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CHAPTER 1

INTRODUCTION
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Imagine two stars orbiting around each other, a binary 
star system. As time passes and each star gradually uses 
all its available fuel changes will occur. If one star is 
more massive than the other it will use up its fuel more 
quickly and evolve quicker than its companion. At the end 
of its life it will become, depending on its mass, either a 
white dwarf, a neutron star or a black hole. We assume 
that the system as a whole survives this change, i.e., the 
stars continue to orbit each other but with different 
orbital parameters due to the change in mass of the evolved 
star. In due course the other star may evolve and increase 
in radius, or the binary separation may shrink, to a point 
where the gravitational pull of the companion will remove 
the outer layers of its envelope. This is called Roche 
lobe overflow. The material lost from one star falls 
toward the surface of the other. Its motion toward the
second, compact, star depends primarily on the strength of 
the magnetic field around that star. The end result is
always that the material lands on the surface releasing
energy in the forms of X-radiation and heat. This is one 
example of an accreting system.

The rest of this chapter is devoted to a critical 
review of the accretion processes we are concerned with, 
e.g., accretion discs and column accretion, and why we have 
calculated model atmospheres for these systems. Chapters 2 
and 3 describe the method by which we calculate a model 
atmosphere. Chapters 4-8 describe the uses we have put our 
atmospheres to and the results we have obtained. 
References are listed after Chapter 8. The background 
theory for model atmosphere work is contained in an
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Appendix. Footnotes will found at the end of the chapter.

1.1 Interacting Binary Systems

Returning to the system I briefly described before, it 
is important to realise that the actual process by which 
the stars reached the point of accretion is unimportant in 

the discussion of the accretion process itself. The 
accretion process has a close parallel in another branch of 
astronomy, namely the destruction of planetary satellites 
that come too close to their parent. It was this problem 
that was first studied by the French mathematician Edouard 
Roche in the 19th Century. The essence of the Roche 
problem is to consider the motion of a test particle under 
the gravitational influence of two massive bodies orbiting 
each other under the influence of their mutual 
gravitational attractions. The test particle is assumed to 
be massless compared to its companions. This means the two 
bodies (stars) orbit each other in circular Keplerian 
orbits. The circular approximation is a good approximation 
for binary systems since tidal effects will tend to 
circularize originally eccentric orbits on timescales short 
compared to the time over which mass transfer will occur. 

A further restriction on the Roche problem is the 
assumption that the two stars are centrally condensed' so 
that they can be regarded as point masses; this is also a 
fair assumption for most types of star.

In a frame of reference rotating with the binary system 
at an angular velocity w the two stars are fixed. The
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Roche potential is given by

t„(r) =
GM
j n ;

"^2". 1, 2 
t f i t t  - ( 1 . 1 )

where ; and are the masses of the components in
solar masses (M^ = solar mass)

and are the position vectors of the centres 
of the two stars.

does not describe all the forces acting on the test 
particle, for example, the Coriolis forces. Figure 1.1 
shows the Roche equipotentials for a binary system with 
mass ratio q=M^/M^=0.2. Matter orbiting at a great 
distance from the system (r>>a, the separation between the 
two stars) sees it as a point mass concentrated at the

2

Figure 1.1 Sections in the orbitaI plane of Roche equi
potentials, lines of constant , for a binary 
system with q=M^/M^=0.2. The centre of mass 
(CM) and the , L and Lagrange points are 
shown. The equipotentials are labelled 1-4 in 
order of increasing .
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centre of mass, so the Roche equipotentials are circular at 
large distances. Similarly there are circular
equipotentials around the centres of the two stars 
themselves; the motion of the particle here is dominated by 
the gravitational pull of the nearer star. Hence the 
potential has two deep valleys centred on r̂  and r_̂ .
The figure-of-eight equipotential (shown as a heavy line in 
the figure) shows how these two valleys are connected. In 
three dimensions this 'critical surface' has a dumbbell 
shape, the part surrounding each star is called its Roche 
lobe. The lobes join at the inner Lagrangian point . To 
continue the analogy, is like a high mountain pass
between two valleys. Material near to finds it much 
easier to pass through to the other side than to escape 
the critical surface altogether.

Now, returning to our original system, we have reached 
a point where one star has filled its Roche lobe. From now 
on I will refer to the star that has filled its Roche lobe 
as the secondary and to its compact companion as the 
primary. A system like this is called a semi-detached 
system. Of course the process of mass transfer will change 
the mass ratio q and affect the rate of mass transfer so as 
to slow it down and, eventually, to stop it entirely. On 
the other hand, other processes, gravitational radiation 
for example, will tend to shrink the orbits and therefore 
increase the mass transfer. How these two effects trade 
off and the resultant evolution of the system does not 
concern us. For our purposes the fact that accretion is 
taking place is all that is important. The next question 
is, what happens to the matter that passes through the
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point ?

1.2 Accretion Di sc Fo rma t.ion

From the viewpoint oE the primary the matter passing 

through the point appears as though it is being ejected 
from a nozzle rotating around the primary. Unless the 
rotation period is quite long the material will not accrete 
directly onto the primary as it will have too much angular 

momentum. Assuming that the matter does not lose a lot of 
angular momentum by dissipation in the stream then the 
orbit will circularise at a radius R where R is thec i r c  c i r c

Kepler orbit that has the same specific angular momentum as 
the transfering gas had on passing through . Usually 
R is greater than R. , the stellar radius, and thecirc *
matter does not accrete directly onto the primary. 
Clearly, within this gaseous ring there will be dissipative 
processes (e.g. collisions of gas elements, viscous 
dissipation, etc.) that will convert some of the energy of 
the orbital motion into internal (i.e., heat) energy. 
Eventually this energy will be radiated and lost to the 
gas. To meet this drain of energy the gas must sink deeper 
into the gravitational potential well of the primary, that 
is, to orbit at a reduced radius, this in turn requires it 
to lose angular momentum. The timescale for an orbiting 
gas to redistribute its angular momentum is normally much 
longer than the timescale over which it loses energy by 
radiative cooling and the dynamical (or orbital) timescale. 
Therefore the gas will lose as much energy as possible for 
a given angular momentum, which itself decreases more
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slowly. Since a circular orbit has the least energy for a 
given angular momentum the gas will slowly spiral towards 
the primary through a series of approximately circular 
orbits, in the binary orbital plane. This is an accretion 
disc. The spiralling-in process implies the loss of 
angular momentum, in the absence of external forces this 
can only occur by transfer of angular momentum outwards 
through the disc by internal torques. Thus the outer parts 
of the disc will gain angular momentum and spiral outwards. 
The original ring of matter will therefore spread to both 
smaller and larger radii by this process. At the outer 
edge of the disc some other process must remove the angular 
momentum, for example the angular momentum is fed back into 
the binary orbit by tides exerted on the outer edge by the 
secondary. Figure 1.2 shows the situation we now have.

Accretion 
disc

Inner Lagrangian 
point

Compact \  
primary \ 
star * I

Accretion strea

\
Distended 
secondary star

' Hot spot'

Figure 1.2 The structure of the accretion disc around the 
primary star of an interacting binary system. 
R is the maximum radius of the disc, R
is*the stream circularisation radius.
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A disc has been formed around the primary with material 
constantly flowing through the point and spiralling via 
the disc onto the surface of the primary. Where the
accretion stream meets the outer edge of the disc a 'hot 
spot' is formed due to the collision of the stream with the 

outer edge of the disc. If the primary is a white dwarf 
star and the secondary is a red dwarf, or sometimes a red 
giant then this system is known as a cataclysmic variable. 
It is these systems that we are mostly concerned with.

In cataclysmic variables an accretion disc is not the 
only way the matter can reach the surface of the primary, 
its path to the primary depends on the strength of the 
primary's magnetic field. To distinguish the different 
types of CV they are sub-divided into classes depending on 
the accretion process. If the magnetic field is weak then 
an accretion disc is formed and the matter will spiral in 
and impact on the primary in a ring around its surface.
Those systems that accrete by an accretion disc only
include the Dwarf Novae, which undergo repeated nova-like 
outbursts in brightness. As the primary spectral component 
of the system is the accretion disc (due to the vast amount 
of energy radiated away in spiralling toward and striking 
the primary) these outbursts are thought to be due to

either instabilities in the disc or a sudden increase in 
the mass transfer rate. If, however, the magnetic field is 
very strong (greater than a few x 10^ G) an accretion disc 
will be prevented from forming by this field and instead 
the matter will accrete directly along the field lines to 
the magnetic poles. If the binary period is short enough, 
the white dwarf spins synchronously with the binary and
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these systems are known as Polars, or AM Herculis stars 
after their prototype. For Polars the matter impacts over 
a very small area of the white dwarfs surface and we talk 
of an accretion column to describe the motion of the 
accreting matter near to the white dwarf. A related 
sub-division of CV's are the Intermediate Polars. Here the 

magnetic field is strong but the white dwarf spins faster 
than the orbital rotation. This sub-division is also 

called DQ Herculis stars after a possible prototype object. 
Figure 1.3 shows two of the cases described above. Dwarf 
Novae and Polars.

In our work we concentrated our efforts on the second 
and third cases described above (case (ii) in Figure 1.3), 
polars and intermediate polars. However an atmosphere code 
for a magnetic CV can easily be used/adapted to describe 
the inner edge of an accretion disc or, as indeed was the 
case with our code, to calculate the emergent spectrum from 
an accretion disc as a whole. As I described above, in a 
magnetic CV the matter accretes directly onto the surface 
of the white dwarf at the magnetic poles, this process is 

called column accretion.

1.3 Column Accretion

We have seen that for AM Her systems where the white 
dwarf primary has a strong magnetic field, the matter 
flowing through the point is accreted directly onto the 
polecaps of the white dwarf, travelling down the magnetic 
field lines. Since no accretion disc is formed the angular 

momentum possessed by the accreting matter must go
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(i) Disc accretion - B<10^ G

Secondary
White dwarf

Shock

' Hot spot Accretion disc White dwarf 
surface

(ii) Column accretion - B>10^ G

Magnetic fieldline 
Accretion column Secondary \

X-ray's

Gas streams
White dwarf 

Magnetic fieidlines

Shock
White dwarf 

surface

Figure 1.3 Accretion in catclysmic variables.
main possibilities (not to scale).

The two
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somewhere. As a result, complicated torques are exerted on 
the magnetic field and ultimately the white dwarf. However 
the interaction of the white dwarf's magnetic field with 
the secondary stars envelope produces an opposing torque. 
The end result of this is thought to be a 'phase-locked' 
binary configuration. That is, the white dwarf and the 
secondary star spin synchronously with each other and with 
the orbital motion, so that the configuration shown in 
Figure 1.3 rotates rigidly in space. Direct observational 
evidence of this is hard to detect as the region near the 
white dwarf dominates, generally, at all frequencies and 
the radial velocity curves are dominated by the gas stream. 
Nonetheless the phase-locked model is generally accepted.

We can treat the accretion column as essentially a 
one-dimensional region. Figure 1.4 shows its essential 
features. Since the infalling matter is in free-fall and 
highly supersonic it can be shown that it must be 
decelerated to subsonic velocities in order for it to 
accrete onto the white dwarf's surface (see Frank, King and 
Raine, 1985, Chapter 4). Hence a standing shock must occur 
over the polecap. Below the shock the matter must cool and 
settle onto the stellar surface. If we assume that the 
cooling is purely radiative (note that this assumption is 
questionable - see below) then the matter is characterised 

by the adiabatic shock temperature

T = 3.7x10® M R  ̂ (1.2)
s 1 9

where ; M is the mass of the white dwarf in solar masses 
1 9and R is the radius in units of 10 cm.9
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Limiting magnetic fie ld line

 ̂ Supersonic accretion flow

SHOCK

Hard X -ra y  emission region

- j  jScft X-ra^''s 
"and UV

ATMOSPHERE

Figure 1.4 Accretion column geometry for a magnetized 
white dwarf.

Hence most of the accretion luminosity will be released as 
hard X-rays since the column is very optically thin. One 
half of this radiation is emitted toward the white dwarf 
surface where it is partly reflected and partly re-radiated 
from the white dwarf photosphere with a characteristic 
temperature

b 1 S - 2 1  9 s o f t (1.3)

where ; f is the fraction of the accretion luminositysoft
re-radiated in this way 

M
1 6

is the accretion rate in units of 10^^ g s ^
2f 2 is the accreting area in units of 10 of the 

total white dwarf surface area.
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The spectral form for this radiation is usually assumed to 
be black body-like but, as we shall see later, this is not 
necessarily correct.

The accretion flow w i l l . be brought to a halt in a 
region of the white dwarf photosphere where the gas 

pressure is of the same order as the ram pressure of the 
infalling matter.

If we assume that all of the accretion luminosity L
a c c

is radiated as hard X-rays then 1/2L is directed towarda c c

the white dwarf photosphere. Tf a fraction a is reflected
X

directly then

f  ̂ - 1/2(1-a ) ■ (1.4)
s o f t  X

L 1/2(1+a )
L 1/2(1-a ) (1-5)
s o f t  X

For a typical value of a (^0.3) we get f , '/'O'. 35 and
X s o f t

(L /L , )'/'2. This means for radiative column the hard
X s o f t

X-ray luminosity is approximately twice the soft X-ray 
luminosity. However, from observations of AM Herculis, we 
have (L /L , )'/'0.1. This discrepancy is called the 'soft

X s o f t

x-ray excess' or 'soft X-ray problem'. It is made more 

acute by the fact that interstellar absorption effectively 
makes most of the soft X-ray region unobservable. The 
values for L , have to be derived by fitting a UV

s o f t

continuum at energies less than 13 eV and a sharply falling 
continuum in the soft X-ray range '/'0.1-0.3 keV. For high 
absorptions or low temperatures these can disappear
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altogether. The fitting is usually done using black bodies 
but what is really needed is a better estimate for the 
continuum spectrum of the soft component.

1.4 Model Atmospheres .v . Black Bodies

we have seen that the value for ^ radiative

column has to be derived by spectral fitting since 
interstellar absorption effectively removes most of the 
soft X-ray spectral component. Until recently black bodies 
have been used to fit the missing Component. This is 
highly unsatisfactory as a black body at best only provides 
a crude approximation to the overall spectral shape of the 
soft component. In restricted spectral regions a black 
body continuum is a poor approximation as was pointed out 
by Heise (1982) in a pioneering investigation using white 
dwarf atmospheres to fit the soft X-ray spectrum. The high 
frequency continua of such spectra usually imply colour 
temperatures which are not only higher than but also 
almost independent of its precise value, the reason being 
that at these frequencies the low continuum opacity means 
that one sees into deeper, hotter layers of the 

photosphere.
To improve the fitting of the soft X-ray component we 

need a model atmosphere spectrum. By solving the equations 
that govern the structure of an atmosphere we can 
calculate, for the polecap region of the white dwarf, the 
emergent spectrum from this region. If the assumptions 
used to calculate this 'self-consistent' atmosphere model 
are reasonable then it is clear that it would be a better
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estimate for the soft X-ray spectral component than a black 
body. There are two other reasons why model atmospheres 
are desirable. Firstly, the soft X-ray polecap is 
irradiated by the hard X-ray component. A fraction of 
these incident X-rays will be reflected without a change of 
frequency, the 'albedo' component. Since the ratio of 
reflectance to absorption is a function of photon energy 
this component will have a distinct spectral shape, which 

will have to be taken into account in order to interpret 
the hard X-ray spectrum. An atmosphere calculation is 
essential for this purpose. Secondly, unlike a black body 
which emits isotropically outwards, an atmosphere will 

exhibit limb-darkening (or brightening if there is
appreciable illumination from above). These effects will 
greatly influence the shape of the soft X-ray lightcurves 
generated by the rotation of the white dwarf. A proper 
treatment of these effects is essential in order to fit 
observed lightcurves theoretically.

The realisation that a model atmosphere would prove to 
be a better 'tool' in this situation than a black body 
motivated us to construct a suitable code for the polecap 
region of a magnetic CV, sufficiently general that it could 
be used for any accreting white dwarf. In Chapter 2 I 
describe the procedure for calculating a model atmosphere 
in general. In Chapter 3 I explain the specific
requirements of our code that make it different from other 
atmosphere calculations (for example Kurucz (1979) and 
Heise ( 1982)) .

Returning to the problem of the soft X-ray excess, 
while it is sometimes hoped that the soft X-ray "problem"
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will disappear altogether with a better estimate for the 
soft X-ray spectral shape in reality this is unlikely to 

happen. A self-consistent atmosphere does give a more 
realistic shape for the soft X-ray spectral region but the 
complete removal of the problem requires that another 
process within the column or on the white dwarf surface is 
producing large amounts of soft X-rays. Three
possibilities have so far been considered; (i) steady 

nuclear burning on the surface of the white dwarf; (ii) 
inhomogeneous accretion flow down the column and (iii) 
non-radiative energy transport into the white dwarf 
photosphere by energetic electrons. The pro's and con's of 
each possibility will not be discussed herein but suffice 
it to say that (iii) looks like providing us with more 

realistic values for For discussion of (i) and
(ii) above see King (1987) and for a complete discussion of
(iii) see Frank, King and Lasota (1983) and Frank and King 
(1984).

1.5 Model polecap atmospheres - other uses

While the original motivation for constructing the 
model atmosphere code was to provide an accurate 

representation of the 'hidden' soft X-ray continuum its 
uses go far beyond this. Fitting observed hard and soft 
X-ray spectra is obviously the first use for such a code. 
Secondly, by fitting black body spectra to the soft X-ray 
region of our atmosphere spectra we can effectively model 
the approach usually taken to derive values for the 
luminosity and effective temperature of an observed source.
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This provides us with estimates of the errors produced when 
black bodies are used as fitting tools. In Chapter 5 I 
describe the results produced by such a method. A third 
use for the atmosphere spectra is in the calculation of 
lightcurves. Our spectra are of importance here because 
they exhibit limb darkening effects. The method used to 
calculate lightcurves and the results obtained can be found 
in Chapter 6. The last use to which we put our atmosphere 
spectra was to calculate the emergent spectrum from the 
accretion disc of an active galactic nucleus (AGN). At the 
centre of an AGN is a supermassive black hole (^^Q8 solar 

masses). Matter accreting onto this black hole may form an 
accretion disc analogous to those in Dwarf Novae. The 
calculation of such an emergent spectrum and the results 
obtained are described in detail in Chapter 7. Chapter 8 
discusses the results of our work and suggests future work 
that could be undertaken in this field using our atmosphere 

code.
In this chapter I have described the reasons for 

calculating an atmosphere code and the region it must 
describe; in the next chapter I will describe the procedure 
for calculating a model atmosphere in general.
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CHAPTER 2

THE CALCULATION OF A STELLAR 

ATMOSPHERE MODEL

2 . 1



2.1 Introduction

The calculation of a model stellar atmosphere follows 
an iterative path. Given some initial conditions a new 
guess at those conditions is made which depends apon the 
original ones. The principal variable that is corrected is 
the temperature at each depth in the atmosphere which, as 

we shall see, has the most effect. Repeating the 
correcting process causes the model to converge to the 
correct structure. Convergence to a few tenths of a 
percent is enough, any further convergence lengthens the 
run-time on the computer without giving appreciable returns 
in terms of accuracy.

In order that the reader can understand each step in 
the calculation I will break this chapter into sections, 
each section describing one particular step in the 
calculation. The order of the sections will follow the 
flow of the calculation itself. Figure 2.1 shows the flow 
diagram for a typical stellar atmosphere calculation.

The derivation of the equations associated with 
atmosphere calculations and a description of the terms 
contained within them can be found in the Appendix. 
Readers not familiar with astrophysical terms are advised 
to read through this before continuing with this chapter.

2.2 The Initial Model

The standard planar transfer equation, from equation 

(A.26), is
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Q  START ^ SECTION

IN IT IA L  MODEL

SOLVE TRANSFER 
EQUATION 

(FEAUTRIER 
METHOD)

CORRECT n  
STRUCTURE 

L I  NEAR j 
MET)

zMPERATURE
(PARTIAL

ÏSATION
■100)

\

ENFORCE HYDROSTATIC 
EQUILIBRIUM

IS  
ERROR 

ACCEPTABLE ?

2 . 2

2.3

2.4

2.5

Figure 2.1 Flow chart for the standard calculation of a 
stellar atmosphere model.
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(2.1)

where x(z,v) is given by equation (A.24),

t ( z ,v) = ; " * * x ( z ' , v ) d z '  (2.2)

In order to solve this equation by iteration we need an 
initial model. This initial model takes the form of an 
approximate solution to the transfer equation.

2.2.1 An approximate solution - the arev atmosphere

We can simplify the transfer equation by assuming that 
the opacity of the stellar material is independent of 
frequency; i.e., X^=X- This is called the Grey Atmosphere 
Approximation, grey signifying that the opacity has no 
dependence on frequency (colour). Therefore equation (2.1) 
becomes

m O I  /3t ) = I - S (2.3)V V V

By integrating over frequency and writing

I = Iglydv (2.4) S = f^Sydv (2.6)

J = (2.5) B = X~B^dv (2.7)

we get.

m O I / 9 t ) = I - S (2.8)
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The condition of radiative equilibrium, from equation 
(A.39), requires

= /“ x^S^dv (2.9)

For grey material this reduces to

J = S (2.10)

Therefore equation (2.8) becomes

m (8I/3t ) = I - j (2.11)

If we assume Local Thermodynamic Equilibrium (LTE) then

J( t ) = S( t ) = B[T(x)] = o T^/tt (2.12)

i.e., we can associate a temperature with the equilibrium 
radiation field using equation (2.12).

By taking the moments of equation (2.11) we find
several important results. For example, take the
zero-order moment and impose radiative equilibrium. Then 
equation (A.33);

O H  /8x ) = J - S (2.13)V V V V

becomes

(dH/dx) = J - S = J - J = 0  (2.14)
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which implies that the flux through the atmosphere is 
constant. The first moment gives

(dK/di) = H (2. 15)

which, because H is constant, gives

K(t) = Ht + c = 1/4Ft + c (2.16)

Now, the diffusion approximation (equations A.52b and d) 
implies

K ( t ) = 1/3J(x) (for x>>1) (2.17)

so given that K(x) > 1/4Fx for x>>1 this implies that at
great depth

J(x) > 3/4FX (t >>1) (2.18)

For X<1 we expect that J(x) does not follow a linear 
function of optical depth, so a reasonable general

expression for J(x) might be

J ( t ) = 3/4F[ t + q(x)] = C 3o/4ir )T^ ̂  ̂ ‘ [ x+q ( x ) ] (2.19)

where q(x) is known as the Hopf function. If we take the

limit,

x*l - K(t)] = [T+q(T)-T-c] = 0 (2.20)
we find that
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c = q(~) (2.21)

S o ,

K ( t ) = 1/4F[t + q(*)] (2.22)

The solution of the grey atmosphere problem requires that 
we know q(x). Given q(x) we can combine equations (2.12) 
and (2.19) into the relation

T^ _= 3 / 4 T , + q(T)] (2.23)

A closed form expression can be written for q(x) (Mark, 
1947) which has the form

q(T) = q(.) - ^  si H(=)Z(U) ^2.24)

where ;

H(u) = (u+1)"'/2exp[^ as] (2.25)

and Z(u) = [1 - puln(-j^) ]^ + ^ ir û̂  (2.26)

Results obtained by numerically evaluating equation (2.24) 

are given in Table 2.1.
So, the grey atmosphere approximation gives us an exact 

solution to the transfer equation; i.e., we have a form for 
the temperature structure. One question remains, can we 
relate the non-grey problem to the grey problem and thus 
set an initial model for the temperature structure in the 
atmosphere ?
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Table 2.1 The exact solution for q (T).
T q( T ) T q( T )

0.00 0.577351 0 . 8 0. 693534
0.01 0.588236 1 .0 0. 698540
0.03 0.601242 1 . 5 0.705 130
0.05 0.610758 2.0 0.707916
0. 10 0.627919 2 . 5 0.709191
0.20 0.649550 3.0 0.709806
0.30 0.663365 3.5 0.710120
0. 40 0.673090 4.0 0.710270
0.50 0.680240 5.0 0.710398
0. 60 0.685801 0.710446

2.2.2 Mean opacities and the arev solution

The opacity in real stellar atmospheres is certainly 
not independent of frequency, indeed it exhibits strong 
variations when spectral lines are present. If we compare 
the grey and non-grey transfer equations and their moments 
we have

m (3I^/3z ) = x^(I^ - S^) (2.27a)

m(3I/3z) = x ( J  - I) (2.27b)

(3H^/3z ) = x^(S^-J^) (2.28a) dH/dz = 0 (2.28b)

(8K^/8z) = -XyHy (2.29a) dK/dz = -xH (2.29b)

where the variables without subscripts represent integrated 
quantities. In order to reduce the non-grey problem to a 
grey problem, can we define a mean opacity x formed as a 
weighted average of the monochromatic opacities in such a 
way that the monochromatic transfer equation, or one of its
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moments, has exactly the same form as the grey equation, 
when integrated over frequency. Several solutions can be 

defined, I will only describe the one used for our models, 
the Rosseland Mean Opacity.

If we wish to obtain the correct value for the 
integrated energy flux, from equation (2.29a) we chose x 

such that

x'’ (dK/dz) (2.30)

or, rearranging

x’’ = J” x^‘’ (9K^/az)dv / j“ (3K^/3z)dv (2.31)

We are faced with the problem that we do not know until 
the transfer equation has been solved but, equation (2.31) 
can be approximated in the following way. At great depth 
in the atmosphere, K »1/3J while J >B . Therefore we canV V V V
write,

(3K /3z) % 1/30B^/3T) (dT/dz) (2.32)

We can then define the mean opacity Xp (=x) as

1 3B
. 3B

1 =  - r k — -  = > -  (2.33)
■^o‘9T >
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Xp is called the Rosseland Mean Opacity, in honour of its 
originator. Note that this average opacity gives highest 
weighting to those regions where the opacity is lowest, 
where, as a result, most of the energy is transported. 

However the use of Xp as the mean opacity does not reduce 

equation (2.28a) to equation (2.28b) so that the non-grey 
problem can be replaced by a grey problem. On the other 
hand, the approximations made to obtain equation (2.33) are 
precisely those introduced in the derivation of the 

diffusion approximation to the transfer equation (equation 
(A.53)); i.e..

