second place, if the function F 1is
such that its 1integral over phase space is unity, then it
describes the state of the system at a given t-instant in a
probabilistic manner. (4-101) then describes the t-evolution of
this state in a way which could lend itself to a fully relativ-

istic treatment of statistical thermodynamics.



142

CHAPTER 5
CONSTANTS AND SYMMETRIES

Having developed the general theory of homogeneous mechanics
in the previous chapter we now look in this chapter at a major
application of analytical mechanics in the area of symmetries and
conservation laws. The fundamentals of the subject were studied
in section 4.5 and we shall develop these ideas later in this
chapter, but first we look at an alternative route to the
symmetries of a system which arises from the study of the

Hamilton-Jacobi equation.

5.1 The Hamilton-Jacobi method

We saw in section (4.4) how a solution of the H-J equation
may be used to transform to a new set of coordinates and momenta
forming a Gaussian system in phase space, in which the energy
equation becomes simply PN=0. One such solution was seen to be
the t-point characteristic function U(q), but the 2-point
function S(@,q) is also a possible solution. This is clear from
the properties summarised in (4-67) and (4-68); indeed from
(4-68) we see that S satisfies the two equations:

H(g,8S/0q) = H(Q,-9S/0Q) = 0

(Here we have dispensed with the bars of section 3.5, since we
assume (q,p) and (Q,P) to lie within the same coordinate patch.)
We can obtain a single-point function from S(Q,q) if we imagine
the Q's to be a set of constant initial values aA labelling the
trajectory TI' along which S is measured. At first sight this
seems to be a much less general solution than U, which may be
defined in terms of any congruence of trajectories (not merely

those converging at the point a). However, the solution S(a,q),
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where the a* are arbitrary constants, may also be regarded as any
solution of the H-J equation if we take as independent variables
the 2N quantities (aA,qA), of which the first set do not appear
explicitly in the equation.

The Hamilton-Jacobi (or H-J) method is a technique for
getting round the integration of the ordinary differential
equations of motion by working instead with the H-J equation.
Thus the problem of motion is reduced to finding a complete
integral of the H-J equation. The basis of the method lies in

the following theorem.

THEOREM (5.1) (Hamilton-Jacobi} - Let S(a,q) be any complete

integral of the equation
H(q,9S/9q) = 0 , -- (5-1)
the quantities a” being arbitrary constants. Now let b,
be a further set of constants, then the equations
B B

bB = -0S/da Py = 0sS/9q -- (5-2)
define a congruence of curves on phase space. If we
choose a suitable parameter T along these curves then

the curves of the congruence are the trajectories of the

canonical equations

& = dH/dp, : b, = -OH/dG* . -- (5-3)

PROOF: The first point to note is that we necessarily have

the two determinantal conditions

det |_8%g =0 ; det |_8%s =0 . -- (5-4)
dq*aq® dq" 8a®

The first follows immediately from the relation (5-1).

However (5-1) holds at every point of the energy

surface, so if we choose the particular point qAaaA we

can be sure that an algebraic relation also exists

between the aA and pA. Hence the pA cannot all be
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independent of the a* and the second condition (5-4)
follows. We shall assume both matrices of coefficients
in (5-4) to be of rank N-1, since this is the case of a
system with no constraints other than the energy
equation.

Given the equations (5-2), the solution of them
consists in inverting the first equation to obtain q as
a function of (a,b), then substituting this into the
second equation to do the same for p to obtain

qQ = Q(a,b) ; p = P(a,b) = as/aq|a(a'b,
Thus for a constant set of a's, the first of (5-2)
defines a mapping from the space of g's to the space of
b's, and the solution procedure consists in inverting
this mapping. However the second condition (5-4) denies
the possibility of carrying out this procedure, so the
most we can hope for is to split the phase space into
fibres of the mapping. Since we assume the rank of the
matrices in (5-4) to be N-1, the "rank theorem” of
analysis ensures that for an arbitrary constant choice
of aA these fibres comprise an (N-1) parameter cong-
ruence of curves in the space of coordinates (see, for
example, chapter X of Dieudonné, 1960 for a discussion of
the analytic provisos contingent to this theorem). Each
of these curves in qg-space is mapped to a single point
in b-space. Along each curve we can now choose a par-
ameter T in some smooth way, so that any position q 1is
uniquely defined by the N+1 quantities (bA,r), The

statement of the Hamilton-Jacobi theorem is now that

with an appropriate choice of 1T the fibre curves of this
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congruence satisfy the canonical equations (5—3).1
Now let (qg(t),p(Tt)) be some solution of (5-2).
Differentiating (5-1) with respect to a and q respect

ively we find

aH _®s =0 ; @8H+dH _3°s =0, -- (5-5)
B 0O
apA anBaB 9q Pa anan
and differentiation of (5-2) with respect to tv gives
o0 = _3%s & b, = _0°s gt . -~ (5-6)
A
dq da® BqAan

Combining the second of each of these two sets of
equations we have
b, + dH = 3%s [d“ - ﬂ] ) —- (5-7)
3q®  3q*aq? op,
Now from the first of (5-5) and (5-6) we see that both

q

and OH/Op lie in the null space of the mapping defined

by (5-2), which from the above considerations has dim

ension 1. Thus we must have
OH/%p = A§
for some real number A. Substituting into (5-7) we find

in addition that
OH/9q = -Ap

As in Synge's theory, we can always change parameter 1
these equations in such a way that A transforms to 1.
Thus the canonical equations (5-3) hold, but gﬁ;x for
the specific parameter 1 which sets A=1. The mapping
(5-2) defines the trajectories, but not the parameter
we must choose the particular 1t defined by the Hamil-

tonian in (5-1) to ensure A=1. This in turn will be

1I am grateful to my supervisor Dr.Dampier for

clarifying this aspect of the H-J theorem.

n
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specified by the particular dynamical problem with which
we are concerned.

QED

The Hamilton-Jacobi theorem shows that in order to solve the
Hamiltonian problem (5-3) all we have to do is to find any com-
plete integral of the H-J equation (5-1), which then gives the
solution via the equations (5-2). This solution will involve 2N
constants (aA,bA), but not all of these are independent. First,
since (5-1) only contains the derivatives of S, S can only be
determined up to a purely additive constant which has no effect
on the equations (5-2). If we select this constant to be a"
(1<M<N) then it may be ignored. In addition the substitution of
this constant into the first of (5-2) yields bM=1' so the con-
jugate quantity bM may also be ignored. It may be convenient (as
in classical mechanics) to choose the set (au.bu) as the indep-
endent constants, or alternatively the problem may suggest some
other <choice - as in the example (5.2) given later in this
section.

Before tackling an example using the H-J method it will be
convenient to look at two ways in which the technique can be
simplified for certain classes of systems. The first of these is
the method of ignorable coordinates. One of the qA is said to be
ignoraﬁle if H does not contain that coordinate explicitly. Sup-
pose the particular coordinate q" (1€§M<EN) is ignorable in a given
problem for which the H-J equation reads

H(q,dS/9q) = O
To determine a complete integral we write

M M
a

S = g + K , (no summation) -- (5-8)

where K is a function of the constants aA and of all coordinates

qA except the particular coordinate q". K is then a complete
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integral of the equation

Hia', .. .q" '.q" Y, ... q" . eksaq' ... . a", .. 8k/3q") = 0 |,

and the integrals of the canonical equations are given by

M M
M q + aKlaaH : Py, = 2

!
o
"

and -b

A T aK/aa“ : p aKlan , for all AzM

A

Notice that the top pair of equations appears somewhat similar to
the trivial transformation (1-16), with coordinates transformed
into momenta and vice versa. This arises because of our use of
the 2-point function as the generating function in (5-1). In the
classical case (1-21) we chose a case 2 generating function
S{q,P), which maintained the position/momentum distinction.
Since this distinction is largely nominal we prefer to use the
case 1 function S(G,q), which illustrates more effectively the
physical setup behind the H-J method.

The second simplification we can sometimes make to the H-J
method occurs if we can express S as the sum of functions of
separate coordinates, each function involving just one of the qA
(plus the constants aA). In this case the system is said to be
separable in the particular coordinates chosen. Many important
classical systems admit separable solutions, and it is always
worth trying for this simplification, especially as separability
is not merely a property of the system, but also of the

particular coordinates used to describe it.

Example (5.2) - The relativistic Kepler problem,

Consider a particle of mass m and charge e in the central
electrostatic field of a stationary charge e' at the origin in
Minkowski spacetime. The H-J equation for this problem is

obtained immediately from (4-32):

gab FZ& - eAa] [§§% - eAb] s+ m? =0 , -- (5-9)

3z oz
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where Aa = (0,0,0,e'/7)

Using spherical polar coordinates we obtain

[§§]2+ 1 [,@;]2+_1_ [_Q;s._]z— [ﬁ - ee']2+ m = 0.-- (5-10)
dr 2 |08 2 .2 g ot T
T r sin 8

Here ¢ and t are ignorable coordinates, so if we assume a separ-
able solution it will take the form

S = a, + 51(r) + SZ(B) + 33¢ + a‘t -- (5-11)
and substituting this into (5-10) we find

[65 ] + 1 [85 ] + _iéaii_ - [a‘ - ee']2 s+ mt =0

ar 2 o8 2sinle r
> o2 §_§12—a4—e'2+m2=—[g§22—__(_3312
or r o8 .~ 2
sin 8
_ 2
= (az) ,
where a, is a separation constant. Hence
o I R LR Y
or r r?
) ) ) -- (5-12)
Fﬁg] + (a )" = -(a,)"
a8 sinze
where we therefore have
S - . =
1 81 (r, a2 ,a‘ Y S2 S2 {8 .a2 '33)

Using the above results it is possible to draw certain con-
clusions which enable us to simplify the situation greatly. From
{5-12) we see that

p, = 35,/98 = f{—[(az)z + (aa)zlsinzﬂl} .

but on the other hand p2=mrzé, sO

bz = Lialzcose.é = 2mrr8 + mr @
. 3 .
p251n 8
=> 2 = (a l gosﬂ - 2mrr@ ]
mr? mr 31n 8

Thus when the simultaneous conditions 8=w/2, é=0 are fulfilled H

is necessarily zero. If the particle is at any instant moving in



the (x,y) plane then it will continue to do so for all time. We
can therefore simplify our problem by setting 0:=w/2 and eliminat-
ing it from our calculations. In this case p2=0 and we obtain
the relation
2 2
(aa) - —(az) ]
so the assumed solution (5-11) becomes
S = a, + 51(r.as.a‘) + a3¢ + a‘t . -- (5-13)
Substitution into the H-J equation then vyields
{§§1}2 - 2, - ee’'1? nF = —[33]2 , -- (5-14)
or r r
which on integration gives
81 = [/f(r).dr ,
2 > 2 -- (5-15)
where flr) = [a‘ - ee ] - [33] - m
r r
The solution of the Hamiltonian problem is then given by
-b, = ¢ + S = ¢ + [a_ _du ; A
3 —
8a3 \[f%(r)
-b, =t + 9SS =t + [{ee'u-a } du ;
b da 2 ¢ -- (5-16)
4 u S F(r)
P, =23, i P =3
P, = Jflr)
= f{[(ee')z-(a )2]u2—2ee'a u+{a )z—nF} ,
3 4 4 /
where u=1/r

is the usual substitution taken from celestial mechanics.

