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ABSTRACT 155 

Background Common diseases such as coronary heart disease (CHD) are complex in etiology. The 156 

interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-157 

environment interactions for CHD have been difficult to identify. Here, we investigate interaction of 158 

smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with 159 

CHD risk.  160 

Methods We analyzed data on 60,919 CHD cases and 80,243 controls from 29 studies for gene-161 

smoking interactions for genetic variants at 45 loci previously reported to associate with CHD risk. 162 

We also studied 5 loci associated with smoking behavior. Study specific gene-smoking interaction 163 

effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were 164 

declared to be significant at a P-value < 1.0x10-3 (Bonferroni correction for 50 tests).  165 

Results We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. 166 

Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P-value: 167 

1.3x10-16) compared to 5% in ever-smokers (P-value: 2.5x10-4) translating to a 60% loss of CHD 168 

protection conferred by this allelic variation in people who smoked tobacco (Interaction P-value: 169 

8.7x10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 170 

expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human 171 

coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. 172 

Conclusion Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression 173 

confers stronger CHD protection in “never-smokers” compared to “ever-smokers”. Increased 174 

vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.    175 

Key words: Gene-smoking interaction, gene-environment interaction, coronary heart disease, 176 

ADAMTS7, smoking. 177 

Word count: 269 178 

 179 

  180 
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Clinical Perspective 181 

1) What is new?  182 
 183 

• Using data on 60,919 CHD cases and 80,243 controls, this study conducted gene-184 

environment interaction analyses to investigate effect modification by smoking behavior at 185 

established CHD and smoking related loci. 186 

• Cardio-protective effects conferred by allelic variation at the ADAMTS7 locus attenuated by 187 

60% in people who smoked tobacco compared to those who did not smoke. 188 

• Allelic variation at ADAMTS7 associated with reduced CHD risk was associated with reduced 189 

ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. 190 

• Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to 191 

induction of ADAMTS7. 192 

 193 

2) What are the clinical implications?  194 

 195 
• These human genomic data provide new insights into potential mechanisms of CHD in 196 

cigarette smokers.  197 

• Findings from this study also point towards the directional impact of the ADAMTS7 locus on 198 

CHD. 199 

• ADAMTS7 and its substrates have a specific role in cigarette smoking related CHD. 200 

• Inhibition of ADAMTS7 is a novel potential therapeutic strategy for CHD that may have 201 

particular benefits in individuals who smoke cigarettes. 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 
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INTRODUCTION 211 

Coronary heart disease (CHD) is a complex disorder resulting from the interplay of lifestyle 212 

and genetic factors.1, 2 Yet, gene-environment interactions for CHD have been difficult to identify. 213 

Cigarette smoking is one of the strongest lifestyle risk factors for CHD but the underlying molecular 214 

mechanisms of CHD in humans who smoke remain uncertain.3-5  Cigarette smoking accounts for 215 

one-fifth of all CHD events globally and is responsible for ~1.6 million deaths attributable to CHD 216 

annually.6 Genome-wide association studies (GWAS) have improved our understanding on the 217 

genetic predisposition to both CHD and smoking behavior.7-10 Joint or interactive effects of genetic 218 

variation and smoking behavior in the etiology of CHD, however, remain poorly understood. GWAS 219 

can provide new opportunities to investigate gene-smoking interactions.  220 

We hypothesized that genetic predisposition to CHD is modified by cigarette smoking at 221 

loci discovered by GWAS to be associated with either CHD or smoking behavior. We conducted a 222 

focused experiment at 50 main-effect loci (45 for CHD and 5 for smoking behavior) using genetic 223 

data and information on smoking behavior in 60,919 CHD cases and 80,243 controls from 29 224 

different studies. We report novel findings on gene-smoking interactions in CHD. Allelic variation on 225 

chr.15q25.1 at ADAMTS7 is associated with protection from CHD in “never-smokers” with 226 

attenuation of this protective effect in people who smoked. Expression studies in relevant vascular 227 

cells support a role for ADAMTS7 in smoking induced CHD.  These data provide the first insights on 228 

the etiology of CHD in cigarette smokers and may present opportunities for targeted therapeutic 229 

strategies to lower CHD risk in individuals who smoke cigarettes. 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 
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METHODS 239 

Summary of study Design  240 

All studies participating in the CARDIoGRAMplusC4D consortium7-9 that had information 241 

available on smoking status, CHD risk and genotypes at the 50 CHD and smoking behavior-242 

associated loci were invited to participate. The current study had five inter-related components 243 

(eFigure-1). First, as part of the quality control, we investigated the association of smoking status 244 

with CHD risk within each study. Second, we performed an updated analysis of all the SNPs (± 50 245 

KB) at the 45 established CHD loci to identify the variant with the strongest CHD association in our 246 

study population at each established CHD locus. Effect estimates from each study in association 247 

with CHD risk were obtained and pooled to identify the strongest CHD associated variant (“lead 248 

variant”). Third, we investigated gene-smoking interactions at these 45 CHD loci and at 5 loci related 249 

to smoking behavior. Fourth, for loci demonstrating differential CHD associations by smoking status, 250 

we mapped the interaction region, examined linkage disequilibrium (LD) across the region and 251 

performed conditional analyses to identify independent genetic signals. Finally, for loci exhibiting 252 

gene-smoking interaction in CHD, we assessed eQTL data for association of variants with 253 

expression of local genes in available datasets and examined expression of these genes in multiple 254 

cell types that play prominent roles in smoking-CHD pathobiology.  255 

Harmonization of phenotypes and genotypes 256 

Summary level estimates for each study were shared via a secure FTP site. We used 257 

“ever-smoking” as a primary exposure and data were harmonized by uniformly characterizing 258 

participants in each study into two categories, “ever-smokers” and “never-smokers”. “Ever-smokers” 259 

were defined as those who had smoked more than 100 cigarettes in a lifetime. For case-control 260 

studies, information on “ever smoking” status collected at the time of enrollment was used for the 261 

current analyses; whereas for prospective cohort studies, information on smoking status obtained at 262 

the baseline visit was used for the current investigation. CHD was defined based on evidence from 263 

angiography or history of verified myocardial infarction (MI), percutaneous coronary interventions 264 

(PCI) or coronary artery bypass grafting (CABG) as published in CARDIoGRAMplusC4D projects.7-9  265 

Genotype data generated through GWAS (directly genotyped or imputed) or cardio-metabochip 266 