= -1/3(1/x^)O B ^ / Ô T ) (dT/dz) (2.34)

Therefore, using the Rosseland Mean optical depth scale 
recovers the correct solution of the transfer equation at 
great depth. This implies that for Xp>>1 the temperature 
structure is exactly given by the relation

= 3 / 4 T ^ ^ / [ t„ + q(T,)] (2.35)

Note that this is only true at great depth, exact flux 
conservation is not guaranteed by use of the Rosseland Mean 
in the upper layers of a stellar atmosphere. For the 
purposes of setting the initial model the Rosseland Mean 
optical depth scale provides us with an easy form for the 
temperature structure. Using this, the initial values for 
gas pressure, electron density, etc., at each depth can be 
calculated, ready for the solution of the transfer 
equation. The inaccuracy at low optical depth will be
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corrected as the model converges.

2.3 The solution of the Transfer Equation

In order to calculate the intensity of radiation at 
each depth in the atmosphere, at each frequency and at each 
angle g we need to solve the transfer equation. In this 

section I will describe the solution of the transfer 

equation by differential equations, the solution by 
integral equations will not be described but if interested 
the reader should consult Athay (1972, Chapter 8) for a 
description.

2.3.1 The Transfer Equation as a two-noint boundary value 
problem

The basic ideas for this method were presented in a 
paper by Feautrier (1964). It requires that the transfer 
equation is written as a second-order differential equation 
subject to two-point boundary conditions.

If we assume that the atmosphere is plane-parallel then 
we can write two equations for the inward and outward 

radiation field at angle + g ,

+g[3l(z,+g,v)/3z] = x(z,v)[S(z,v)-I(z,+g,v)] (2.36)

here g is restricted to the range 0<g<1. Defining 

symmetric and anti-symmetric averages we get

u(z,g,v) = 1/2[I(z,g,v) + I(z,-g,v)] (2.37)
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v(z,M,v) = 1/2[I(z,g,v) - I(z,-g,v)] (2.38)

If we add and subtract the two equations (2.36) we get

g(3/3z[I(z,g,v)-I(z,-g,v)])

= x(z,v)(2S(z,v) - [I(z,g ,V)+I(z,-g ,V )]} (2.39)

and, assuming S(z,v) is symmetric in g ,

g(3/3z[I(z,g,v)+I(z,-g,v)])

= - X (z ,V )[I(z ,g ,V )-I (z ,-g,V )] (2.40)

Substituting u and v into the above we get

g[3v(z,g,v)/3z] = x (z ,v )[S (z ,v )-u(z ,g ,v )] (2.41)

and g[3u(z,g,v)/3z] = - x (z ,v )v (z ,g ,v ) (2.42)

By eliminating v between equations (2.41) and (2.42) we get

M (3/3z[(-1/x(z,v))(3u(z,g,v)/3z)]}

= x(z,v)[S(z,v)-u(z,g,v)] (2.43)

By abbreviating the notation and letting

dx^ = dx(z,v) = - x(z,v)dz (2.44)
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equation (2.43) becomes

" ) = Upv - ^  '2.45)

This is the second-order equation that we must solve. What 
are the boundary conditions ?

Boundary conditions

Equation (2.45) must be solved subject to boundary 

conditions at t =0 and t = t such that the diffusionmax
approximation applies at xmax

At x=0 : for no incoming radiation

1(0,-g,v) = 0 (2.46)

which means that v (0)=u (0). Therefore equation (2.42)gv gv
becomes

m O u ^^/3t^)o = u^^(O) (2.47)

If however there IS incoming radiation then I(0,-g,v)f0, 
the upper boundary condition, from equation (2.42), becomes

m (3u ^^/3t^)^ = v^^(O) = 1/2[I^(+m )-I^(-u )] (2.48)

which, substituting for I^(+g) from equations (2.37) and 
(2.38), becomes
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" 1/2[2u (0) - 21,(-(j)] (2.49)gv

I.e. ,

p (9u ^^/3t^)o = u^^(O) - 1(0,-M,v) (2.50)

This is the upper boundary condition for an atmosphere with 
incoming radiation.

At T=T max

From equations (2.37) and (2.38) we have

v(z,g,v) = 1/2[I(z,g,v)+I(z,g,v)-2u(z,g,v)] (2.51)

= I(z,g,v) - u(z,g,v) (2.52)

Which at T=T gives, from equation (2.42),max

- "pv'T..*) (2.53)max

If the diffusion approximation is valid at t = t thenmax

I(t ,g,v) = B (t ) + g(1/x_l&B /8z|) (2.54)max V max V V Tmax

SO that, from equation (2.52), u (% )=B (% ) andg v  m a x  V m a x

V (Tmax)=m (x ^“  ̂19B^/3z |)t , which gives
max

(GUuv/G^v'T " (Xv''l9B^/8z|)^ (2.55)max max
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as the lower boundary condition.

The next step in the solution is to rewrite equation
(2.45) into a set of difference equations by making the 
variables discrete. Therefore we choose a set of depth

points  ̂ d=1,2,...,D, where T^<%2 <...<TQ; a set of angle

points , m=1,2,...,M; and a set of frequency points ,
n=1,2,...,N. I(z,g,v) becomes I and integrals ared m n

replaced by quadrature sums. To reduce the subscripts 
still further we group the angles and frequencies into one 
subscript i such that (g ,v )=(g ,v ) at i=m+(n-1)M.i i m n
Further, derivatives are replaced by difference formulae, 

e.g..

“ + (2.56)

and

2 [ ( § ? )  ■ ( f f ’ ^
», ---   m z i -------- i - U 2 ---  ( 2 . 5 7 )

which, from equation (2.44), defines

ATd.1/2,i = 1/2(Xd,1,i+Xd,.'l=dt1-Zdl (2.58)

and = 1/2(Aty_,/2,. + AT,,,,;,;) (2.59)
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So the LHS of equation (2,45) becomes

du du
[(3 7 ' - 'd7> ]2 d + 1 / 2________d - 1 / 2

2U U - U U - ui d + 1 , i d , X _ d , i d - 1 , i
Aty,. Atd+1/2,i ’ A'd-1/2,i

2 2 u u u ud+1,i d.i
A t A t , Ax A t .dii d+1/2,i d,i d+1/2,i

ATd,.Atd-1/2, i .

So, equating both sides, we have

(2.60)

)u,  ̂ . + (r— ----T—---------)u

M. 2

—  (7----   + 7----  )U
Âd.i ATd-1/2, i ^\.U2.i

u - S (2.61)d , i d , i

Which reduces to

2 2 W. Pi
Âtd-1/2,iATd,i'"d-''i ' 'AT;, ̂ , )"d»1 , i

2

A^d.i ' a ^ T T T T T  Â ^ T I T T T T  ^
(2.62) 
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where ; i = 1,2,3,...,I and d=2,3,...,D - 1.

If we define a vector,  ̂ which contains the 

angle-frequency components at depth point d then equation
(2.62) can be written as a matrix equation, as follows

-Ad“d-1 + ®d“d - Cd"d»1 = ^d '2.63)

The last step before solution is to convert the boundary 
conditions to difference formulae. So,

at T=0 : (with incoming radiation as I )i n c

p,(Uj, - = u,, - (2.64)

Second order accuracy is obtained by expanding u^ . as a
Taylor series, i.e..

u^ = + ATgygtdu/dx) + 1/2Ax2/2^(^^u/dx^) (2.65)

which, by substituting into equation (2.65) from equations

(2.45) and (2.50), gives

+ i - S,i) '2.66)

Expanding and collecting together like terms we get
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2 2 
2g. 2g 2g

-  '— ^ ' “21+ ^A"3/2 AT,/, AT,/,

2m 3 i .
= S,, + - h - 7 T  '2.67)

3 / 2

Which is the same, in matrix form, as equation (2.63) but 

with =0. So the upper boundary condition is

B,u^ - C^U; = (2.68)

Similarly for the lower boundary condition, expanding u 
as a Taylor series and substituting from equations (2.45) 
and (2.55) we find.

2 m .^ 2 m .^ 3 B

(2.69)

which is the same, in matrix form, as equation (2.63) but 
with =0. So the lower boundary condition is.

The matrix equations are now complete, the solution of 
these follows that described by Feautrier (1964) and is 
known as the Feautrier Solution.
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The Feautrier Solution

The set of equations (2.63), (2.68) and (2.70) have the
overall structure

B
1-A

-C
B. -C

-A. B. -C.

\ \ \

/u. \
u,
u.

u.
0 -  1

. \

0 -  1

(2.71)

/

The solution for u^ is found by inverting the grand matrix 
and multiplying the L matrix by it. Matrix inversion is 
carried out using Gaussian Elimination (e.g. Barnett, 1979, 
pp34-38). To find and eliminate the angular information 
from the calculation variable Eddington factors are 
introduced, f^=K^/J^, (Auer and Mihalas, 1970). By 
integrating equation (2.45) over p we obtain

(2.72)

and for the boundary conditions.

= V v ' O )  -
(2.73)

and [3(f^J^)/3T^]^ = 1/3(x^'’ 19B^/3z |)^
max max

(2.74)

where ( 0 ) / ( 0 ) .  Equations (2.72) to (2.74) can be
treated in the same way as the angle dependent equations 
for u, except in this case the matrix is solved for J^. with 
S written in terms of J from equation (A.31), i.e.,V V
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+ (1 - Q^)B^ (2.75)

where,

®v = °v/*v = Ov/(°v + '"v) (2.76)

So, to recap, the solution of the transfer equation 
proceeds as follows

(i) From a guess at S^ (=B^ usually) equation (2.45) is 

solved for u for all d, one angle and frequency at a 
time, using the Feautrier method.

(ii) Variable Eddington factors are calculated from the 
values for u^ such thatd m n

f, = [ b p / [ b u^ (2.77)dn m m m  dtnn m m d m n

where, b are the angle weights. And, also.

h = [ b p u, / T b u „  (2.78)n m m m i m n  m m i m n

(iii) Equations (2.72) - (2.74) are solved for , at all
depths, one frequency at a time, using explicit expressions

for S^ in terms of (from equation (2.75)).
(iv) Re-evaluate S^ using the values for .
(v) Since will differ from that originally used,

steps (i) - (iv) are repeated until S^ converges to the

correct value (an error of 1.0x10'^ is acceptable).

Once the radiation field throughout the atmosphere has 
been calculated it must be tested to see if it satisfies
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the constraint of Radiative Equlibrium. Since it is highly 
unlikely that the initial model is correct we must have a 

means of correcting the temperature structure so that the 
radiation field does satisfy the requirement of energy 
balance. In the next section I will describe the modified 
correction method we used to do this.

In this section I have described the solution of the 
transfer equation using difference equations and the 

Feautrier method. If the reader is interested, Mihalas 
(1978, pp158-161) describes an alternative method, the
Rybicki Solution, of solving the difference equations when 
the frequency dependent information is redundant due to 
complete redistribution (see also, Rybicki, 1971).

2.4 Correcting the temperature structure

In order to correct the temperature structure we need 
to linearise the transfer equation. From equations (2.72) 
and (2.75) we have, v subscript dropped for convenience.

d2 fJ/dx^ = J - S = (1 - o)(J - B) (2.79)

With boundary conditions included this can be written in 

matrix form as

A (1-Q^ )B^ + 2JpI. ̂ ^dp/Ax^
(1-G2)B,

^(1-Q,)B^ t 2/3(dB/dx),/Ax,_,
(2.80)
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where is the incident optical/UV radiation. We can
expand J > J+5J and B > B+5B and subtract the transfer 
equation to give,

A / 6 J \  ^ /(1-e, )B,6T,
\/1-eo)Bo5T, + 6(2/3(0B/3T)),/AT,_,

(2.81)
Inverting, we get

,,-1
fijo/ \(1-Oo)&o*To + 6(2/3(38/3%) ),/at, ,

(2.82)
At each depth we can write dH /dx in two w a y s . FromV V
equation (A.33) we have

dH^/dT^ = = (1 - e^)(J^ - B^) (2.83)

or, from the non-integrated form of equation (2.72),

dH /dx = d^f J /dx 2 (2.84)V V V V V

Equation (2.83) is not accurate for x^>>1 as, from equation 
(A.52b) Jv%By. Similarly equation (2.84) is not accurate 
for Xy<<1 as 1/AXy^ is large. Expanding equation (2.83) we 
get

= f  - Pv'd'AJvd - Bvd*?d) '2.85)
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Substituting for from equation (2.82) we have

(2 .86)

For the second equation we get,

5(dH /du )̂  = A /5J \ = <5̂ f J /dx  ̂ (2.87)V V d / 1 \ V V

- 0 , v

The matrix A is tri-diagonal so.

G'dHv/dTy), = Ad.d.1*Jd-1 + Ad,d*Jd + Ad,d.1*Jd.1
(2 .88)

Again substituting from equation (2.82) for the 5J's we 
have,

+  &d, d . 1 [[j = ' 2 , 8 9 )

Converting (dH^/dx^) to (dH^/dx^), using

" (dTy/dx^)(dH^/dXy) (2.90)

we will then have DxD simultaneous equations for the D 
6T's, with the boundary conditions included. The values
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for can be computed from the model (as are the
terms in the matrix A). In Chapter 3, however, we will see 

that for incoming X-ray radiation, dH^/dx^ can be written 

in terms of the sum of the optical and X-ray derivatives of 
the flux.

This linearisation method is known as Partial 

Linearisation. It differs from Complete Linearisation (see 
Mihalas, 1978, pp180-185) in that the conditions of
radiative and hydrostatic equilibrium are not included, 
explicitly, in the matrices.

2 .5 Hydrostatic Equilibrium

In a static stellar atmosphere the weight of any layer 
is supported by the total pressure (gas pressure + 
radiation pressure) beneath it. The density structure of 
the atmosphere is effectively determined by this balance. 
We have seen, from equation (A.59),

(dPg/dm) = g - (4iT/c)I^(x^/Q)H^dv (2.91)

where the last term is that associated with radiation
pressure. Since H^ is known from the solution of the
transfer equation we can solve equation (2.91), one depth

at a time, to find the correct value for P and then use9 d

this to find N . ; by solving the Saha equation for all
e d

states and imposing charge neutrality (see Mihalas, 1978, 
p p 112-114). Since T^ and determine the opacity at
each depth we can loop back to solve the transfer equation 
again with the new values for T^ , and x,̂ - This process
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can be repeated until the model converges to the correct 
structure, within acceptable error.

In this chapter we have seen how a simple stellar 
atmosphere model is calculated. In the next chapter I will 
go on to describe how we adapt this to model the conditions 
that apply at the magnetic pole of an AM Her white dwarf.
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CHAPTER 3

DESCRIPTION OF POLECAP ATMOSPHERE CODE
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3.1 Introduction

In the previous chapter I described, step by step, the 
procedure for calculating any stellar atmosphere model. 
Whether the star to be modelled is a red giant or a white 
dwarf the basic iterative method is always the same. The 
essential assumptions associated with that calculation 
were :-

(i) the atmosphere is made up of plane-parallel layers 
where the thickness of each layer is small compared to the 
radius of the star

(ii) the atmosphere is in a steady state
(iii) the atmosphere is in hydrostatic equilibrium
(iv) the atmosphere is in radiative equilibrium.

Of course, to model certain types of star, it may be
required to relax some of these restrictions, for example, 
to include convection for late-type stars such as red 
giants, but this has the disadvantage of making the 
calculation more complicated. For the case of modelling
the polecap region of a magnetic white dwarf all of the 

above apply.

3.2 Calculating a model polecap atmosphere

In Chapter 1 I described the structure of the polecap 
of a magnetic cataclysmic variable. We must mathematically 
model these conditions as accurately as possible. We 
defined the top of our atmosphere to be just below the hard
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x-ray emitting region where  ̂̂ . At this region the

atmosphere is hydrostatic since the inflow velocity has 

fallen to <10  ̂ of the free-fall velocity due to 
deceleration over the shock (Frank, King and Lasota, 1983). 
The infalling material subjects the top of the atmosphere 
(optical depth T^O) to a pressure P ^p where

o r a m

’ram " < M/4itR^ f ) ( 2GM/R, ) ' ' * (3.1)

is the ram pressure of the accretion flow. The extra 
pressure due to the weight of the X-ray emitting material 
below the shock is negligible by comparison with Pram
(Frank, King and Lasota, 1983) . The atmosphere is 
irradiated by hard X-rays from this region with intensity 

. The spectral form of was taken to be thermal
bremsstrahlung at a temperature of T^ (given by equation 
1.2) and was considered to be isotropic, which is 
reasonable for irradiation by a large, plane-symmetric, 
optically thin accretion column. The strong magnetic field 
of the polecap ('^10^ G) guarantees radiative equilibrium 
and convection is strongly supressed due to magnetic
stresses, 4B^/8tt 10^^ dynes cm'^ , outweighing material
stresses, %/' 10^^ dynes cm”  ̂ at their maximum point at the
base of the polecap. Local thermodynamic equilibrium is 
assumed throughout the atmosphere^ . In the simplest
radiative-loss column structures the irradiation by hard 
X-rays is the only source of energy, apart from the small 
intrinsic stellar flux. However we also considered the 
situation where additional accretion energy is deposited
non-radiatively at large optical depths, this was achieved
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by increasing the intrinsic stellar flux such that,

where -oT *, the intrinsic stellar flux. The ratio

defines the amount of energy derived from the X-ray 
irradiation and is an important variable in our 
calculations. With this variable we were able to model 
atmospheres that were unilluminated as well as those which 
derived all their energy from the X-ray illumination. It 
should be noted, though, that the main limitation imposed 
on our atmosphere model is in treating the very thin 
transition layer at the base of the hard X-ray region since 
here the electron temperature must drop sharply from to

f̂ (Frank, King and Lasota, 1983) and non-LTE effects 
can produce fluorescent line emission and photoionisation. 
This region is not described by our calculation.

With the above quantities specified the calculation 
follows the procedure described in Chapter 2. Figure 3.1 
shows a flow diagram which outlines the general flow of the 
program between the more important steps involved. With 
reference to Figure 3.1 the calculation proceeds as 

follows :-
1) The calculation of the atmosphere model requires 

only three parameters; effective temperature T^^^; gravity 
g and fraction of total flux derived from the X-ray 
illumination . These three parameters characterise any
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Figure 3.1 Flow diagram for polecap atmosphere calculation
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polecap model, hence it is possible to calculate a 
three-dimensional 'grid' of models to be used in any 
application where a polecap atmosphere is the best 
approximation.

2) The optical/UV frequencies used in the calculation 
are chosen such that a black body at the same effective 
temperature has 33.3% of its total flux contained between 
the upper and lower frequency limits. This range is then 
split into 100 bins, spaced logarithmically, with at least 
two frequency points between any opacity jumps. 30 X-ray
frequency bins are used, spaced in the same way between the 

upper optical/UV point and an energy of 30keV. Opacities 
included in the model are, assuming stellar abundances;
i) HI, Hel and Hell continuum opacities
ii) K-shell photoelectric absorptions of carbon, nitrogen, 
oxygen, neon, sodium, magnesium, silicon and sulphur
iii) inelastic Compton scattering treated as a fictitous 
absorption process for photons with hv>4kT, where T is the 
local atmospheric temperature (e.g. Milgrom and Salpeter, 
1975). Bound-bound transitions are neglected as they are 
unimportant for both the gross atmospheric structure and 

the continuum spectrum.
The opacity per absorber over the optical/UV frequency 
range is calculated over the range of temperatures and 
electron densities used in calculating the partition 
functions for HI, Hel and Hell. the calculation of the 
partition functions is performed in a separate program and 
the data stored in three arrays of forty temperatures by 
forty densities. The true opacity at a given temperature 
and electron density is calculated from this data by
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interpolating a value from the opacity data and multiplying 
this by the number density of absorbers.

3) The Rosseland Mean optical depth scale is used 
throughout the calculation of the initial model. Working 
down through the atmosphere using a constant optical depth 
step the Hydrostatic Equilibrium equation is solved to find 
the density and pressure at that depth. The temperature at 
each depth is given by equation (2.36) with q(T^) being 

derived from Table 2.1. The bottom of the atmosphere is 

defined such that at (% ) the monochromatic opticaln m a x

depth at each frequency (optical/UV and X-ray) has a
value of at least 50. This ensures that the diffusion 
approximation holds for the lower boundary limit of the 
transfer equation at all frequencies. The region between 
the top and bottom of the Rosseland Mean optical depth 
scale is then divided into fifty points, evenly spaced in 
the logarithm. The range for most models is 10 ^<T^<10^.

4) For each frequency the true opacity at each depth 
is calculated and the transfer equation solved, using six 
inward and six outward rays for the Feautrier method. The 
optical and X-ray transfers are treated separately since at 
X-ray frequencies B =0, and this means that S =B cannot beV V V
used as a first guess for the solution of the transfer 

equation at X-ray frequencies. The problem was solved by 
using the method of discrete ordinates to find the 
eigenvalues of the characteristic equation for an 
atmosphere with no thermal source term, only scattering 
(Mihalas, pp64-68, 1978) and hence an initial guess for .

5) The temperature structure of the atmosphere was 
corrected using the partial linearisation method described
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in Chapter 2. The largest fractional change in the 
temperature at any depth was taken to be the error in the 

model. With incoming X-ray radiation being absorbed at 
each depth the condition of radiative equilibrium requires

f^Hydv = oT*4 (3.4)

at each depth. Since the total flux at each depth is equal 
to the sum of the optical and X-ray fluxes we can say

dv = (v)dv + X^H (v)dv (3.5)□ V 0 op t  U X

Differentiating with respect to the Rosseland Mean optical 
depth and substituting equation (3.5) into equation (3.4) 
we get the condition of radiative equilibrium used in 
correcting the temperature structure

dH (v) dH (v)
Ced i ' "  = - C e d i ” (3 G)R R

6) Hydrostatic equilibrium is enforced at each depth 
in the atmosphere to correct the pressure and density 

structure.
7) If the error in the model (from step 5) is greater 

than 1.0% the calculation loops back to step 4 and repeats 
until the error is less than 1.0%. Once the model has 
converged the optical and X-ray surface fluxes are 

calculated from
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and stored, along with the surface intensités I ^ ^pyiuj f in a.

file, for future use. Convergence to less than 1.0% is 
usually achieved by the fourth iteration.

In the last two chapters I have described the procedure 
for calculating a model stellar atmosphere subjected to the 
conditions that prevail at the base of the accretion column 
in AM Her white dwarfs. In the following chapters I will 
show the results that are obtained from these calculations 
and the uses that these model atmospheres can be put to.

 ̂ LTE can be assumed as we are modelling the region below 
the shock such that the electron density is high throughout 
the atmosphere. The non-LTE region just below the shock is 
not described by our model.
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CHAPTER 4

MODEL ATMOSPHERE SPECTRA
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4.1 Introduction

In the previous chapters I have described the 
calculation of a stellar atmosphere model for the polecap 
of a magnetic white dwarf. In this chapter I will show the 
general results of this calculation; in later chapters I 

will describe the uses that these models have been put to 
and the results of any fitting to observed systems.

We have seen that a model polecap atmosphere can be 
described by three parameters; the effective temperature,

^^ ; the white dwarf gravity, g (related to its mass, see 
later) and the percentage of its flux derived from the hard 
X-ray irradiation, The parameter range associated
with each is ; 5.0x10^<T^^^<3.0x10^ K, 1.0x10^<g<1.0x10^

cm s”  ̂ and 0.01<P^^^<99.9% (not 100% as there must be some 
intrinsic stellar flux from the white dwarf itself). After 
the model has converged to within an acceptable error 
(<1.0%) the optical/UV and X-ray surface fluxes and 
intensities along the six outward rays are stored. The 
shock intensity is also stored to allow the total outward 
flux to be calculated. How these are affected by changes 

in the initial parameters of the model is the subject of 

this chapter.

4.2 The outward surface spectrum

Figure 4.1 shows the outward surface flux from the 
atmosphere as a function of frequency. The optical/UV and 
X-ray components are shown, together with a black body of 
the same effective temperature and the hard X-ray flux from
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Figure 4.1 Outward surface flux from the atmosphere
plotted as a function of frequency 
(T^ =1.0x10^ K, P =99.9"^ and M=1 solar
mass). Absorption features are labelled with
the elemental ionisation state responsible.

the shock. The model has =1.0x10^ K, g=4.451x10®
cm s-1 (=1 solar mass) and P^^^=99.9%. The absorption
features are labelled with the elemental ionisation state 
responsible (e.g., HI - absorption is neutral hydrogen, C - 
absorption is K-shell carbon, etc.).

At this effective temperature the optical/UV continuum 
is dominated by the Hell and K-shell carbon absorption 
edges (logv=16.1 and 16.83 respectively). The spectrum is
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slightly harder in the soft X-ray region than a black body 
of the same effective temperature. The 'hump' at 
frequencies above the Hell edge is due to the low opacity 
allowing us to see a deeper and hotter region of the 
atmosphere, where the local Planck function B^(T) is still 
rising. Note that the Hel absorption feature at logv=15.77
is not seen, as nearly all the helium is at least
singly-ionised at this temperature.

The hard X-ray spectrum comes from the absorption and 
re-radiation of the incident hard X-rays. Over the whole 
parameter space the fraction, a ^ , of the incident X-rays 
reflected in this component only varies from 0.27-0.29. 
This albedo component has a strong dependence on frequency.
The two absorption features seen are due to K-shell silicon
(logv=17.78) and K-shell sulphur (logv=18.23).

4.3 Spectral shape .v. input parameters

Three parameters characterise these model atmospheres ; 
the effective temperature, the white dwarf gravity and the 
strength of the X-ray irradiation. The gravity of a white 
dwarf can be related to its mass using the mass-radius 
relationship derived by Nauenberg (1972),

where M is the mass of the white dwarf in solar masses,
is the solar radius and is the Chandrasekhar mass (1.44

2solar masses). Since g=GMM^/R we get
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g = GMMg/(i.2544x10-'R 2 [(M/M.-(M/M. ):/:])

(4.2)
where is the solar mass.

The changes in the spectral shape for the optical/UV 

and X-ray components will be considered seperately for each 
input parameter.

4.3.1 Spectral shape .v . effective temperature

The variation of the spectrum with effective 
temperature is shown in Figure 4.2 for the optical/UV 
component and Figure 4.3 for the hard X-ray albedo 
component. All the models are for one solar mass white 
dwarfs with P^^^=99.9%. The effective temperatures range 
from 5.0x10^ K to 3.0x10^ K in steps of 5.0x10^ K.