At
lify the coming work. These are:
E = —al' : h = a3 ;
a = (ee')?- n? i b = 2ee'E ; c =
w2 = —a/hz = 1 - (ee'/h)2 7 B = wb3
The rationale
closer examination of (5-16),

energy

E

2 2

- m ; -
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this point we define certain constants which will simp-

(5-17)

behind this choice of symbols becomes clear on a
where we see that E is the total

of the orbiting particle and h is the angular momentum.
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In this notation the equations (5-16) now take the form

—b3 = p + [ hdu :
J f(au2+ bu + c)
-b4 = t + (ee'u + E) du : -- (5-18)
J uzf(au2+ bu + c¢)
p. = h ; p = -E ; p, = Stau’ s bu + ¢)
3 ! 4 ! 1

and a lengthy integration leads to

b, =@ - _h__ sin_1[_23_ub_] ; —- (5-19a)
/(-a) J(b%- 4ac)
2 2 . . =1
-b, =t - J{au +bu+c) - _m'ee sin bu + ¢ ]. -- (5-19b)
u (-c)3/2 uf(bz-kac)

The second of these will clearly not admit of an immediately
illuminating solution, and indeed the Newtonian Kepler problem
does not possess a closed solution for r in terms of tf SO we
concentrate our attention on the equation (5-19a) of the orbit.
Turned "inside-out” this gives

2au + b = sin [/(—a) (w+b3)] ,

f(bz— Lac) h

and using the constants (5-17) we find

u = A sin(wp+B) + ee'E ,
2 2
. nw -~ (5-20)
2 2 2 2
where A” = b - 4ac = E - mw
2 2 &
ba h w

The solution (5-20) is in many ways similar to the solution
of the classical Kepler problem. It consists of a constant term
involving the energy E and anguiar momentum h plus a sine term.
Here, however, a major difference occurs, since the orbit will
only be closed if w is a rational multiple of 1/w. In the
classical case w=1, since a factor c"? is involved in its def-

inition, and so the orbit is aways closed when finite. In order
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to compare this with the relativistic case we now seek the finite
orbits of (5-20).

First of all, we clearly require w2>0. If this were not so
then w would be imaginary and the solution would be hyperbolic -
either spiralling into the origin or spiralling out to infinity;
neither case has a classical counterpart. In the case w=0 the
sine term vanishes and the orbit is a circle of radius R given by

1l _ ee'E .
R - 2 2 -- (5-21)
h-w

Now for the orbit to be finite we require the radius r to oscil-
late between two extreme points at each of which p1=0 (or, more
strictly, t=0). These extreme values are therefore given by the

expression

au2+bu+c:=[)
=> u = -b =+ f(bz- bac)
2a

and substituting into this from (5-17) we find
u = ee’'E £ A
h2 UJZ
Clearly only those solutions corresponding to positive values of
r and u will be meaningful, in which case the condition for a
finite orbit is

ce'E/(h°w?) > A

=> Ez(ee')2 > hz{Ez— mzwz}
=> E <m , -- (5-22)
where we have used (5-17). Note that we could have cbtained

(5-22) directly from (5-20); we use the above approach merely to
illustrate a more general method. When condition (5-22) is
fulfilled the orbit will be finite, but in general not closed. r

is a function in ¢ of period 2w/w, and w<1; the values of r do
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not begin to repeat until slightly after the radius vector has
made a complete revolution. The advance of perihelion in one
revolution is

2m(w ! - 1)

Ap = 2uw/w - 2w

w (ee'/h)2

&

provided this last fraction is small.

5.2 Lie groups

Many of the ideas related to Hamiltonian mechanics can be
expressed compactly in the language of Lie groups. A Lie group
is basically a manifold with a group structure defined on it; put
more formally, it is a topological group in which there exists
some neighbourhood of the identity which is homeomorphic to an
open, bounded subset of BN. There are many types of represent-
ation of Lie groups, but what we shall be concerned with here is
the Lie group of transformations of some N-dimensional manifold
M. In fact, in any particular discussion we shall restrict our
attention to the 1-parameter family of point transformations
indexed by the real numbers:

a = aa), -~ (5-23)
where we assume that the family G1={qe:e is a real number} forms
a continuous Lie subgroup of transformations. Finally, we assume
the existence of a suitable number of derivatives of qe in the
neighbourhood of the identity.

The analytic dependence of q_ upon e implies the existence
of the infinitesimal transformations: Let qo be the identity
transformation, then for a small change de in the parameter we

have
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q

= q + da _{(q)].de
>
de
o
Now let E(q) = gge(q) , -- (5-2¢)

de o

then the infinitesimal transformation can be written

—A A

Q* = + Blde | -~ (5-25)

> Qa

where the functions & (q) define the transformation locally. We

can construct the global (finite) transformation (5-23) from the
EA in the following way: The EA attach to each point g in M a

direction field defined by

de = da' = da® = ... = dd" , -- (5-26)
E1(q) Ez(q) EN(q)

which is equivalent to the following set of first-order differen-
tial equations (DE's):

dq* 7de = E*(q) . —= (5-27)
Integration of these equations generates a unique curve qf(e)
through each initial point, along which the higher derivatives |

corresponding to (5-27) are

£ = 28" ad® = & . -~ (5-28)

de? an de

Therefore, for E close to the initial point q, we have

S8 S -- (5-29)

A
= qg + €& (q) + B

INR L)

This power series will in general converge in some neighbourhood
of €=0 and represents the global transformation within the neigh-
bourhood No of convergence. Proof of the group properties of
(5-29) within N0 is straightforward.

The integral curves of (5-27) are referred to as the traj-
ectories of that equation, and form a congruence on No' We can
label the trajectories using the N-1 functions uu:

u (q) = c® = const. ' | -- (5-30)

where each collection of N-1 values cCx defines the curve which is
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the intersection of the corresponding N-1 hypersurfaces. The

uol(q) are called inptegrals of (5-26) and (5-27); they have the

property, following directly from (5-30), that they are
invariants of the transformation (5-25). An invariant is any
function ¢ with the property that it is constant along all
trajectories of (5-27), 1ie:

®(a) = vl(q)
Since for the infinitesimal transformation

®(q) = plq) + deE'dp/aq’
a necessary condition for p to be invariant under (5-25) is that

it satisfies the associated partial differential equation (PDE)

~

Up = E*ap/sag = o . —— (5-31)

This may also be shown to be a sufficient condition (see for
example Bluman & Cole,1974). U is called the infinitesimal
. A
generator of the group G1. Under a change of coordinates qA+ q
(5-31) transforms into the new form
S T LA A
U'p = (Ugq' ) d¢/dq ~- (5-32)
provided ¢ is a scalar quantity (see Bluman & Cole,1974).
The importance of invariant functions lies in the fact that

they enable us to test for a variety of types of symmetry of a

system. A symmetry in this sense is a family of points which is
mapped to itself under the group G1. As an example, consider a
specific curve c® defined by (5-30). Under a transformation
(5-23) the <curve 1is "shifted” a distance € along itself, so

although each point of the curve 1is affected by the
transformation, the curve as a whole is not. In the same way any
independent collection of invariant functions u® defines an
invariant domain on M, where a varies from 1 to some number n<N.
If n=N then (5-30) defines an invariant point; if n=N-1 then

(5-30) defines an invariant curve:; and if n=N-2 then (5-30)
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defines an invariant 2-surface. Analytically, we can obtain the
x

condition for a collection u~ (1<€a<n) to represent an invariant

hypersurface from (5-31):

uq(q) cCx is an invariant hypersurface iff

o o « o -- (5-33)
Uu = 0 when u = ¢ {(not all u A S zero).

Note that the case of the invariant point (n=N) is a special one,
depending on the particular group considered, whereas we are
assured of the existence of N-1 integrals u® since each member of
the congruence of integral curves is an invariant curve. The
general invariant is then written
1 = 1(u%) . -~ (5-34)

In view of the obvious relevance of the above to dynamical
systems it was natural in the context of classical mechanics to
attempt to incorporate time symmetrically into the transforma-
tions of the group G1; this led to the development of the extend-
ed theory of Lie groups. Consider the situation where we adopt
one of the coordinates - qN=t, say - as the dynamical parameter.
In this case the equations (5-23):

a = a_a) = alq%,t) -- (5-35)
directly affect the dynamical parameter, and the resulting
changes in ¢ must be taken into account. Let

qa® = q%(t)
be an arbitrary curve in M, then under (5-35) a new curve

q% = q%(t)
is generated (note how Lie's theory contained implicit reference
to arbitrary transformations of time more than thirty years
before the advent of relativity). The tangential directions to
this curve transform in the following way:

= - . ol
Q =dga = q dq = q q + q
dt P
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Thus we obtain the extended transformation defined in terms of

(5-35):
au = Eu(qu,t) : ; = ;(qa,t) :
5 =.2f,sdﬁ ra® -- (5-36)
ter.Y + t.N |

These transformations form a group of necessity, since (5-36)
simply expresses a special formulation (the "classical decomposi-
tion") of the general Lie group transformation (5-23). The point
about (5-36) is that it extends the effect of the N transforma-
tions (5-35) to a transformation on the extended space M' of the
(2N-1) variables (q*,g%).

For the investigation of invariance properties in M' it is
again wuseful to look at the effect of infinitesimal transforma-

tions (5-25) on M'. The infinitesimal form of (5-36) arises from

the local transformation

i a - N
qu = qq + E de ; t =t + E de

with infinitesimal generator

~

uf = E%3¢/8q% + €'3¢/3¢

o

From this the transformation of ¢ follows:

E“ = dgq + dequ
dt + dedEN

= a% ., deéq

1 + detV

='ﬁu + de {éa _ dqéN} '

using which we can write down the form of the infinitesimal gen-
erator 6' in M':

s = tfafrsaq" + n“af/3q" -,
where nu = {E° - duéN}

- 9% . aB[E“ - gg"a“] —- (5-37)

!
o
R
Q.
™
m
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-~ -

U' is called the first extension of the generator U. This def-

inition may easily be extended to higher derivatives, but (5-37)
will suffice for our purposes.