(directly genotyped only) arrays were obtained from each study and all genetic data were aligned 267 

using the build-37 reference panel. Imputed SNPs were removed if they had any of the following: (i) 268 

a minor allele frequency of <1%; (ii) info score of <0.90; or (iii) confidence score <0.90. For each 269 

study, GWAS data were imputed using the Phase II CEU HapMap reference population.11 Standard 270 
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quality control criteria were applied by each participating study, as described previously.7 All 271 

participating studies in the CARDIoGRAMplusC4D consortium were approved by their locally 272 

relevant institutional review boards and all participants gave written informed consent before their 273 

enrollment in each study. 7-9 274 

STATISTICAL ANALYSIS 275 

Gene-smoking interaction analyses 276 

Initial quality control and association of established CHD loci with CHD risk: As part of an initial 277 

quality control, effect estimates from each study were obtained for “ever-smoking” status and CHD 278 

risk using a case-control logistic regression model adjusted for age and sex. Each participating study 279 

also assessed and, if needed, controlled for population stratification by including principal 280 

components as covariates in the regression model as described earlier.7-9 To identify variant(s) with 281 

the most significant association with CHD risk at established CHD loci in our study population, 282 

logistic regression analyses were conducted by each participating study for all the SNPs flanking 283 

(±50 kb) the lead variant previously reported at each CHD locus.  Effect estimates and standard 284 

errors were obtained and meta-analyzed using a fixed-effects inverse variance approach. All lead 285 

variants identified through these analyses were further investigated for gene-smoking interactions in 286 

CHD. One lead variant per locus was selected for primary gene-smoking interaction analyses. 287 

Investigation of the APOE locus: Although APOE has been recently established as a GWAS locus,7 288 

previous studies prior to GWAS have suggested that CHD risk is higher among carriers of the ε4 289 

allele at the APOE locus in smokers than in non-smokers.12-14 Because the ε2, ε3 and ε4 alleles at 290 

the APOE locus are not captured by the GWAS platform, we specifically conducted genotyping for 291 

rs429358 and rs7412 variants to capture the three epsilon (ε) alleles in 13,822 participants (including 292 

7,286 first-onset myocardial infarction cases) in the PROMIS study.15  293 

Gene-smoking interaction analyses at CHD and smoking loci: To assess gene-smoking interactions, 294 

analyses were conducted within each study, adjusted for age, sex and other study specific 295 

covariates (e.g., principal components), and variants were analyzed in association with CHD 296 

separately in “ever-smokers” and “never-smokers”. Results from the two groups were then used to 297 

test for interaction within each study. For the 50 variants, an interaction test statistic was calculated 298 

within each study using the following equation as adapted from Teslovich TM et.al.16  299 (βn −  βe) √ܵ݊ܧଶ +  ଶ݁ܧܵ
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where βn and βe are the beta coefficients for the SNP in never-smokers and ever-smokers 300 

respectively, ܵ݊ܧ and ܵ݁ܧ are the standard errors for the log-ORs estimated for never-smokers and 301 

ever-smokers, respectively. Study specific interaction beta(s) and se(s) were calculated within each 302 

study and were pooled across studies using a fixed-effects meta-analysis. Interaction analyses were 303 

declared to be significant at a P-value of <1.0x10-3 (Bonferroni correction for 50 tests).  304 

Conditional analyses on chr.15q25.1: At chr.15q25.1, we observed two variants exhibiting gene-305 

smoking interactions for CHD. The proximity of these two signals raised the possibility that the 306 

observed interactions may represent a single interaction locus across the entire region. To 307 

investigate this possibility we undertook conditional analyses using an approximate conditional and 308 

joint analyses approach, also known as GCTA (Genome-wide Complex Trait Analysis), as described 309 

previously.17-22 Briefly, this method leverages summary-level statistics from a meta-analysis and uses 310 

LD corrections between SNPs estimated from a reference sample.  Such an approach has been 311 

shown to yield similar results to that obtained from conditional analyses conducted on individual 312 

participant data and has been successfully implemented in several other studies that have fine-313 

mapped loci for other complex traits.17-22 Using this approach, we first conducted separate 314 

conditional analyses at the chr.15q25.1 locus to identify main-effect variant(s) independently 315 

associated with CHD and smoking behavior, respectively. We used the meta-analyzed data for CHD 316 

main effects in the CARDIoGRAMplus4D consortium to identify SNPs independently associated with 317 

CHD risk and we used the genetic meta-analysis data from the Tobacco and Genetics Consortium 318 

(TGC) in 140,000 participants to identify variants independently associated with smoking behavior. 319 

We then estimated the effects of these independent variants on CHD risk stratified by smoking 320 

status and mutually adjusted the effects of these variants for each other.  321 

  322 

Analysis of eQTLs and regulatory features at the chr15q25.1 gene-smoking interaction locus 323 

eQTL analyses: We mined publicly available databases to identify genotype-related expression 324 

differences (eQTLs) in ADAMTS7 and the CHRNB4-A3-A5 gene cluster in order to understand the 325 

directionality of the association of expression of these genes with CHD and smoking behavior. 326 

Specifically, we investigated data available from the GTEx consortium,23 the HapMap consortium 327 

(restricted to European populations),` and the Multiple Tissue Human Expression Resource 328 

(MuTHER).24 We also analyzed expression data in 147 donor HAoEC lines.25 We used a nominal P-329 

value of 0.002 to account for multiple testing involved in the eQTL analyses. 330 
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Regulatory features of the chr. 15q25.1 region: Data from ENCODE26 were explored as described in 331 

eMethods. ChIP-seq experiments were performed on confluent HCASMC (Cell Applications 350-05a 332 

& Lonza CC-2583; cultured in SmGM-2 BulletKit media; Lonza) as described.27 TCF21 (Abcam 333 

ab49475), Jun (Santa Cruz Biotechnology sc-1694), JunD (Santa Cruz Biotechnology sc-74), and 334 

CEBP (Santa Cruz Biotechnology sc-150) transcription factor binding was interrogated and H3K27ac 335 

data were acquired using the same ChIP protocol with an anti-H3K27ac antibody (Abcam; ab4729). 336 

Reads were aligned to the human genome (GRCh37p13) using STAR.28   337 

 338 

Analyses of ADAMTS7 and CHRNB4-A3-A5 gene expression in vascular cells and tissues 339 

ADAMTS7 and CHRNB4-A3-A5 gene expression in vascular cells: ADAMTS7 and CHRNB4-A3-A5 340 

mRNA levels were measured in cultured human coronary artery smooth muscle cells (HCASMC; 341 

Lonza CC-2583, Lonza Walkersville, MD), human coronary artery endothelial cells (HCAEC, Lonza 342 