The strengths of the main absorption features (HI, Hell 
and K-shell carbon) vary quite strongly with temperature. 
The Hel feature is only seen for the lowest temperature and 
the K-shell edges of nitrogen and oxygen are only seen in 
the highest temperatures. The relationship between these 
models and black bodies at the same effective temperatures 
will be seen in the next chapter.

In Figure 4.3 the hard X-ray albedo component varies as 
T as we would expect for constant illumination. Since
this is a reflected component the strengths of the 
absorption features stay approximately constant with 

temperature.
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Figure 4.2 Variation of the optical/UV continuum with 
effective temperature (all models are for one 
solar mass white dwarfs with P^^^=99.9%). 
Absorption features are labelled with the 
elemental ionisation state responsible.
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Figure 4.3 Variation of the hard X-ray albedo component 
with effective temperature (parameters the same 
as in Figure 4.2). Absorption features are la
belled with element responsible (K-shell only).

4.3.2 Spectral shape .v . white dwarf gravity

The variation of the spectrum with white dwarf gravity 
is shown in Figure 4.4, for the optical/UV component and, 
for the hard X-ray component. Figure 4.5. All the models 
are for T  ̂ =1.0x10^ K and P ,,=99.9%. The gravities rangeeft ill
from 10^-10^ cm s" V

Somewhat surprisingly the white dwarf gravity has 
little effect on the strengths of the main absorption
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Figure 4.4 Variation of the optical/UV continuum with 
white dwarf gravity (all models have P =99.9% 
and .0x10 K ) .  ̂̂ ̂
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Figure 4.5 Variation of the hard X-ray albedo component 
with white dwarf gravity (model parameters the 
same as in Figure 4.4).^

features. The 'hump' in the spectrum is reduced with
gravity due to the expansion of the atmosphere reducing the 
temperature seen here. There is little overall change in 
the albedo component with gravity.

4.3.3 Spectral shape ,v. strength of illumination

The variation of the spectrum with the percentage of 
the flux derived from the X-ray illumination is shown in
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Figure 4.6 Variation of the optical/UV continuum with 
percentage of X-ray illumination (models are 
for one solar mass white dwarfs with
T ,,=1 .0x10^ K) .eft
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Figure 4.7 Variation of the hard X-ray albedo component 
with percentage of X-ray illumination (model 
parameters the same as for Figure 4.6).

Figures 4.6 and 4.7, for the optical/UV and hard X-ray 
components respectively. All the models are for one solar 

mass white dwarfs with =1.0x10^ K. The illuminations
range from 0.01-99.9%.

In the optical/UV region, decreasing the strength of 
the illumination results in a hardening of the spectrum in 
the soft X-ray region. For P^^^<10.0% there is little
change in the shape of the spectrum so the model has become 
essentially unilluminated at this point.
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In the hard X-ray region the albedo component decreases 

linearly with as would be expected; there is little
change in the overall spectral shape.

4.3.4 Summary

In the optical/UV spectral region the overall model 
atmosphere spectrum is a strong function of the effective 
temperature as are the strengths of the individual 
absorption features. Reducing the mass of the white dwarf 
results in a softening of the soft X-ray continuum but has 
little effect elsewhere. Reducing the strength of the hard 

X-ray illumination has the opposite effect. The reasons 
for this will be discussed in a later section.

The hard X-ray albedo component is a strong function of 
the effective temperature and the strength of the 
illumination, but only in overall shape. The absorption 
strengths are largely unaffected by changes in the model 
parameters. Changing the mass of the white dwarf has 
little effect on the albedo component.

We have seen that the calculated spectrum from a model 
atmosphere is very different from its corresponding black 
body spectrum. The fact that the atmosphere has absorption 
features is not the only difference between the two; there 
is another difference that is not seen in the figures shown 
so far. Whereas a black body emits with equal intensity in 
all directions a model atmosphere does not.
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4.4 Limb effects in a model atmosphere spectrum

In the calculation of these model atmospheres six 
outward rays where used, equally spaced from close to the 
perpendicular to the atmosphere (ray number 1) to close to 

parallel with it (ray number 6). In a black body the 
specific intensity along each ray is the same. In a model 
atmosphere the intensity along each ray is a function of 
many things and is unlikely to be constant. The variation 
of the intensity with emitted angle is known as limb 
darkening or limb brightening, depending on whether the 
intensity decreases or increases as we move away from the 
normal. The 'limb' reference comes from early telescopic 
observations of the sun that showed that it was not 
uniformly bright over its whole disc but that its 
brightness decreased towards the limb. The physical reason 
for this is that at the centre we see into deeper, hotter 
layers whereas at the limb we see only the cooler outer 
layers; the specific intensities along each ray reflect 
this.

The intensities along each outward ray from the 
atmosphere as a function of frequency are shown in Figures 
4.8 and 4.9 for the optical/UV and hard X-ray components 
respectively; the model parameters are the same as those in 
Figure 4.1. We see that for the optical/UV component there 
is a strong decrease in the intensity at higher 
frequencies, as we go away from the normal to the 
atmosphere. However the hard X-ray irradiation causes limb 
brightening in the albedo component^, although, unlike in 
the optical/UV region, there is little change in the
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Figure 4.8 The intensity along each outward ray plotted as 
a function of frequency (model parameters the 
same as in Figure 4.1). Spectra are numbered 
1-6, spectra 1 is for the ray normal to the 
atmosphere, spectra 6 is for the ray almost 
parallel to the atmosphere.
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Figure 4.9 Intensity along each ray for the hard X-ray 
albedo component (model parameters and ray 
numbers the same as for Figure 4.8).

overall spectral shape with emitted angle. These limb 
variations will become important in the calculation of 
lightcurves, as we shall see in Chapter 6.

4.5 The temperature structure of the atmosphere

We have seen in Figure 4.6 that reducing the amount of 
X-ray irradiation of the model atmosphere increases the 
hardness of the soft X-ray continuum. In Figure 4.4 we saw

4. 15



that the opposite occurred, when the white dwarf gravity 
was reduced. We can understand the reasons for the above 

if we consider the temperature structure of the atmosphere 
for illuminated and unilluminated models.

Figure 4.10 shows the temperature of the atmosphere 

plotted against the Rosseland mean optical depth into the 

atmosphere. The models have T^^^=1.Ox10^ K and are for one 

solar mass white dwarfs. We see that irradiating a model 

atmosphere softens the temperature structure until all the 
incident radiation is absorbed (at log the
temperature then rises normally. Both models do not depart 
from their initial structures to any great extent 
indicating the accuracy of the initial models used in the 
calculations.

From previous discussions we know that the soft X-ray 
continuum at frequencies above the Hell feature is due to 
deeper regions of the atmosphere. In an unilluminated 
atmosphere these deeper regions are much hotter than those 
in an illuminated atmosphere, so we see a harder soft X-ray 
continuum. Similarly, in a model with reduced gravity, the 
atmosphere will be expanded and therefore cooler, so we see 
a softer soft X-ray continuum. To better illustrate the 
differences between illuminated and unilluminated model 

atmospheres the flux at each frequency, at each depth in 
the atmosphere, is shown in Figures 4.11 and 4.12, for 
illuminated and unilluminated models respectively. The 
region over which the hard X-rays are absorbed is clearly 
seen in Figure 4.11.
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Figure 4.10 Temperature within the model atmosphere as a 
function of the Rosseland mean optical depth 
for illuminated and unilluminated models 
(T^ ^=1.0x10 K and M=1 solar mass). The 
initial models and final models are shown.
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(a)

(b)

iiiiM

Figure 4.11 The flux at each depth in the atmosphere plot
ted as a function of frequency; viewed (a)
'from the top' and (b) 'from the bottom', for 
an illuminated ^tmosphere with M=1 solar mass 
and T =1.0x10 K (x=frequency, y=depth and
z=fluxV.
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(a)

(b)

Figure 4.12 The flux at each depth in the atmosphere plot
ted as a function of frequency; viewed (a) 
'from the top' and (b) 'from the bottom', for 
an unilluminated atmosphere with M=1 solar 
mass and T =1.0x10 K (x=frequency, y=depth 
and z=flux).
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4.6 Discussion of the calculated spectra

We have seen the results of calculating model 
atmosphere spectra for the polecap of an accreting magnetic 
white d w arf. One of the original reasons for making these 
calculations was the suggestion that the model spectra 
would remove the soft X-ray excess inferred for observed 
sources from black body fits to the soft X-ray continua. 
From black body fitting of these fully-illuminated model 
atmosphere spectra (described in the next chapter) it was 
found that this was not the case. This made it important 
to model atmospheres where only a fraction of the flux in 
the atmosphere is derived from the hard X-ray irradiation, 
the rest being derived from some mechanism whereby large 
quantities of energy are deposited at depth in the 
atmosphere (possible mechanisms where discussed in 
Chapter 1).

By altering the model parameters it was found that as 
the effective temperature was increased the optical/UV 

continuum became more black body-like as the absorption 
features decreased in strength. Reducing the white dwarf 
gravity softened the soft X-ray continuum as did increasing 
the strength of the illumination. These changes are due to 
changes in the temperature structure of the atmosphere; 
irradiating the model causes a softening of the temperature 
gradient and a reduction of the soft X-ray flux. Reducing 
the gravity cools the atmosphere and causes a similar 

reduction.
In the next few chapters I will describe the uses for 

these model spectra and the results of actual observational
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fitting but before that there is one more important result 
that can be found from atmosphere calculations.

4.7 Model atmospheres and the Eddinaton limit

The Eddington temperature limit, given by.

= (gc/o^ (4.3)

where k is the electron scattering opacity and o is thees 3
Stefan-Boltzmann constant, is the limit beyond which a 
fully ionized atmosphere will be hydrostatically unstable. 
At T , >T ^^ the radiation pressure exceeds the downwarde f f e d d
pressure due to the material above and the higher layers of 
the atmosphere are blown away. This type of event is seen 
in supernovae as well as in some types of variable star. 
The Eddington limit assumes that the opacity is constant at 
K . We have seen from previous results that the opacitye s
in a model atmosphere is far from constant and is always 
greater than k . Thus in these atmospheres the limitinge â
effective temperature T is always less than T  ̂̂ .c r i t e d d

In order to find T , the critical temperature as ac r i t
function of white dwarf mass, it was necessary to adopt a 
trial-and-error approach to the problem. The white dwarf's 
mass (gravity) was fixed and the effective temperature 
increased in uniform steps, each time running a model to 
convergence, until at some point the model failed with a 
negative gas pressure (indicating that the outer layers 
would be blown away); T^^.^ was then chosen to be the last 
stable model temperature. Since this was a rather
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Table 4. 1 Calculated values for Tcrit
mass, M gravity, g 

(cm s‘  ̂) (xIO^ K)
Te d d 

(xIO^ K)
0. 10 3.8x10® 2.25 2 . 77
0.15 7.6x10® 2.45 3 . 30
0.22 1.5x10? 2.70 3.91
0.32 3.0x10? 3.05 4 . 65
0.46 6.0x10? 3.40 5.53
0.63 1.2x10® 3.65 6.57
0.83 2.4x10® 4.05 7 .82
1 .02 4.8x10®

6.7x10®
4.50 9 . 30

1 . 10 4.80 10. 10

calculated using a Newton iterative procedure*
M  W 2

solve equation (4.2) for a given g .

laborious procedure the resultant graph, shown in Figure 
4.13, has been interpolated from the known values given in 
Table 4.1. However the results indicate that the variation 
of T with white dwarf mass is a smooth one, so the

c r i t

interpolated values can be assumed to be correct to within 
±10^ K.

It is important to note that the values for T are
c r i t

conservative in the sense that they represent the highest 
values for T^^^ that allow a model atmosphere to converge. 
While it is clear that the radiation pressure term (see 
equation A.58) would prevent convergence for larger T^^^ 
it might be that an inefficient iteration procedure 

overestimates this term somewhat. Nonetheless, examination 
of the structure of the atmosphere with T , =T suggest

•ff crit

that T exceeds our estimates by less than 10%. It cancrit
be seen from the graph that, at the highest masses, Tcrit
is down to half of the Eddington limiting temperature and 

hence that is 1/16 for a given emitting area.
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Figure 4.13 Variation of the critical temperature, T ^ ^ , 
with white dwarf mass, M. The Eddington limit 
for a stable atmosphere is shown by the dashed 
line.
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It is not uncommon to see values for T quoted in
e f f

literature which exceed T for the assumed white dwarfcrit
mass by appreciable amounts and are therefore physically 
unreasonable. These generally result from black body fits 
for which no self-consistent treatment of the hydrostatic 
equilibrium of the polecap is required. Sometimes this 
procedure is claimed to be justified, on the grounds that 

for the inferred T^^^, the photospheric pressure implies a 
Kramers' opacity below the electron scattering value, and 
hence that bound-free and free-free processes are 
negligible. This is clearly questionable as Figure 4.13
shows that, for accreting white dwarfs, neglect of
bound-free and free-free processes is never justified when 
considering radiation pressure. We will encounter these 
limiting temperatures again in Chapter 7, when calculating 
accretion disc spectra for active galactic nuclei (AGN's).

In the discussion above I mentioned that most 
observational fitting is done using black bodies. We have 
seen how different model atmosphere spectra are from a 
black body spectra and therefore it must be assumed that 
observational spectra are different in the same way. 
Fitting these spectra with black bodies is clearly wrong, 
but how wrong ? By using model atmosphere spectra as 
'observed' spectra and fitting black bodies to them, in a 
similar way as with observed spectra, it is possible to 
find how large the errors are in the inferred values for 
the effective temperature and luminosity of a particular 
object. This is the subject of the next chapter.
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The curve for g=1.0x10 cm s~ was calculated with a 
different lower frequency limit. The upper optical/UV 
frequency limit is not constant with gravity and so the 
lower X-ray frequency limit can vary with g. In any case 
the variations at low X-ray frequencies may only be due to 
'rounding' errors introduced by the computer in solving the 
transfer equation with these low (compared to the 
optical/UV region) fluxes.
 ̂ The limb brightening of the scattered hard X-ray albedo 
component is due to the increase in the scattering depth 
along the direction of a ray seen at the limb. The 
scattering is proportional to this depth and so the albedo 
component is limb brightened.
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BLACK BODY FITS  TO MODEL 

ATMOSPHERE SPECTRA
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5.1 Introduction

In Chapter 1 I discussed the general problem associated 
with black bodies and the spectral fitting of the soft 
X-ray continuum from a radiative column, namely the loss of 
information due to interstellar absorption. The use of 

model atmosphere spectra in the fitting of this component 
will not resolve this general problem but it should provide 

a more accurate method of spectral fitting. The 
differences between black body spectra and model atmosphere 
spectra were clearly shown in the previous chapter.
Despite these obvious differences black bodies have nearly 
always been used in the fitting of observed spectra. Since 
we expect a model atmosphere to give a better overall 
estimate of the spectral shape the continued use of black 
bodies as fitting 'tools' is clearly erroneous. Of course, 
black bodies have one great advantage over model 
atmospheres, for a given effective temperature they are 
quick and easy to calculate and therefore make repeated 
spectral fitting a much faster process. What is needed is 
a method of 'correcting' the fitted black body parameters 

to the values that would have been found had model 
atmosphere spectra been used. This correction function 
could take the form of a calibration graph so that the 
'true' values for the effective temperature and emitting 

area of the polecap can be found from the black body ones. 
This calibration graph can be found by fitting black body 
spectra, as a simulation of observational fitting, to model 
atmosphere spectra. The derivation of such a graph is the 
subject of this chapter. It should be noted that black
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body fitting to model atmosphere spectra is not a new idea; 
Heise (1982) carried out extensive work in this area and

found that the implied black body temperature nearly always
exceeded the model atmosphere value. We expected that a 
similar result would be found in this work.

5.2 Black body fitting - the method

Black body spectra were fitted to the model atmosphere 
data in the soft X-ray range. The fits were restricted to 
an energy range , where E^ was chosen to be the last
frequency point in the optical/UV region of the atmosphere 
model (always less than 2.5 k e V ) . was chosen so as to
represent the effects of instrumental and/or interstellar 
cutoffs (interstellar absorption of soft X-rays will be 
discussed in more detail in the next chapter). The values 
chosen were; E^=0.03, 0.06 and 0.10 keV. The cutoff at
0.03 keV represents the low energy limit on the EXOSAT 
(European X-ray Observatory Satellite) Low Energy Detector 
(also to be discussed in more detail in the next chapter); 
the other two values represent the same but with varying 
degrees of interstellar absorption present. Figure 5.1 

shows how these cutoffs relate to two different model 
atmosphere spectra, T ^^=1.0x10^ and 3.0x10^ K. Note that
the 0.03 keV cutoff lies the other side of the Hell
absorption feature from the other two, the effect of this 
on the fitting will become apparent later.

To simulate the finite dynamic range of an X-ray 
detector, fluxes less than 1.0% of the peak value in the 
range E^^E^E^ were removed from the fit. Constant errors
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Figure 5.1 Position of the three cutoffs used in the black 
body fitting shown in relation t^ two model 
atmosphere spectra (T =1.0x10 K and 
3.0x10 K ) . The cutoffs a& 0.03, 0.06 and 0.10 
keV are shown by the dashed lines.

of 1.0% of the peak flux were then assigned to the 
remaining points in the energy range. The distance to the 
'source' was kept fixed so that the normalisation of the 
black body used in the fit, C , could be related to thenorm
fractional emitting area, f^^ by,b b

(f! ^/f) = Cb b n o r m (5.1)
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where f is the fractional emitting area assumed for the 
model atmosphere.

The black body fitting was therefore a two parameter 
fit of C T^^ versus T . The position of the minimumn o r m  b b e f f
chi-squared was found in a grid of 20x20 effective 

temperatures and normalisation constants. The region 
around this fit was then expanded and the minimum found 
again; thus allowing the fitted parameters to be found to 

an accuracy of better then 1.0%. One solar mass models 
were used throughout, the full parameter range of effective 
temperature and percentage of illumination being fitted. 
The results of this are presented in the next section.

5.3 Black body fitting - the results

Tables 5.1 to 5.6 show the results of fitting black 
bodies to each effective temperature for five different 
illumination strengths using the three cutoffs. All the 
fitted values have uncertainties of less than 1.0%. In 
some cases, i.e., low effective temperatures and high 
cutoffs, the fit was only done over three points so the 
corresponding values of chi-squared are low for these (it 
was felt that the calculation of reduced chi-squares was 
unnecessary since, for a given effective temperature, 
illumination and cutoff, the number of degrees of freedom 
in the fit is constant). The fitted luminosity ratio was 

calculated from.
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Table 5.1 Results of black body fitting for T =5.0x10^ Keff
Cutoff ^ 1 1 ?bb (fbb/f) b b a t m 0 3

2X
(keV) (%) (xIO^ K)
0.03 99.9 7.917 0.0687 0.4320 4.298x10
0.03 50.0 7.778 0.0774 0.4532 5.927x10
0.03 10.0 8.278 0.0600 0.4508 5 .876x10;
0.03 1 .00 8 .056 0.0687 0.4630 6.713x10
0.03 0.01 8.056 0.0687 0.4630 6.740x10
0.06 99.9 4 .000 0.8222 0.3368 6.013x10
0.06 50.0 4 .000 0.8056 0.3300 4.187x10
0.06 10.0 4.000 0.8222 0.3368 6.065x10
0.06 1 .00 4.000 0.8278 0.3391 1.587x10
0.06 0.01 4.000 0.8278 0.3391 2.466x10
0. 10 99.9 4.000 1.0111 0.4141 1 .046
0. 10 50.0 4.000 0.9778 0.4005 9.980x10
0. 10 10.0 4.000 1.0056 0.4119 1 .003
0. 10 1 .00 4.000 1.0111 0.4141 1 .006
0. 10 0.01 4.000 1.0111 0.4141 1 .024

3 
3 
3 
3 
3 
-  2 
-  2 
-  2 
-  2 

-  2

-  1

Table 5.2 Results of black body fitting for T ,,=1.0x10 Keff
Cutoff
(keV)

Pill
(%) (xIO^ K)

(fbb/f) P̂'bb t m o  3 ̂ X

0.03 99.9 1 .444 0.3278 1.4252 5.952x10
0.03 50.0 1 .501 0.2953 1.4989 5.959x10
0.03 10.0 1 .530 0.2778 1.5223 5.966x10
0.03 1 .00 1 .558 0.2691 1 .5856 5.973x10
0.03 0.01 1 .558 0.2691 1 .5856 5.972x10
0.06 99.9 0.706 0.9389 0.2327 724.2
0.06 50.0 0.706 0.8278 0.2052 1.888x10
0.06 10.0 0.706 0.7778 0.1923 4.372x10
0.06 1 .00 0.700 0.8333 0.2001 5.238x10
0.06 0.01 0.700 0.8333 0.2001 5.340x10
0. 10 99.9 1.161 0.0222 0.0403 4.924x10
0. 10 50.0 1.161 0.0222 0.0403 4.863x10
0. 10 10.0 1.161 0.0222 0.0403 4.740x10
0. 10 1 .00 1.161 0.0222 0.0403 4.738x10
0. 10 0.01 1.161 0.0222 0.0403 4.738x10
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Table 5,.3 Results of black body fitting for Te ff=1.5x10^
Cutoff P i l l ?bb (fbb/f) b b a t m 0 s )
(keV) (%) (xIO^ K)
0.03 99.9 1 .358 1.4444 0.9703 5.915x10
0.03 50.0 1 .358 1.4222 0.9554 6.218x10
0.03 10.0 1 .358 1.4111 0.9480 6.452x10
0.03 1 .00 1 .358 1.4056 0.9443 6.505x10
0.03 0.01 1 .358 1.4056 0.9443 6.511x10
0.06 99.9 2.100 0.1036 0.3980 2.466x10
0.06 50.0 2 . 982 0.0247 0.3858 1.374x10
0.06 10.0 3 . 283 0.0174 0.3993 2.030x10
0.06 1 .00 3.369 0.0156 0.3970 2.197x10
0.06 0.01 3.412 0.0150 0.4016 2.214x10
0. 10 99.9 2.508 0.0556 0.4345 1.727x10
0. 10 50.0 2.642 0.0444 0.4273 3.744x10
0. 10 10.0 2.508 0.0600 0.4689 8 .862x10;
0. 10 1 .00 2.592 0.0513 0.4574 9 . 103x10;
0. 10 0.01 2. 600 0.0513 0.4631 9.229x10

Table 5 .4 Results of black body fitting for T^ ^^=2.0x10^
Cutoff
(keV)

Pill
(%)

? b b  
(xIO^ K)

( f b b / f ) b b a t m o 3 )

0.03 99.9 1 .922 0.8611 0.7344 5.617x10
0.03 50.0 1 .900 0.8667 0.7059 6.533x10
0.03 10.0 1 .889 0.8611 0.6853 7.426x10
0.03 1 .00 1 .889 0.8556 0.6809 7.650x10
0.03 0.01 1 .889 0.8556 0.6809 7.676x10
0.06 99.9 3.289 0.0938 0 . 6860 282.9
0.06 50.0 3.287 0.0949 0.6924 1.533x10
0.06 10.0 3.356 0.0861 0.6826 3.395x10
0.06 1 .00 3.356 0.0861 0.6826 4. 150x10
0.06 0.01 3.356 0.0861 0.6826 4.240x10
0. 10 99.9 3.461 0.0764 0.6851 16.59
0. 10 50.0 4.034 0.0410 0.6786 6.946
0. 10 10.0 4.492 0.0280 0.7125 21 .76
0. 10 1 .00 4.607 0.0259 0.7292 22.15
0. 10 0.01 4.607 0.0259 0.7292 21 .05
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Table 5.5 Results of black body fitting for T ^^=2.5x10^ K
Cutoff P i l l ? b b (fbb/f) b b a t m 0 3

2X
(keV) (%) (xIO^ K)

0.03 99.9 2.972 0.3998 0.7985 5.897x10^
0.03 50.0 3.153 0.3214 0.8132 7.729x10^
0.03 10.0 3.319 0.2691 0.8356 9.632x10^
0.03 1 .00 3.389 0.2517 0.8500 1.011x10^
0.03 0.01 3.389 0.2517 0.8500 1.017x10
0.06 99 . 9 3.681 0. 1733 0.8145 324.7
0.06 50.0 4.254 0.1036 0.8685 359.2
0.06 10.0 4.684 0.0774 0.9538 795.4
0.06 1 .00 4.684 0.0774 0.9538 880.9
0.06 0.01 4.684 0.0774 0.9538 895.5
0. 10 99 . 9 3.667 0.1820 0.8425 166.4
0.10 50.0 4.028 0.1297 0.8741 471.1
0. 10 10.0 4.222 0.1123 0.9135 1.359x10^
0.10 1 .00 4.431 0.0949 0.9365 1.067x10^
0. 10 0.01 4.431 0.0949 0.9365 1.104x10

Table 5.6 Results of black body fitting for T^^^=3.0x10' K

Cutoff
(keV)

Pill
(%)

? b b  
(xIO^ K)

(fbb/f) b b a t m o 3
2X

0.03 99.9 3.950 0.2953 0.8875 4.959x10
0.03 50.0 4.283 0.2256 0.9372 6.952x10
0.03 10.0 4.517 0.1907 0.9801 9.141x10
0.03 1 .00 4.600 0.1820 1.0060 9.691x10
0.03 0.01 4.600 0.1820 1.0060 9.765x10
0.06 99 . 9 4.367 0. 1994 0.8953 125.5
0.06 50.0 4.717 0.1558 0.9522 437.7
0.06 10.0 5.017 0.1297 1.0145 1.162x10
0.06 1 .00 5.017 0.1297 1.0145 1.642x10
0.06 0.01 5.133 0.1210 1 .0370 1.255x10
0.10 99.9 4.400 0.1944 0.8995 32.34
0. 10 50.0 4.733 0.1558 0.9652 291 .6
0. 10 10.0 5.033 0. 1297 1.0275 918.4
0. 10 1 .00 5.150 0.1210 1.0508 980.5
0. 10 0.01 5.150 0.1210 1.0508 1.020x10
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As can be seen from the tables the results for the 
illuminations of 1.0% and 0.01% are exactly the same in 

almost all cases. This was to be expected as we saw in the 
previous chapter the similarity of these two spectra. The 
data presented in the table is shown graphically in Figures
5.2 to 5.5 for P,^^=99.9, 50.0, 10.0, 1.0% respectively.
The fitted curves have been interpolated as best as
possible from the limited fitting data but. the general 
trends are clear. It is possible to draw two conclusions 
from the figures :

(i) the fitted variations are much smoother for
illuminated atmospheres compared to non-illumin- 
ated ones;

(ii) except for very low cutoffs, black bodies system
atically overestimate the effective temperature 
(up to a factor of two) and underestimate the 
emitting area (up to a factor of fifty), compared 
with the true values. The relative luminosities 
are however somewhat better estimated for
T >1.5x10^ K (less than a factor of two,eff
depending on the illumination strength). As T^^^
increases the fitted luminosity approaches the
correct value for all cutoffs and illuminations.
Below T <1.5x10^ K the fitted luminosity varies eff
quite strongly with the cutoff used and can be 
underestimated by as much as a factor of 25 or 

more.
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These results are easy to understand. First, the
result (i) is expected due to the flatter temperature
gradient of the atmosphere producing a softer, more black
body like soft X-ray continuum. Secondly, result (ii) is
expected as in this region of the spectrum an atmosphere is
slightly harder than a black body (the 'hump' seen in some
figures in the previous chapter occurs in precisely this
fitting region and may go some way to explain the strong
variations in the fitted parameters for =1.0x10^ K ) .
This forces the fitted temperature T^^ above T ,  ̂. To

b b eff

compensate for the now higher absolute flux at a fixed
distance, f^^ is forced down below f. This tends to 

b b

compensate for the rise in T^^ so as to bring the
b b

luminosity close to the true value. The different
behaviour with the 0.03 keV cutoff is due to the presence
of the Hell absorption feature at '/'54 keV. For low
effective temperatures this dominates the spectrum and
forces T  ̂ to be low. The reverse of the above argument 

b b

forces f above f, again tending to compensate the 
b b

luminosity estimates. It should be noted that this cutoff
could only occur for unusually low interstellar column
densities and therefore the more realistic fits are for the
two higher cutoffs above the Hell edge. Some examples of
the black body fits are shown in Figures 5.6 to 5.9; for
T =1.0x10^ and 3.0x10^ K, P ,,=99.9 and 1.0% and for 
eff ill

cutoffs at 0.03 and 0.06 keV. These show quite clearly 
that the best fitting black bodies do not really give a 
good approximation to the true spectrum in this restricted 

spectral region.
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5.4 Conclusions

The results of this black body fitting have shown that 
while a black body tends to overestimate the effective 
temperature of a source it compensates by underestimating 
the emitting area. The result of this is that the 

luminosity, over most of the effective temperature range, 
tends to be within a factor of two of the correct value. 
As was hoped, the results of Heise's black body fitting to 
model atmospheres were reproduced correctly here, namely 
the overestimation of the effective temperature.