Using the extended infinitesimal generator we can now
formulate the requirement that a system of DE's must fulfill if
it admits a group of symmetries. The most general system of
first-order DE's needed to define a congruence on M may be writ-
ten

Ua(qu.t.da) = ¢ = const. -- (5-38)
In M (5-38) defines a congruence of integral curves, but in M' it
defines an N-dimensional hypersurface generated by the integral
curves. The system (5-38) is said to admit a given group G1 of
transformations if the effect of all elements of G1 is simply to
transform the integral curves of (5-38) into one another. A
necessary condition for this is that the hypersurface (5-38) 1is
transformed into itself under all members of G1, But this is
also a sufficient condition, since (5-38) may be regarded as
defining the tangent direction of the integral curves at all
points of M, Thus by using the condition (5-33) for the invar-
iance of a hypersurface we see that (5-38) admits the group
generated by EA iff
v u® = efau® + nfay®
g agP

u
o

f

-- (5-39)

whenever u® (qA.'ﬁ) c®

5.3 Application to symmetries in mechanics

The ;xtended theory of Lie groups has recently been applied
(Prince & Leach,1980; Leach,1981) to a number of problems in
classical mechanics in order to calculate symmetries. This

method has the advantage that it yields a number of symmetries




which are ignored by Noether's theorem - notably the

vector for the Kepler problem. Before attempting to

Lie method in the notation of homogeneous mechanics

summarise 1in this section the findings in the two

mentioned above.
Suppose we have a (classical) Lagrangian L(qq.d

system

endre transformation
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Runge-Lenz

recast the

we shall

papers

,t) for a

and a Hamiltonian related to the Lagrangian by the Leg-

Q a a .q
H = - .
(q 1Py t) 47p, L(g7,qa,t) ,

where Py = aL/aa“

o -- (5-40)
and for which q - aHlapa = 0 ;

, x

Py * OH/9q = 0O

The general infinitesimal generator for the Lagrangian formula-

tion may be obtained directly from (5-37):
A Q A .t .QeN .
E (q%,t18/3a + {E° - %€ 13/36" ,

which by application of

onical coordinates (qA,pu):

EAQ_ + w_ 9 .

Ta
Ulq .pu.t) = an “5;
o §

+ {éB - dBéN} 62L ]

o A a2
where vu(q .Pq.t) = E°_9%L =
9q 9q

anadu

(5-41) may in turn be extended to include the variables du,bc

repeated application of (5-37):

-

A A o
U'(q ,p.) = £ 9 + w3 + E'D + 7' 9 ,
o A a —a T
dq dp, 99 é)p'al
where E'% = {éﬂ - Qﬂén}
= 9% + aH QE.“—LH[L&"+Q!1 g:e."],
ot BpB an 8pu ot apB an
e iq - ﬁuéN
=31, + 24 2 +§_ua[ﬁ"+_a_u gg"]
9t apB 3q dq |ot 6pa an
- OH, Ow
3qﬂ apg .

(5-32) may be transformed to the can-

(5-41)

by



159
and where we have substituted from the last two equations (5-40).
Having calculated the extended generators (5-41) and (5-42) we
now seek those point transformations in phase (qA,pq) space which
will 1leave the form of the canonical equations in (5-40) invar-
iant. The infinitesimal condition for this is given by

U'(éQl - aHlapu) 0 whenever da 6H/8p0 o ;
- (5-43a)

U'(bu + aH/aq“) = 0 whenever éu + BH/BqOl =0 ,
or alternatively
a - .o
£ - U 3H/dp, = O whenever 4 - dH/dp, = 0 ;
- « o -- (5-43b)
n'u + U 3H/9q = 0 whenever bu + OH/0q = 0

We are now in a position to apply the above method to the
special case of the classical Kepler problem (see Leach,1981).
Here the Hamiltonian is

2 .,
H=p"/2m - ee’'/r -- (5-44)

and the canonical equations take the form

.o . .
qQ - pq/m =0 ;i py + ee qu/r3 =0 ,
2 a o 2 2 2 - (5-45)
where r = gq = X +vy + z
Here o takes the range 1,2,3, and N=4&4. Leach makes the unusual

choice of Cartesian coordinates for the Kepler problem because of
certain simplifications thus incurred in the following calcula-

tions (see section 5.4). Applving (5-42) to (5-45) we have

g% - Upu/m = 0 ; w'a + ee'U(qu/ra) =0
=> &% - g /m=0; w_ + ge'gﬁ[é - 39“93] = 0. -- (5-46)
a a r3 af rz

Since the coming calculation is a little tedious, we had
best summarise what we are doing beforehand. The first of
(5-46), together with (5-42), gives us an expression for T in
terms of E*, which may then be substituted into the last of
(5-42) to obtain v'q in terms of E°. But the secdnd of (5-46) 1is

also such a relation, so we can equate these two expressions for
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"'u in (5-47), and by equating powers of g and p obtain the final

solution (5-54) for E? .

m = mg'® = maE® + p.3E® - p 3E* - p p.BE
o FagP %t "‘m'aaq‘3

ot
=> w'u = ee;EB (3qaqB - bquYqY)
r
- % o oy 2% - p 25t - g O
2 B 2 m 8
ot 9q ot ot 9g ot
+ p, [m_d%c® + p__2%g% - pu_éiif -po_ 8¢
mP [ B BN B m Y B]
dtdq 9q" 9q 0tdq 9q '9q
., B o 4 4 4
- ee'a” [9E, - &_o0E - p OE. - B ]
o3 [aqB OlBat mqaqB uBﬁy%ﬁw
+ ee'gu [ﬁ‘ + gﬂigl’ -- (5-47)
3 9t m B
r 9q
Equating terms in p3 and pz in (5-47) now yields the basic forms
of EY, E‘:
( 3 2_4&
P ) 0 = - EGE§EY QE
m Bqﬁaq'Y
(p): 0 = - 2p.0g 2’et . p , 22E%
aqﬂat aqﬁaq‘Y

This comparison is possible because we know that & contains no p

dependence. (pa) implies that E‘ is at most linearxr in the co-

B. given which fact it follows from (pz) that Eq is at

ordinates q
most quadratic in qB. It may easily be shown from these equa-
tions that the leading coefficients in E® are the time deriva-
tives of the linear coefficients in E‘:

gt a(t) + bB(t)qB ;
SBquB + Cuﬁ(t)q

-- (5-48)
B

x
E
+ da(t)
Up to now equating coefficients has posed no problems
because the Ea have been assumed independent of p, permitting the

. 3 R .
equations (p” ) and (pz). Linear and lower terms in p, however,

contain explicit reference to the qa, so care must now be taken.
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(p'): 0 = pBazg“ - p BE .:,ﬁazg"l
3qPat at? ataqP

+ ee'qB [puggf + Zbuﬂpyﬁﬁf]

mr> BqB 3q "

By substituting from (5-48) into this equation we obtain two
relations corresponding to terms in q0 and q1 respectively:
a 603 = zcuB ; -- {5-49)

B a - - - - -
Py * 2a Pg) bg = 0 => by =0 . (5-50)

(q
Using this 1in the remainder of (5-47) we obtain the terms in-

dependent of p:

(pu): mazgOl - eg'qaggu + gee'qugﬁf = eg'EB(aqqu bquYqY)
3¢2 ra an 3 ot rs
= B ' B 2 -
> can + da + geaq (2a6aB CQB)
r ;
= . Y a B _ Y
ees(cﬂyq + dB)(Bq q ﬁuﬁq qY)
T

The first two terms here are independently zero, and by cancel-

ling them and multiplying through by r5=(qu'Y)5/2 we obtain the

following two independent relations in q2 and qa:

a B Y
(3q - & )d = 0 => d_ =0 -- (5-51)
d ag? 9y’ B
a_yY a B vy
2a = 3¢
Qqa, gy 9 4
=> i . -~ -
C(BY) 2/3 3657 (5-52)
Now (5-49) tells us that ¢ is symmetric, so it follows that the

afl

antisymmetric part c B is constant. On the other hand, sub-

[

stituting (5-52) into (5-49) gives

a 6aB = 4a/3.6qs ,
so a is linear in t:
a = At + B
-- (5-53)
and C‘QB) 2/3'A6QB

Collecting together the results (5-48) through to (5-53) we have

finally
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Eu

2/3.AqOl + cuﬁqﬁ :
-~ (5-54)

g At + B ,

where A‘B‘CuB are constants and Cu is antisymmetric.

B

Given the results (5-54) we can now obtain the coefficients

ﬂu from (5-46) and (5-42):
w = (C

® aB g’ Pp

and the independent generators (5-41) of the symmetry group are

1/3.A0 )
a

-- (5-55)

found by setting B,A,C equal to 1 in turn and the other constants

to zero:
61 = 3/t
u2 = td/0t + 2/3.qBa/an - 1/3.pBa/apB : -~ (5-56)
Usap = qua/aqB - qﬂa/aqu + paa/aps pﬁa/apu

- -

The generators U1.U3 are clearly related to conservation of
energy and angular momentum, so as an example of the calculation

of an invariant we shall consider the generator Uz. If the first

integral of this generator is I(q,p,t) then the equation

U = - - -
21 0 {5-57)
has the associated system
dt = 3da® = - adp; | -~ (5-58)
t
qu Pg
where no summation occurs over B. When (5-58) is integrated we

find the following set of possible functions for the integral I:

I = u® =z g% 2/% , 1 = v, = pat1/3 . -- (5-59)

It may be worthwhile to look back now at what we have done
so far in this section. In (5-56) we have found the most general
set of generators which leave the equations of motion (5-4S) in-
variant. Taking the particular generator 62 we then found in
(5-59) a complete set of 2N-2 integrals uq'vq for this generator,

so that the most general integral of U2 is

I = 1(u%,v ) . -- (5-60)
[ §
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We now come to the question: What is a symmetry of a system?
The answer we shall use here is the following:
Definition (5.3): Let {Gi} be some complete collection of 2N-2
generators which leave the .equations of motion of a
certain system invariant. An invariant of this system

is a function I{(q,p.t) which has the following two

properties:

i. I is an integral of some linear combination of the
U ;
1

ii. I is a constant of the motion of the system:

I =0
If such an I is found, then the 1-parameter group of
transformations generated by the linear combination in

condition (i) is a symmetry of the system.