CC-2585), human aortic smooth muscle cells (HAoSMC, Lonza CC-2571), human aortic endothelial 343 

cells (HAoEC, Lonza CC-2535), human aortic adventitial fibroblasts (HAoAF, Lonza CC-7014), and 344 

human acute monocytic leukemia cell line (THP-1, ATCC TIB-202). Further details are provided in 345 

eMethods. 346 

ADAMTS7 and CHRNB4-A3-A5 gene expression in response to cigarette smoke extract: HCASMC 347 

were grown to confluence and cigarette smoke extract experiments performed at passage-7. 348 

Cigarette smoke extract was custom-prepared by Arista Laboratories (Richmond, VA). Briefly, the 349 

condensate was generated by smoking Marlboro Red King Size Hard Pack cigarettes on an 350 

analytical smoke machine under International Organization for Standardization smoking conditions. 351 

The smoke condensate was collected on 92 mm filter pads and extracted from each pad in DMSO 352 

by shaking to obtain a solution of ~20 mg/mL final concentration of the total particulate matter. 353 

Serum starved (24 hrs) HCASMC were treated with 0.5% or 1.0% cigarette smoke extract (v/v) for 4, 354 

12, and 24 hrs in serum reduced conditions (0.5% FBS in DMEM). Details on RNA preparation and 355 

q-PCR are provided in eMethods. 356 

 357 

 358 

 359 

 360 
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RESULTS 361 

Description of the participating studies  362 

Of the 37 studies participating in the CARDIoGRAMplusC4D consortium, information on 363 

“ever-smoking” was available in 30 studies, yielding a total sample size of 60,919 CHD cases and 364 

80,243 controls. All studies recruited participants of European ancestry, except PROMIS (South 365 

Asian),15 LOLIPOP (South Asian)29 and FGENTCARD (Lebanese).30 Number of CHD cases and 366 

controls and percentages that were “ever-smokers” are provided in eTable 1. As expected, in all the 367 

participating studies, association of “ever-smoking” status with CHD risk was directionally consistent 368 

with an increased risk of CHD (eFigure 2).  369 

New variants associated with CHD at established loci 370 

eFigure 3 and eTable 2 present effect estimates for the association with CHD for (i) the 371 

most significant variant that we identified at known CHD loci in the current CARDIoGRAMplusC4D 372 

consortium analysis as well as for (ii) the top SNP previously reported at each of these established 373 

CHD loci. Of the 45 established CHD loci, we identified 32 for which we discovered a more 374 

statistically significant SNP in association with CHD risk in our dataset than the prior reported top 375 

variant. All of these 32 SNPs were in moderate to high LD (r2 >0.6) with the previously published 376 

variants.7-9 In our primary gene-smoking interaction analyses, at each of the CHD loci, we, therefore, 377 

used the SNP with the most significant CHD association (eFigure 3 and eTable 2). Because the 378 

smoking behavior phenotype (captured as cigarettes per day [CPD]) was not available in all 379 

CARDIoGRAMplusC4D studies, we used the top variant previously reported for CPD10 at each locus 380 

(eFigure 4). 381 

Analyses of the APOE locus.  382 

The effect of rs6857, the lead CHD variant at the APOE locus, was similar in “ever-383 

smokers” compared to “never-smokers” (eTable 3).  Specifically, the CHD OR for the T allele at 384 

rs6857 was found to be 1.10 (P-value 7.93x10-4) in “never-smokers” (12,159 CHD cases and 22,932 385 

controls) which was quantitatively similar to the CHD OR of 1.09 (P-value: 8.68x10-5) observed in 386 

“ever-smokers” (23,753 CHD cases and 24,019 controls) (interaction P-value: 0.76) (eFigure 5a). 387 

Investigation in the PROMIS study of the APOE epsilon genotypes yielded consistent findings; the 388 

OR for CHD among ε4 carriers in “never-smokers” was 1.13 compared to the CHD OR of 1.07 389 

observed in “ever-smokers” (interaction P-value: 0.82) (eFigure 5a).  390 

 391 
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 392 

Novel gene-smoking interaction effects on CHD at chromosome 15q25.1  393 

Of the 50 loci, we identified effect-modification by “ever-smoking” status on CHD risk for the 394 

lead variants at two distinct loci, rs7178051, in proximity of ADAMTS7 (an established CHD locus), 395 

and rs1051730, in proximity of CHRNB4-A3-A5 (an established smoking behavior locus) (eTable 3). 396 

Although associated with different traits and located in distinct LD blocks, these two variants reside 397 

~224 KBs apart on chr.15q25.1 and are in weak linkage disequilibrium (LD) (r2 = 0.22), raising the 398 

question of whether these two chr.15q25.1 gene-smoking interactions on CHD are independent of 399 

each other.   400 

At the ADAMTS7 CHD locus, the T allele at the rs7178051 variant was found to be more 401 

strongly and inversely associated with CHD risk in never-smokers (OR: 0.88; P-value: 7.02x10-16) 402 

compared to a much weaker effect in ever-smokers (OR: 0.95; P-value: 8.64x10-4) (P-value of 403 

interaction: 8.57x10-5) (Table 1). Thus, the protective impact of the rs7178051 T allele observed in 404 

never-smokers was halved in people who smoked (Figure-1). This difference is not related to power 405 

differences within strata because for this variant, there were less data available in the never-smoking 406 

group (21,232 CHD cases and 38,713 controls) compared to the ever-smoking group (39,585 CHD 407 

cases and 40,749 controls). There was no substantial evidence of heterogeneity for the interaction 408 

beta across the participating studies (Heterogeneity chi-squared = 36.23 (d.f. = 25); P-value for the 409 

χ2 test of heterogeneity = 0.06; I2 = 31.0%; tau-squared (τ2 = 0). We further conducted sensitivity 410 

analyses using a random effect model; the results remained unchanged and the interaction beta 411 

remained signficiant (eFigure 5b). Although the frequency of rs7178051 was 39% in Europeans 412 

compared to 28% in South Asians, further analyses stratified by ancestry (i.e., European versus non-413 

Europeans) showed similar results (eFigure 5c). Other variants discovered through prior CHD 414 

GWAS at the ADAMTS7 locus (e.g., rs7173743, rs4380028, rs3825807) were in moderate to high 415 

LD (r2 >0.50) with rs7178051 and were also found to display a similar pattern of gene-smoking 416 

interaction effects (Table 1).  417 

At the CHRNB4-A3-A5 smoking locus, the A allele at the rs1051730 variant had an inverse 418 

trend (not significant after adjustment) of association with CHD in never-smokers (OR: 0.96; P-value: 419 