The accuracy of the fitted luminosity increased with 
effective temperature, this is due to the spectrum becoming 
more black body like at higher temperatures. The error in 
the fitted effective temperature was up to factor of two at 
the highest temperatures, this error could become important 
in the fitting of lightcurves as the emitting area is fixed 
by geometry and therefore any error in the fitted 
temperature can wildly affect the fitted luminosity. The 
fact that the fitted black body luminosities are 
surprisingly close to the correct values (for reasonable 
cutoffs and effective temperatures) for the soft X-ray 
components strongly suggests that the soft X-ray excess is 

unlikely to disappear as a result of more accurate spectral 
fitting. Indeed, since L , is usually below L inbb a t m o a

these fits we can expect even larger excesses from these 
systems when model atmospheres are used for fitting.

The initial aim of this black body fitting was to find 
a means of 'calibrating' fitted black body values to 
atmospheric values. Calibration graphs have been found in
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the course of this fitting but in some cases a particular 
black body temperature corresponds to up to three different 

atmosphere temperatures ! This, plus the fact that the 
cutoffs used in the fitting do not accurately model the 
effects of interstellar absorption (we will see in the next 
chapter that the absorption cutoff is not sharp), means 
that these graphs cannot really be used for their original 
purpose; however, the fitting of black bodies to model 
atmosphere spectra has given us an insight into the errors 
associated with observational fitting and therefore these 
results should not be ignored. Definite improvements in 
accuracy, especially concerning the fitted effective 
temperature, could be made by using model atmospheres to 
fit observational data. It is hoped that in the future 
grids of these model atmospheres could become available for 
use by anyone needing to carry out spectral fitting of AM 
Herculis systems. The results of convolved spectral 
fitting of AM Herculis. will be seen in the next chapter 
when I discuss the calculation and use of lightcurves.
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CHAPTER 6

SIMULATION OF LIGHTCURVES
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6.1 Introduction

In a magnetic polar system the white dwarf primary 
revolves, synchronously with its rotation, around the 
late-type secondary star. As it rotates we will see 

varying amounts of the polecap's surface, in some cases the 
polecap will be eclipsed by the companion completely; at 

the other extreme it may always be visible.

In this chapter I will describe the calculation of a 
simulated lightcurve and the general features produced. 
Using these model lightcurves I carried out a full 
parameter fit to the EXOSAT soft and hard X-ray lightcurves 
of AM Herculis; the results of this are contained within.

6.2 X-rav lightcurves from magnetic polars

In Chapter 1 we saw that the X-ray emission from a 
magnetic polar has two components. The hard X-ray (2-10 
keV) component comes from the shock region above the 
polecap, with a small reflected component from the 
photosphere below, and is of thermal bremsstrahlung form 
with a characteristic temperature of approximately 10® k . 

The soft X-ray component (<2 keV) comes from the optically

thick photosphere itself and was previously assumed to be
5of black body form, at a temperature of a fewxIO K.

Throughout this chapter I will consider a system where 
the primary is not occulted by the secondary. If we 
consider the types of emission seen from the white dwarf 
polecap we have that the hard X-ray emission is an 
optically thin, isotropic, thermal bremsstrahlung so the

G.2



observed intensity at any moment is directly proportional 
to the volume of the emission region visible to the 

observer. It follows that any modulation of the hard
X-rays at the white dwarf spin period can only be the
result of the white dwarf body obscuring parts of the
emission region. The soft X-rays, however, come from an

optically thick region and are automatically modulated at
the white dwarf spin rate by the projection effect of the 

emitting area being at different angles to the observer. 
If there were occultations by the secondary star they would 
be characterised by virtually total and very short eclipses 
in all wavebands, since the emission from the system as a 
whole is dominated by the primary. Considering each 
spectral component in turn I will describe the expected 
shape of these lightcurves.

6.2.1 Hard X-rav lightcurves

Figure 6.1 shows the accretion geometry used throughout 
this chapter. The magnetic polecap is assumed to subtend 
an angle p at the centre of the white dwarf and is at an
angle m to the rotational a x i s . The rotational axis is
assumed to be perpendicular to the plane of the orbit and 
is at an angle i to the line of sight. In a one-pole 
system these angles have the range 0"<m<180" and 0"<i<90". 

It is assumed that the shock height is very much less than 
the white dwarf radius so the hard X-ray intensity is 
proportional to the visible area of the polecap (not the 
'projected' visible area). If we neglect the albedo 
component for the moment then, since photo-
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Figure 6.1 The accretion geometry
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Figure 6.2 Hard X-ray lightcurve shapes as a function of 
the angles i and m for, (i) 9=11.5" (f=10” ) 
and (ii) p=60' (f=0.25).
(From King and Shaviv, 1984)
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electric absorption is not important at these energies it 
is easy to calculate the conditions for partial or total 
occultations, for example, if i+m-p>90' the emitting region 
will be totally obscured. King and Shaviv (1984) 
calculated the possible regions in i and m for given 
lightcurve shapes. Figure 6.2 shows two diagrams

(reproduced from their paper) that show the hard X-ray 
lightcurve shape as a function of i and m for 9=11.5"

(f=10 and 9=60" (f=0.25). Estimates of the fractional
emitting area of the polecap, f, based on assuming the 
accretion is channelled along field lines from the 'Alfven 
point' inwards suggest that f lies in the range 10“  ̂ - 10”  ̂

indicating that 'square wave' (flat top + total eclipse) 
lightcurves are most likely for these systems. The 
observational evidence for this will be discussed later.

6.2.2 Soft X-rav lightcurves

In this case the emission is from an optically thick
region just below the shock so the observed intensity
depends on the projected area visible (limb darkening
effects have to be considered as well). For the range of f 
described above the resultant lightcurves will commonly be 

sinusoidal in shape but with flat minima. Since at these 
energies photoelectric absorption is important occulation 

of the polecap by the accretion stream can cause dips in 
the observed lightcurve due to the increased column
density. King and Williams (1985) discussed this
possibility and concluded that short dips in the lightcurve 
can occur if the polecap is eclipsed by parts of the
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accretion stream distant from it. However these dips can 

only occur for systems with i>m. Observational evidence 
for this is discussed later.

6.2.3 Two pole effects

If the emission from the white dwarf comes from two 
regions on its surface the hard and soft lightcurves no 
longer have simple shapes. Depending on the relative 
strengths of the poles and their separation angle (the 
magnetic axis may be off-centred) the resultant X-ray 
lightcurves may have two minima and two maxima; one minimum 
and one maximum; or show a constant flux. Double poled 
hard X-ray lightcurves are discussed in more detail in the 
section dealing with the AM Herculis lightcurve fitting.

6.2.4 Observed lightcurve shapes

There are thirteen known magnetic polars, ten of which 
have been observed by the European X-ray Observatory
Satellite (EXOSAT). Eight of these have had lightcurves
published to date; of which only five have observable hard
X-ray lightcurves, they are, EF Eridani, V834 Cen
(E1405-451), ST LMi (CW1103+254), AM Herculis and QQ Vul 
(E2003+225). The three polars that have no observable hard 
X-ray lightcurves are VV Puppis, BL Hyi (HOI39-68) and AN 
Ursae Majoris. The lightcurve shapes for the eight systems 
are described briefly below. Watson (1986) and Mason
(1985) describe these systems in more detail (see also 
references herein). The actual lightcurves themselves will
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not be reproduced here, the reader should consult the above 
for them.
EF Eridani

The second brightest known source next to AM Herculis. 
The hard X-ray lightcurve shows a smooth quasi-sinusoidal 
variation while the soft X-ray lightcurve, although having 
a similar overall shape, shows large amplitude fluctuations 

with a prominent absorption dip at phase 0.45 (Watson, et 

al., 1985). From our previous geometrical arguments we 
have seen that, for a smooth hard X-ray lightcurve and an 
assumed polecap area of 10"^ of the white dwarf surface, 
i+m»90* with i close to 90" or 0". The dip in the soft 
X-ray lightcurve could be due to occulation by the 
accretion stream.
VV Puppis

No observable hard X-ray lightcurve. The soft X-ray 
lightcurve is unusual in that the source is 'off' for over 
half the binary cycle. It turns 'on' at phase 0.6 and has 
a gradual rise followed by a sharp fall (Mason, 1985) . The 
short duty cycle can be explained if the active pole is in 
the hemisphere of the white dwarf that is inclined away 
from us, for most of the cycle the pole is blocked from 

view by the body of the white dwarf.
V834 Cen (E1405-451)

The hard X-ray lightcurve shows a quasi-sinusoidal 

variation similar to that in EF E r i . Like EF Eri the soft 
X-ray lightcurve shows a prominent dip, at linear 
polarisation phase 0.27 (Mason, 1985). Interestingly the 
hard X-ray lightcurve shows a 30% rise at this point 
(Bonnet-Bidaud et al., 1985). If this dip is due to the
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pole going into eclipse then this conflicts with the 
required geometry for a quasi-sinusoidal hard X-ray 
lightcurve (King and Shaviv (1984)). Bonnet-Bidaud et a i . 

suggest that this can be explained by assuming that V834 
Cen is a two pole system with a 'hard' and 'soft' pole 
approximately 180" apart. The 'hard' pole comes out of 
eclipse (hard maximum) at the same time as the 'soft' pole 

goes into eclipse (soft minimum). They report that this is 
consistent with the linear polarisation at this phase and 
that such a geometry could explain the phase changes that 
have been observed in this system.
BL Hvi (HOI 39-68)

This source has been seen to have high and low states. 
There is no observable hard X-ray lightcurve. The soft 
X-ray lightcurve shows a quasi-sinusoidal shape with no 
strong absorption dips (Schwope and Beuermann (1985)). 
Some residual soft X-ray flux is seen at the minimum. If 
this is due to the pole being almost totally eclipsed then 
from the values for i and m deduced from the polarisation 
measurements, i.e., i=25"+15", m=98"+5" (Schwope and
Beuermann (1985), p must lie in the range 13"<p<53", in 

order that the pole is only partially eclipsed. This 
indicates that the polecap is larger than that usually 

assumed for polars.
ST LMi (CW1103+254)

Similar to VV Puppis in that the source is 'on' for 
less than half the cycle indicating that the source is in 
the lower half of the rotational hemisphere. Both 
lightcurves have a similar shape with no special features.
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AN Ursae Maioris
There is no observable hard X-ray lightcurve. The soft 

X-ray lightcurve shows complex modulation including 
absorption dips. Dips may be due to occultations by the 
accretion stream and the white dwarf body.
AM Herculis

The prototype magnetic polar, being the brightest of 
the known polars and the most studied. When recently 
observed using EXOSAT, Heise et al. (1985) found that the 
relative phasing of the hard and soft X-ray lightcurves had 
changed by 180*. This is known as its anomalous state and 
it is characterised by the soft X-rays being eclipsed at a 
phase corresponding to a maximum of the hard X-ray 
lightcurve. The soft X-ray minimum lasts longer than that 
seen in its normal mode (Tuohy et al., 1978) and is 
non-zero. The hard X-ray eclipses last for approximately 
20% of the cycle and are also non-zero. This change in the 
observed lightcurves almost certainly indicates a drastic 
change in the geometry of the system; AM Her seems to have 
changed from a single to a double pole source.
00 Vul (E2003+225)

Observations by Osborne et al. (1985) show that the 
source is only just visible in the hard X-ray region. The 
soft X-ray lightcurve shows two clear minima. One minimum 
coincides with a minimum of the hard X-ray lightcurve and 
could possible be due to occultation by the accretion
stream (Osborne et al., 198Ga). The second wide minimum 
seems to coincide with a minimum in the hard X-ray
lightcurve and is probably due to the white dwarf body
eclipsing the polecap. Osborne et al. (1986a) point out
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that this is open to interpretation and indeed a two pole 
system could reproduce some, if not all, of these effects. 

Later observations (Osborne et al., 1986b) show dramatic 
changes to the soft X-ray lightcurve (see also Watson
(1986)) which seem to reinforce the possibility that QQ Vul 
is a two pole system like AM Her.
Conclusions

Four of the eight systems described show strong 
absorption dips in the soft X-ray lightcurve, possibly due 

to the accretion stream or, less likely, obscuration by the 
accretion column itself, although the former is preferred 
for EF Eri and AN Uma. Of the five sources visible in the 
hard X-ray region EF Eri, V834 Cen and possibly QQ Vul show 
quasi-sinusoidal lightcurve variations. Magnetic polars 
are commonly assumed to have fractional polecap areas in 

the range 10“  ̂ to 10”^. However, for BL Hyi the fractional 
polecap area needed to give the required lightcurve shape 
is much larger than this which means that further 
quasi-sinusoidal source lightcurves may be found with f's 
that are much larger, in general, than normally expected. 
Three of the systems, QQ Vul, V834 Cen and AM Her, show 
lightcurves that indicate two pole emission, although the 
cases for the first two are not as strong as that for AM 
Her. Only two of the eight systems have polecaps in the 
rotational hemisphere that points away from us, namely VV 
Puppis and ST Lmi which may point to some selection effect 
being present in the observable geometries.

In general it is clear that magnetic polar systems can 
undergo quite drastic changes in their geometries causing 
large variations in their lightcurve shapes. However,
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there is a lot to be gained in trying to deduce the 
geometry of the system from the shape of its lightcurve and 
therefore a method of simulating the real process is
required. Obviously, a black body could be used as the 
source spectrum but this neglects some important physical 
effects.

6.3 Why use model atmospheres ?

For a single polecap, the calculation of the observed 

flux at any orientation to the observer is essentially a 
trivial task. The choice of outward spectrum to be used is 
the most important thing. A black body could be used to 
model the soft X-ray component and a thermal bremsstrahlung 
could be used to model the hard X-ray component. An
atmosphere, however, has two main advantages over these; it 
contains limb darkening information and has an albedo 
component in the hard X-ray region. I will consider each
of these in turn and discuss the differences we might

expect to see in the lightcurve shapes.
In the soft X-ray region limb darkening will enhance 

the projection effect caused by the changing aspect angle 
of the polecap relative to the line of sight. This will 
cause the rise and fall of the lightcurve to be steeper, 
causing peaky' maxima. Figure 6.3(i) shows the difference 
in the lightcurve that we might expect when a model 
atmosphere is used as the source instead of a black body.

In the hard X-ray region, the changes will not be so 
pronounced since the albedo component does not dominate the 
shock component. However, there will be a slight increase
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(i) Soft X-ray lightcurve

INTENSITY

PHASE

(ii) Hard X-ray lightcurve

INTENSITY

0

PHASE

Figure 6.3 Effect of model atmosphere effects on light
curve shape. Solid curve is non-atmosphere 
calculation (black body and thermal bremsstrah
lung) while dashed curve shows expected light
curve for a model atmosphere (limb-darkening of 
soft X-rays with albedo component included in 
hard X-rays).
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in the observed flux and the limb brightening seen in the 
albedo component may cause a dip in the lightcurve when the 
polecap is nearly face on but this will only be evident for 

large albedos and certain geometries. Figure 6.3(ii) shows 
the differences that may occur in the hard X-ray lightcurve 

when a strong albedo component is introduced.
I will show later the real differences that are seen 

but for now, once the geometry of the system has been 
determined, it is possible to use atmosphere models to find 
estimates for the effective temperature of the polecap, the 
relative strength of the shock and the distance to the 
source. We have seen in Chapter 5 that a black body can 
give erroneous values for the effective temperature of an 
observed source but that the inferred luminosity is roughly 
correct. In this case we do not have the freedom to vary 
the emitting area, f, to compensate for the error in the 
inferred temperature (giving approximately correct values 
for the luminosity) since f is fixed by the lightcurve 
fitting (assuming that the polecap is filled and doesn't 
change), thus a black body used here would give incorrect 
estimates of both the luminosity and effective temperature 

of the source.
Concluding, it is possible, through the use of model 

atmospheres in simulated lightcurves, to find estimates 

for : -

(i) the fractional area of the polecap
(ii) the angle between the magnetic and rotational axes

(iii) the angle between the rotational axis and the line 

of sight
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(iv) the effective temperature of the polecap 
(v) the relative strength of the shock (related to the 

percentage of X-ray illumination)
(vi) the distance to the source

with improved accuracy as compared with black bodies.

6.4 Calculating a simulated lightcurve

As the polecap is situated on a sphere each region of 
the polecap presents a different angle to the line of 
sight. By breaking the polecap up into flat sections the 
curvature of the polecap can be approximated (assuming 
enough sections are used); this has the advantage that each 
section of the polecap can be treated as a polecap in its 
own right but with one angle to the line of sight, by

summing each sections contribution the total flux from the 
polecap can be found (the sections are made to be of equal 
area and are assumed to radiate with the same effective

temperature, Since our polecap is assumed to be

circular, the easiest way to break it into equal sections 
is to divide it into rings and then break each ring into 
equal areas, as shown in Figure 6.4.

The area of each ring is given by

A = it(0+A8)^ - iT0̂  = 2irOAO + irA0^ (6.1)

If we consider the mth ring then

0 = (m-1)A0 (6.2)
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m^nng

A9

Figure 6.4 Dividing up the polecap into equal sections

So therefore

A = 2n(m-1)A8Z + (6.3)

We require the area of each section to be the same, i.e., 
equal to the area of the first ring, ttAB^ . So the number 
of sectors in ring m is

n = (2¥(m-1)A8^ + TrA8^)/TrA8^ = 2m-1 (6.4)

And the total number of sectors contained within a radius 
(8+A8) is given by

N = it(8+A8)^/ttA8^ = it ( (m-1) A8+A8 ) ̂ / ttA 8^ = m^ (6.5)

So, if there are M rings in the polecap of width A8 then
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there are 2m+l sectors in each ring m (m=1,2,...,M) and 
sectors in a l l .

For calculating the angle to the line of sight we can 
assume the radius of the white dwarf to be unity. If (3 is 
the half-angle subtended by the polecap at the centre of 
the white dwarf then the fractional area of the polecap is 
given by

f = = p^/4 (6.6)

If p is small then

cosp = 1 - 1/2pz (6.7)

Substituting from equation (6.6) and rearranging,

p = cos  ̂(1 - 2f) (6.8)

Given a value for f the polecap can be broken up into the 
nearest integer number of rings necessary to fill it and 
then further divided into equal area sectors. Ah area of 
10”  ̂ was chosen for the sector, thus giving 100 sectors for 
f=10'^ .

The next step is to calculate the angle to the line of 
sight of each sector at each phase. Before I describe this 

it is important to mention the effects not included in the 
simulation. It was decided not to try to model
occultations by the accretion stream and/or the secondary 
star. Obscuration by the accretion column itself was also 
ignored. Since these effects only occur for special
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Figure 6.5 Flow diagram 
curve.

for calculating a simple light-
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geometries their absence will not impair the fitting of the 
majority of the observable lightcurves. Figure 6.5 shows 
the flow diagram for the calculation of a simple
lightcurve; each step in the calculation is described 
below.

6.4.1 Calculating the anale to the line of sight

With reference to Figure 6.6, let r be the distance of 
each sector from the magnetic pole and 0 be its position 
angle. Let m be the angle between the magnetic and 
rotational axes and i be the angle between the rotational 
axis and the line of sight, also let ♦ be the phase angle 
(phase 0.0 = away from the observer). By transforming the 
coordinates four times it is possible to find the angle of 
each sector to the line of sight.

Figure 6.6 Orientation of the polecap.
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1) Transform sector coordinates to cartesian coordinates 
with respect to the magnetic axis :

= cosr
X = sinrcosG (6.9)m

y = sinrsine
m

2) Transform magnetic axis coordinates to rotational axis 
coordinates :

z, = z cosm - X sinm
R in m

X = X cosm + z sinm (6.10)n m m

= y.

3) Rotate coordinates to line of sight in phase :

X, = X. cos* + y. sin* (6.11)* R R

y^ = y^cos* - XpSin*

4) Rotate coordinates to line of sight

z - z.cosi + x.sinia * . *
X = x.cosi - z.sini (6.12)a * *

y. = y+

Now z =cosn where n is the angle of the sector to the line 
of sight so if z^ is negative then the sector is behind the 
white dwarf and does not contribute to the flux. If the 
sector is visible then the intensity seen at each frequency
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must be found.

6.4.2 Calculating the observed flux from the polecap

In Chapter 3 I mentioned that the six outward surface 
intensities at each frequency are stored for any model 

completed. These intensities are used to find the correct 
intensity for each sector at any phase. If the angle of 
the sector to the line of sight is known then a value for 
the intensity at that angle can be interpolated from the 

intensities at the angles nearest to it. Let I^^ be the 

intensity at a frequency v for sector n. The total flux 

is given by the summation, over all the visible sectors, of 
the product of the interpolated intensity and the angle to 

line of sight  ̂ (optically thick radiation only). That 
is.

= [ 4irAfz I (6.13)V s n n V

where Af is the fractional area of each sector. Adding in 
the isotropic contribution from the shock equation (6.13) 
becomes

F = E 4wAf(z I + I*) (6.14)V an n V  V

is the flux at the 'source', the detected spectrum/count 
rate depends on the response of the detector used. The
most recent observations of magnetic polars have been done
using the detectors on the European X-ray Astronomy

Satellite (EXOSAT).
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6.4.3 The EXOSAT detectors

EXOSAT was launched in May 1983 and successfully 
carried out observations of all known X-ray sources, 
including AM Herculis systems, and previously unknown ones. 

The programme lasted until April 1986 when problems were 
encountered with the attitude and orbital control system 
(AOCS) causing a loss of telemetry. Three types of 
detector were carried; two low energy imaging telescopes 

with either a position sensitive proportional counter

Table 6.1 The EXOSAT detectors 
Medium Energy Experiment (ME)
Total effective area ; 1500 cm?
Effective energy range : 1-20 keV (Argon counters)

5-50 keV (Zenon counters)
Energy resolution : 51/E (keV)°*^ % fWHM (Argon)

(AE/E) 18% for 10keV<E<30keV (Zenon)
Gas Scintillation Proportional Counter (GSPC)
Total effective : 150 cm?
geometrical area
Effective energy range : 2-18 keV or 2-40 keV (depending on

gain setting)
Energy resolution : 27/E (keV) % fwHM

(AE/E)
Low Energy Experiment (LE)

CMA PSD
Energy range : 0.04-2.0 keV 0.3-2.0 keV
Energy resolution ; Five filters (AE/E)=41/E (keV)°*^

available for FWHM
broad-band
spectroscopy
plus grating
(500/1000 lines mm~^)

Effective area : Depends on Depends on
filter used energy
and energy 

Broad-band filters ; No. Type
2 Polypropylene
3 Lexan (thick)
6 Parylene-N + Al
7 Lexan (thin)
8 Boron + polyprop.
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detector (PSD) or channel multiplier array (CMA) placed at 
the X-ray prime focus; a medium energy large area

proportional counter array; and a gas scintillation
proportional counter (GSPC). Table 6.1 shows a summary of 
the detector characteristics. Referring to the table, the 
low energy CMA's have only limited spectral resolution 
capability, broad band filters being used to extract some 
spectral information. However it is these detectors, along 
with the medium energy (ME) detector, that are primarily 
used to observe AM Her systems.

Figure 6.7 shows the effective collecting area of each 
of the five broad-band filters as a function of energy. 
Note the similar responses of filter numbers 2,3 and 7. 
Spectral information can only extracted by comparing the 
count rates in filters 2,3 and 7 with those in filters 6
and 8 but this information is severely affected by
interstellar absorption of the soft X-rays.