According to this definition, then, we must check all the in-
tegrals defined by (5-59) and (5-60) to find one which is a con-
stant of the motion. The condition for this to be true is

0 =1 =291 a®(q,p,t) + B1 v la.p.t)
ov

o
du o
or the associated conditions

du® = dv . -- (5-61)
P

Q
<

u

Q

Using (5-59) and the equations of motion (5-45), (5-61) becomes

o o .o _-3
du = - H = - .
6 3v gmuB : dvu lu Jee UBP \ ;
du 3v, - 2mu dv v, - 3ee‘u"p
B B g
dv = v - 3ee'umP-3 , ~- (5~62)
[0 ¢
du 3v - 2muB
3
where P2 = uuu
o

These equations may (laboriously) be manipulated to obtain
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d (umvﬁ'vr_3 - uﬂvcxv[3 - ee’uu/P) = 0 ,
that is, R = uy v, - uﬂv v, - ee'ua/P
o g a B
= quBpB - qﬂpupﬂ - ee'qa/r = const. -- (5-63)

The components Ru form the Runge-lLenz vector, which is an invar-

iant of the (classical) Kepler problem not given by Noether's
theorem. It is a vector pointing from the origin in the direct-

ion of the point of nearest approach on the orbit:

o X

>
R

The conservation of Ru represents the fact that the classical
Kepler orbit is closed, ie, the periods in r and ¢ are the same.
The fact that this symmetry is not given by Noether's theorem
shows that the Lie theory of extended groups is in some way more
powerful than Noether's theorem. We should perhaps mention here
that all the work of this section is based upon Leach's (1981)
paper, although considerable work was required to bring it into

the somewhat more lucid form presented here.

5.4 Symmetries in homogeneous mechanics

From the complicated nature of equations (5-36) and (5-37)
it might be guessed that the extended theory of Lie groups finds
a more natural expression in the notation of homogeneous mech-
anics, but wunfortunately the very generality of homogeneous
mechanics proves a stumbling block to the calculation of sym-
metries. In this section we shall first attempt to carry out the
programme described in sections 5.2 and 5.3 by considering the

most general 1-parameter family of transformations

q - qe(q.p) ; p - petq,p) -~ (5-64)
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in phase space. This transformation is clearly the natural
extension to phase space of the purely geometric transformations
considered by Leach, but it should be noted here that we have
also tried, unsuccessfully, to carry Leach's point transforma-
tions over into homogeneous mechanics. We noted in the last
section the wunusual choice of Cartesian coordinates for the
Kepler problem. The reason for this choice was that Leach's
solution procedure only works for a very limited set of Hamilton-
ians - Leach himself restricts his attention to cases in which

the canonical equations take the form

H

a af
8 - f (t)p’3

B

0

n

Py * 95(a" . t) 0
While this form covers a number of important classical systems,
it 1is still severely limited, and a glance at the equations of
motion (4-30) shows that it can have little applicability in
homogeneous mechanics. Leach's method certainly carries over,
but as'a calculation procedure for symmetries it fails abysmally.
The transformation (5-64) represents our first, more general,
attempt at applying Lie group theory to homogeneous mechanics.
Again consideration of the infinitesimal transformation

qQ +* g + E(gq,plde ; p *» p + wlqg,p)de -- (5-65)

leads to the infinitesimal generator for (5-65):

~

ur = e*ar/aq® + m,¢/3p, -~ (5-66)

and the invariance equation Uf=0 for f has the associated system

of DE's

A
de = dqg /EA de/nB (no sum).
As before, in order to study transformations which leave the
canonical equations invariant it is necessary to look at the

first extension of (5-66), to which end the transformation law

for q is calculated exactly as before:
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&4 = da* - dg® + dedE?
dt dt

2

QA + éAde
Since a similar result holds for P we can immediately write down

the form of the extended generator:

vt = €' +ma o+ E' .8
A A A A
dq BpA 94 op
A
If this operator is applied to the canonical equations we obtain
. N A . :A -
LA UdH/dq =0 ; & - UBH/BpA =0 . -~ (5-67)

We will now try to apply Leach's method to the case of the
homogeneous Kepler problem. From the work of sections 4.2 and
5.1 we know that in spherical polar coordinates, omitting the

variable 8,

a =r ,q =¢ , 9 =1t ;
cd -
ALy T 0 0 oo - R 0 0 . 0 ,
0 0 0 0 -2/r 0
-e'/r2 0 O (1] 0 0]

so we arrive at the following expressions:

dH = 1 (p* - eA”) = 1 [p1, gs, ee’ - p, -- (5-68a)
apa m m r r
b cd
9H = -e Ay a(p - eA ) + 1_g (p - eA )(p, - eAd)
aqa m ' om a c
= _JQ{Qee')Z - igal - ee'p4 -~ (5-68b)
mr r r
0
0
Substituting these results into (5-67) we find
t1 -, /m = 0 ; é3 - 1/mr3.{u r - 2p351} = 0 ;
- . .
B 4 1/mr’ (e’ E + n‘r }) =0 ; w. =w =0 ;
) , 3 2‘ -- (5-69)
LA E /mr .{2ee’ P, T * 3(p )7 - 3(ee’') }
2
2p3n3/mr - ee w /mr® = 0

Using these results we again carry out the procedure of section
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5.3: we express é in terms of € with the help of (5-68) and
substitute this into (5-69), then take the t-derivative and
equate to the final expression in (5-69). In this way we arrive

at the following result for i1

6
r pbpc82£1/8qb8qc + ee'rspcazE1/6qc8t - ee'r‘p16E1/6t
+ {3(ee’ )% - 3(p3)2r2 - 2ee'r3p‘} D1BE1 /ap1

+ {ee'rl'p4 + (pa . (ee')2r3} pc82E1 /aq‘ap1

v ee' (r°p" 3% €' /3tdq" + ee'r' d°E' /B¢’
+ 2[ee'r3p4 + (p3 2% (ee')zrzl 8251/6t8p1}
+ {ee'rp, + (pa)2 - (ee' )2 1{r BE' /3r + rapb3251/8qb8p1
+ [ee‘rp4 + (pa)2 - (ee')zl 8251/6p12}

3(ee')2r2E1 - 3(p3)2 - 2ee'r3p4E1 + 2p3r3w3 + ee'r‘n4

This equation presents a hopeless case for solution. In Leach's
work 1t was only possible to solve (5-47) because the lack of
dependence of § on p enabled us to obtain the two initial expres-
sions (5-48) for &, but here the single equation above is insuf-
ficient to specify the coefficients of the generator, yielding a
multiplicity of solutions.

As mentioned above, we have tried a number of different
wavys, both plausible and implausible, of carrying the Leach
method over into homogeneous mechanics. Our lack of success 1is
certainly due in part to the fact that homogeneous mechanics
necessarily involves more complicated expressions and dependences
than its classical counterpart, but it is also due to the fact
that Leach's work is in no way a coherent theory of symmetries.
It 1is rather a way of calculating the symmetries without giving
any account of how they arise. The problem of a full description
of the relationship between symmetries and conservation laws

seems as yet to remain unsolved. The approach of Noether's

theorem is to define a symmetry as any transformation (4-81)
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which leaves the Lagrangian invariant and to develop the conserv-
ation law (4-83) as a consequence of this symmetry. The version
which we presented 1in chapter 4 has the advantage that it
includes coordinate time into the transformation, but the very
nature of the Lagrangian description in which the theorem 1is
formulated means that it can never incorporate the full diversity
of the canonical transformations.

Leach's work goes further in one way, in that he aims the
symmetry requirement at a more relevant entity than the
Lagrangian: according to definition (5.3) a symmetry is a
transformation which leaves the equations of motion invariant.
Unfortunately, however, Leach does not develop a relationship
between the generators and the conserved quantities, even
suggesting that no such relationship exists in the case of the
Runge-Lenz vector. While this claim 1is clearly not contradicted
by his work, it is also certainly not proven. At any rate, we
can be sure that any possible generator of the Runge-Lenz vector
cannot be of the form EA(q)alaq, since we know from corollary
(4.10) that such a generator corresponds necessarily to constants
of motion linear in p, which R certainly is not. It may, how-
ever, be possible to develop a generator from R which has a p
dependence not allowed for either in Noether's or Leach's work.

We have so far met three basic methods concerned with

conservation and symmetry, and their aims are essentially dif-

ferent. They are:
i. The H-J method calculates constants of the motion.
ii. The extended Lie group method calculates the gener-

ators of symmetries.
iii. Noether's theorem gives a relationship between the

generators and the constants.
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Of these three the Lie group method seems to be of limited

applicability, since the calculation procedure breaks down for at

least some important systems. Noether's theorem as it stands is
also limited, since given a conserved quantity there is no
guarantee that we can find a corresponding symmetry. On the

other hand the H-J method guarantees a complete set of constants
for the system (although, as in (5-19b) of the Kepler problem,
these may not be in a very enlightening form). It therefore
seems possible that if we could find a more general form of
Noether's theorem valid for general canonical transformations,
then we might be able to find symmetries by applying it to the
constants produced by the H-J method. This, then, is our next
objective.

‘Noether's theorem can be extended slightly by simply
translating the argument of theorem (4.9) into the canonical
formalism. Let us suppose again that the Lagrangian is unaf-
fected by a certain variation of the variables on which it
depends, but this time we shall permit a variation of all of the
canonical variables:

5 {pAdA - H} =0
under the transformation induced by

6g = Ede ; Op nde. -- (5-70)

]

From the work of the previous section we know that this involves
a transformation

54 = E6c ; Bp = wbe
of the first derivatives of the canonical variables. Using these

equations we now calculate the corresponding variation of the

action:
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8s = 8f{p, 4" - Hlat
= de.f{n dA + p éA _ o4 EA . & m, } drt
A A 3 Op. A
a A
= ée.f{qA - %# v, .dt - de.J{p + oH }EA.dr
P A A A
A 9q
+ e.Jdip, E*}
This expression gives the total variation in the action. If we

confine our attention to a given trajectory then we know that the
first two integrals vanish, and we arrive at the conclusion that

DAEA(q.p) = const. -- (5-71)
is a constant of the motion. Note that the variation w assumed
in (5-70) plays no part in the final result, yet it is still more
powerful than the form of Noether's theorem proven in chapter 4,
since the coefficients EA may depend arbitrarily on the momenta.
Nevertheless, (5-71) does not lead in any obvious way to a
generator corresponding to the Runge-Lenz vector, since it still
requires a quasi-linear form for the conserved quantity.