1.56x10-2) and a positive trend (not significant after adjustment) in ever-smokers (OR: 1.03; P-value: 420 

1.53x10-2) (P-value of interaction: 2.37x10-4) (Table 1 and eTable 3). For this variant, data on 421 

20,559 CHD cases and 38,198 controls were available in the never-smoking group whereas 38,923 422 

CHD cases and 40,371 controls were available in the ever-smoking group. Similar gene-smoking 423 
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interaction patterns were observed for other variants (e.g., rs2036527, rs8034191) that have been 424 

previously reported for CPD behavior at the CHRNB4-A3-A5 gene cluster (Table 1). 425 

Further interrogation of the chr15q21.1 region encompassing rs7178051 and rs1051730 426 

across three distinct LD blocks (Figure 1) revealed multiple additional variants for which we 427 

observed gene-smoking interactions in CHD (Table 1 and Figure 1). Indeed, several SNPs (e.g., 428 

rs7178051, rs10083696, rs7176187, rs6495335, rs4887077) had genome-wide significant 429 

associations with CHD in “never-smokers” but had weaker and less significant associations with 430 

CHD in “ever-smokers” (Figure 1). Alleles clustered specifically around ADAMTS7 rather than at the 431 

CHRNB4-A3-A5 genes appear to be protective of CHD in “never-smokers” but have attenuated 432 

protective effects in “ever-smokers” (Figure 2).  433 

Conditional analyses  434 

To investigate the possibility that the two chr.15q25.1 gene-smoking interactions might 435 

represent a single interaction locus across the entire region we undertook an approximate 436 

conditional and joint analyses17-22 using summary data derived from CARDIoGRAMplus4D for CHD 437 

and from the TGC for smoking behavior. In-addition to rs7178051, we identified one other variant, 438 

rs11072794 in low LD with rs7178051 (r2=0.20) that was associated independently with CHD 439 

(Figure 3a; red triangles) (Figure 3b & eFigure 6b; red triangles). We also confirmed two variants 440 

(rs1051730 and rs684513) located in two different LD blocks that were independently associated 441 

with smoking behavior in the TGC data10 (Figure 3d & eFigure 6b; grey circles).  442 

In analyses of the CHD variants, both rs7178051 and rs11072794 remained strongly 443 

associated with CHD after adjusting for the top CPD variants (rs1051730 and rs684513) (Figure 3d, 444 

red triangles) whereas their weak association with CPD was lost after adjusting for the top CPD 445 

variants (Figure 3d; grey circles); e.g., the P-value for rs7178051 association with CPD was 1x10-5 446 

in unadjusted analyses but attenuated to 0.55 after adjusting for rs1051730 and rs684513. In 447 

analyses of the CPD variants, both rs1051730 and rs684513 remained strongly associated with CPD 448 

after adjusting for the top CHD variants (rs7178051 and rs11072794) (Figure 3b, grey circles) 449 

whereas their weak association with CHD was lost after adjusting for the top CHD variants (Figure 450 

3b, red triangles). As expected, conditional analyses that included all four of these variants resulted 451 

in a null association of the region with both CHD and CPD (eFigure 6b).  To underscore the validity 452 

of the conditional approach using summary data, we used individual participant data from an 453 

expanded PROMIS sample involving 9,025 MI cases and 8,506 controls. We found that the OR 454 

conferred by allelic variation at rs7178051 remained associated with MI risk independent of the two 455 
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CPD variants (rs1051730 and rs684513) and rs11072794 (the second CHD SNP) (eFigure 6c). 456 

Conversely, the apparent effect of allelic variation at rs1051730 (the top CPD variant) on CHD risk 457 

was lost when we adjusted for the other three variants, rs7178051, rs11072794 and rs684513 458 

(eFigure 6c). 459 

Next, using summary level data we examined the association of each of these four variants 460 

with CHD risk separately in “ever-smokers” and “never-smokers” while mutually adjusting for the 461 

other three variants (Figure 4 & eFigure 7). In these analyses, only allelic variation at rs7178051 462 

was found to have independent genome-wide significant effects on CHD in never-smokers. 463 

rs7178051 was also the only one of these four variants with significant differences in the effect 464 

estimate for gene-CHD associations between the two smoking groups (P-value for the χ2 test of 465 

heterogeneity: 5.4x10-5) after adjusting for the effects of other variants (rs11072794, rs1051730 and 466 

rs684513).  These conditional analyses suggest that (a) variants located near the ADAMTS7 gene 467 

but not CHRNB4-A3-A5 genes have independent effects on CHD, (b) a single independent gene-468 

smoking interaction signal for CHD exists on chr.15q.25.1 which is localized at the ADAMTS7 CHD 469 

locus (marked by rs7178051) and (c) an apparent interaction signal observed at the nearby 470 

CHRNB4-A3-A5 CPD locus (marked by rs1051730) is not independent of the ADAMTS7 471 

(rs7178051) interaction signal.  472 

To assess the robustness of conditional analyses methodology that uses summary level data 473 

(i.e., GCTA)17-22, we conducted sensitivity analyses in the PROMIS dataset (9,025 MI cases and 474 

8,506 controls). We assessed the association of rs7178051 (top CHD SNP) and rs1051730 (top 475 

CPD SNP) after mutually adjusting for each other by conducting (i) standard logistic regression using 476 

individual participant data and (ii) summary level data in PROMIS using the GCTA method (eTable 477 

4). The top CHD SNP was found associated with CHD risk in PROMIS independent of the top CPD 478 

variant using both the methods, in-contrast the effect on CHD of the top CPD SNP attenuated 479 

sharply when adjusted for the top CHD SNP – the effect estimates obtained using the two methods 480 

were very similar (eTable 4).  481 

Finally, to further demonstrate that the gene-smoking interaction effect in CHD at rs7178051 is 482 

independent of the CHRNB4-A3-A5 CPD locus, we conducted sensitivity analyses in the PROMIS 483 

study by restricting our gene-environment interaction analysis to subjects who do not carry the minor 484 

alleles of rs1051730 and rs684513 (the two SNPs associated with CPD) at the CHRNB4-A3-A5 485 

locus. The T allele at the rs7178051 variant was associated with CHD only in never-smokers (OR: 486 

0.88; P-value: 0.01) compared to a weaker and non-significant association in ever-smokers (OR: 487 
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0.94; P-value: 0.21) (eTable 5). The effect estimates obtained in each of the categories defined by 488 

smoking status in PROMIS were similar to the effect estimates obtained in our overall meta-analyses 489 

that utilized data in all participants (eTable 5).  490 

 491 

Analysis of eQTLs and regulatory features at the chr15q25.1 gene-smoking interaction locus. 492 