Interstellar absorption of soft X-rays

Soft X-rays (<1 keV) are absorbed by the K-shells of 
helium, carbon, nitrogen and oxygen. The amount of these
elements that are present along along the line of sight to
the source is parameterised by the hydrogen column density,

. For sources like magnetic polars N^ is assumed to lie 

in the range 10^®-10^^ cm"^. If f(E) is the source
spectrum then f  ̂ (E), the observed spectrum, is given by

o b 8

f  ̂ (E) = f(E)exp[-N„A(E)] (6.15)
O b 8 H
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Figure 6.7 Effective areas of the EXOSAT broad-band 
filters as a function of energy.

where A(E) is the effective absorption cross-section per 

hydrogen atom (cm^j^ Figure 6.8 shows A(E) plotted as a 

function of energy. Figure 6.9 shows the effective 
response for three values of ; 1.0x10^^, 3.0x10^^ and
I.OxIcfO cm"2.

Equation 6.15 can be combined with the filter responses 
to give a 'virtual' response for each filter, this is shown 
in Figure 6.10, for the same column densities used in 
Figure 6.9. It clearly shows that filter 6 is badly 
affected by interstellar absorption, losing its soft X-ray
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Figure 6.8 Effective cross-section per hydrogen atom, 
A(E), plotted as a function of energy.
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Figure 6.9 Effective response for three values^^of the 
hydrogen column density. N ; 1.0x10
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peak for column densities greater than 1.0x10^^ cm”  ̂ and 

since filter 8 has such a small effective area that only 

the brightest sources will be visible in it the retrieval 
of spectral information from these filters is almost 
impossible, the use of the grating in front of the detector 

improves the situation but it has a low throughput and 
therefore can only be used for very strong sources (in fact 
it malfunctioned early into the programme and could not be 
used from then on). Since the thin Lexan filter (number 7) 
is the most responsive it is used primarily in 
observations.

6.4.4 The 'observed' liahtcurve

At each phase we have calculated the outward flux from 
the visible areas of the polecap, f(v). This has the units 

of erg cm  ̂ s~^ Hz" ̂ . Converting this to photons s"^ keV"^ 

(f(E)) using

f(E) = 2.418x10^^f(v)/hv (6.16)

the count rate observed using filter X in conjunction with 

the CMA is then given by

S  =  / o ; o 3 ^ < E ) e x p [ - N ^ A ( E ) ] F j |  ( E ) d E  ( 6 . 1 7 )

where F^(E) is the filter response. The procedure for 
calculating the counts in the ME detector is the same 
except that the interstellar absorption term is negligible 
and the filter response is constant.
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Repeating the whole process at each phase thus gives 
the complete lightcurve through the chosen filter. In this 

calculation I have assumed that the whole of the polecap is 
emitting and since this may not necessarily be so some 
method was needed to simulate a polecap with some sectors 
effectively 'turned off'.

6.4.5 The random polecap.

A look at any observed X-ray lightcurve would be enough 
to persuade the casual observer that there is nothing 
'simple' about their shape. They all show varying amounts 
of what appears, at first sight, to be random noise over 
and above the errors associated with the observation. This 
persistent flickering in the source can only be due to 
variations in the strength and homogeneity of the accretion 
stream on timescales less than the orbital period.

To model this effect it was decided to blank out some 
sectors in the model polecap at each phase. Rather than 
try to fix a shape for the polecap (i.e. crescent, 

ellipsoid, etc.) it was decided to turn the sectors 
randomly on or off. Inputting the required sectors for a 
given shape would be a tedious process and since the idea 

was to illustrate, rather than fit, choosing the sectors 
randomly has advantages in terms of speed and variability.

Random numbers generated by a computer have the range 0 
to 1. If we fix a limit of >0.5 for the sector to be 'on' 
then roughly half the polecap will be emitting. By varying 
the limit we can model polecaps where only a little of the
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pole is actually emitting to those where nearly all is. 

The random orientation of the sectors can be fixed with 

phase or can vary with phase in order to model flickering 

on timescales of 100<t<300 seconds (e.g. timescales that 

are seen in EF Eri for instance, Watson et a l . , (1985)).

As I mentioned above, the random effects are only 

illustrative; no actual fitting can be attempted, only an 

idea of the strength of the variations (i.e., fraction of 

the polecap emitting) can be found by comparison with 

observed lightcurves; fitting the geometry of the source 

requires the use of non-random lightcurves (as we will see 

later)^ . In the next section some sample lightcurves are 

illustrated.

6.5 Sample lightcurves

Figures 6.11, 6.12 and 6.13 show the variations in

lightcurve shape for different magnetic axis angles, line 

of sight inclinations and fractional polecap areas. In 

each case the diagrams (a)-(c) are for the ME detector and 

(d)-(f) are for the LE detector with the thin Lexan filter 

(number 7). The parameters for each figure are shown in 

Table 6.2, all the figures are for a 100,000 K, 1 solar 

mass model atmosphere with 10% hard X-ray illumination, at 

a distance of 100 parsec. For the LE lightcurves the 

hydrogen column density was 1.0x10^° cm ^ .
Referring to the figures, in the ME lightcurves the 

dotted curve shows, for comparison purposes, a lightcurve 

calculated using a thermal bremsstrahlung source with no 

albedo component, normalised with respect to the maximum
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Table 6.2 Parameters for Figures 6.11 - 6.13
Figure Fractional Magnetic axis
number polecap area, f angle, m (')

6.11(a), (d) 0.005 15.0
6.11(b), (e) 45.0
6.11(c), (f ) 75 .0
6. 12(a),(d) 0.01 15.0
6. 12(b),(e) 45.0
6. 12(c),it) 75.0
6. 13(a),(d) 0.05 15.0
6.13(b), (e) 45.0
6. 13(c),(f ) 75.0

atmosphere count rate. In the case of the LE lightcurves 
the dashed line shows a lightcurve calculated using a black 
body source spectrum but since the black body gives fewer 
counts than an atmosphere at the same effective temperature 
the black body lightcurve is normalised with respect to its 
own maximum, in order that the difference between the 
atmosphere and black body lightcurves can be seen.

Surprisingly the shock-only and shock+albedo ME 
lightcurves are almost exactly the same: the limb effects 
in the albedo component do not affect the lightcurve shape 
at all. However the differences between a black body and 
model atmosphere lightcurve are quite striking and are 
exactly what we expected; the model atmospheres limb 
darkening giving peakier lightcurves. As the inclination 
to the line of sight increases the atmosphere lightcurves 
flatten out much quicker than black body lightcurves due to 

the limb effects.
Looking again at the ME lightcurves and considering the 

work of King and Shaviv (1984) we see precisely the sort of 

lightcurve shapes they discussed. For small polecap areas 
flat-topped and flat-bottomed lightcurves dominate while
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sinusoidal shapes are more common for large polecaps 
(f>0.05). The LE lightcurves show a similar dependence on 

polecap size in terms of the probability of seeing a 
flat-bottomed lightcurve.

An effect not previously discussed can be seen in 
Figures 6.11 to 6.13, diagram (c). Here we see a
flattening out of the lightcurve before it finally rises to 
its peak. The reason for this is simple, the hard X-ray 

shock extends down into the soft X-ray region (to about 
1 keV) and at low temperatures with reasonable illumination 

and with the polecap on the limb the shock can dominate the 
limb darkened atmosphere contribution and give rise to an 
ME-like lightcurve. As the pole rotates round to the line 
of sight the atmosphere contribution increases and we see a 
smooth variation up to the maximum. As the fractional area 
of the polecap increases the effect is smoothed out in a 
similar way as for the ME lightcurves themselves.

So the shape of the LE lightcurve, unlike the ME 
lightcurve, depends not only on the geometry of the system 
but on the relative strengths of the hard and soft X-ray 
fluxes. These relative strength of these components could 
change if the effective temperature is varied, for constant 
X-ray illumination, or if the hydrogen column density is 
varied. Increasing the effective temperature increases the 
relative strength of the soft X-ray flux; decreasing the 
hydrogen column density has the same effect. Figure 6.14 
shows the variation in the shape of the LE lightcurve with 
hydrogen column density for a 50,000 K, 1 solar mass model 
atmosphere with 10% X-ray illumination, f=0.01, i=45* and 
m=45". Each curve is normalised to unity. With
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Figure 6.14 Shape of the LE lightcurve as a function of 
the hydrogen column density N . for f=0.01, 
m=45', i=45', =5.0x10^ K and P^^^=10.0%!
Each curve is normalised to unity.

N^=1.0x10^° cm  ̂ the lightcurve is ME-like, reducing to 
3.0x10^® cm'^ causes the soft X-rays to dominate giving a 
smooth sinusoidal lightcurve. Figure 6.15 on the other 
hand shows the variation in the LE lightcurve shape with 
effective temperature. The parameters are the same as in 
Figure 6.14 except is kept constant at 1.0x10^° cm"^.
As before, the isotropic shock dominates for <100,000 K
but for >150,000 K the soft X-rays dominate, the
differing strengths of limb darkening being responsible for
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the slight variations in the shape.
With random variations included the shapes of the 

lightcurves are no longer smooth. The two cases considered 
are; the random orientation of the polecap is constant with 
phase; the random orientation varies with phase. Figures 
6.16(a) and (b) show the effect of the former on the ME and 
LE lightcurves respectively (T^^^ = 100,000 K, 10% hard
X-ray illumination, i=55‘, m=45* and f=0.01), for four
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different fractional emitting areas. Each curve is 
normalised with respect to the '100% emitting' lightcurve. 

We see that fixing the random variation in phase has little 
effect on the overall shape of the lightcurves for both 
detectors. In contrast the lightcurves shown in Figures 
6.17(a) and (b), which are for random orientations that are 
varying with phase, show quite strong flickering in both 
detectors, mimicking the observed variations quite well 

(geometry as in previous figure). With more phase bins the 
effect would be even more startling.

Summary

In this section I have shown the range of lightcurve 
shapes that are possible with this simple approach to 
simulating actual observations. We have seen that a model 
atmosphere gives realistic lightcurve shapes that include 
limb darkening in the soft X-rays but that the albedo 
component in the hard X-rays has no real affect on the 
shape. The hard X-ray lightcurves are exactly those 
predicted by King and Shaviv, sinusoidal variations being 
rare for small polecaps. An unpredicted effect was the 
two-component nature of the soft X-ray lightcurve, for some 
illuminations, temperatures and column densities the LE 
lightcurve can look distinctly hard X-ray like due to the 
isotropic hard X-ray component dominating the optically 
thick soft X-ray component (in the overlapping region of 
the ME and LE detectors). Lastly, by randomly varying the 
orientation of the emitting sectors within the polecap it 
was possible to mimic the flickering seen in observed
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lightcurves.

The ultimate test of any model system is to use it to 
fit an observed system. In order to test this lightcurve 
model, AM Herculis was chosen as the source to be modelled 
as it is the brightest known source and high quality data 
is available from recent EXOSAT observations. The next 
section describes the procedure adopted to carry out the 
task.

6.6 A full parameter fit to AM Herculis

AM Herculis has been observed many times with X-ray 
satellites (for example; Hearn and Richardson, 1977; 
Bunner, 1978; Tuohy et al., 1978; Hayakawa et al., 1979; 
Rothschild et al., 1981; Fabbiano et al., 1981 and Heise et 
al., 1985). The X-ray emission has been seen to be 
variable but is generally characterised by broad, nearly 
total, eclipses in both the hard and soft X-ray regions 
with a period of 3.09 hours. With pre-EXOSAT observations 
the eclipses in the hard and soft X-rays were synchronised 
but when it was observed by Heise et al., (1985) the 
eclipses had shifted so that they were now 180* out of 

phase. This is known as the 'anomalous' state of AM Her. 
Heise's two observations were performed during the 
performance/verification phase of EXOSAT. Table 6.3 shows 
the observing log.
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Table 6.3 EXOSAT observations of AM Her (Heise et al.)

Date Instrument Exposure time
(secs)

* June 29 1983 CMA1,thin Lexan 48472
June 30 1983 CMA2,thin Lexan 48472

+ grating
* June 29 1983 ME 46540

Aug 10 1983 CMA1,thin Lexan 68024
+ grating

Aug 10 1983 CMA2,thin Lexan 61152
+ grating

Aug 10 1983 ME 57620

*

6.6.1 The X-rav lightcurves of AM Herculis

The data from the observations marked with asterisks 
were folded on the current epheremis (MJD 2443014.265 = 
phase zero, period = 11139.292 seconds) into 50 phase bins. 
The resultant lightcurves are shown in Figures 6.18 and 
6.19. The lightcurves are background subtracted and 
corrected for any telescope/detector errors. The count 
rates in the second CMA observation are reduced due to the 
presence of the grating in front of the detector.

The anti-phase relationship of the lightcurves can 
clearly be seen. The count rates in the second ME 
observation had increased by a factor of 1.8 compared with 
those in the first but the ratio between the maximum and 
minimum counts had decreased from ^2.4 to ^1.4. Allowing 
for the reduction in flux due to the grating (*^90% is lost) 
there is little change in the LE lightcurve between the two 
observations.

Heise et al. assumed that since the ME lightcurve 
eclipse had originally been full and was now non-total that 
the extra flux at the minimum was coming from a second
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pole, 180" away from the primary pole. The anti-phase soft 
X-ray lightcurve being entirely due to this secondary pole. 
At first glance this might seem reasonable but bearing in 
mind what we have seen before for the shapes of ME 
lightcurve possible there is a problem with this 
assumption. A two pole system is the only way to reproduce 
the out-of-phase lightcurves seen in AM Herculis. If we 
assume that the poles are exactly 180" apart, exactly the 
same size, and exactly the same temperature, then as one 
pole goes into eclipse the other is coming out of eclipse, 
the result is that we see no variation at all in the hard 
X-ray lightcurve. So in order to reproduce the ME 
lightcurve in AM Her from a two pole system, in the way 
that Heise et al. suggested, we must assume some asymmetry. 
The minimum comes from the secondary pole therefore that 
pole must be weaker than the primary in X-ray illumination 
(same effective temperature) or colder (less X-ray 
intensity needed to heat the atmosphere). In order to get 
only a single minimum from a double poled hard X-ray 
emitter the poles must be exactly the same size so that 
each poles' contributions match and a smooth drop is seen. 
Figure 6.20 shows the resultant hard X-ray lightcurve for 
various polecap asymmetries (assuming the secondary pole is 
weaker then the primary). Only for equal area poles do we 
see a single minimum, but this is a flat minimum which the 
observed lightcurve does not have. To get a smooth 
quasi-sinusoidal minimum requires that one or other of the 
poles is only partially eclipsed, meaning that the poles 
are dissimilar in size as well (otherwise they would both 
be partially visible at some time resulting in a quasi-
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Figure 6.20 Hard X-ray eclipses for a two-pole system with 
one pole weaker than the other; (i) Primary 
pole larger than the secondary; (ii) Poles 
equal size; and (iii) Primary pole smaller 
than secondary. The dotted and dashed lines 
show each poles contribution.

sinusoidal variation) or that the poles are the same size 
but not 180* apart (the secondary is fully visible/eclipsed 
while the primary is only partially eclipsed). Considering 
the former, to get the right sized polecaps with the right 
relative intensities to give the observed lightcurve would 
be very rare indeed as two minima or maxima would be most 
likely to result with this system. The latter however is
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more likely to give the required lightcurve but it still 
has the constraint that the poles are the same size and 
that the primary pole dominates the X-ray emission.

There is one assumption that Heise et al. did not make, 
that the ME lightcurve is due to one pole only. Since the 
hard X-ray lightcurve was originally a one pole lightcurve 
there is no reason why the accretion geometry could not 

change so as to make the pole only partially eclipsed. If 
the accretion rate increased then the primary pole would 
increase in size and some material might spill around into 
the secondary pole causing its luminosity to increase and 
give rise to the anti-phase lightcurves. When AM Her 
returns to its low state the secondary pole will turn off 
and the lightcurves return to their original phase 
relationship. This simple explanation leaves a lot less to 
chance than the above and still allows for a two pole 
system, the soft X-ray flux from this pole giving rise to 
the small 'hump' seen in the minimum of the LE lightcurve 
at around phase 0.6. So this geometry was adopted for AM 
Herculis and the actual fitting of the lightcurves could 
then be undertaken. The assumption that the ME lightcurve 
came only from the primary pole was the only major 
assumption made in the fitting of the EXOSAT lightcurves, 

described in the next few sections.
Note : All fitting was done using one solar mass model
atmospheres (i.e., gravity ,g = 4.45x10® cm s~^)

6.6.2 Fitting the ME lightcurve from the first observation

We have seen in Section 6.5 that the shape of the hard
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x-ray lightcurve depends on three parameters only; the 
fractional area of the polecap, f; the magnetic axis angle, 

m and the inclination of the rotational axis to the line of 

sight, i. By choosing different fractional areas the best 
fitting values for i and m can be found by searching the i 
and m parameter space for the lowest value of the
chi-squared errors in the fit.

To fit the shape only, the distance, effective
temperature and percentage of X-ray illumination are kept 
constant at some arbitrary values. The errors in the
observed counts were used to derive non-reduced chi-square 
errors for the fit (the chi-squares were not reduced since 
the same number of points were used throughout the
fitting). These were expected to be high, due to the small 
errors in the count rates coupled with the large variations 
in the lightcurve. For shape fitting the lightcurve is 
normalised to give the best fit by multiplying it by a 
where a is given by

a = f y(i)f(i) / Î £(i)^ (6.18)

y(i) are the observed count rates and f(i) are the 

calculated count rates. Since the phase used in our 
calculation may not be the same phase used in the observed 
lightcurve, shifting of the observed lightcurve in phase 
was allowed, in order to find the best agreement with the 
calculated lightcurve.

Table 6.4 shows the results of the shape fitting of the 
ME lightcurve. The best values of i and m for each f are 
shown along with the associated chi-squared errors. It
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Table 6.4 Results of fitting the shape of the ME 
lightcurve from the first observation.

Fractional area Best fitting Best fitting Phase
of polecap, f m (“) i (') shift

(all +0.5')+ (all +0.5')+ (x10^)
0.05 42.8 44.4 3.829 0.12
0.01 42.4 48.4 1.639 0.12

* 0.008 49.0 42.0 1.612 0.12
* 0.007

0.006 52.5 38.5 1.579 0.12
0.005 52.5 38.5 1.580 0.12
* same number of sectors used in polecap

the +0.5* errors indicate that the fit could only be 
determined to +0.5* (due to computational time 
limits), not that +0.5* gives an acceptable fit (as 
is shown in Figure 6.21)

shows that the best fit to the shape comes from f=0.006, 
m=52.5’ + 0.5* and i=38.5 * + 0.5 *. Figure 6.21 shows the fit 
graphically and we see that the sinusoidal minimum is 
fitted almost exactly, with good agreement with the 
flat-topped maximum. Note that the +0.5* error 'fits'
(shown by the dotted lines) are not acceptable, indicating 
the strong dependence of the lightcurve fit on i and m. 
Figure 6.21A shows the lightcurve fits for all the fits 
shown in the table. Note that the lightcurves for f=0.10, 
0.008, 0.006 and 0.005 are very similar in shape, the only
difference being the eclipse depths; the figure shows that 
these lightcurves are, in fact, more acceptable as fits 
than the +0.5* lightcurves !

The next step is to find values for the effective
temperature, T^^^, percentage X-ray illumination, P , a n d
the distance to the source, d . There is a limit on thesep c
since the resultant LE count rates must not exceed the 
'hump' in the LE lightcurve. The strength of the random
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Figure 6.21 Best fit to the shape of the ME lightcurve 
from the first observation (repeated twice for 
clarity). Best fit is f=0.006, m=52.5* and 
i=38.5*. The +0.5* lightcurves are shown by 
dotted lines.
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variations in the lightcurve can also be fitted to some 
extent so as to give a value for f , the fraction of thee m i t
polecap actually emitting. The random variations were 
allowed to vary with phase as this gave more 
observational-like lightcurves. The random fitting was 
done by trial and error until the strength of the 
calculated and observed flickering was about the same. It 
is easier, initially, to fit the count rates with 
non-random counts, the normalisation factor a can then be 
related directly to the actual distance, d , by

p c

1.

CO
c;
o
u

1

.8

f= o  os

.6

4

0 ,5 1 1.5
EXOSAT Phase

Figure 6.21A Best fits to observed ME lightcurve from Table 
6.4. Note that the curves for f=0.01, 0.008, 
0.006 and 0.005 are very similar, the only 
distinguishing feature being the eclipse 
depth.
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'pc = d, (6.19)

where is the fitting distance chosen arbitrarily before. 
Once an idea of the best fit values is found the random
variations can be put in and the distance, temperature or
illumination corrected to give the correct count rates. 
The energy range for the calculated spectrum was chosen to 
be the same as the energy range in the observation (i.e., 

1.9 - 8.5 keV). Table 6.5 shows the results of this
fitting, included in the table are the maximum LE count 
rates through the thin Lexan filter, LE^ for two hydrogen
column densities, .

Any model that gives a distance less than 50 parsec can 
be excluded since no parallax has been observed for AM Her. 
Analysis of the LE lightcurve shows that the second maximum

Table 6.5 Results of fitting the LE lightcurve from the 
first observation.

*111
{%)

T.ff 
(xIO^)

d X a dP c
(x10^ ° )

LE7
(s"i )

Comments

10.0 1 .0 100.0 34.1 17 . 1 - - too near
10.0 2.0 100.0 1 .87 73.1 1 .0 v»54 too many 

LE cnts
50.0 1 .0 100.0 6.82 38.3 1 .0 

0 . 1
'/'0.5 
1 .5

too near

50.0 1 .5 100.0 1 .27 88.7 1 .0 v'5.0 too many 
LE cnts

50.0 2.0 100.0 0.417 154.9 1 .0 v̂ 10 too many 
LE cnts

99.9 1.0 100.0 3.63 52.5 1 .0 
0.1

'/'0.3 
"0.9 OK

99.9 1.15 100.0 1 .93 72.0 1 .0 
0.1

" 0 .7 
"3.0

OK
too many 
LE cnts

99.9 1 .5 100.0 0.667 122.4 1 .0 " 2.0 too many 
LE cnts

99.9 2.0 100.0 0.202 222.5 1.0 " 3 .5 too many 
LE cnts
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peaks at about one count per second so any model giving 
more counts than this can also be excluded. So from the 
table, bearing the above in mind, we see that only three 

models give the required ME and LE count rates. They are 
all S3.9% illuminated and have the following parameters

(1 ) Te f f = 100,000 K, N„ = 1 .Oxio'9 — 2 cm , dpc = 52.5 parsec
(2 ) = 100,000 K ,N„ = 1 .0x 10^° — 2 cm , d

P c
= 52.5 parsec

(3) T.,, = 115,000 K, N„ = 1 .0x 10^° — 2 cm , d
P c

= 72.0 parsec

The accepted value for the distance to AM Herculis, from 
observations of the secondary star, is 71+18 parsec (Young 
and Schneider, 1981) so model number (3) gives the best 
fit.

By trial and error it was found that if 0.85 of the 
polecap was emitting then the random variations introduced 
were of approximately the same order as those seen in the 
observed lightcurves. Reducing the emitting area by 0.15
reduces the flux by the same amount so to correct this the 
distance could be decreased to 66.4 parsec or the effective 
temperature could be increased. Since we require the 
distance to be approximately 71 parsec the effective 
temperature was increased in 5000 K steps until the fitted 
distance agreed, as near as possible, with the accepted 
distance. It was found that a 120,000 K, 99.9% illuminated 
model gave a distance to AM Her of 72.6 parsec with a 
maximum LE count rate of 0.9 counts per second. Figure
6.22 shows graphically this best fitting model compared 
with the observed ME lightcurve. Note how the random 
variations mimic rather well those actually seen. Figure
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Figure 6.22 Best fit to the shape and count rates of the 
ME lightcurve from the first observation. 
Parameters are; m=52.5", i=38.5", f=0.006,
f  ̂ =0.85, =1.2x10^ K, P ,,=99.9%,
d*"*=^2.6 parsec anâ N = 1 .0x 10 cm" \p c

G.G6



Counts s-i

o Œ) c:

I
K
H

03
ÜOCD

O

en

en

Figure 6.23 Primary pole's contribution to the LE 
lightcurve from the first observation.
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6.23 shows the contribution to the LE lightcurve from this 
fit. Note that the 'hump' at phase 0.6 is fitted almost 
exactly.

To recap then, the inferred values for the geometry 
etc., of the primary pole in AM Herculis are

Inclination to the line of sight = 38 .5*
Angle between rotational and magnetic axes 52 .5'
Fractional area of the polecap = 0 .006
Fractional area of the polecap emitting = 0 .85
Fractional emitting area (0.006x0.85) = 5. 1x10-3

Effective temperature = 1 .2x10^ K
Percentage of X-ray illumination = 99 .9%

The distance to AM Herculis was assumed to be 72.6 parsec 
with a hydrogen column density of 1.0x10^° cm'^. From the 
fitting it was found that phase zero used in the
calculations was in fact equivalent to phase 0.12 in the 
EXOSAT ME lightcurve. A comparison between the values of i 
and m shown above and those from polarisation arguments is 
discussed later in this chapter.

6.6.3 Fitting the soft X-rav lightcurve

The first step is to subtract the contribution of the
primary pole to this lightcurve. Figure 6.24 shows the 
resultant lightcurve. We have seen that the shape of a 

soft X-ray lightcurve is not just a function of the
geometry, it is also a function of the effective
temperature. This makes the fitting of the LE lightcurve
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Figure 6.24 First observation LE lightcurve with primary 
pole's contribution subtracted.

difficult in that it is not possible to fit the shape and 
the count rates separately. However since we already know 
one angle in the geometry, the inclination to the line of 
sight, this problem is not as bad as it may seem.

By fitting the shape of the LE lightcurve a normal
isation factor a is found, in the ME lightcurve fitting 
this was related to the fitted distance but in the LE 
lightcurve fitting it can be related to the fractional area 

of the polecap emitting, f So if a>1 the model, andemit
all Other models below this effective temperature, can be 
ignored. Also, if the fitting of a particular model gives 

a <10  ̂ then that model and all models with effective 
temperatures greater than that can be ignored, for the 
reason that the smaller the fractional area emitting, the 
greater the random variations introduced; for a <10  ̂ the 
random variations could give rise to lightcurves with huge
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'steps' in the counts. There is another limit on the 
necessary parameter space that needs to be searched. This 

comes from considering the hard X-ray emission from this 
pole. We have assumed that there is essentially no hard 
X-ray emission from this pole. However a hard X-ray flux 
of about 5% of that seen from the primary pole would be 

undetectable in the lightcurve (i.e., ^^.0x 10-2 count s“  ̂). 