An alternative way in which the results of Noether's theorem
may be carried over into Hamiltonian mechanics is the manner
mentioned at the end of chapter 4: the equation

{H,Uu} =0
expresses simultaneously the invariance of H under a trans-
formation generated by U and the conservation of U under the
development of the system. In this form Noether's theorem states
that a quantity U is conserved under the motion of the system iff
the Hamiltonian H is unchanged by the (canpnical) transformation
generated by U:

UF = (U} . - (5-72a)
We must be a little careful with the definitions here, since

multiplication of U by a quantity does not in general correspond

to multiplication of the PB in (5-72a). Because of this we make
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the following definition: given a set of generators Ui, the

linear combination Eiu. is defined by
i .

.
E Uif

m

¢80 1 . -~ (5-72b)
Using these definitions we can always develop a symmetry from any
given conserved gquantity U, which is what we were searching for.
One simple application of the PB form of Noether's theorem

again arises from Leach's (1981) work. Apart from considering
the Kepler problem, Leach also looked at the problem of the
classical harmonic oscillator, whose Hamiltonian is given by

H = qa° + p -~ (5-73)
in rationalised units. In addition to the conservation of energy
and angular momentum Leach arrives at the following conserved
quantity:

AOlB = qqu pupB . -- (5-74)
This (symmetric) 3-tensor is called the Jauch-Hill-Fradkin
tensor, and, like the Runge-Lenz vector, cannot be obtained by

the application of Noether's theorem. If we substitute Auﬂ into

(5-72a) then we can calculate the corresponding generator:

-~

= A d + OA o)
af " oB A aB ~_
BDY BqY aqY apY
= pﬂblbqq + paalaqB - qBZS/prl - qualbpﬁ, -- (5-75)

and hence the infinitesimal transformation:
-+ + €, (& + & |

9 Qa By "aBPy ayPs

-+ + £, (6 + & )

Pa Pa By Capy ayg
This transformation has the form of a rotation in phase space
involving both the coordinates and the momenta2

, and indeed ref-

erence to (5-56) shows that (5-75) looks very much like some kind

- I am indebted to my supervisor, Dr.M.Dampier, for noticing

this property of the Jauch-Hill-Fradkin symmetry.
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of "mixed" rotation generator. This transformation seems very
natural if we look at the Hamiltonian (5-73). This has the form
of a metric funtion on a Euclidean phase space, and is clearly
invariant not only under point rotations, but also under arbit-
rary rotations of the phase space coordinates. Note, however,
that only certain of these rotations will also be canonical - it
is not, for instance, permissible to rotate the (q1.p1) plane
without also performing a rotation of the (qz,pz) plane.

It would be nice to be able to say that a similar intuitive
significance can be attached to the Runge-Lenz vector, but
unfortunately we have been unable to carry out an analogous
analysis to the above for the Kepler problem. A generator may
indeed be obtained from the vector, but it does not possess any
obvious significance. It is our personal opinion that the
Runge-Lenz vector corresponds to the constant b3 in (5-19a),
which essentially establishes a zero angle to which the variable
p is referred. In the classical Kepler problem we find

-b, = ¢ - sin”'

mee' - h’y ] '
[f{mz(ee')2 + 2mEh2}
but even after changing to the Cartesian coordinates used in
Leach's work we have been unable to establish any connection
between this expression and (5-63). In summary, we must say that
although our work has shed some light on the subject of conserv-
ation and symmetries, a coherent theory of the subject is still

lacking.
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CHAPTER 6

APPLICATIONS

In this final chapter we shall look at two major applic-
ations of the theory of homogeneous mechanics developed in this
thesis. The first of these applications is in perturbation
theory, and stems mainly from the work of section 5.1, while the
second explores the possibility of moving to a quantum forma;ism

based on the general theory of chapter 4.

6.1 Perturbation theory

In mechanics it frequently occurs that we wish to study a
system which 1s almost, but not quite, the same as a second
system which we have already solved. Since a system 1is charac-
terised by its Hamiltonian, it follows that we are talking about
two energy surfaces in phase space which are "close"” together in
some senhse. The difficulty here is that in order to compare
Hamiltonians on two different surfaces we need to be able to say
something about the value of the Hamiltonian off the energy
surface. Now the H-J method of section 5.1 makes no assumptions
about the value off the surface, but the related theory at the
end of section 4.4 copes with the problem by arranging that the
N-th component of the new momentum i1s the Hamiltonian - off the
energy surface as well as on. We therefore now need to relate
this situation more closely to the work of section 5.1.

We again start with any complete integral S(Q,q) of the
equation

H(q,9S/3q) = Q™ (M a constant), -- (6-1)

but we note a number of differences between this equation and

(4-75). First, we are now looking at a case 1 generating
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function S(Q,q) as opposed to the case 2 function of section 4.4.

Second, we allow for any specific new coordinate o™ to be the
Hamiltonian: we saw in the Kepler problem that it is not always

convenlient to pick out the N-th coordinate as the odd one out.
Note that the corresponding constant a" of the H-J theory will

still be a constant along the trajectories, since QM=D on the

energy surface. We assume S to be such that
2
det —Qré—; £ 0 -- (6-2)
dq 9aQ

to ensure its validity as a generating function off the energy
surface - this is in direct contrast to the H-J method.

The <case 1 transformation equations (4-57) now define a
canonical transformation generated by S:
v, = as/dqh v, = -3s/30* | -~ (6-3)
for which the new Hamiltonian satisfies

H(Q,V) = H(q,35/3q) = Q" . —- (6-4)
Following a similar line of reasoning to that of section 4.4 we
find
-V, =1t ; V_ =b (for all A#M);}
-- (6-5)
Q" = a ,

where a,b are constants and the physical position vectors are
those whose M-th coordinate is zero. Notice that on the energy
surface S satisfies the H-J equation, so all the constants aA,bA
other than the N-th components have the same significance (indeed
the same value) that they did in the H-J method. The difference
is that we are now making use of the two "surplus” components in
a way which is useful for the construction of a perturbation
theory.

Let Ho now be the Hamiltonian of some soluble, or unpert-

urbed, system - that is, one whose evolution is already known.
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We now 1imagine the energy surface Ho=0 of this problem to be
perturbed slightly into another surface which 1is "close” to the
original. We achieve this by means of the perturbed Hamiltonian
H, given by

H(g.p) = Ho(q.p) + AH(q,p) , -- (6-6)
where the term AH is in some sense small. Now suppose we have
solved the unperturbed system by the modified H-J method outlined
above, obtaining the Gaussian system (6-5). On the unperturbed
energy surface S(a,q) generates a set of a's constant along the
trajectories, with a":O all over the surface H°=O; if we change
to the perturbed surface, however, the quantities (a,b) will no
longer be constants and we will not have Ho=0. But because of
(6-2) S still generates a perfectly valid canonical transform-
ation to a system in which the Hamiltonian is given by (6-6) and

(6-4):

H(a,b) Ho(a.b) + AH(a,b)
M
= a + AH(a,b) . -- (6-7)
Note that aM here is not necessarily a constant, since the
perturbed surface will in general cut across the natural
congruence of trajectories defined by Ho' From (6-7) we can now

obtain the equations of motion satisfied by the transformed

variables:

e
"

aH/abA aAH/abA :

-- (6-8)
M

A
OH/da X

_6A

daH/3a" + &
The equations (6-8) are rigorous, and in general offer no
simplification of the problem of solving the pefturbed system
(6-6), but if we take advantage of the fact that AH is small then
we obtain a first-order approximation to the solution. Since a
and b will not change rapidly for small perturbations we can

obtain the first approximation by replacing their occurrence on
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the RHS of (6-8) by their constant unperturbed values:

a* - aaM| -6, = 8" . 88| -~ (6-9)
1 3b 1A A aaA
A'o o
Here (a1,b1) are the first-order perturbation solutions for
(a,b), and the subscript 0 indicates substitution of the un-

perturbed coordinates {denoted ao,bo) after differentiation.
Similarly the second-order perturbation is obtained by substit-

ution of the first-order perturbation into the RHS of (6-8):

A .
a = .a_A_’i H -b = 6M + ‘_aAH -~ (8-10)
2 3b 2A A aaA
A 1
and so on.
Example (6.1) - As an example of the above work consider the

Kepler problem of example (5.2) and perturb it by superposing a
pure (weak) magnetic field of the type looked at in example
(46.2). Since both the Kepler and magnetic problems essentially
involve motion 1in one plane only, we adopt cylindrical coord-
inates (r,p,z,t), in which case the potentials for the perturbed
problem become
2 .
A = (0, Br /2, 0, e'/r)

Using the expression (4~29) we have

H = 1 [pz - eBp, + Zee'g4 + ezazgz - [ge']z]
m r A r

+ [—pz + esz - 2ge'g4 - ezﬁzr2 + [ee']2]1lz
r 4

= 1 [pz + 29e'g4 - [eg']z} - ePp
m r

r m 2
2.2 2 1/2
+ Z [1 + 4, [eBp2 - e fr ]] / ,
Z 4
where -2 - p2 + 2e 'g‘ - [22;]2
r r

Here we have omitted a second-order term in B and by the same

weak field approximation we can expand the final term to obtain
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H = -22/m - eszlm + 2 + eBpZ/ZZ ,
whereupon we have

AH = eBp, Pn - 2] . -- (6-11)
2m z

In order to calculate the first-order perturbation we have,
according to (6-9), to substitute into (6-11) the constants of
the unperturbed (Kepler) problem, given in (5-17) and (5-18):

(E + ee’ /T)2 - (h/r)? - md

~
1}

p, =h ¢+ p, =0 ; p = -E

The constants a1.b1 of the Kepler problem were redundant, so we
choose M=1 in (6-9) and arbitrarily set z=0. In this way we
obtain the following final expression for AH:

AH

"
]
=
=y
|
3
N
I
N
[}

= eBh{1 - 2}
2m

= -eBh/2m . -- (6-12)

By' substituting (6-12) into (6-9) we see that the only first-
order change induce by the magnetic field is the change

b, = -dAH/3dh = eB/2m . -~ (6-13)

2

The expression (6-13) is known in classical mechanics as the
Larmor freguency. Equation (5-19a) shows that -bz (b3 in the
language of section 5.1) represents the initial value of ¢ in the
unperturbed problem:

¢ = wys - b )
where wo is the angular frequency of the unperturbed particle.