We mined publicly available eQTL data from the HapMap consortium,11 GTEx consortium23 493 

and the MuTHER consortium24 as well as data from 147 HAoEC lines25 to examine the association 494 

between mRNA expression of ADAMTS7 and CHRN genes with CHD, CPD and gene-smoking 495 

interaction SNPs at the chr15q25.1 locus. SNP-mRNA associations with p-values <0.002 (correction 496 

for 20 tests) are presented (Figure 5). The top two CHD variants (rs7178051, rs11072794) are 497 

associated with reduced ADAMTS7 expression (e.g., rs11072794 p=6.01x10-21 in MuTHER LCL, 498 

n=850; and rs7178051 p=0.0029 in HAoEC, n=147) but have no association with expression of 499 

CHRN genes in any cell or tissue examined. In contrast, the top two CPD variants (rs1051730 and 500 

rs684513) were associated with CHRN gene expression (e.g., rs1051730 p=6.9x10-7 for CHRNA5 in 501 

GTEx skeletal muscle and nerve tissue) but have no association with ADAMTS7 in these cells or 502 

tissues. These findings complement conditional analyses suggesting that gene-CHD and gene-503 

smoking interaction effects on CHD are likely mediated by ADAMTS7 whereas the smoking behavior 504 

effect appears to be mediated through the CHRNA3-5 gene cluster.  505 

In analysis of data from the ENCODE project26 and for human aortic tissue in NIH 506 

Roadmap Epigenomics project, ADAMTS7 was associated with RNAseq reads and an active 507 

transcription mark, H3K36me3, whereas CHRN genes had low/absent RNAseq reads and were 508 

positive for repressive marks, H3K27me3 and H3K9me3 (eFigure 8). In HCASMC ChIPseq data, 509 

rs7178051 the top CHD and gene-smoking CHD interacting SNP, is located in a region with active 510 

regulatory marks H3K4me1 and H3K4me3 as well as transcription factor binding site for TCF21, an 511 

important HCASMC transcription factor also associated with CAD. This ChIPseq pattern was 512 

observed also in human aortic tissue (Figure 6).  These regulatory data suggest active transcription 513 

of ADAMTS7, but not CHRN genes, in vascular cells and aortic tissue and reveal that rs7178051, 514 

the lead gene-smoking CHD interaction SNP, overlaps active transcription marks and transcription 515 

factor binding regions in HCASMC.    516 

ADAMTS7 and CHRNB4-A3-A5 expression in vascular cells and their response to cigarette smoke 517 

extract  518 
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In order to explore which genes at the chr15q25.1 locus are expressed in CHD-relevant 519 

vascular cells, we performed q-PCR of ADAMTS7 and the CHRNB4-A3-A5 genes in primary human 520 

vascular cells and in the THP1 human monocyte cell line (eFigure 9 & Figure 5). Whilst ADAMTS7 521 

mRNA was expressed abundantly in all vascular cell types, mRNA was below detection or 522 

expressed at a very low level for each of the genes in the CHRNB4-A3-A5 cluster in any of these cell 523 

types (eFigure 9). Next, we explored the effect of cigarette smoke extract on gene expression in 524 

HCASMC, a cell type of particular relevance to vascular responses to cigarette smoke products31, 32 525 

as well as to ADAMTS7 vascular functions in atherosclerosis and CHD.33 In primary HCASMC, 526 

cigarette smoke extract exposure increased ADAMTS7 mRNA levels by over 2-fold (Figure 5) but 527 

did not affect expression of the CHRN genes (not shown).  Thus, in contrast to CHRN genes, 528 

ADAMTS7 is both expressed and modulated by cigarette smoke extract in CHD-relevant vascular 529 

cells providing biological support for ADAMTS7, but not CHRN genes, in the gene-smoking 530 

interaction at chr15q25.1.     531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 
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DISCUSSION 546 

We conducted a gene-environment interaction study at fifty loci associated with either CHD 547 

or smoking behavior and found evidence of effect-modification of genotype-related CHD risk by 548 

smoking-behavior at the chr.15q21.1 CHD locus. Specifically, we observed highly significant 549 

attenuation of the cardio-protective effects conferred by alleles at this locus in people who smoked 550 

cigarettes.  Conditional analyses identified an LD block located at the ADAMTS7 gene that 551 

accounted for both the main effect on CHD as well as the gene-smoking interactions in CHD. Data 552 

from expression and cell studies support our genetic analysis, suggesting that the underlying 553 

mechanism relates to genotype differences in the effect of smoking on expression of ADAMTS7 in 554 

vascular tissue.  555 

Our findings have novel mechanistic and clinical implications. These human genomic data 556 

provide new insights into the mechanism of CHD in cigarette smokers. Identification of gene-557 

smoking interaction at the chr15q21.1 locus suggests a specific role in smoking-related CHD for 558 

ADAMTS7 and its substrates, vascular matrix and vascular smooth muscle cell biology more 559 

broadly. Such insights can help to prioritize translational strategies for smoking-related CHD and 560 

present opportunities to study lifestyle interventions and pharmacological strategies to lower CHD in 561 

individuals who smoke cigarettes. Thus, inhibition of ADAMTS7 represents a novel potential 562 

therapeutic strategy for CHD that may have particular benefits in individuals who smoke cigarettes. 563 

All smokers should receive counseling for smoking cessation yet such broad public health strategies 564 

have failed to reach or impact smoking behavior in a large portion of nicotine-addicted individuals. 565 

Our data provides a human genomic context for consideration of targeting specific genetically at-risk 566 

individuals via intensified preventive strategies and development of novel pharmacological 567 

treatments.  568 

Our study also represents a realistic strategy for performing gene-environment interaction 569 

studies using contemporary genetic data. We illustrate that identifying joint effects of genetic and 570 

lifestyle factors in CHD requires very large sample sizes, yet such analyses are biologically 571 

informative when studies are adequately powered. In this context, an important observation in our 572 

large sample is the lack of effect modification by smoking behavior on CHD at the APOE locus, a 573 

previously reported smoking interaction locus.12-14 This finding is consistent with a recent meta-574 

analysis that found no evidence of effect modification by smoking for APOE genotypes and CHD 575 

risk.34 These studies raise concerns that most prior gene-environment interactions studies in CHD 576 

have been prone to the same biases (i.e., limited statistical power and false positive associations) as 577 
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candidate gene studies investigating main effects in the pre-GWAS era. The present study differs 578 

from previous studies by being much larger and, importantly, it includes genomic and functional 579 

follow-up data supporting the plausibility of the observed gene-environment interaction. 580 