Thus any model which gives a hard X-ray flux greater than 
this can be ignored. Since the strength of the 
illumination has the most effect on the hard X-ray flux it 
was expected that only approximately unilluminated 
atmospheres would fit this criterion.

Bearing all the above in mind, for a chosen effective 
temperature, percentage of illumination and fractional 
polecap area the best fitting magnetic axis angle was found 
by the same method used before in the fitting of the shape 
of the ME lightcurve. The best fitting fractional area, 
for each temperature and illumination, was taken to be that 
with the lowest value of chi-squared. The values for the 
effective temperature and percentage of X-ray illumination 
were chosen bearing the above limits in mind.

Table 6.6 shows the results of this fitting, assuming 
that the inclination to the line of sight was 38.5’ , the 
distance was 72.6 parsec and the hydrogen column density 

was 1.0x10^^ cm"^. The maximum ME count rate is only shown 
for the best fitting polecap area at each temperature and 
ilumination. The high values for the chi-squared errors 
are due to the small error bars combined with the large 
random flickering in the observed lightcurve. Considering 
Table 6 .6 , effective temperatures less than 150,000 K were
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Table 6.6 Results from fitting the first observation 
LE lightcurve (primary pole subtracted). 
(i=38.5‘

P c^ =72.6 parsec, N^=1.0x10^° cm’^)
pi 1 1 f m a P.h
(%) (xIO^ K) (±0.5') (xIO^)
0.01 1 .5 0.02 293.0 5.624 0.311 0.14

0.01 295.5 5.570 0.565 0.14
0.008 296.0 5.565 0.687 0.14
0.006 5.564 0.868 0. 14
0.005 296.5 5.562 1.117 0.14
0.004 297.0 5.563 1 .500 0. 14

2.0 0.02 288.0 5.567 0.042 0.14
0.01 290.0 5.437 0. 105 0.14
0.008 290.5 5.440 0.128 0.14

2.5 0.02 285.5 5.395 0.018 0.14
0.01 287.5 5.372 0.033 0.14
0.008 288.0 5.379 0.040 0.14

1 .0 1 .5 0.01 294.5 5.560 0.627 0.14
0.008 5.554 0.712 0.14
0.006 295.0 5.552 0.962 0.14
0.005 295.5 5.551 1.239 0.14
0.004 5.553 1 .683 0.14

2.0 0.02 287.5 5.449 0.060 0.14
0.01 289.5 5.416 0.112 0.14
0.008 290.0 5.420 0.136 0.14

2.5 0.02 285.0 5.272 0.023 0.14
0.01 287.0 5.248 0.041 0.14
0.008 287.5 5.253 0.063 0.14

m = best
phase

fitting 
shift :

magnetic 
for best

axis angle 
fit

Mk = maximum count rate in ME filter

ME

(s-1 )

»v»10“4 A

10—4 B

10—4

10—2

10—2

V» 10—2

found to give fractional emitting areas greater than one, 
conversely, effective temperatures greater than 250,000 K 
were found to give fractional emitting areas less than 
1.0x10"^. X-ray illuminations greater than 1.0% gave ME 
count rates above the maximum allowed. We have six best 

fits from the table, A-F.

Fit A : Due to the small variations in the chi-squared
values this fit gives a fractional polecap area from 0.004 

0 .0 1 , with corresponding values of f from 1.5 -
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0.565. The preferred value for f^^.^ (by observation) was 

approximately 0 .8 -0 .9 so f=0.006 was chosen as this gives a 

reasonable value of f =0.868. The ME count rate is well«mit
within the allowed limit.

Fit B : f for this fit is smaller than the light-
•  m I  t

curve would indicate. The ME count rate is satisfactorily 
reproduced.

Fit C : f is very small. The actual emitting area«mit
would be 3.3x10"* which is much smaller than normally 
associated with these systems: this fit was discounted.

Fit D : This is similar to fit A. The best fit is again
variable but f=0.006 (f^^^^=0.962) gives the best results. 
Fit E : As for fit B.
Fit F : As for fit C.

Figures 6.25 to 6.28 show graphically the fits A,B,D and E 
to the primary-subtracted LE lightcurve. The random 
variations have been included and are phase variable. It 
is obvious that fits A and D give the best approximations 

to the flickering in the observed lightcurve.
The fitting of the lightcurves from the first obser

vation is now complete, a full list of the fitted param
eters is shown in Table 6.7. Due to the time consuming 

nature of the soft X-ray fitting the effective temperature 
inferred for the secondary pole is not as accurate as that 
for the primary pole. The soft X-ray fitting strongly 
depends on the assumed value for the hydrogen column 
density, a few percent each way can give large changes in 
the fitted temperature. However, assumptions have to be 
made in all kinds of spectral fitting and as such the

6.72



Counts s
-I

o DO CD

Cl

I

"0
kJCD
GOCD

cn

ro
I i II

Figure 6.25 Best fit A to the LE lightcurve from the first
observation (see Table 6.6 for best fit param
eters) .
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Figure 6.26 Best fit B to the LE lightcurve from the first
observation (see Table 6.6 for best fit param
eters ) .
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Figure 6.27 Best fit D to the LE lightcurve from the first
observation (see Table 6.6 for best fit param
eters ) .
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Figure 6.28 Best fit E to the LE lightcurve from the first
observation (see Table 6.6 for best fit param
eters ) .
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Table 6.7 Parameters for AM Herculis derived from fitting 
the first observation lightcurves.

Distance to source 
Hydrogen column density
White dwarf mass (assumed) 
Inclination to the line 
of sight
Magnetic axis angles -

primary pole 
secondary pole 

Angle between poles -
latitude 

longitude 
Fractional polecap areas - 

primary pole 
secondary pole 

Fractional area of pole 
emitting - primary pole 

secondary pole 
Fractional emitting areas 
(fxf ) - primary poleemit _ _secondary pole 
Effective temperature -

primary pole 
secondary pole 

X-ray illumination -
primary pole 

secondary pole 
Luminosities (erg s” )

72.6 parsec
1 . 0 x 1 0 2 0

1 solar mass
38.5'±0.5'
52.5'+0.5'
295.5'+0.5'
117"±1 .0' 
172.8'
0.006
0.006
0.85
0.85 - 0.95

5.1x10"3 
(5.1 - 5.7)x10
1 .2x 10  ̂ K 
^1.5x10^ K

- 3

99.9
0.01

primary pole - 3.155x10
secondary pole - 8.604x10

total - 3.156x10

3 2 
2 8 
3 2

1 .0 %
oft

1.885x10 
5.236x10 
7.121x10

3 2
3 2
3 2

1 .670 
1.64x10 

0.443
- 4

results presented here can be thought of as being reason
able approximations to the truth. By analysing the results 
in more detail it is possible to draw some important 
conclusions from this fitting.

6.6.4 Conclusions from the fitting of the first observation 

lightcurves

I have derived values for the inclination to the line 

of sight and the angle between the rotational and magnetic 
axes of 38.5* and 52.5* respectively. These compare very
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well with the values stated in Brainerd and Lamb (1985), 
which were derived from the polarisation properties of the 
source, i.e., i=38.5'+5' and m=58'+5". Both poles are of
approximately the same size and emitting area and have 
similar effective temperatures. The secondary pole has 
effectively no shock at all as there is no appreciable hard 
X-ray emission. The magnetic polecap latitudes are only 
separated by 117* indicating either that the magnetic axis 
is off-centred or that higher (e.g. quadrupole) magnetic 
field multipoles are important near the white dwarf. 
Figure 6.29 shows the geometry inferred for AM Her from 
this observation. Assuming that the primary pole faces

accretion streams

primary 
\  pole

to L, point
secondary
pole

secondary
star

Figure 6.29 Inferred geometry for AM Herculis from fitting
the first observation lightcurves.
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directly towards the secondary star we see that some 
material passes the magnetic 'junction' above the primary 
pole and follows the magnetic field around to the secondary 
pole on the opposite side giving rise to the strong soft 
X-ray emission seen. The scenario predicted by our fitting 
does not seem unreasonable as a shifting of the orientation 
of the magnetic axis with respect to the secondary star 
could result in the secondary pole switching on and off. I 
will discuss this in more detail later in this chapter.

The predicted luminosities for AM Her give a hard/soft 
luminosity ratio of 1.67 for the primary pole, 1.64x10'^ 
for the secondary pole and 0.443 as a whole. These are the 
observed hard/soft ratio's, the actual values would be much 
smaller than this. Thus this fitting shows that the 
secondary pole of AM Herculis has a strong soft X-ray 
excess whereas the primary pole has approximately the 
correct hard/soft ratio for a radiative accretion column. 
The accretion rates for the poles are 1.888x10^^ g s  ̂ for 
the primary pole and 1.962x10^^ g s~^ for the secondary 
pole, indicating a slight preference for the material to 
accrete onto the secondary pole. The total accretion rate 
is 3.85x10^^ g s’* ̂ which is typical for these systems.

Looking at Figures 6.25 to 6.28 in more detail we see 
that none of the calculated lightcurves were able to fit 
convincingly the fast rise in the lightcurve at phase 0.8 
(EXOSAT phase 0.94). The lightcurve rises to over half its 
maximum in Only 14.4* of rotation. By experiment it was 
found that no surface feature could give such a fast rise 
as this as all optically-thick radiation is modified by the
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projection effect to give a slower rise to maximum. This 
fast rise is therefore most probably due to an area of 
optically thick emission orientated approximately 
perpendicular to the photosphere which appears and 
disappears with the rotation of the white dwarf (first 
discussed by Heise et al., 1985). Since the transition 
between the high and low states takes place over 
approximately 4% of the rotation period the vertical extent 

of this feature must be of the order 4% of the white dwarf 
radius (i.e., ^ 2x10^ cm). Since this feature is not
mirrored in the trailing edge of the lightcurve the feature 

must be assymetrical about the polecap, perhaps having a 
wedge-shaped cross-section with respect to the white dwarf 
surface. I will not discuss any possible reasons for this 
feature but save to say that it is permanent in that it 
appears in the LE lightcurve for the second observation as 
well. The fitting of the second observation lightcurves is 
discussed in the next section.

6.6.5 Fitting the second observation lightcurves

Essentially this is a simpler task than before as we
have already found three important parameters; the

inclination to the line of sight, i (38.5*); the distance
to AM Her, d (72.6 parsec) and the hydrogen column p c
density in the direction of AM Her, (1.0x10^° cm”^ ). 

Fitting the ME lightcurve is a similar procedure to that 

used before except this time i is kept constant, m being
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Table 6.8 Results of fitting the second observation ME
lightcurve (i=38.5*).

f m Phase
(±0.5') (Xl05) shift

0.08 37.5 5.873 0 . 12
0.06 40.0 4.947 0.12
0.05 41 .0 4.750 0.12
0.04 42.5 5.227 0.12
0.02 45.5 8.988 0 . 12

allowed to vary, as we do not expect the magnetic axis to 

stay fixed. Table 6.8 shows the results of fitting the 
shape of the ME lightcurve. Analysing the results in the 
same way as before gives us a best fit of m=41.0'+0.5" and 
a fractional polecap area of 0.05. Figure 6.30 shows this 
fit graphically. Again we see that the calculated 
lightcurve is almost a perfect fit to the observed one, 
apart from the flickering at the maximum. The count rates 
were fitted in the same way as before and the results are 
shown in Table 6.9. The preferred value for the fractional 
area of the polecap emitting, by observation, was 
0.90-0.95. The maximum soft X-ray counts are shown for the 
thin Lexan filter but this time the grating had been in 
front of the detector, reducing the count rates by a factor 
of ^0.9. Figure 6.31 shows the effective area of the thin 
Lexan filter when used with the grating, calculated using 
the energy dependent response of the grating. Models which 
gave LE count rates above the maximum seen in the 'hump' of 
the LE lightcurve ('/'0.11 counts s""*) were discounted.

From Table 6.9 we see that the best fit to the ME count 
rate is a model with an effective temperature of 100,000 K 
and an X-ray illumination of 44%, with a fractional
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Figure 6.30 Best fit to the shape of the ME lightcurve 
from the second observation (i=38.5*, m=41.0* 
and f=0.05).
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Figure 6.31 Response of the CMA through the thin Lexan 
filter when the grating is in place.

Table 6.9 Results of fitting the ME count rate

Comments

a too small
II It If

a almost OK 
a too small 
best fit

(4,(=72. 6 parsec) •

Pill
(%)

T.,f 
(xIO^ K)

a LE^ 
(s’’ )

99.9 1 .0 0.425 -
1 .5 0.078 -

50.0 1 .0 0.798 v^O.09
1 .5 0. 149 ^0. 30

44.0 1.0 0.894
LE^ — maximum count rate in 

+ grating
thin

emitting area of 0.894. Figure 6.32 shows this best fit 
graphically. The strength of the flickering is modelled 
quite well with approximately 0.9 of the polecap emitting. 
Figure 6.33 shows the contribution to the LE lightcurve 
from the primary pole, the 'hump' being fitted quite well.
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Figure 6.32 Best fit to the shape and count rates of the 
ME lightcurve from the second observation; 
f=0.05, m=41.0*, i=38.5", f =0.894,

=1.0x10^ K and p =44.0'^ tali other 
parameters the same as for the first obser
vation) .
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Figure 6.33 Contribution of the LE lightcurve from the 

primary pole to the observed LE lightcurve 
from the second observation.

Having subtracted the contribution from the primary 
pole to the LE lightcurve the LE lightcurve was fitted in
the same way as for the first observation, the results of
which are presented in Table 6.10. Referring to the table, 
it was found that unlike the first observation there were 
no really clear fits to the lightcurve. For all the
temperatures and illuminations tried the values of 
chi-squared had very shallow minima (with respect to the 
polecap area) and so deciding which was the best fit was 
largely arbitrary (i.e., choosing those that give the best 
values for the fractional emitting area, f^^.^). There 

were five 'best' fits, A-E, of which only two, B and D,
gave values for f close to the required value ofemit
0.90-0.95, without reducing the polecap area to less than
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Table 6.10 Result of fitting the primary subtracted LE 
lightcurve from the second observation.

MEpi 1 1 T.f, f m a P,h
(%) (xIO®) (±0.5- ) (xIO^)
0.01 1 .5 0.01 291 .5 2.924 0.676 0.16

0.008 292.0 2.913 0.822 0.16
0.006 292.5 2.903 1 .023 0.160.005 2.895 1 .334 0.162.0 0.01 286.0 2.814 0.127 0.16II 0.008 286.5 2.806 0.154 0.16\II 0.006 2.800 0.194 0.16II 0.005 287 .0 2.794 0.250 0.16II 0.004 287.5 2.790 0.335 0.16II 0.003 2.786 0.482 0.16
0.002 2.784 0.752 0.16
0.001 288.0 2.782 1 .317 0.16 J

2.15 0.002 286.5 2.768 0.513 0.161II 0.001 287.0 2.766 0.898 0.16 >II 0.0004 II 2.767 2.020 0.16 J
2.5 0.003 284.5 2.744 0.154 0.16 1II 0.002 285.0 2.741 0.237 0.16 >

0.001 2.742 0.421 0.16 J
1 .0 2.15 0.002 286.5 2.768 0.515 0.16 1

M 0.001 2.767 0.915 0.16 >
II 0.0004 2.768 2.057 0.16 1

2.5 0.002 284.5 2.733 0.248 0.16 1
II 0.001 285.0 2.732 0.433 0.16 \

0.0004 2.733 0.975 0.16 )

(s"' )

(no fit)

10 - 4

B

10 - 4

10 -  2

10 -  2

P . = phase shift for best fit8 n

10“^. So the inferred values for the secondary pole's 
parameters are; effective temperature of 215,000 K; hard 
X-ray illumination of 0.01-1.0%; fractional polecap area of 
0.001 with 0.9-0.92 actually emitting and a magnetic axis 

angle, m, of 286.5"+0.5". Phase zero for the calculated 
lightcurve was equivalent to phase 0.16 in the EXOSAT 
lightcurve. Figures 6.34 and 6.35 show the two fits 
graphically, note that the calculated lightcurves are again 
unable to fit the fast rise in the observed lightcurve. 
Table 6.11 shows a full list of the fitted parameters for 
the second EXOSAT observation of AM Herculis.
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Figure 6.34 Best fit B to the LE lightcurve from the
second observation (see Table 6.10 for
parameters).
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Figure 6.35 Best fit D to the LE lightcurve from the
second observation (see Table 6.10 for
parameters).
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Table 6.11 Parameters for AM Herculis derived from fitting 
the second observation lightcurves.

Magnetic axis angles -
primary pole : 41.0'+0.5" 

secondary pole : 286.5*+0.5*
Angle between poles -

latitude : 114.5'+1.0"
longitude : 165.6*

Fractional polecap areas -
primary pole : 0.05

secondary pole : 0.001
Fractional area of pole 
emitting - primary pole : 0.894

secondary pole : 0.90 - 0.92
Fractional emitting areas

“ primary pole : 0.045
secondary pole : (9.0 - 9.2)x10

Effective temperature -
primary pole : 1.0x10^ K

secondary pole : 2.15x10 K
X-ray illumination -

primary pole : 44.0 %
secondary pole

Luminosities (erg s" ) : L L (L /L , )
X s o f t  x a o f t

primary pole - 5.660x10^^ 7.832x10^^ 0.723
secondary pole - 5.733x10 ® 3.490x10^ 1.64x10'

total - 5 . 6 6 1 x 1 0  2 1.132x10^ 0.500

- 4

0.01  -  1.0

Having successfully modelled the lightcurves from both 
EXOSAT observations the fitting of AM Herculis is now 
complete. The next section discusses the changes, that our 
fits have implied to have taken place, between the two 
observations and suggests possible reasons for these.

6 .6.6 Comparison of the two fits to AM Herculis

A full list of all the fitted parameters for both 
observations is shown in Table 6.12, so as to allow easy 
comparison between the results from the two observations.

Considering the positions and sizes of the poles first 
we see that apparent positions of the poles have altered
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Figure 6.36 Relative positions of the magnetic poles in 
the two observations; (i) Primary, (ii) 
Secondary.

between the two observations. Figure 6.36 shows the 
relative positions of the poles in the first and second 
observations. It shows that the primary pole in the first 
observation is wholly contained within the primary pole in 
the second observation. The change in the inferred 
position of the primary's magnetic axis does not 
necessarily indicate a change in the orientation of the 
magnetic axis since the model's magnetic axis is only a 
reference point to which the individual sectors in the pole 
refer, the true magnetic axis may not even lie inside the 
model polecap ! The shift in the position of the model 
pole only indicates that the region of accretion on the 
white dwarf's surface has moved. In the case of the 
secondary pole, the position on the surface of the 
accretion area had also moved between the two observations, 
in a way so as to keep the angle between the primary and
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secondary poles approximately constant, but in this case 

the two poles are not located within the same area oE the

white dwarf. It may well be that the magnetic axis has

s h i [ted slightly between the two observations but the 

change in the apparent positions of the poles could also be 

due to different sections of a much larger 'polecap' 

turning on and off, possibly due to a change in the 

accretion rate. Generally, the derived sizes of the poles 

are larger than the values usually associated with these 

systems. This fact, plus the necessity for large polecaps

in order to explain the quasi-sinusoidal lightcurves in EF 
Eri and V834 Cen (E1405-451), adds further weight to the 

argument for systematically larger polecaps for polar 
systems. The assumed values for polars usually arise from

luminosity fits using black bodies which, as we saw in
Chapter 5, give smaller f's than expected, therefore 

geometrically large polecaps (geometrically large to give 

the correct lightcurve shape but the actual emitting area 

could still be small) of the order 10"^ to 10'^ of the 

white dwarf area may well be the norm in polar systems.

Considering the poles themselves; the effective

temperature of the primary pole decreased from 120,000 K to

100.000 K which is most probably due to the decrease in the 

hard X-ray illumination from 99.9% to 44%. In the case of 

the secondary pole the effective temperature increased from

150.000 K to 215,000 K while the accreting area decreased 

by a factor of six. The accretion rates are 5.055x10^^ 

g s'^ for the primary pole and 1.308x10^^ g s'’ for the

secondary pole so we see that the accretion rate onto the

secondary has decreased, hence the reduction in size of the
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secondary pole, while the accretion rate onto the primary 

pole has more than doubled, hence the enormous increase in 

size of this pole. In order to explain the changes in the 

accretion rates we could assume that the orientation of the 

magnetic axis with respect to the secondary changed 

slightly between the observations, causing more material to 

accrete onto the primary pole and less onto the secondary 

pole. This possibility, which is related to how strong the 

phase-locking of the white dwarf's rotation is, will be 

discussed in more detail later. It is interesting to note 

that although great changes have occurred at the secondary 

pole there was no great increase in the observed count 

rates which indicates how the effects of changes in the 

effective emitting area, effective temperature and strength 

of X-ray illumination weigh off against each other.

Finally, the inferred total luminosities for AM 

Herculis show an increase of 1.6 between the first and 

second observations most of which is due to the increase in 

the soft X-ray luminosity of the primary pole. The 

hard/soft ratio stayed approximately the same at ^0.5, 

indicating a strong soft X-ray excess.

6.6.7 Conclusions from this lightcurve fitting

By fitting simulated model atmosphere lightcurves to 

the EXOSAT observations of AM Herculis made in the summer 

of 1933 I have derived the geometry and accretion 

parameters for the system. These results were shown in 

Table 6.12 and discussed in the previous section.

We have seen that changes in the system occur on all
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Llrncscâlûs, from the ^4 minute flickering seen in the 

observeti lightcurves to the longer term changes that have 

occurred between observations separated by years. The 

reasons for the short period flickering ar '2 much clearer 

than the reasons for the change from a one pole to a two 

pole system. The flickering is most probably due to

inhomogeneous accretion onto the polecap, possibly due to 

small fluctuations in the magnetic field near the polecap 

or cooling instabilities in the accretion stream. The 

non-correlation of the soft and hard X-ray flickering is 

probably due to absorption by tenous and inhomogeneous 

material near the base of the column, possibly a wind 

driven off the surface of the white dwarf (c.f. EF Eri, 

Watson et al., 1987). The longer period changes in the 

system bring into consideration the strength of the 

phase-locking of the white dwarf's rotation to its orbital 

p e r i o d .
In Chapter 1 I discussed the general structure of a 

magnetic polar system. One of the more important features 

that sets these systems apart from other cataclysmic 

variables is that the white dwarf spin period is 

phase-locked to its orbital motion. However, Campbell 

(1983) pointed out that complete synchronisation of the 

white dwarf spin to the orbital revolution may well not 

occur; the spin-up torque due to accretion has to be 

balanced by a synchronising torque. Most of these torques, 

for example magnetic coupling between the white dwarf and 

the secondary, require a slow relative motion between the 

white dwarf and the orbit, resulting in a 'synodic' 

precession. Observational evidence from the eclipsing
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system E 1 114+182 (Biermann et al., 1985) suggests that the 

orbital procession is very slow, >100 years. However, King 

and Williams (1985) have argued that the opposing torques, 

and hence the rate of precession, will be less when the 

accretion stream deviates least from the path it would 

normally take if no magnetic field were present. The 

system would thus spend most of its time in this position 

with rapid precession through the rest. This preferred 

position is with one pole leading the secondary by 

approximately 30°. As shown by Liebert and Stockman (1985) 

the observed angles indeed cluster around 30° the most 

notable exception being AM Herculis itself with an angle of 

^ 60°. This then indicates that AM Her is in an

orientation which is likely to change quite rapidly, with 

consequent rapid changes in its X-ray lightcurves (although 

the existence of two more rapidly changing systems, QQ Vul 

and V834 Cen, may indicate that these epochs of rapid 

change may not be all that short lived). It is tempting to 

see this as an explanation for the 'anomalous' state that 

we see AM Her in now, with the system almost side-on and 

accreting down both magnetic p o l e s .

Returning, for the moment, to the magnetic poles 

themselves, I have previously mentioned that the inferred 

position for the magnetic axis from my fitting does not 

necessarily give the true position of the magnetic axis, it 

may be that regions around the true magnetic pole are 

turned on and off over long timescales, mimicking a 

movement of the pole over the surface. From the first 

observation I derived values of m=52.5° for the primary 

pole and m=295.5° for the secondary. In the second
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observation the fitted values were m=41.0° (primary) and 

m=286.5" (secondary). Since the inferred size of the

primary polecap is so large in the second observation and 

it contains within it the inferred position of the primary 

pole from the first observation it is tempting to assume 

that the true magnetic axis angle for the primary pole is 

in fact 41°. In the case of the secondary pole, the 

position of the magnetic axis could be taken to be the 

centroid of the two inferred positions i.e., latitude=291 ° , 

longitude=169.2° . The apparent movement of the magnetic

poles over the surface of the white dwarf could easily 

explain why the hard X-ray lightcurve changed from being 

fully eclipsed to only partially eclipsed (as AM Her moved 

into its anomalous phase). Comparing the positions of the 

magnetic poles we get a pole displacement of 110° in 

latitude and 169.2* in longitude, indicating that the 

magnetic axis is strongly off-centred. Observational 

evidence for the off-centred nature of AM Her's magnetic 

axis comes from spectroscopic observations of the system in 

1979 by Latham et al. (1981), made while AM Her was in a 

low state (cyclotron emission down by ^2 magnitudes). 

Wickramasinghe and Martin (1985) used these observations, 

which were dominated by Zeemanised hydrogen lines, to 

deduce that structure of the magnetic field of the white 

dwarf. They found that an offset dipole magnetic field, 

with the dipole axis displaced by approximately 0.17 radii 

opposite to the direction of the axis, gave the best 

agreement with observation. Clearly the offset nature of 

the magnetic axis adds further complications to the 

interaction of the spin-up and spin-down torques in the
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system and could cause quite varied changes in the 
precession rate.

Finally, Figures 6.37 and 6.38 show the orientation of 
AM Her at some chosen EXOSAT phases for both observations. 
The random positions of the emitting regions are shown for 
illustration only. In a similar way, Figure 6.39 shows the 
positions of the poles from the two observations combined, 
but, for clarity, the random sections of the polecaps are 
not shown.