Thus from (6-13) we see that in the presence of a weak magnetic

field B the new angular frequency is
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Q = w, ¢+ eB/2m -~ (B6-14)
the <choice of sign depending on the sense of the magnetic field
¥B. This splitting of the perturbed angular frequency into two

values in the presence of a weak magnetic field is called the

normal Zeeman effect. The result (6-14) is exactly that of the

classical theory (see Menzel,1961), except that coordinate time t

has been replaced by the proper time parameter s.

In the interests of completeness we now present briefly an
alternative perturbation theory which attempts to eliminate
ce;tain deficiencies of the above approach, but which, however,
does not seem to work. The theory presented above suffers from
the aesthetic defect that the addition of extra terms to the
Hamiltonian does not appear to bé a natural thing to do in
homogeneous mechanics. We have seen, for example, that the
inclusion of a perturbing electromagnetic field adds exact terms
to the Lagrangian and momentum, but produces a change (6-11) in
the Hamiltonian which is far from "natural". Consequently we now
try to develop a perturbation theory based upon perturbations of
the Lagrangian.

Let Lo(q,d) be the unperturbed Lagrangian and define the
perturbed Lagrangian as

L{g.q) = Lo(q,d) + ANlg,q) ,
where A 1is 1in some sense small. Then we find the following
corresponding changes:

p = oL/0g = Py * A,

where A = OAN/OY Py = 6Lo/8d
_ - <A _ _
=> H =g Py L = Ho(q,po) + h(g,A) .
A . A
h = - . = -
where H0 = a pg, LO H h = q AA A

In this way we have split the problem into two systems Ho(q,po)
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and h{(g,A). The equations of motion for the perturbed system are

now given by
. A
4 =9H = 9H 9p  + 3dh 3A ;
BpA apg BpOB 94 5;2
-- (6-15)

b g - 2o, BH o, 20, 2n2a
9q 9q apoaaq 3q aABaq

As a check on these equations we take the general electro-

magnetic case, where

A = A'a . = . = 2 - 2,1/2
eA 4 : Aa eAa : Ho (po) Im + [ (po) ]

In this case h is identically zero and we are looking solely at

the change in Ho produced by the transformation

(6-16)

Q =4, i P =P+ eA(qo) . --
From (6-15) we have
Y = H = . - -
q o] o/apo po/m ; (6-17a)
. _ . b
pa pOa eAa » bq /
= OH a
O/Bpob.apob/aq
_ _ab
- q 'EAb. a
=> ; = eF & (6-17b)
Poa * ba ) T

Thus we produce the correct equations of motion, but we are
unable to develop the theory further. For the perturbation of
constants relies upon applying the H-J transformation of the
unperturbed system, but a glance at the equations (6-17) shows
that under such a transformation all constants of the unperturbed
system appear to remain constants in the perturbed system, which
cannot be correct. What has gone wrong is that (6-16) represents
a non-canonical transformation of the variables (qo,po), so that
the H-J method cannot be carried over straightforwardly from the
unperturbed to the perturbed system. While possessing certain
promising features, this theory of perturbations is not viable as

it stands.
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6.2 Relativistic quantum theory

Qur second application, and the original motivation for this

work, is the transition from homogeneous mechanics to quantum
theory. In the remainder of this chapter the word "“classical”
will continue to have the meaning "non-relativistic”, rather than

the common meaning of “non-quantum”; we shall use "homogeneous"”
to describe the wunquantised theory of homogeneous mechanics
discussed so far, in contradistinction to the fully relativistic
quantum theory we shall now try to develop. This terminology is
slightly misleading, since our formulation of quantum theory is
also in a sense homogeneous, but it will suffice.

It would be inappropriate here to go deeply into the pleth-
ora of notations and conventions used in quantum theory. Our
personal preference 1is for the lattice structure approach
advocated by von Neumann (1955), which we feel brings the philo-
sophical foundations of quantum theory beautifully into focus,
but rather than get too involved in such basics we shall instead
base our exposition heavily upon the approach of Dirac (1958) in
his standard text on the subject. We shall assume all results in
that book up to chapter 3 and commence our work at the beginning
of chapter 4; our references to Dirac’'s equations will be of the
form (D23.47), which will denote equation (47) appearing in
section 23 of the book. Up to this chapter the only difference
between Dirac's results and our assumptions is that the
proposition “"The time of an event is € t" is to be considered a
valid element of the lattice of propositions concerning a
physical system, the totality of which form an infinite-
dimensional Hilbert space H. This means, of course, that the

resulting quantum theory will describe events, rather than
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particles. For simplicity we shall assume the system to be in
flat, Minkowskl space.

If we are to phrase homogeneous mechanics in the language of
gquantum theory then our first priority is to find a set of
operators dA,bA to represent the position and momentum variables.
To do this we choose a representation in which the basis kets are
the eigenvectors of position, indexed by the position variables

A
q :
A
<q > = Plqg)

for an arbitrary ket |Y> - this is the position representation.

Now suppose |l$> represents the state of a system at a given
T-instant, and has modulus unity. The probability that a given

event will have coordinates within the volume element

(a',a')yx(g?,a%)x...x(q".a")

is then given by
Q . . N
fqm(q Jb(g')d q . -- (6-18)
The eigenvectors |qA> of position will therefore represent the
situation where the event is known to occur at the definite
L A A . . A A
position q =q , say. It follows that the eigenket |q >=q (q)

vanishes for all values of g except those at the point quq'A

Yet the probability density for the eigenstate Iq'A> is given by

(6-18), which must equal 1 if q,Q are extended to infinity. In
the eigenstate lq'A>, therefore,
. 2 .
la" (a)|® = 8(g-9') ,
A 1/2 A A
so la'"> = & / (a -q" ) . -- (6-19)

where & is the N-fold Dirac d-function. The kets (6-19) are the
eigenvectors of the position operator, defined by

A A

a piq) = g P(qg) -- (6-20)
on the general vector V.

Qur route to the operators ﬁA of momentum is via the
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fundamental PB relations (4-51). To express these in quantum
theory we require a bracket between operators which has the same
algebraic properties as the PB. Dirac shows that the most
general such bracket between two operators a,b is the commutator

(a,bl] = 1/ih.(ab - ba) ) -- (6-21)
where # is the reduced Planck’'s constant h/2w; this is accord-
ingly taken as the quantum analogue of the PB. Note that the
square brackets [,1] now denote the commutator, and not the

Lagrange bracket. The choice of momentum operator is then

constrained by the fundamental guantum conditions

.pB] = 0 . -- (6-22)
Again Dirac shows that the most general momentum operator
satisfying these conditions can always be reduced to the form

b = ALV 0, -- (6-23)

where V may be expressed in rectangular coordinates as

v, = a/3q* -~ (6-24)

although this is not the general form of V in an arbitrary coor-

dinate system. Unless otherwise specified (as in the following
section) all the coming work will assume the convenient rect-
angular form (6-24) for the momentum operator. The operators
(6-20) and (6-23) are the fundamental qQquantum variables in the
position representation.
THEOREM (6.2) - Let two observables a,b be such that
(a,pl = ¢,
where ¢ is a complex number, then the uncertainties Aa,

Ab satisfy

AalAb 2> ©/2.|c]| . -- (6-25)
PROOF: Taking the adjoint of the commutator we have
(4,61 = -1/in.(Ba - ab) = [4,b] = ¢

s0 c=c, and ¢ must therefore be real. Now write
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A " A -

o =z a - <a> : B = b - <b> ,
where <> denotes the expected value of an observable,
then we again have

A
[a,B1 = ¢
Consider now the imaginary part of the inner product
AA

<PlaBlyP> for some arbitrary vector ¢:

2 Im<plaBlu> = <plaB|e> - <wlBalv>

| (&B-B%) o>

ihc

Taking the modulus of this result we finally have

K20l = Im<p|&B >
< 1<wl&Blv>|
< NaYn WBYN = AaAb

using the Schwarz inequality and the usual expressions
<o> = <Plolp> (A0)% = <> - <o>?
for the expected value and uncertainty of an observable
0.
QED
As a result of theorem (6.2) we can use the quantum cond-
itions (6-22) to obtain the Heisenberg uncertainty relations
Aa“ap, > ﬁ/2.6; , —- (6-26)
interpreted as meaning that conjugate components of momentum and
position can never be simultaneously assigned exact values. Note
that in the classical decomposition, where T=qN, we have
AtAHS 3 n/2 —- (6-27)
so0 that the time-energy uncertainty principle appears on the same
footing as the position-momentum relations. This is a desirable
feature not occurring in existing theories. The time-energy

relation is notorious for its difficulty of interpretation, but

in the context of the present theory a possible interpretation is
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available. Remembering that the observables here describe
physical properties of events rather than particles, it seems to

us that (6-27) carries the following interpretation:

At a given Tt-instant the values of energy and coordinate
time of an event on a particle’'s worldline can only be measur-
ed within uncertainties AH*, At respectively, and these
uncertainties will always be in the relation (6-27). Thus if
the measurement of a particle's energy yields a precise value
then we cannot have any information on when the measurement
was made; conversely, if we make a measurement at a specified
time then it will yield no information as to the particle’'s
energy. This results, amongst other things, in the mono-
chromatic form of wave functions in specified energy states

which is familiar from classical quantum theory.

In homogeneous mechanics we saw that CT's are characterised
by the invariance of the fundamental PB relations. Accordingly
we shall define a CT in quantum mechanics as a transformation
which leaves the fundamental quantum conditions (6-22) invariant.
In order to see the consequences of this definition we now

consider a general transformation of the dynamical variables:
” A . i\ o s s
Q = Q (Qtp) H P = P (Cl.p) '

such that [Q ,q 1 = [PA,PB] =0 ; (@ ,Pp. 1 =05

It follows from the remarks leading up to (6-23) that we can set

-- (6-28)

up a position representation with respect to the new variables in

which

=o" ; p, o= -in 3700

and the basis kets are denoted |0A>. Now consider the linear

operator U defined by

<QlU]lqgq> = 8§(Q@-q) ,




with adjoint U satisfyi

<alula> =
Hence for an arbitra
(D17.47)

<Q|UG|q'>

which necessarily impli

In addition, for any pa

<ale*uyqs
=> o*u
or o*

To

operators we note that
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ng
6{(Q-q)

ry pair of eigenkets of § we have from

f<alula>dta<alulq’>

fe(a-q)d" as(a-q")

<alg'>

es

[—

Uu

= 1 (6-29)

ir of eigenvalues Q,q we have

*5(0-q)

= <alug* 19>

a*5(a-q)

ug

.
= vgtu?