ADAMTS7 (or the A disintegrin and metalloproteinase with thrombospondin motifs-7) is a 581 

member of the ADAMTS family of secreted zinc metalloproteases.35, 36 We previously discovered 582 

and replicated genetic variation at the ADAMTS7 locus in association with coronary atherosclerosis 583 

and MI.7-9 Both in vivo and in vitro studies suggest that ADAMTS7 modulates VSMC phenotype 584 

switching and migration and that this may be mediated via cartilage oligomeric matrix protein 585 

(COMP) or thrombospondin-1 (TSP-1),32,33 i.e. putative ADAMTS7 substrates expressed in vascular 586 

tissue. Genetic variation at ADAMTS7, however, has no relationship with traditional risk factors or 587 

mechanistic biomarkers; hence the directional impact of ADAMTS7 expression on CHD risk and the 588 

underlying biological mechanisms have been unclear.32 589 

Our gene-smoking interaction analyses provide novel insights into the directional impact of 590 

the ADAMTS7 locus on CHD, the underlying mechanisms of CHD in smokers, and how such 591 

findings ultimately might translate towards achieving health benefits in society. Our human eQTL 592 

interrogations reveal that common alleles that relate to lower CHD risk at the ADAMTS7 locus are 593 

also associated with reduced ADAMTS7 expression, implying an atherogenic role of the gene. This 594 

is supported by our recent in vivo experimental studies; Adamts7 deficiency protected against diet-595 

induced atherosclerosis in both the Ldlr-/- and ApoE-/- mouse models, reduced neointima formation 596 

following arterial injury, and decreased VSMC migration in vitro.33 In our smoking-stratified analyses, 597 

we observed CHD protective effect which was attenuated in smokers. Thus, smoking exposure may 598 

overcome the genetic effect of protective alleles that act by reducing ADAMTS7 expression. Such a 599 

possibility is supported by our HCASMC data that reveals increased ADAMTS7 expression in 600 

HCASMC exposed to cigarette smoke extract. These human genome-smoking studies are the first to 601 

implicate a specific locus as causal in mediating increased risk of CHD in smokers. Additional 602 

translational studies are needed to establish the precise mechanisms of atheroprotection for alleles 603 

at the ADAMTS7 locus, how cigarette smoking impacts these genetic effects, and whether deletion 604 

or inhibition of ADAMTS7 in vivo attenuates the specific acceleration of atherosclerosis conferred by 605 

cigarette smoking.  606 

Strengths and limitations of our study merit consideration. This is a large study that 607 

conducted gene-smoking interaction analyses in CHD by using GWAS data. We observed 608 

substantial heterogeneity across study samples in our initial quality control analyses of “ever-609 
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smoking” status with CHD risk. This is similar, however, to the heterogeneity reported in a recent 610 

meta-analysis that pooled risk ratios from all the past prospective studies with information on 611 

association of “ever-smoking” with incident CHD events.5 We recognize that other smoking related 612 

phenotypes are important e.g., “current smoking” may have a more pronounced role than “ever-613 

smoking” in plaque rupture and thrombosis in patients with MI. “Current smoking” status and MI 614 

phenotypes were available only in a subset of our studies limiting statistical power. Given the use of 615 

multiple studies and meta-analyses of data, we used only one analytical approach to investigate 616 

gene-smoking interactions. This approach, however, was feasible and powerful in this large-scale 617 

consortium setting. While we used a fixed effects approach in our meta-analyses, a random effects 618 

meta-analysis yielded qualitatively similar results (data not shown). The lack or replication is partially 619 

offset by a large sample size, consistency across study cohorts and racial groups and supplemental 620 

genomic and experimental evidence supporting biological plausibility. This approach is also 621 

consistent with recent recommendations37 which favor use of a powerful discovery experiment using 622 

all data rather than reducing power by splitting available dataset for discovery and validation. While 623 

our in vitro studies support a role for ADAMTS7 in the gene-smoking interaction, it will be important 624 

to confirm that Adamts7 deficiency protect against cigarette-smoke acceleration of atherosclerosis in 625 

rodent models.  626 

Our interaction analyses, conditional analyses, eQTL interrogations and cell studies 627 

suggest that ADAMTS7, but not the CHRNB4-A3-A5 gene cluster, is likely causal at 15q21.1 for 628 

gene-smoking interaction effects in CHD. Yet, analyses are not definitive. Although top interacting 629 

SNPs and CHD SNPs (e.g., rs7178051) were associated with ADAMTS7, but not CHRNB4-A3-A5, 630 

expression in LCLs, large-scale eQTL data and allele specific expression data (e.g., via RNA 631 

sequencing) are not available for vascular tissues limiting causal inference. In our small HCAEC 632 

datasets, we did however find that alleles at rs7178051 associate with ADAMTS7 expression but not 633 

with any CHRNB4-A3-A5 genes suggesting, at least in one vascular cell type, that the gene-smoking 634 

interaction is mediated via ADAMTS7.  635 

 636 

 637 

 638 

 639 

 640 
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Conclusions 641 

We provide novel evidence for allelic variation exhibiting gene-smoking interaction in CHD 642 

at the chr.15q21.1 locus. The protective effect conferred by variation at this locus in never-smokers 643 

is markedly attenuated in people who are ever-smokers. Stepwise conditional analyses, gene 644 

expression data in vascular cells, eQTL interrogation, and cigarette smoke extract exposure in 645 

HCASMC suggest that ADAMTS7 accounts for both the gene-smoking interaction in CHD and the 646 

CHD main effect on chr.15q21.1. Our findings reveal interactions of genetic variants and key lifestyle 647 

determinants in the etiology of CHD, provide new insights into the potential mechanisms of CHD in 648 

cigarette smokers, and facilitate precision medicine advances in cigarette-smoking related CHD. Our 649 

work motivates future large-scale studies investigating joint effects of genes and environment in 650 

CHD using existing complex-disease consortia datasets and genome-wide discovery approaches. 651 

This will provide opportunities to detect additional and novel loci displaying gene-environment 652 

interactions revealing genetic contexts for targeting intensive lifestyle interventions and novel 653 

therapeutics. 654 

 655 
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 1073 
 1074 
Figure Legends 1075 

 1076 

Figure 1. (a) Regional association analyses at the chromosome 15q25.1 locus in association with 1077 