In conclusion, the fitting of the EXOSAT lightcurves of 
AM Herculis was very successfull in that the results 
obtained compared favourably with the previous knowledge of 
the system. The complex interaction of the opposing 
torques should lead to many more changes in the geometry of 
the system. With repeated monitoring of AM Herculis by new 
X-ray satellites (e.g., Ginga (ASTRO C) and ROSAT) we will 
hopefully come to understand more clearly what is happening 
to the system and perhaps predict possible future changes 
in other magnetic polars. The technique of lightcurve 
fitting will be invaluable in this work.

6.7 Conclusions and further work possible

I have described the calculation of simple magnetic 

polar lightcurves with random variations included in order 
to try to model the flickering seen observationally (e.g. 
EF Eri). These lightcurves where then used to find the 
geometric and accretion properties of AM Herculis, the 

brightest known magnetic polar. The calculated lightcurves
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Figure 6.37 Orientation of AM Herculis at some chosen 
EXOSAT phases; as inferred from the first 
observation lightcurves. The pole seen nearly 
face on at EXOSAT phase 0.1 is the SECONDARY 
pole. The random flickering of sections of 
each polecap is shown.
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Figure 6.38 As for Figure 6.37 except this shows the 
inferred positions of the poles from the 
second observation. Note the vast difference 
in size between the poles (the secondary pole 
appears pentagonal due to plotting difficult
ies ) .
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Figure 6.39 The orientation of AM Herculis as inferred 
from both observations. The positions of the 
poles from each observation are shown; verti
cal hatching for the first observation, hori
zontal hatching for the second observation. 
The random sections of each polecap are not 
shown for clarity.
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gave very good fits to the observed EXOSAT lightcurves and 

the accretion properties were then derived with reasonable 

accuracy. The results indicate that AM Her undergoes 

changes in its accretion geometry over a wide range of 

timescales, from rapid flickering to a slow yearly

precession of its magnetic axis. In all kinds of fitting

assumptions have to be made; the major assumption made in 

the lightcurve fitting, i.e., that the ME lightcurve came 

from only one pole, did not restrict the fitting to any 

extent and gave no erroneous results; the assumed values 

for the distance to AM Her (taken from Young and Schneider, 

1981) and the hydrogen column density in the direction of 

the source (1.0x10^° cm ̂ ) were the only other major

assumptions made. The implications of this fitting were 

discussed above.

In order to improve the simulation of these lightcurves 

other effects must be included. In the case of AM Her we 

have seen that some of the soft X-ray emission comes from a 

region which is perpendicular to the white dwarf's surface. 

This region could be modelled by placing vertically

orientated, equally-sized sectors at the edge of the

polecap. The rest of the polecap is then placed at the 

same vertical height as these s e c tors. The extra sectors 

can be assumed to radiate at the same effective temperature 

as the rest of the polecap. This would unfortunately

introduce another free parameter, the vertical extent of 

the polecap, thus making actual fitting more difficult.

We have seen that for systems were i >m there would be

eclipses of the polecap by the accretion stream. The

depths and widths of these eclipses could be modelled
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separately from the main lightcurve fitting by calculating 

the trajectory of the accretion stream (for a given orbital 

separation, field strength and accretion rate) and, for a 

given hydrogen column density, the resultant absorption 
feature. The trajectory of the accretion stream gives the 

time of intersection of the stream with the line of sight 

to the polecap. Actual fitting would be difficult as this 

introduces many more parameters but as an illustration of 

possible eclipse forms it would prove useful.

Obscuration by the accretion column and occultations of 

the white dwarf by the secondary star are the two other 

types of eclipse not included in this simulation. 

Absorption of the soft X-rays by the accretion column could 

be modelled by increasing the line of sight column density 

while occultations by the secondary star would again 

require modelling of the orbital geometry. Again, due to 

the inclusion of extra parameters, actual fitting of the 

absorption features produced by these situations would 

prove difficult.
Whether the above are included or not, the final test 

for any 'model' is to test it against observation. To date 

only AM Herculis has been fitted to any great extent. 

Since there are many more polar systems, most of which have 

soft and hard X-ray lightcurves, the next step would be to 

repeat the fitting procedure for as many of these systems 

as possible in order to see if there is any bias in the 

fitting. Only then would it be possible to say whether the 

results derived here give a true indication of what AM 

Herculis is really like.
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This method of producing the flickering seen in these 
systems Is not the only way to model these variations. If 
the flickering is assumed to be due to variations in M then 
a random variation of the effective temperature of each 
sector could equally well produce these effects (a small 
change in the effective temperature can produce a large 
change in Lhe flux seen in the soft X-ray region). 
Alternatively, variations in the homogeneity of the 
accretion stream could be modelled by varying N for each 
sector (again this would produce a large change in the soft 
X-ray flux but this has the disadvantage that no change in 
the hard X-ray flux occurs). However, random blanking of 
the sectors was chosen as this gives the required effect 
simply and easily and it also has some observational 
significance (it may be that all the polecap is not 
emitting, fluctuations in the magnetic field close to the 
surface may disrupt the uniform nature of the accretion 
giving rise to regions where there is little accretion 
taking p lace).

Obviously it is impossible to fit a 'flickering' 
observed lightcurve with a 'flickering' model lightcurve, 
the geometry of the source must be determined using 
non-random lightcurves, but the strength of the flickering 
can be fitted with these random lightcurves by eye, so as 
to determine a value for the fraction of the polecap 
actually emitting. This is the only time where they can be 
used for fitting purposes, elsewhere they are purely for 
illustration.
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CHAPTER 7

MODELLING OF ACCRETION DISCS IN  

ACTIVE GALACTIC NUCLEI

7. 1



7.1 Introduction

In addition to our own galaxy there are millions of 
other galaxies in the observable universe. With the 
increase in our ability to observe these in different 
spectral regions it became clear that some of them were not 
'normal'. These 'active' galaxies showed strong emission 
in spectral regions where a normal galaxy is weak, e.g., 
radio, infrared, etc. This emission was seen to be
variable, in a large number of cases, over a variety of 
timescales. For a few of these active galaxies optical 
observations showed massive disruption of the galaxy (for 
example, M87 in Ursae Majoris), clearly showing that 
something had occurred, or was still occurring, deep in the 
heart of the galaxy. Since the bulk of the active emission 
in these galaxies seemed to emanate from the nucleus these 
regions became known as an active galactic nuclei (AGN's).

AGN's are characterised by being apparently stellar 
sources but with non-thermal spectra and, in the case of 
quasi-stellar objects, significant red-shifts that indicate 
great distance. AGN's can be broken in sub-classifications 
according to their appearance, for example the main classes 
are: radio galaxies (seemingly normal but with visible
disruption, e.g., M87); Seyferts (variable galaxies with
bright, star-like nuclei, e.g., NGC4151) and quasars
(star-like sources with extreme variability down to very 
short timescales, e.g., 3C273). The size of an AGN can be 
determined from observation but usually to only give an 
upper limit. In the optical region the size is of order 
1-10 parsec; in the radio region, v%i parsec and from
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variability arguments, sizes down to 10^^ cm, although 
variability arguments are not good estimates of the true 
size of the source. A reasonable estimate of the size of 
the central 'engine' can be taken to be 1 0 ^ cm. The 
mass, from luminosity arguments, is in the range 10^ - 10® 
solar masses, so clearly there is a lot of material
contained within a very small volume of space.

Many suggestions have been made about the nature of the 
central object, or objects. Compact star clusters, 

supermassive stars and supermassive black holes are the 
strongest candidates at the moment. Each has its own 
advantages but the first two always end up evolving into 
the latter over timescales much shorter than the suggested 
timescale for activity in these systems. Therefore a
supermassive black hole is the likely candidate for the 
power source behind active nuclei. The differences seen 
between the sub-classifications can be explained in terms
of the age of the system. Since quasars are at great
distances they are young compared to the relatively nearby 
Seyferts, therefore there will be a great deal of material 
within the central region available for accretion, hence 
the nucleus will be very luminous. As we move nearer to 
home and look at older systems we see a decrease in the 
luminosity of the central region due to the reduction in
the available material for accretion. This argument can
also explain why some galaxies are 'normal', since if the 
central region around the black hole is devoid of material, 
due to the age of the system, there will be no emission

from the nucleus and the galaxy will appear to be normal !
Unfortunately there is no definite proof that supermassive
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black holes exist at all but they seem to have the answer 
to most of the questions concerning AGN's, so for the rest 

of this chapter I will assume that they do exist and that 
they are responsible for the emission from active nuclei.

7.1.1 Accretion into a supermassive black hole

If we assume a supermassive black hole of mass M 
resides at the centre of an active nucleus then material 
from the surrounding region will be accreted into it. 
Since we expect the material to be rotating around the 
centre, with angular momentum per unit mass, 1 , then it 
will approach the centre to within a radius, R , given 
by.

Rmin /GM (7.1)

If R >R  ̂, the Schwarzschild radius of the black hole,ID i n a c h

then in order for accretion to occur at all angular 
momentum must be lost. This is achieved in a similar way 
as in cataclysmic variables; by the formation of an 
accretion disc (see Chapter 1 for a discussion of the 
formation of an accretion disc in a binary system). In 

fact, for AGN's, R cm and R ^*^10^^ cm (for a 10®
m i n a c h

solar mass black hole) so clearly a disc might form in 
order for accretion to occur. Further evidence for 
accretion discs in these systems comes from the presence of 
a blue-bump' in their spectra. This extra emission has a 
characteristic temperature of '^lO^ K, which is typical of 
an accretion disc. Therefore, from these two arguments.
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there is some evidence that accretion into a supermassive 
black hole in an AGN may take place via an accretion disc. 

Other possibilities are not forbidden however, for example, 
if the material is not rotating spherical accretion,
directly into the black hole, will occur. For my purposes 
however it will be assumed that an accretion disc forms
around the black hole. A further assumption is that the 
disc is thin, like in cataclysmic variables, since this 
allows us to use simplistic formulae for the disc
structure.

7.1.2 Structure of a thin accretion disc

In Chapter 1 I described the process by which accreting 
material forms an accretion disc around a compact object. 
The material spirals in via successive circular orbits, the 
loss of angular momentum being due to internal torques in 
the disc (e.g., viscosity). The derivation of the disc 
structure equation, by relating the momentum losses to the 
energy production, will not be described here and the 
reader should consult Frank, King and Raine (1985, Chapters 
4 and 5) for a complete derivation. From the above, 
assuming that the disc is geometrically thin and optically 
thick in the z-direction (perpendicular to the disc), each 
element of the disc will radiate at a temperature, T^^^(R), 
given by equating the dissipated flux per unit area D(R) to 

the emitted flux, i.e..

oT , / ( R )  = D(R) = 3GMM/8ttR^[1 - (R./R)^^^] (7.2)aft *
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where M is the accretion rate (gs"^ ), M is the black hole 
mass, R is the radius of the emitting element and R^ is the 
inner edge of the disc (the inner edge is the position of 
the last stable circular orbit, '/'GR ) . If we param-sen
eterize the radius scale by putting R in terms of the inner 

edge radius R^ using X=R/R* then equation (7.2) becomes

T^^f(X) = [3GMM/8nR*3o]l/4x-3/4[^ _ x’  ̂̂   ̂̂  ̂  ( 7 . 3 )

If we define a characteristic temperature for the disc, , 
given by

= (3GMM/8nR,®0)1/4 (7.4)

we have

and, from R. =6GM/c^, we get

= (3GMMC®/1728ttG^M^o )1/4

= 2.51x10^ Ml. 1/4 (7.6)8 2 6

8where M is the mass of the black hole in units of 10 8
solar masses and is the accretion rate in units of 10^®

gs”i . The effective gravity at each point in the disc is 

given by

g^j,(X) = (GM/R,^)X'^(H/R) (7.7)
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where H is the height of the disc at a point X. If we let 
0=H/R be the opening angle of the disc then we have

9.,, (X) = 1.65x10% M 0 (7.8)

Strictly speaking 0 is given by

0 = H/R = = [kT^^^/(GM/R)]'/2 (7.9)

where c is the sound speed and v. is the rotationala 9
velocity; so in fact 8 is a function of X but since it only 

1 / 8varies as *̂ X a constant opening angle will be assumed.
The values chosen for 0 will be discussed later in this 
chapter.

To summarize, we now have the disc structure given by 
T^^^(X) and g^^^(X), where X=R/R*. By choosing appropriate 
values for 8 the temperature and gravity structure 
throughout the disc can be quickly calculated. Two major 
assumptions have been made during this derivation; the 
accretion disc is assumed to be thin and to have constant 
opening angle (the disc will be thin provided its cooling 
is efficient, see Frank, King and Raine, Chapter 5, 1985). 
There are no compelling reasons to expect that these are 
good approximations to the truth but since we have no real 
idea what the disc looks like in these systems there is no 
reason not to make these assumptions.

7.1.3 The emitted spectrum

If we assume that each region of the disc radiates
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locally with an emitted intensity then we can integrate 
the contributions from each part of the disc to get the 

total emitted spectrum. If we assume that the disc extends 
to a distance X and is at an inclination i to themax
observer then we have

X
= (2ircosiR,^/D^ ) X,"*" X dX (7.10)

since a ring between radii X and dX subtends a solid angle 
2ttR^XdXcosi/D at a distance D from the source. is a
function of T , , (X), g (X) and i for a model atmosphere

eft e f f

but only a function of (X) for a black body.
Calculations of F where each part of the disc isV

assumed to radiate as a black body have been discussed in, 
for example, Bechtold et al. (1984) and Elvis, Czerny and 
Wilkes (1986). Modified black bodies, to include opacity 
effects, have also been used (Czerny and Elvis, 1987) but 
neither give good agreement with observation. By using 
model atmospheres instead it was hoped that this problem 

may be reduced.

7.2 Stellar atmosphere disc models

The motivation for constructing accretion disc models 
using stellar atmospheres, rather than black bodies, was 
the same as that for calculating model atmospheres in the 
first place, namely that black bodies do not give a 
realistic idea of the emission from a source whereas a self 
consistent atmosphere model should. The atmosphere code 
described in Chapters 2 and 3 was written for the polecap
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of a magnetic white dwarf. Clearly this is not a good 
approximation for any region of an accretion disc but the 
code has enough flexibility that some of these differences 
can be accomodated.

7.2.1 Accretion disc .v . magnetic polecao

A magnetic polecap has the following important 
properties :

(i) isotropic, hard X-ray irradiation of the white 
dwarf surface

(ii) surface pressure due to the accreting material 
(iii) strong magnetic field preventing convective flux 

transport

Considering each of these in turn, with an AGN accretion 
disc in mind, we find for (i) that an accretion disc around 
a supermassive black hole would also be irradiated by hard 
X-rays but these would probably not be isotropic, indeed 
the precise orientation of them to each part of the 
accretion disc would probably be different. In order to 
simplify this problem it was decided to assume that the 
disc was unilluminated, since removing the X-ray 

illumination doesn't have an enormous effect on the 
observed spectrum. For (ii), there is no surface pressure 
on an accretion disc; unfortunately, the removal of surface 

pressure from the atmosphere code in not a simple task and 
so it proved necessary to leave it in. However, 
examination of the values for the accretion pressure, P
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and the photospheric pressure, over a wide range of

temperatures and gravities suggests that P never exceeds
a c c

P to any great extent and so the inclusion of P in the
P " a c c

code will not greatly affect the final result. Lastly, for
(iii), there is not expected to be any appreciable magnetic 
field in an AGN accretion disc and so convection is not 
strictly forbidden. For low effective temperatures and 
gravities convective flux transport would probably become 

important but, again, the inclusion of convection into the 
atmosphere model is a complex task, which must be tackled 
in future treatments.

It is clear that there are strong differences between 
the two situations that will be modelled. The complete 
removal of which was not possible in the time remaining. 
As a result these models can only at best be illustrative 
of what the true spectrum may look like. For this reason 
no actual observational fitting was carried out using the 
calculated spectra.

7.2.2 A model atmosphere arid

If the accretion disc spectrum were to be calculated in 
the same way as one with black bodies then it would be 
necessary to run a different atmosphere model at each point 
on the disc. This is clearly very time consuming and it 
would have to be repeated for each new disc model. The 
simplest way to overcome this problem is to have a grid of 
model atmospheres from which the corresponding intensities 
for a particular effective temperature and gravity can be
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for a particular effective temperature and gravity can be 
found. This would allow different disc models to be run 
quickly and easily from the one grid of atmosphere models.

While this at first sight seems a simple task this was 
in fact not so. Firstly, due to lack of storage space, it 
was only possible to store one atmosphere grid, i.e., only 

one outward ray for each model was stored. Therefore it 
had to be assumed that the disc was at an inclination of 0 " 
(face on) so that the ray normal to the atmosphere was used 
from each model; this had the added effect that doppler 
effects did not have to be included in the calculation.

In order to cover all possible disc models the 
temperature range for the grid was from 2 .0 x 10* K (the 
coldest atmosphere that the code could run) to 4.0x10® K. 
The range in gravity was from the minimum gravity possible 
for T^^^=2.0x10* K, 160.0 cm s'^ (see Chapter 4 for the 
discussion of minimum gravities), to an arbitrary maximum 
of 1.0x10® cm s'^. With such a large range in the values 
of both parameters it was necessary to use a 20x20 grid 
with models spaced logarithmically in temperature and 
gravity. Since it would be extremely time consuming to run 
400 atmosphere models it was decided to run a smaller grid 
of models and interpolate a 20x 20 grid from that. 
Obviously the small grid had to have the same range in 
temperature and gravity; the values of temperature chosen 
were evenly spaced values from the chosen values in the 
large grid (to give the maximum accuracy possible for the 
interpolation). The gravities used for the small grid 
where the minima for each temperature, in this way it was 
possible to say which models in the large grid would be
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radiatively unstable. Figure 7.1 shows how this worked. 
The shaded areas in the small grid are the models which are 
radiatively unstable. In order that the large grid can be 
interpolated artificial intensities had to be put in for 
these models, these where calculated by extrapolating from 
the higher gravity models at each temperature. After the 
interpolation of the 20x20 grid has taken place these 
unstable models appear at the points in the large grid 

marked by X's; by 'joining' these together the grid is 
broken into stable and unstable regions. Note that the X's 
mark the nearest gravity below the limiting gravity for 
each particular temperature since, unlike the temperature 
points, the gravity points for the calculated models could 
not be chosen from the grid directly (the limiting gravity 
is not a simple function of temperature). When the 
accretion disc model is calculated any pair of and
g^ ̂ ̂ that occur inside the shaded region of the large grid
can then be flagged as radiatively unstable, indicating
that the disc would be disrupted at this point. The
extrapolated intensities used for the unstable models in 
the small grid had no effect on the interpolated 
intensities of the stable models in the large grid.

The actual interpolation of the large grid is made more 
complicated because of the fact that each atmosphere model 
has a different range of frequency points. The only 
solution was to choose the frequency points for the hottest 
model and use those throughout the interpolation, 
interpolating the intensities at those frequencies from the 
intensities of the nearest neighbours. The interpolation 
routine used was a two-dimensional array interpolation
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routine from the NAG subroutine library (namely, E01ACF) 
and the interpolated values should be accurate to a 
fraction of a percent.

Even with this 20x20 grid of models simply reading the 
intensities from the nearest model to the required one 
would not prove accurate, due to the gross changes that 
occur in the spectrum with changes in the effective 
temperature. It was therefore necessary to do a further 
interpolation, this time from the model grid itself, for 
the intensity at any frequency, temperature and gravity, 
from the nearest values in the grid. Again the errors 
involved in this were expected to be less than 1.0%. This 
then gave the values of I^ to be used at any point in the 
accretion disc.

Summarizing, the atmosphere model file contained 400 
models, each model having 100 optical/UV frequency points. 
The ray normal to the atmosphere was used throughout. Each 
model was unilluminated but had surface pressure included. 
Unstable models in the grid were flagged so as to warn of 
an unstable disc model. With the model file created all 
that remains is to calculate the emergent spectrum.

7.2.3 Calculating the emergent spectrum

Using equations (7.5), (7.6) and (7.8) the temperature 
and gravity at each point X in the disc can be calculated. 
The correct intensity at each frequency for each region of 
the disc has to then be interpolated from the grid of 
atmosphere models. In some cases this interpolation 
requires the use of unstable models, Figure 7.2 shows the
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Figure 7.2 Interpolating from the model file - the three 
possible cases.

possible cases where this may occur; again the shaded 
regions indicate unstable models. In each case the 
required effective temperature and gravity is given by 
T <T  ̂ <T  ̂ and g <g ,,<g . respectively. In case A nonen * f f n + 1 m e f f  m + 1

of the models is radiatively unstable and so the 
interpolated intensities should be relatively accurate. 
Case B however represents the worst possible case of not 
all the models being unstable but since g^^^ may or may not 
be less than the minimum stable gravity there is no way of 
knowing whether the interpolated model would in fact be 
radiatively unstable or not. It is this case where the 
accuracy of the interpolated model is questionable since 
the shaded areas were not calculated directly, however, 
inspection of the data contained in the model file 
suggested that any intensities used for cases like this 
would not be unreasonably erroneous. Lastly, for case C, 
the use of an interpolated model in this case would be 
clearly inaccurate since it would definitely have been
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radiatively unstable had it have been calculated in the 
normal way.

Before the calculation of the total spectrum it was 
necessary to chose a value for 8 . This was largely a free 
parameter but it is constrained to a maximum of about 1.5 

(so as to keep the disc essentially 'thin'). The minimum 
value for 8 was governed by the stability of the resultant 

disc, taking 8 too small made the disc radiatively unstable 
in places. 8 was therefore chosen to be the minimum
possible for a wholly stable disc; for some discs however
this gave values of 8 that clearly indicated that the thin 
disc approximation was not valid.

Assuming that the required values of T^^^ and g^^^ gave 
a stable disc the contribution from each part of the disc 
could then be summed to give an emergent spectrum for the
whole disc. The values of X were chosen so as to give as
many points as possible over regions where the temperature 
was changing rapidly. The value of X^^^ was taken to be 
the radius where the effective temperature fell below 
2.0x10^ K. There would still be appreciable emission in 
the optical region from this section of the disc to the 
outer edge so it was necessary to use black body spectra 
(suitably normalised so as to look like atmosphere spectra 
in that region) from X outwards. The summation wasmax
completed when the contribution at each frequency was less
than 0.01% of the total flux. The addition of black bodies
to the spectrum tended to cause an underestimation of the
strength of the HI and Hel absorption features however, as
these are strong for T ,,<5.0x10* K . In order to underaff
stand the calculation more clearly Figure 7.3 shows a
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full flow diagram for the calculation of an AGN accretion 
disc spectrum using intensities from a grid of model 
atmospheres. The results of such a calculation can be seen 
in the next section.

7.3 The results of an AGN disc calculation

In this section I will show the general results of an 

accretion disc calculation using model atmospheres as the 
outward spectrum from each part of the disc. As these are 
only illustrative no observational fitting will be shown.

7.3.1 The AGN disc structure

Figure 7.4 shows the effective temperature in the disc, 
T^^^, as a function of the parameterized radius X, for 
three values of the accretion rate. For these; Mg=1.0, 
0=0.5 and M^g has the values 0.1, 1.0 and 10.0. The
critical temperature structure, for a stable disc,
with the same parameters, is also shown; it is the same for 
all three models since the gravity structure is only a
function of and 8 . The figure shows that the effective
temperature in the disc has a fast rise between logX=0.0 
and logX=0.15 and then a slow decline; a large number of 
disc points were needed to cover the inner region 
accurately. The figure also shows that for g=10.0 the
disc will be radiatively unstable over most of its area; by 
increasing 8 this model could be made stable but if 0 is
made too large then the thin disc approximation will not
hold. The discontinuities in the variation of T .  ̂ are

c r  1 t
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Figure 7.5 Effective gravity, g^ within the disc as a 
function of the radius parameter X for M =1.0, 
0=0. 5 and ^^^=1 .0 .

due to the limited number of critical temperatures in the 
atmosphere model file; a single disc model only covers a 
small region of the file.

Figure 7.5 shows the effective gravity in the disc, 
g^ ̂ ̂ , as a function of X, for M^=1.0, and 8=0.5.
As 1 j is a simple function of X no other curves are 
shown. Finally, Figure 7.6 shows the observed spectrum 
(Xly(X)) at each point in the disc for and M^g equal to 
unity. The variation in the strength of the absorption 
features over the disc can clearly be seen (note: the
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Figure 7.6 The observed spectrum, XI (X), at each point in 
the disc for and  ̂ equal to unity (0=0.5). 
The axes are; x=frequency, y=radius (not to 
scale) and z=flux.

y-axis is not to scale).

7.3.2 Calculated AGN spectra

Figure 7.7 shows the observed spectrum at the source 

for Mg= 1 .0 , M2g = 1.0 and 9=0.5. The calculated spectrum
using atmospheres only is shown on the figure by a dashed 
line. The 'filling out' of the spectrum in the optical 
region by the black bodies can clearly be seen, while the 
absorption strengths are unaffected. Comparison with an
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Calculated disc spectrum (at the source) for 
and 0=0.5. The resultantMg =1.0, M^g=1.0

spectrum using just model atmospheres is shown 
by the dashed line, a black body disc spectrum 
is also shown (dotted line). The absorption 
features are labelled with the elemental
ionisation state responsible.
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AGN spectrum calculated using black bodies only (shown by 
the dotted line) shows that two models have a similar 
'hardness' in the soft X-ray continuum. The presence of 

low temperature models in the outer regions of the disc 
cause the absorption features to be large compared to the 
rest of the spectrum and features are seen that would not 
normally be seen in a single temperature atmosphere with 

T ,.=T , the maximum temperature in the disc (in thiseft max
case T »^1.2x10^ K but the Hel feature at logv=15.77 ismax
clearly seen).

Figure 7.8 shows a comparison between two AGN models. 
One is a high temperature model; T =3.8x10^ K, withmax
Mg=0 .0 1 , M^g=0.01 and 0= 1 .0 , while the other is a low 
temperature model; T =3.8x10^ K with Ml =10.0, Ml_=1.0 andmax 8 26
0=0.05. Surprisingly the low temperature disc has the 
strongest optical continuum but, as expected, the high 
temperature disc has the stronger X-ray continuum. Both 
models have a similar soft X-ray 'hardness' to their black 
body counterparts (again shown by dotted lines in the 
figure). As in the first figure, even for the high 
temperature disc the absorption edges are fairly strong. 
The possible significance of the results from these 

calculations will be discussed next.