-~ (6-30a)

obtain the corresponding transformation of the momentum

for an arbitrary ket ¢

<q'18/3d* |¢> = <q'1dv/3q"> = dw(q 1/aq’"
= a/aq'A.<q'|¢>
=> <q'l|5A = —iﬁalaq'A.<q'|
Taking the complex conjugate of both sides of this equation we

also obtain

pyla’> =
Thus <Q|PAU]q> =
=> P U =
or A =
Thus we see that any

represented by a transf

satisfies (6-29). Co

iﬁb/bq'A.lq'>
~ind/30™ .5(a-q)

ind/8q" .6 (a-q)

<0]UbA|q>

UpA .

ubAu'1 -~ (6-30b)
canonical transformation (6-28) can be

ormation (6-30), such that the operator U

nversely, any transformation of the type
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(6-30), where U gsatisfies (6-29), must clearly leave the guantum

conditions unaltered.

Definition (6.3): A unitary operator is a linear operator U

satisfying any one of the three equivalent properties:

* —

i. Uy 1

-~

-1
u

ii. U =
iii. For any pair of vectors Y,x € H, <U|Ux> = <P|x>

A wupnitary transformation is a transformation mapping

-

each linear operator a to the image A such that

A = UaU

where U is a unitary operator.

ample (6.4)

. A .
1. Let d be a fixed element of RN, then the shift operator

-

Ud is defined by

(wa)(q) = Pi{q+d) . -- (6-31)

-

U is unitary, since

fBla+d) x(g+d) dNgq

<y
dede>

. . N . .
= [Plg')xla')d q (q'=zqg+d)
= <dplx>
and clearly U;1=u_d. The effect of the shift operators on the

fundamental variables is easily calculated:

PRPRN -
quud Yiq) udqw(q—d)

U -
dqlb(q d)

(g+d)p(qg)
-1

=>

o

"
c
Q.
[ongit)

a

]
0>
+
Q

- -- (6~32)
U-.1 =
d

o

"

c
O

and similarly

o

d

ii. For an arbitrary YeH the Fourier transform is defined

by
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c -N/2 .
FY{q) = h / fexp{erqA/ﬁ}¢(r)dNr . -- (6-33)
F may be shown to be unitary (see Riesz,1955), and the action of
F i1s calculated as follows:
~iﬁF—méq) = —;?2 exp{irAqA/ﬁ}gmir) dNr
dq h or
-if - .
= =i boundary terms _ 1 exp{ir qA/ﬁ}w(r)dNr
N/2 , 14, A
h in Pir) A

Provided Y vanishes over the boundary of integration we therefore

have
Fp = -q "
Pg¥ afb
where aB is defined analogously to dB. Hence
: T -1 .
P = Fb F = -q
.: X :, A = (6-34)
and similarly " = f@tF! - P

The above examples show that unitary transformations possess
the same sort of generality as the CT's of homogeneous mechanics.
Example (i) is very similar to the contact transformation (4-85),
while example (ii) represents a mere change of viewpoint to the
momentum representation (see Dirac,1958). This corresponds to
the trivial transformation (1-16). The dynamical transformations
(6-32) provide us with the means for studying infinitesimal
contact transformations via Stone's theorem (for proof see Stone,
1932).

STONE'S THEOREM (6.5) - Let {69: geR} be a family of unitary
operators on H such that

i. u = : =
g Yh Ug+h ; Uo 1 and
ii. for all ¢,x € H, the map 9*<¢|Ug|x> is continuous,

then there exists a self-adjoint operator G with

appropriate domain in H, such that
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o
Gy

=

n

lim if/g. (U Y - ) . -- (6-35)
g*o 3

b. If Gp exists, then for all geR, ¢95U P exists and
9

Gy
g

-~ o~

ih dwg/dg .

or alternatively GU

ih dU /dg . -- (6-36)
9 9

- ~

G is called the infinitesimal generator of the family {Ug}, which

forms a continuous 1-parameter unitary group. Formally we have,
in view of (6-36),

Gg - explgG/if} . - (6-37)
Example (6.6) - The family of shifts Gd (although continuity is

not straightforward). The infinitesimal generator is given by

wa(q) Pp(g+d)

L {1/nt.(a".3/3a")"} wia)

expld® .3/34"} piq)

exp{(ifhd® 3/aq")/in} wigq) . -- (6-38)

Since this is true for arbitrary at we see that the operator

. A
ind/aq generates the shift in the direction of the coordinate

A
aq .

The situation described in Stone's theorem, where state
vectors are transformed by unitary operators, is called the
Schroedinger picture of quantum dynamics. However, since the
physically significant quantities of quantum mechanics are inner
products of the form <Yla|x>, we can ascribe the transformation
of these products to either a transformation of the state or a
transformation of the operator a. This second viewpoint is

called the Heisenberg picture. Denoting the transformed operator

by ég, these two pictures of dynamics will agree if

<pla > = < a >
lblglx lbgl l)(9
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<U wlalu x>
9 9

<@plu au x>
9 9
ie, the transformed operator in the Heisenberg picture is defined

by

a = u au . (bu = 1) -- (6-39)
g 9 9 9 9
Hence we see that dynamical transformations in quantum mechanics
are simply a certain species of CT, as was the case in homo-
geneous mechanics. From (6-36) we obtain the differential

equation satisfied by ég

- -~

.. da . - L
ih= g = 11"%9 al + ifU a ﬂ5,
dg dg 9 9 dg
= -GU U + U 46U
g g g 9

Assuming that U9 may be taken inside the 1limit in the definition

(6-35), it follows that U9 commutes with G and we may write the

above expression in the form

-~ ~

ba = 5g{a 6 - Ga }
9 in 9 9

= dg.[la ,61] . -- {(B6-40)

Equation (6-40) is the quantum analogue of the infinitesimal

contact transformation equation (4-86), justifying the title
"infinitesimal generator” for G, The analogy between (6-37) and
(4-97) is also clear. In the case of the shift operators Ud we

saw 1nh (6-38) that the infinitesimal generator is given by

- . A .

G = if.9/9q = -B, ,
so the change in any observable due to application of the shift
transformation for small d 1is

53, = -d*ra .p. 1 - (6-41)
d d’'TaA '

The difference in sign between (6-41) and (4-89) is due to the

fact that Ud represents a coordinate transformation, while (4-89)

represents a point transformation: the displacement of an
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observable through a shift +d is actually represented by the

~

unitary operator U_d, in which case (6-41) adopts the form of
(4~-89). Using the Schroedinger picture of these events we find

B0 = -ihdp/dq" —- (6-42)
and by applying the classical decomposition of section 3.5 we
obtain the non-relativistic Schroedinger equation as the N-th
component of (6-42):

W'y = indp/dt . —- (6-43)

It at first seems reasonable to take (6-42) as the relativ-

istic generalisation of the Schroedinger equation, in view of
(6-43), but there is another contender for this role. Suppose we
wish to consider tﬁe dynamical evolution of a system with respect

to the parameter t, then assuming this may be described by a CT,

(6-36) gives us

ihdb(qg) = Hb(q) -- (B6-44)
dx
for some self-adjoint operator H, The analogy with standard

~

guantum theory clearly prompts us to take H to be the Hamiltonian
operator, which is supported by a closer examination of equation
(6-44). It must be remembered that the argument q of ¢ is purely
an indexing variable, comprising the eigenvalues of position,
which does not depend in any way upon T. Thus the LHS of (6-44)
is zero and

ﬁw =0 , or Q(d.b) = 6 . -~ (6-45)
This will be called the relativistic Schroedinger equation; it is
the quantum analogue of (4-9), which appears as a consequence of
the parameter-independence of the theory. It asserts the exist-
ence of an algebraic relation between the position and momentum
operators. However, looking back at the Hamiltonian (4-29) we

see that its form is not of the easiest to solve if substituted
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into (6-45). Consequently we shall assume that in the case of a
single charged relativistic particle in Minkowski space the
operator equation (6-45) can be manipulated to the form of the
energy equation (4-31):

(0-ihV® - oA® (q)1[-ifV,_ - eA (q)] + m hp = 0 .  -- (6-46)
We have absolutely no justification for such a manipulation of an
operator equation, but for the purposes of the investigations in
the following section we shall nevertheless assume (6-46) to be

valid.

6.3 The hydrogen atom

As an example of the above exposition we now look at the
application of it to the case of the hydrogen atom. Since this
is a well-known result in classical quantum theory, it will
provide wuseful information on the viability of the theory pres-
ented 1in the last section. The problem consists of a massive
nucleus of charge +e, supposed to remain at rest at the origin,
and an electron of charge -e and mass m moving in the resulting
central electrostatic field. Using these values in (6-46) we
obtain the following form of the Schroedinger equation ih
Minkowski space:

g p.p -~ 2e2b‘/r - 9‘/r + m2 = 0
We can conveniently split the space components away from the
other terms in this equation by making use of the classical del
operator
v, = 3/3q"
in Cartesian coordinates, in which case the Schroedinger equation

becomes
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[~ﬁ22? + ﬁzbzz - 2e2ﬁ 9 - g‘ + mz] Y = 0 . ~-- (6-47)
e - 2
ot ir ot r

Here Y is a wave-function representing the electron in an eigen-
state of the Hamiltonian. For convenience we shall work in
spherical polar coordinates and make use of the corresponding

form of the Laplacian operator

22 = 12@_[r2g_] + 1, 1 Q_[sin 8 Q_] + ’_‘%;‘ Qiz
r" dr or r sin 8 98 o8 sin 8 d¢
=> g - -nl g_[rza__] v,
r" 9dr or r
where L2 - -h2 1 g_[sin 8 9 ] + ——i;” QE -~ (6-48)
sin 8 08 o8 sin“ g d¢p

is the square of the magnitude of the usual angular momentum

operators resulting from the classical theory. The eigen-

functions of L2 are well-known (see Lawden,1967), and are given

by
L2y, = L1enndy
) -~ (6-49)
Y , = A .
lk(e ¢) lkPl(cos 8lexp{ikgpl ,
where keZ, 1=0,1,2,..., Alk is a normalising constant and PT is

the associated Legendre function of degree 1 and order k. Now
suppose our system is in an angular momentum eigenstate, then we

can separate variables in Y by writing

'b(r:e:('plt) = Z(r:t)-Ylk(e:w) [l - (8—50)
in which case
2,2 2
ﬁzlzw - v, -Zﬁzél _ A9 5 , B ;(1;112
r Or or r

and (6-47) reduces to

2 2 2, 4
_ﬁz[g_f , 232 1 1;1 z| , flz[a § , 28 i 3z7] _ e _ mz]z -
or r 9r r ot fAir Ot r
we now separate variables again and let
Z(r,t) = R(r).T(%t) . -- (6-51)

whence we have
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4 2
R“ + _Z_B.' .L(%)— - l“ - Zele. + ﬁze 2 - .m - 0 ,
R rR r T Ar T A r f
' 1(1+1) e4 m2
or F(r) = R" + 2R " + - &
R rR r 2 g
= 1" + 2%3iT1" . —- (6-52)