CHD risk stratified by smoking status. Association P-values for genetic variants with CHD risk in 1078 

“never-smokers” (green squares) and “ever-smokers” (red triangles). (b) Longitudinal bars represent 1079 

gene-smoking CHD interaction P-values at the chromosome 15q25.1 locus; bars in blue are P-1080 

values for variants listed in Table-1 and each variant has been assigned a unique identification 1081 

number based on its physical location; (c) LD-blocks at the 15q25.1 locus visualized through 1082 

HAPLOVIEW using LD estimates in the HapMAP-2 CEU reference population.  1083 

 1084 

Figure 2. Several variants at chromosome 15q21.1 have stronger effects on CHD risk in “never-1085 

smokers” compared to “ever-smokers”. Variants with the strongest interaction P-value are displayed. 1086 

 1087 

Figure 3. Step-wise conditional analysis of genetic variation at the chromosome 15q21.1 locus with 1088 

CHD (red triangles) and smoking behavior (cigarettes per day, CPD; grey circles). At the 1089 

chromosome 15q21.1 locus, analyses adjusted for rs7178051 and rs11072794 completely 1090 

attenuated the gene-CHD associations whereas gene-smoking remained unchanged. Analyses 1091 

adjusted for rs1051730 and rs684513 completely attenuated the gene-smoking associations 1092 

whereas gene-CHD effect remained unchanged. 1093 

Figure 4. Analyses mutually adjusted for rs7178051, rs11072794, rs1051730 and rs684513 at 1094 

15q21.1 on CHD and smoking behavior; gene-CHD interaction analyses were only found significant 1095 

for rs7178051. 1096 

Figure 5.  Genome browser view of regulatory features at rs7178051 on Chr15q21.1.  ChIP-seq 1097 

experiments were performed on confluent HCASMC for TCF21, Jun, JunD, CEBP and H3K4me1, 1098 

H3K27me3, H3K27ac. DNAaseI hypersensitivity data for human AoSMC were acquired from the 1099 

ENCODE project.  Human aortic tissue H3K4me1, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq 1100 

data were acquired from the NIH Roadmap Epigenomics Project.  HCASMC = human coronary 1101 

artery smooth muscle cells; AoSMC = human aortic smooth muscle cells.   1102 

Figure 6.  (a) ADAMTS7 and CHRNB4-A3-A5 mRNA levels were measured in HCASMC. Cells were 1103 

cultured to confluence, total RNA was extracted and cDNA generated. q-PCR was performed for 1104 

ACTB, GAPDH, TBP, ADAMTS7, CHRNB4, CHRNA3, CHRNA5 (95°C 15s, 60°C 1min). Delta Cts 1105 
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were calculated as follows:  (CtACTB + CtGAPDH + CtTBP)/3 – CtTARGET GENE). Fold changes are derived 1106 

from delta delta Cts based on formula FC = 2-dCt. (b) Confluent HCASMC were exposed to cigarette 1107 

smoke extract. Serum starved (x24 hrs.) confluent HCASMC were treated with 0.5% or 1.0% 1108 

cigarette smoke extract  (v/v) for 4, 12, and 24 hrs. in serum reduced conditions (0.5% FBS in 1109 

DMEM). Total RNA was extracted, cDNA generated preparation and q-PCR performed for 1110 

ADAMTS7 by Taqman and normalized to GAPDH. The Average Ct for ADAMTS7 at baseline was 1111 

28.25. Results were presented as means ± SEM, and data were analyzed using Student’s t-Test. (c) 1112 

expression and eQTL Data from the GTEx consortium, the HapMap consortium (restricted to 1113 

European populations), the Multiple Tissue Human Expression Resource (MuTHER) and in 147 1114 

donor HAoEC lines. Association of the independent lead variants identified in our conditional 1115 

analyses with expression of ADAMTS7 and genes in the CHRNB4-A3-A5 cluster. A P-value 1116 

threshold of 0.002 was set to account for multiple testing involved in the eQTL analyses. 1117 

 1118 

 1119 

 1120 
 1121 
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Table-1. Novel genotype-smoking interaction findings in coronary heart disease at the chromosome 15q25.1 locus  

      Never Smokers  Ever Smokers   
Variant Association allele LD with 

rs7178051* 
LD with 

rs1051730^ 
 N 

cases 
N 

controls 
N 

Total 
Beta (SE) P-value  N 

cases 
N 

controls 
N 

Total 
Beta (SE) P-value  P-value 

interaction 
*rs71780514 CHD (NPR) T/C - 0.22  21232 38713 59945 -0.13 (0.01) 1.30E-16  39585 40749 80334 -0.05 (.01) 2.49E-04  8.57E-05 

^rs105173016 SB (known) A/G 0.22 -  20559 38198 58757 -0.04 (0.02) 0.02  38923 40371 79294 0.03 (0.01) 0.02  2.37E-04 

Other variants on chr.15q25.1 with significant gene-smoking interactions on CHD 

rs71737431 CHD (Known) C/T 0.61 0.18  21050 37955 59005 -0.11 (0.01) 2.73E-13  39044 39559 78603 -0.04 (0.01) 8.60E-04  9.29E-05 

rs100836962 CHD (Novel) A/G 1.0 0.22  19721 36206 55927 -0.11 (0.02) 1.60E-12  38807 40018 78825 -0.05 (0.01) 2.72E-04  5.15E-05 

rs71761873 CHD (Novel) T/C 1.0 0.24  21232 38713 59945 -0.12 (0.01) 7.02E-16  39585 40749 80334 -0.04 (0.01) 8.64E-04  6.93E-05 

rs64953355 CHD (Novel) G/T 1.0 0.22  20144 37217 57361 -0.13 (0.02) 2.39E-15  36448 38203 74651 -0.04 (0.01) 1.69E-03  9.51E-04 

rs43800286 CHD (Known) T/C 1 0.22  21232 38713 59945 -0.12 (0.01) 2.20E-15  39585 40749 80334 -0.04 (.01) 1.03E-03  5.44E-04 

rs38258077 CHD (Known) G/A 0.52 0.43  17137 28633 45771 -0.09 (0.02) 2.82E-08  30071 29014 59086 -0.03 (0.01) 0.04  2.6E-03 

rs38135658 CHD (NPR) T/G 0.43 0.56  19466 35830 55296 -0.08 (0.02) 5.08E-07  36642 37759 74401 -0.01 (0.01) 0.42  3.05E-04 

rs116384909 CHD (NPR) T/C 0.44 0.51  20465 37897 58362 -0.08 (0.01) 6.90E-08  38533 39690 78223 -0.01 (0.01) 0.28  2.25E-04 