7.4 Discussion of results and possible improvements

In section 7.2.1 I discussed the differences between 
the magnetic polecap of a white dwarf and a small region of 
an accretion disc around a supermassive black hole. Taking 
these strong differences into account accretion disc models
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Figure 7.8 Comparison between two AGN models; a low 
temperature model (A), with M =10.0, M =1.0 
and 0=0.05 (T =3.8x10 K ) ; and a high temp
erature model with M =0 .0 1 , M =0.01 and
0=1.0 (T ^^=3.8x10 K ) . ^Atmosphere only and 
black, bo&y^ disc spectra are also shown (as in 
Figure 7.7).
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were calculated using atmospheres originally used for the 
modelling of the magnetic polecap. The results of this 
were seen above. In drawing conclusions from these it is 
important to keep in mind the changes that would occur if 
the differences described before could be resolved.

The main reason for using model atmospheres in these 
disc calculations was to see if they gave a better
representation for the emergent spectrum of an accretion 
disc than one calculated using black bodies. We have seen 
the differences between the two spectra quite clearly and 
in a general way a model atmosphere AGN spectrum is better
than a black body one but before model atmospheres can be
used in observational fitting the problems outlined in
section 7.2.1 must be resolved.

Unilluminated model atmospheres were used in the 
calculation of the AGN spectra. In reality there would be 
hard X-ray illumination of the surface of the disc and we 
would expect it to be anisotropic. We have seen in 
Chapter 4 that irradiating a model atmosphere reduces the 

temperature gradient, making the spectrum 'softer'; whether 
making the irradiation ray-dependent would lead to a harder 
spectrum is unknown but this is unlikely, so including 

X-ray irradiation will lead to even softer AGN spectra.
The first of two major problems with the use of these 

model atmospheres was that there was no easy way to remove 
the surface pressure from the top of the atmosphere. An 
atmosphere without surface pressure may be more susceptible 
to radiation instabilities; the limiting gravities in the 
model file may in fact be underestimates of the true 
gravity limit and some previously stable disc models may
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become unstable if this change was made. Clearly the range 
of stable 0 , and would then be greatly reduced.

The second major problem with these model atmospheres 
is the omission of convection. An AGN accretion disc will 
not have a strong magnetic field (what field there is will 
be a dynamo-type field that will only be strong near the 
inner edge of the disc, where there is little contribution 
to the overall flux), so convection will not be suppressed. 
The changes that could be expected if convection was 
included in the atmosphere code are unknown but the 
resultant models may become more stable, enabling lower 
gravities to be used for a given effective temperature. It 
is also expected that it would be possible to run models 

with T ,,<2.0x10* K. This would enable a more accurate
•  f  T

representation of the outer, cooler, regions of the disc.
All of the above improvements could have been 

accomplished, given more time. Despite their omission the 
results presented here clearly show what can be achieved in 
this area by the use of model atmospheres. Although only 
intended to be illustrative only these models have appeared 
in the literature, fitted to observational sources. For 
example. Pounds et al. (1987) show one of these models 
fitted to the observed spectrum of a Seyfert I galaxy, 

Markarian 335. However no conclusions were drawn from this 
fit. In conclusion, the use of model atmospheres in the 

calculation of AGN disc spectra shows great promise, with 
the major differences resolved they could prove useful for 
the fitting of observed spectra. The major disappointment 
throughout this work is the number of assumptions that have 
to be made in order to begin the calculation, i.e. thin
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disc, constant opening angle, etc., indeed the existence of 
discs at all in these systems has still yet to be proven 
conclusively. There is clearly still a lot of work to be 
done in this relatively new area of astronomy.
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8. Conclusion

The use of self-consistent model atmospheres instead of 
black bodies has definite advantages in all forms of 
spectral fitting and simulation. The model atmospheres 
described in this work were calculated in order to give a 
more realistic representation of the spectrum for the 
accretion column of a magnetic white dwarf. It was hoped 
that they would go some way to quantifying and under
standing the soft X-ray excess associated with polar 
systems. The results of black body fitting to the 
atmosphere spectra (see Chapter 5) showed that this excess 
was not removed by using model atmospheres. Although the 
fitted temperature could be wrong by up to a factor of two 
or more, and the polecap fractional area by factors up to

, the two errors tended to cancel each other out to give 
a fitted luminosity that, for most effective temperatures, 
was correct to within a factor of two.

In Chapter 6 I described the calculation of lightcurves 

and their subsequent use in fitting the EXOSAT lightcurves 
of AM Herculis. The results indicate that this lightcurve 
fitting was a great success; the inferred values for the 
magnetic axis angle of the primary pole and the inclination 
to the line of sight agreed very well with the values 
inferred from observation (Brainerd and Lamb, 1985) and the 
off-centred nature of the magnetic axis seemed to confirm 
in principle the conclusions of Wickramasinghe and Martin 
(1985). The simulation of these lightcurves could be 
further improved by adding in other effects that had 
previously been ignored, e.g., occultations of the polecap
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by the accretion stream or the accretion column itself. 
However, as the lightcurve modelling stands at present 
there is considerable precedence for keeping the model as 
simple as possible and using it to fit other lightcurves
first, in order to check for any fitting 'bias' (in fact
only a few of the observed lightcurves show any of the
effects ignored by this simplistic approach).

The final use for these model atmospheres was described 

in Chapter 7 : the calculation of accretion disc spectra for 
active galactic nuclei. It was here that the inadequacies 
of the present atmosphere model, when used for disc 
accretion, became apparent; namely the lack of convective 
flux transport and the presence of accretion pressure at 
the surface when there should be none. Further problems 
with this calculation were the number of assumptions that 
had to be made in order to be able to calculate a disc
model in the first place. These assumptions can be 
justified if we note that they have not prevented the 
calculation and use of black body accretion disc spectra in 
the fitting of observed sources (e.g., Bechtold et al., 

1984 and Elvis et al., 1986). However, no actual fitting 
was undertaken in this case as it was felt that this should 
wait for a more realistic atmosphere model, taking account 
of the special requirements necessary for an accretion 
disc. Given more time it would have been possible to 
remove the inadequacies mentioned above, the inclusion of 
convective flux transport being a very important improve

ment in general.

Summarizing, the results of this work indicate that
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model atmospheres have a definite part to play in the 
fitting of spectra from accreting systems. The limited 

fitting undertaken in this work has shown what can be 
expected from their further use. With the improvements 
mentioned above included in the model it could become a 
very powerful tool indeed. In the future it could be used 

for regions that as yet have not been modelled in any way. 
There is still a lot of ground to be covered in this field.
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ASTROPHYSICAL TERMS

The Radiation Field

The specific intensity I(z,n,v,t) of radiation at 
position T, travelling in direction n, with frequency v, at 
time t is defined such that the amount of energy 
transported in a time interval dt by radiation of 
frequencies v»v+dv across an element of area dS into a 
solid angle dw is

dE = I(r,n,V,t)dScos0dwdvdt (A.1)

where 0 is the angle between the direction of the beam and 
the normal to the surface, see Figure A.1. In atmosphere 
theory we are only concerned with planar geometry. We 
employ cartesian co-ordinates (x,y,z) with planes of 
constant z being the layers of the atmosphere, the x and y 
dependence of all the variables can then be ignored. If n 
is specified by two angles, polar 0 and azimuthal * then in 
one dimensional planar geometry I will be independent of *. 
Hence we can write 1=1(z ,0,v ,t ); z being measured 
positively upward, opposite to the direction of gravity. 
The variable 0 is replaced with p=cos0, so 1=1(z ,p ,v ,t ) .
It should be noted that I has been defined in such a way as
to be independent of the distance between the source and 
the observer, thus I at the source can be determined by
measuring the amount of energy falling in a given time,
within a specific frequency band, onto a receiver of known
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dw

Figure A.1 Definition of specific intensity. Vector n is 
the direction of propagation of the radiation 
while s is the unit vector normal to the 
surface d S .

collecting area from a source subtending a definite solid 
angle. The requirement that dw is specified limits the 
determination of I to sources that are spatially resolved, 
e.g., nebulae, galaxies, the Sun, etc.

Mean Intensity and the Flux

In the description of the radiation field it is useful 
to employ various angular averages, or moments. The mean 
intensity is defined to be the straight average (zero-order 
moment) of the specific intensity over all solid angles, 
i.e., for one dimensional atmospheres
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J ( z , v , t )  =  (1/4it) I ( z , M , v , t ) d t J

= 1/2rJ I(z,M,v,t)dM (A. 2)

The flux is defined to be the net rate of radiant 
energy flow across an arbitrarily orientated surface dS per 
unit time and frequency interval, i.e.,

F(r,v,t) = J K r , n, V , t)ndw (A.3)

Note that F is the first moment of the radiation field with 
respect to angle. If the radiation field is symmetric with 
respect to an axis it follows that there will be a 
ray-by-ray cancellation of energy transport across a 
surface perpendicular to this axis and that the net flux is 
zero across this surface. For a planar atmosphere only 
can be non-zero. We refer to this as "the" flux and write.

F(z,v,t) = 2irX*] I(z,p, v,t)pd|j (A.4)- I

Another 'flux', the 'astrophysical' flux is defined as

F(z,v,t) = ( 1/tt ) F( z , V , t) (A.5)

and further, regarding the flux as one of a series of 
moments with respect to m , one may define the Eddington 
flux
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H(z,v,t) = (1/4n)F(z,v,t) = 1/4 F(z,v,t)

= 1/2J*JI(z ,M ,V ,t)pdp (A.6)

The energy received from a star by an observer can be 
directly related to the flux emitted at the surface. If 
the distance D to the star is very much larger than the 
stellar radius r^ all the rays from the star can be 
considered parallel. The energy received per unit area 
normal to the line of sight is df =I dw where dw is the

V  V

solid angle subtended by the area. Considering Figure A.2 
we see that r=r*sin8 so that the differential annulus has 
an area dS=2nrdr=2mr^pdp. The solid angle subtended, dw, 
is given by dw=dS/D^ i.e., dw=2n(r*/D)^pdp. Integrating 
over the disc we find

to observer

Figure A.2 Observational significance of the flux.
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2n(r,/D)2;li(r*,p,v)pdp

= (r./D)V(r*,v) (A.7)

Thus the flux falls off as the inverse square of the 
distance. If the angular diameter is known then the 

absolute flux at the star can be found from the absolute 
flux at the Earth.

The Radiation Pressure Tensor

The second moment of the specific intensity yields a 
tensor quantity called the radiation pressure tensor, where

P(r,v,t) = c " ^ I ( r ,n , V ,t ) n n dw (A.8 )

In a one-dimensional planar atmosphere we can define a 
single scalar as "the" radiation pressure, where

P^(z,v,t) = (4ir/c)K(z, v,t) (A.9)

and K(z,v,t) = 1/2J*]l(z,p,v,t)p^dp (A.10)-1

K(z,v,t) is the second moment of the radiation field in 

Eddington's notation.

The Interaction of Radiation with Matter 

(i) The Extinction Coefficient
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The removal of energy from the radiation field by 
matter is described by introducing a coefficient x(r,n,v,t) 
called the extinction coefficient or opacity. It is 
defined such that the amount of energy 5E removed from a 
beam with specific intensity I(r,n,v,t) propagating in a 
direction normal to an element of material of cross-section 
dS and length ds into a solid angle dw with frequency band 
dv in a time dt is given by

ÔE = x(r,n,v,t)I(r,n,v,t)dSdsdwdvdt (A.11)

x(rvn,v,t) is the product of an atomic absorption 
cross-section and the number density of absorbers summed 
over all states that can interact with photons of frequency 
V. It has the dimension cm”  ̂ and is isotropic for static 
media. In atmosphere theory we assume that the level 
populations can be calculated by local application of the 
thermodynamic equilibrium relations, this is the local 
thermodynamic equilibrium, or LTE, approximation.

It is useful to distinguish between the true absorption 
and scattering, hence we introduce x(r,v,t) and o(r,v,t) 
the absorption and scattering coefficients respectively. 

The total extinction is given by

X(r,v,t) = K(r,v,t) + o(£,v,t) (A.12)

Corrections for stimulated emission, where radiation 

induces a downward transition from an upper state, must be 
included into the opacity because the process is 
proportional to I(r,n,v,t) and it effectively cancels out
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some of the opacity.

(11) The Emission Coefficient

The emission of radiation from stellar material Is 
described by Introducing an emission coefficient n(r,n,v,t) 
defined such that the amount of energy released from an 
element of material of cross-section dS and length ds, Into 
a solid angle dw, within a frequency band d v , In a 
direction n, In a time dt Is,

5E = n(r,n , V ,t)dSdsdwdvdt (A.13)

The emlsslvlty Is calculated by summing products of upper 
state populations and transition probabilities over all 
relevant processes that can release a photon at frequency 
V. It's dimensions are ergs cm"^ sr’  ̂ Hz"^ sec"^ and Is 
Isotropic for static media.

In the case of strict thermodynamic equilibrium (T.E.) 
we can find an Important relation between the absorption 
and emission coefficients. If we consider an adiabatic 
enclosure In steady-state equilibrium containing a 
homogeneous medium we know that the material must have the 
same temperature T throughout (otherwise the second law of 
thermodynamics would be violated). Also, the radiation 
field must be Isotropic and homogeneous otherwise a 
directional transport of energy would result, from beams of 
dissimilar energy travelling In opposite directions, again 
In direct violation of the second law of thermodynamics. 
If steady-state equilibrium Is to be achieved then the
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thermal emission is given by

n^(v) = K(v)I(n,v) (A.14)

since the amount of energy absorbed by the material must 
equal the amount emitted (in a time interval dt, over a 
frequency range dv and in an angle range d w ) . This is 
known as Kirchoff's Law. For strict T.E. I^=B^(T) so.

n*(v) = k (v )B^(T) (A.15)

Since we will be assuming LTE throughout our atmosphere 
then

n^(r,v,t) = K(r,V ,t)B^[T(r,t)] (A.16)

The Transfer Equation

We will now examine the flow of energy through a fixed 
volume element in a definite time interval. We will assume 
that the radiation field is, in general, time dependent and 
that the material is at rest, x and n will then be 
isotropic. If we consider the energy in a frequency
interval dv, passing in time dt, through a volume element 
of length ds and cross-section dS orientated normal to a 
ray travelling in direction n, into solid angle dw (see 
Figure A.3). The difference between the incident and 

emergent energy must equal the amount created by emission 
from the material in the volume minus the amount absorbed. 
That is.
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[I(£+Ar,n,V ,t+At)-I(r,n,v,t)]dSdwdvdt

= [n(r,n,v,t)-x(r,n,v,t)I(r,n,v,t)]dsdSdwdvdt
(A.17)

If we denote the path length along the ray as s then 
At=As/c and

-1I (r+Ar,n,V,t+At)=I(£,n,v,t)+[c (dl/dt)+(ôl/ôs)]ds
(A.18)

Substituting equation (A.18) into equation (A.17) we get 
the transfer equation,

î(r-vAr^Q,v,t+Ab)

dv

Figure A.3 Element of absorbing material considered in 
transfer equation.
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[c"^ 0/ôt)+(3/ôs)]I(r,n,v,t)

= n(r,n,V,t)-X(r,n,V,t)I(r,n , V ,t) (A.19)

The derivative along the ray may be re-expressed in terms 
of an orthogonal coordinate system

where n , n and n are the components of the unit vector
X y  z

n . We can then re-write equation (A.19) as

[c"^ (3/3t)+(n.V)]I(r,n,v,t)

= n(r,n,v,t)-x(r,n,v,t)I(r,n,v,t) (A.21)

For a one-dimensional planar atmosphere;
n^=(dz/ds)=cos0=M ; derivatives (3/3x) and (d/dy) are zero, 

so we obtain

[c'l0/Ôt)+M(3/az)lI{z,û,v,t)

= n(z,n,v,t)-x(z,n,v,t)I(z,n,v,t) (A.22)

or, for the time-independent case.
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p[(3l(z,n,v)/3z)]=n(z,n,v)-x(z,n,v)I(z,n,v) (A.23)

Equation (A.23) is the 'standard' transfer equation for 
plane-parallel model atmosphere calculations. For static 
media n and x reduce to n(z,v) and x(z,v). If q contains 
scattering terms the transfer equation becomes an 
integro-differential equation containing angle and
frequency integrals of I.

If we define an optical depth scale t ( z , v )  such that 
dT(z,v)=-x(z,v)dz we get the integrated absorptivity of the 
material along the line of sight as

T(z,v) = f]"**x(z',v)dz' (A.24)

The negative sign is introduced so that the optical depth 
increases inwards thus providing a measure of how deep into 
the material an observer can see. We also define the 
source function to be

S(z,v) = n(z,v)/x(z,v) (A.25)

the ratio between the total emissivity and the total 
opacity. If we simplify the notation by suppressing the 
explicit reference to z and and denote the frequency 
dependence with a subscript v then the transfer equation 

may be written in its standard form

If we enforce LTE then from equation (A.15) the source
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function can be written as

Sy = By (A.27)

If we assume that the opacity is made up of a contribution 

from thermal absorption and emission plus a contribution 
from scattering then we can write

Defining

®v “ (A.30)

then the source function becomes

(A 31)

If e^=0, i.e., no scattering, then the source function is
simply the Planck function. In the solution to the 
transfer equation this would prove useful, as we shall see, 
but in the real case o *0 and the solution of the transferV
equation for has to be done by iteration.

Moments of the Transfer Equation

For the zero-order moment of the time-independent 
transfer equation for a one-dimensional planar atmosphere
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we integrate equation (A.26) over all angles, i.e.,

fl]u(8 ly/8Ty)dw = - J^Js^dM (A.32)

Since in a static atmosphere is isotropic (from equation 
(A.25)) and substituting from equations (A.2) and (A.6 ), 
equation (A.32) reduces to

- Sy (A.33)

The first-order moment of the time-independent transfer 
equation for a one-dimensional planar atmosphere is given 
by

)dp = dp - ;*'pS dp (A.34)
“ I  V V  — I V  — 1 V

Again, for a static atmosphere, is isotropic so the
integral of vanishes. Substituting from equations
(A.9), (A.10) and (A.6 ) we get

[ÔPp (t, v ) / 3 t ^ ]  = -(4tt/c )H^ (A.35)

or (dK^/dx^) = (A.36)

Radiative Equilibrium

In normal stars there is no creation of energy within 
the atmosphere itself, and the atmosphere purely transports 
outward the energy it receives. There are two basic 
methods of transporting energy through an atmosphere;
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radiation and convection. For our purposes radiation is 
taken to be the dominant process involved and thus we have 
the condition of radiative equilibrium. If we consider a 
static medium with a time-independent radiation field 
passing through it then, from our previous discussions, the 
total energy removed from the beam is

Iq ^^w x (r, v) I (r ,n, v) = 4ir x ( r , v ) J( r , v ) dv (A.37)

The total energy given to the radiation field by the 
material is

J^dv(fdwn(r, v) = 4 tt/jj x(r» v)S(r, v)dv (A. 38)

n has been replaced from equation (A.25). The condition of 
radiative equilibrium requires that the total energy 
absorbed by a given volume of the material must equal the 
total amount emitted, thus at each point in the atmosphere

4nfQ-x(r,v)[J(r,v)-S(r,v)]dv = 0 (A.39)

From equation (A.33), for a one-dimensional planar 

atmosphere, we get

4nfq-x(z,v)(3H(z,v)/3T^)dv = 0 (A.40)

i.e. 4tt ( 3H ( z , V )/3z )dv = 0 (A.41)

This implies that the total flux is constant in radiative 
equilibrium. If we assign a stellar temperature T* to this
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flux then radiative equilibrium is defined as

(A.42)

This condition is modified for regions where there is 
incoming radiation being absorbed (see Chapter 3.1).

The Transfer Equation - a formal solution

For our formal solution we will impose two boundary 
conditions ; at the top

I(t ^=0,m ,v ) = 0 (A.43)

and at the bottom

-T /p
^^2 I(Ty,p,v)e ^ = 0  (A.44)

The reason for the choice of the latter will become clear 
later on. Regarding as given then equation (A.26) is a 
linear first-order differential equation with constant 
coefficients and must therefore have an integrating factor. 
This is simply exp(-T^/|j) so that

0[I^exp(-T^/M)]/3t ^ = -(1/p)S^exp(-T^/v) (A.45)

Integrating equation (A.45) gives
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- ( T  - T  ) / p
,p, v) = K t  ̂, Mf v)e

- ( t-T )/p
+ s^(t)e dt (A.46)

If we apply equation (A.46) at an arbitrary point in a 
semi-infinite atmosphere for just p>0 (outgoing radiation 
only) and set =t^ and and impose equation (A.44) we
get

-(t-T ) / p
I(T^,p,v) = r  S^(t)e ^ (1/p)dt (A.47)

V  T V
V

(0<p<1)

For incoming radiation set =0 and apply equation (A.43); 
we obtain

-(T -t)/-p
I(T^,p,v) = Xq S^(t)e ^ (1/-p)dt (A.48)

(-Up<0)

Equations (A.47) and (A.48) will be used in the solution of 
the transfer equation at great depth, the Diffusion 

Approximation.

The Diffusion Approximation

At great depth in the atmosphere the radiation is 
effectively trapped, becoming isotropic and eventually 
approaching thermal equilibrium (Sv»B^). If we choose a
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reference point x >>1 and expand S as a power seriesV V

Sv'tv) = (A.49)

For 0<p<1, using equation (A.47), we have

= + p(dBy/dx^) + (d^B^/dx^^) +

(A.50)

For -1<p<0 we have a similar result from equation (A.48) 
which differs only by terms of order exp(-t/p). At great 
depth these terms vanish so equation (A.50) applies to the 
full range -1<p<1. By substituting equation (A.50) into 
the appropriate definitions for the moments we have

Jv('v) = C o ^ 2 n t 1 ) ' \ d ^ " B ^ / d x ^ ^ " )

= By(x^) + 1/3(d^B^/dx^^) + ___  (A.51a)

H v ( T v )  =

= 1/3(dBy/dty) + ---  (A.51b)

and K (x ) = „ (2n+3 )‘‘‘ (d^"B /dx ^")V V  n n = 0  m V

= 1/3B (x ) + 1/5(d^B /dx ^ ) + ---  (A.51c)V V V V
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The ratio of successive terms in each series is of the 
order (1/x^^) which at great depth (t^>>1) means the series 
converge rapidly so the first term in each series is all 
that is needed. So at the limit of large depth we may 
write

By(Ty) + p(dB^/dTy) (A.52a)

" By(Ty) (A.52b)

H^( t ^) % 1/3(dB^/dx^) (A.52c)

Ky(Xy) % 1/3(B^(x^)) (A.52d)

Considering equation (A.33) we have, in effect, the 
condition that at great depth the transfer equation reduces 

to

Equations (A.52) and (A.53) are used to set the lower 
boundary conditions in a semi-infinite atmosphere.

Hydrostatic Equilibrium

In a static atmosphere the weight of the overlying 
layers is supported by the total pressure. This balance 
determines the density structure of the medium. Thus

VP = pg (A.54)
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where; P is the total pressure, given by

P = P + P„ (A.55)
9 n

P is the gas pressure, given by P =NkT and P is the 
9 9 n

radiation pressure, given by equation (A.9) integrated over 
frequency, i.e..

Pp = (4TT/c)jK^dv (A.56)

In equation (A.54) g is the gravity and q is the mass 
density. If we define a column mass m measured from the 
outer surface inward then

dm = -gdz (A.57)

and equation (A.54) becomes dP/dm=g which yields an exact
integral P(m)=gm + c. This is clearly advantageous as the
choice of m instead of z has no significant effect on the
transfer equation. So we have d(P +P )/dm = g , expanding

9 n

gives,

(dP /dm) = g - (dP_/dm) = g - (1/p)(dP /dz)g n n

= g - (Xy/e)(dPp/dTy) (A.58)
Substituting from equation (A.35) integrated over all 

frequencies we have

(dPg/dm) = g - (4tt/c ) ( X^/Q)H^dv (A.59)
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This shows that the radiation forces tend to reduce the 
gravitational forces and produce a smaller pressure 
gradient in the atmosphere.
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secondary poles approximately constant, but in this case 
the two poles are not located within the same area of the 

white dwarf. It may well be that the magnetic axis has 
shifted slightly between the two observations but the
change in the apparent positions of the poles could also be 

due to different sections of a much larger 'polecap'
turning on and off, possibly due to a change in the
accretion rate. Generally, the derived sizes of the poles 

are larger than the values usually associated with these 
systems. This fact, plus the necessity for large polecaps 
in order to explain the quasi-sinusoidal lightcurves in EF 
Eri and V834 Cen (E1405-451), adds further weight to the 
argument for systematically larger polecaps for polar 
systems. The assumed values for polars usually arise from 
luminosity fits using black bodies which, as we saw in 
Chapter 5, give smaller f's than expected, therefore
geometrically large polecaps (geometrically large to give 
the correct lightcurve shape but the actual emitting area 
could still be small) of the order 10'^ to 10"^ of the 

white dwarf area may well be the norm in polar systems.
Considering the poles themselves; the effective 

temperature of the primary pole decreased from 120,000 K to
100.000 K which is most probably due to the decrease in the 
hard X-ray illumination from 99.9% to 44%. In the case of 
the secondary pole the effective temperature increased from
150.000 K to 215,000 K while the accreting area decreased

15by a factor of six. The accretion rates are 5.055x10 
g s~^ for the primary pole and 1.308x10^^ g s  ̂ for the 
secondary pole so we see that the accretion rate onto the 
secondary has decreased, hence the reduction in size of the
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MODEL ATMOSPHERES FOR ACCRETING SYSTEMS 
by J.R.E. Brooker

ABSTRACT
This thesis presents the results of calculating model 

atmospheres for the accretion column of a magnetic white 
dwarf. A basic stellar atmosphere calculation is refined 
to model the specific conditions at the base of an 
accretion column. Calculated spectra for a variety of 
different input conditions are shown.

The calculated spectra are fitted with black body 
spectra in order to ascertain the errors associated with 
black body fitting of observed spectra.

Simulated lightcurves are calculated using these model 
atmosphere spectra. The resultant lightcurves are folded 
through the EXOSAT (European X-ray Observatory Satellite) 
detectors and used to fit lightcurves from the magnetic 
polar system AM Herculis.

Following the assumption that a thin accretion disc 
around a supermassive black hole is the central power 
source for active galactic nuclei (AGN's) a large grid of 
model atmospheres is calculated. This grid is then used to 
calculate the spectrum from such a disc.