This equation is not immediately separable, but since we know it

is true for all r and t we may assert it for two specific values

of r:
" 2.,
F(r1) = I" + 2e"iT
T ﬁr1 T
for all t; r1¢r2
F(rz) = I" + 2e”4iT"
T Ar T
2
=> Flr,) - F(r,) = Aei_i_[l 111
a1l r r T
1 2
=> 1 = hz Flr,l = FIr,) . const = a
T 2e” j -
i {1/r1 1/r2}
=> T = Toexp(ut) ;
) -- (6-53)
T' = aT ; T" = o' T

Note that from the second of (6-53) we immediately see that

642 = f 9Z = -aihZ = -EZ ,
i ot
where E is the (constant) total energy of the electron. Thus we

can make the identification

a = -iE/Hh
-- (6-54)
and hence T(t)

Toexp{-iEt/ﬁ}

Note that this is a monochromatic wave stretching from t=-« to
t=+400, and so offers no information as to the coordinate time of
the electron. However, this 1s a necessary consequence from
(6-27) of the fact that the momentum p4 takes the precise value

-E. (6-54) is precisely the classical time-dependence, and is

due here to the fact that p4 is a conserved quantity of the
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Kepler problem, so that H and 54 have simultaneous eigen-
functions; this will not be true of all systems. A similar
situation obtains in the case of the conserved angular momentum,
as we see if we set 8=w/2 in (6-49).

Having obtained the equation (6-54) for T(t) we can now

substitute it into (6-52) to obtain an ordinary DE for R(r):

4
R" + 2R + {3 {9 - 2Ee® (Ez—mz)] - ;iiill}a =0 . -- (6-55)
-2 2 2
r i r b of r

For large values of r (6-55) may be approximated by

R" + E -m )R = 0 '
ﬁZ
which has a solution R = exp{-8r} ,
2 2
where B = (m -e® )/’ . -- (6-586)

We shall see (equation (6-64)) that Bz>o and so B is real; we
take the positive root to ensure that the integral of R con-
verges. In view of this "solution at infinity"” we try a solution
for all r of the form

R = exp{-Brlyx(x) i x = 2Br -- (6-57)

in which case (6-~55) becomes

xx" + (2-x)x' - [1 - AN+ 1(1+1) = e‘/ﬁz]x = 0 ,

X
2 2
where A= -Ee"/Aa"B . -- (6-58)
This equation comes very close to the Laguerre-type equation of
classical quantum theory, the only difference being the final
. 4 2 . . . 4 2 -6 .
term in e /f" . Since in our units e /H =5x10 , the approxim-
ation 1is good. We may recast this in the form of the associated
Laguerre equation if we let
N | Lo 4 2

X = X'y(x) s J(3+1) = 1(1+1) - e [ -- {6-59)

whence xy" + (23+2-x)y' + (A-J-1)y = 0 . -- (6-60)

Since x=0 is a regular singular point of (6-60) we can seek
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a series solution for y of the form

y = L a x ; a_ # 0 -- (6-61)
from which we obtain the following indicial equation:

pleg + 23 + 1) =0
Both roots of this equation lead to the same solution, as in the
classical theory, so we take p=0. The recurrence relation for
the coefficients of the series 1is

as+1 = (s++1-A) a . -- (6-62)
(s+1)(s+25+2) %

valid for s=0,1,2,... The situation is now exactly the same as
for the classical hydrogen atom, with the exception that j (as
defined in (6-59)) is no longer an integer. The solution (6-61)
is meaningful only if the numerator in (6-62) is some integer <s,
in which case the series terminates as a polynomial of degree
(A-3-1). Using the definition (6-59) of j we find that A can

therefore be written to the first approximation as

e4
A= n - > > ,
H% (21+1) -- (6-63)
where n 2 1 + 1
n 1is the quantum number of (6-55), and leads to quantisation of

the energy levels exactly as in the classical hydrogen atom (see
for example Lawden,1967). To calculate these levels we subst-

itute (6-63) and (6-56) into (6-58) to obtain

2 4
_E: > - N7y = 2
A (m® -E) A (21+1)
4
- IR N —2ne
- g2 . . ; [ﬁzmznz - = ne -
nf +e A (21+1)
me”
=> E = En ®r m - ——;—; . -- (6-64)
2n" A

This approximation is the same as the classical energy levels,
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and shows that B is real.

After the initial successes of our study of the hydrogen
atom we would do well now to look at the more problematical feat-
ures of the quantum theory developed in section 6.2. First we
should note that we have made no reference to the electron/
positron duality which arose necessarily from Dirac's (1928)
theory. Dirac’'s stated intention in this paper was “to find some
incompleteness in the previous methods of applying quantum
mechanics to the point charge electron, such that, when removed,
the whole of the duplexity phenomena follow without arbitrary
assumptions.” The above theory makes no reference at all to spin
or the splitting of energy levels. In fact it is possible to
obtain a result for the fine structure as the next approximation
in the series truncated in fB—GL) (see Schroedinger,19826), but ‘
this result indicates a much larger spread than the experiment-
ally observed value. This might be rectified by taking account }
of spin, but even then the fact that spin must be independently ‘
introduced must be considered a failing of the theory. On the
other hand the assumptions which Dirac makes in order to derive
spin are hardly the most natural ones, and on the whole we feel
that our theory is fundamentally sound in a way which Dirac's
theory is not and that this is sufficient to counterbalance the
above disadvantages.

A further failing of our theory is associated with the
problems of time and evolution. Looking back at (6-45) we see
the fundamental parameter-independence condition ﬁ:o as a
necessary consequence of a quantum theory based on homogeneous
mechanics. Because of this all reference to 1 vanishes from the

Schroedinger equation. The same holds true of the Heisenberg
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picture, in which the evolution equation is given by (6-40):

5a_ = 6tla_.Hl = 0 . -- (6-65)
Thus we find that this quantum theory is completely independent
of T and indeed contains no reference to it at all. This seems
at first a little strange, until we note from (6-65) that Q and T
are conjugate variables and so satisfy the criteria for the
uncertainty principle (6-25). Since we specify that the
Hamiltonian has a sharp value, ﬁ:o, we can have no knowledge of
the parameter T. This unsatisfactory situation is also true in
standard quantum theory, where we look for steady states of
energy and so consign all time dependence to the monochromatic
term exp{-iEt/fA}.

Another major failing of our formulation of quantum theory
lies in the rodle of coordinate time. The dynamical equation
(6-46) is simply the Klein-Gordon equation (see Schroed-
inger,1926), which was discarded very early in the history of
quantum theory on the grounds that it involves second time
derivatives of the state vector . This means that in order to
solve (6-46) in the general case we require the value of OY/dt at
an initial instant: the subsequent motion of a particle is not
fully determined by the state Y(x,0) at the initial instant.
However, we see from the solution procedure leading to (6-53)
that the second time derivatives played no part in the hydrogen
atom problem and this will continue to be true for the same
reason in a number of useful cases. So we do not always need
9P/ ot. The prototype case where Bzwlatz does enter in to the
problem is the case of free rectilinear motion.

Consider a particle moving in 2-dimensional spacetime (x,t)

whose momentum has been measured precisely at an initial instant

t=0. Then we know
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-iRdY/Ox = pp
S0 b = expiipx/h} T(t) . -- (6-66)
Suppose there is no external field, so we are concerned with the

following Schroedinger equation:

2
-n? Q‘? + ﬁz azm + mzw =0 . -- (6-6T7)
Ax ot

Substituting now from (6-67) we obtain

I" = -1 (p° + m’) = -€° /0’
-

=> T

A exp{iEt/fh} + B exp{-iEt/f}

Here Y is undetermined unless aw/at|o is given, and yet we see
that the ambiguity is in a sense irrelevant. In both (6-53) and
here the time dependence of Y is a monochromatic wave - the only
difference here 1is that the wave describes an ellipse in the
Argand diagram, rather than a circle.

We have seen that there are serious problems in our formul-
ation of quantum theory, vet the above remarks lead us to believe
that these problems are not insurmountable. To investigate this
more thoroughly would be to digress to an unwarranted extent from
the main theme of this thesis, but we feel that the above form-
ulation of quantum theory has much to recommend it and is struct-
urally more sound than existing relativistic quantum theories of
particle mechanics. It should be remembered that the Lorentz-
Dirac equation for the motion of a relativistic charged particle
also involves initial specification of the acceleration (Teitel-
boim, 1970); also, initial specification only of 3y/dx% implies

that we know exactly when the specification takes place, which is

far from being a valid assumption. Indeed such knhowledge 1is
expressly prohibited by our interpretation of the time-energy

relation (6-27). The whole problem of initial conditions is a
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far-reaching one, and could possibly be resolved in the above by
the incorporation of T 1into the theory and by a clearer
demarcation between dynamics and epistemology in measurements on

physical particles.
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SYNOPSIS

Like any major b;eakthrough in thinking, the theory of
relativity caused a great upheaval in our attitude to science.
Seventy years after the advent of relativity we are still coming
to terms with the changes it has brought in our outlook. Part of
this process is simply the valid translation of pre-relativistic
laws and concepts into the 4~-dimensional language of relativity -
a problem by no means as easy as would at first seem; the aim of
this thesis is to survey the ways in which the methods of analyt-
ical mechanics may be translated into a relativistic setting.

Chapter 1 provides an introduction to the work in the fofm
of a non-rigorous discussion of the historical and mathematical
development of electromagnetism, analytical mechanics and
relativity, and ends with a presentation of the basics of the
functional calculus. This is needed in the presentation of field
theory given in chapter 2. We see two possibilities for the
relativistic formulation of analytical mechanics, and field

theory represents the first of these p0331b111tles In the

L e o NS e~ e

absence of any real grounds for continuing on this tack we then
move on to the other possibility in chapter 3, where we review
the attempts of a number of authors to formulate relativistic
particle mechanics as a Hamiltonian system. This then leads in
chapter 4 to our own such attempt, based mainly on the work of
Synge, which we have named homogeneous mechanics. After the main
exposition of the theory the work of the remaining chapters 5 and
6 is then to apply the above theory (not always successfully) to
a number of cases where analytical mechanics has in the past
proven 1itself an invaluable tool: namely, the areas of sym-

metries and quantum theory.