rs1107279111 CHD (NPR) A/C 0.44 0.51  19289 35944 55233 -0.08 (0.02) 2.83E-07  35245 36635 71880 -.005 (0.01) 0.68  1.06E-04 

rs92269212 CHD (NPR) A/C 0.44 0.50  20559 38198 58757 -0.08 (0.01) 2.81E-07  38923 40371 79294 -0.01 (0.01) 0.29  2.75E-04 

rs1163837213 CHD (NPR) T/C 0.44 0.50  21232 38713 59945 -0.08 (0.01) 6.92E-08  39585 40749 80334 -0.01 (0.01) 0.23  3.16E-04 

rs488707714 CHD (NPR)  T/C 0.44 0.50  21232 38713 59945 -0.08 (0.01) 4.71E-08  39585 40749 80334 -0.02 (0.01) 0.20  3.92E-05 

rs1289913515 CHD (NPR) G/A 0.39 0.56  20377 37440 57817 -0.07 (0.02) 3.97E-06  38382 39181 77563 -0.01 (0.01) 0.58  4.54E-04 

rs68451318 SB (Known) C/G 0.01 0.10  12517 21054 33572 -0.01 (0.02) 0.67  24641 24487 49129 0.03 (0.02) 0.18  0.08 

rs203652719 SB (Known) A/G 0.17 0.90  20559 38198 58757 -0.04 (0.02) 0.02  38923 40371 79294 0.03 (0.01) 0.02  2.14E-04 

rs1051920320 CHD (NPR) G/A 0.19 0.93  21232 38713 59945 -0.04 (0.01) 5.93E-03  39585 40749 80334 0.03 (0.01) 0.03  1.27E-04 

rs803419121 SB (Known) C/T 0.19 1.0  19251 32131 51382 -0.05 (0.02) 2.62E-03  34925 34047 68972 0.02 (0.01) 0.06  3.91E-05 

CHD = coronary heart disease;  SB = smoking behavior; NPR: Not a previously reported variant with disease risk 
*lead variant in association with CHD in our dataset; ^ lead variant in association with SB 
1-21each number refers to the physical location of the variant in figure-
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Figure-1. Analyses of the chromosome 15q25.1 locus association with CHD stratified by 
smoking status and gene-smoking CHD interaction analyses  

 

1-rs7173743; 2-rs10083696; 3-rs7176187; 4-rs7178051; 5-rs6495335; 6-rs4380028; 7-rs3825807; 8-rs3813565;  9-rs11638490;  
10-rs11072794; 11-rs11072791; 12-rs922692; 13-rs11638372; 14-rs4887077; 15-rs12899135; 16-rs17487514; 17-rs1051730;  
18-rs637137; 19-rs2036527; 20-rs10519203; 21-rs8034191. LD 1-3 indicate three separate linkage disequilibrium blocks in 
European ancestry at the chromosome 15q25.1 locus.   
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Figure-2. Multiple variants at chromosome 15q21.1 have stronger effects on CHD risk in 
“never-smokers” compared to “ever-smokers” 

 

 

 

rs71737431

rs43800286

rs105173016

rs203652719

rs803419121

Variant

C/T

T/C

A/G

A/G

C/T

allele

0.47

0.32

0.17

0.20

0.19

Effect allele
frequency

9.29E-05

5.44E-04

2.37E-04

2.14E-04

3.91E-05

interaction
P-value

1.85 .9 .95 1 1.05
Odds Ratio

Ever-SmokersNever-Smokers

rs100836962

rs71761873

rs64953355

A/G

T/C

G/T

0.32

0.35

0.35

5.15E-05

6.93E-05

9.51E-04

rs488707714 T/C 0.83 3.92E-05

rs71780514* T/C 0.32 8.57E-05

rs7178051 is the lead variant identified in association with CHD in our study population; whereas rs1051730 is the 
lead variant previously identified in association with smoking behavior .
Variants are ordered based on their base pair position in Figure-1. 
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Figure 3. Conditional analysis of genetic variation at the chromosome 15q21.1 locus with coronary heart disease (CHD; red 
triangles) and smoking behavior (cigarettes per day, CPD; grey circles) 
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Figure 4. Mutually adjusted effects of 15q21.1 lead variants on coronary heart disease and smoking behavior  

 

 

Gene-CHD and gene-smoking analyses for rs7178051 were adjusted for rs11072794, rs1051730 and rs684513; 
Gene-CHD and gene-smoking analyses for rs11072794 were adjusted for rs7178051, rs1051730 and rs684513; 
Gene-CHD and gene-smoking analyses for rs1051730 were adjusted for rs7178051, rs11072794 and rs684513; 
Gene-CHD and gene-smoking analyses for rs684513 were adjusted for rs7178051, rs11072794 and rs1051730. 
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Figure-5. (a) Expression of ADAMTS7 and CHRNB4-A3-A5 mRNAs and (b) cigarette smoke extract (CSE) induction of ADAMTS7 
mRNA in primary human coronary artery smooth muscle cells  

 
Figure-5c. Association of lead CHD and smoking behavior variants with candidate gene expression in available cells and tissues 

#Direction of association for the effect allele on CHD; NS: Not significant (P-value < 0.002; Bonferroni correction for 20 tests); HAEC: Human Aortic Endothelial Cells; LCL: 
lymphoblastoid cell lines; 1 Association with CHRNA5 expression; 

 

   LCL in the MuTHER 
consortium (n=850) 

 HAEC (n=147)  HapMap CEU LCL 
(n=109) 

 GTEx Skeletal muscle 
(n= 142) 

 GTEx Nerve Tibial 
(n=101) 

Variant Type CHD 
direct.# 

ADAMTS7 CHRNA3-5  ADAMTS7 CHRNA3-5  ADAMTS7 CHRNA3-5  ADAMTS7 CHRNA3-5  ADAMTS7 CHRNA3-5 

rs7178051 Top CHD 
signal 

- 4.1e-4 (-) NS  0.0029 (-) NS  NS NS  NS NS  NS NS 

rs11072794 Second CHD 
signal 

- 6.0E-21 (-) NS  NA NS  0.0013 (-) NS  NS NS  NS NS 

rs1051730 Top CPD 
signal 

- NS NS  NS NS  NS NS  NS 6.9E-7 (-)1  NS 6.9E-71 

rs684513 Second CPD 
signal 

- NS NS  NS NS  NS NS  NS 2.4E-7 (-)1  NS NS 
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Figure-6. Genome browser view of regulatory features at rs7178051 on Chr15q21.1  
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