## **Supporting Information**

# Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal

Nirbhai Singh,<sup>†</sup> Sk Riyajuddin,<sup>‡</sup> Kaushik Ghosh,<sup>‡</sup> Surinder K. Mehta<sup>†</sup> and Abhijit Dan<sup>\*,†</sup>

<sup>†</sup>Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Sector – 14, Chandigarh – 160014, India

<sup>‡</sup>Institute of Nano Science & Technology, Sector- 64, Phase X, Mohali – 160062, India

Corresponding author

\*Email: abhijit@pu.ac.in (A. Dan)

Synthesis of Graphene Oxide (GO). The GO was synthesized by oxidation of graphite powder using modified Hummer's method.<sup>1,2</sup> Briefly, 1 gm of graphite powder was added in 20 mL cold H<sub>2</sub>SO<sub>4</sub> (98%). Subsequently, 0.5 gm of NaNO<sub>3</sub> was mixed and the solution was stirred for an hour. Then, 3 gm of KMnO<sub>4</sub> was added very slowly to the solution. The temperature of reaction mixture was maintained within the range of 15 - 20 °C. The solution was kept on stirring for another 2 hours, after which, 46 mL distilled water was added slowly at 35 °C with constant stirring. The reaction was allowed to continue for 15 minute at 98 °C. At the end, the reaction mixture was diluted with 140 mL distilled water with subsequent addition of 2.5 mL H<sub>2</sub>O<sub>2</sub> (30%). The color of the solution turned yellow-brown. The resulting product was washed with distilled water and ethanol (three times) by centrifugation. Finally, the sample was dried at  $60^{\circ}$ C in an oven.

#### **XRD** calculation:

The diameter of the particles can be determined using Debye Scherrer equation,

$$D = \frac{k\lambda}{\beta \cos\theta}$$

k = Dimensionless shape factor (value 0.94)

 $\beta$  = Full Width at Half Maximum (FWHM)

- $\lambda =$  x-rays wavelength (1.54 A°)
- $\theta$  = Bragg's angle (in degree)

| Table S1. Average particle size of the materials obtained from Scherrer's Eq | uation |
|------------------------------------------------------------------------------|--------|
|------------------------------------------------------------------------------|--------|

. .

| Sample  | Particle Size (nm) |  |
|---------|--------------------|--|
| Bare IO | 23.6               |  |
| CSIO    | 11.1               |  |
| CSGOIO  | 8.1                |  |

. . .

#### Determination of Crosslinking Density of the Hydrogel Nanocomposite:

The molecular weight,  $M_c$  of the polymer chain between two neighboring crosslinks was calculated from Flory-Rehner equation<sup>3</sup> (S1) as follows:

$$M_{c} = -d_{p}V_{m}\phi^{\frac{1}{3}}[\ln(1-\phi) + \phi + \chi\phi^{2}]^{-1}$$
(S1)

where,  $V_m$  is the molar volume of the swelling agent (18.1 cm<sup>3</sup>/mol for water),  $\chi$  is the Flory-Huggins interaction parameter and  $\phi$  is the volume fraction of the cross-linked polymer in the swollen gel polymer.

The value of  $\varphi$  of the polymer in the swollen state can be calculated by using equation (S2):

$$\varphi = \left[ \left( \frac{d_p}{d_s} \right) \left( \frac{w_f - w_o}{w_o} \right) + 1 \right]^{-1}$$
(S2)

where,  $d_p$  and  $d_s$ , are the density of polymer and solvent in g/cm<sup>3</sup>, respectively,  $w_o$  and  $w_f$  are the weight of the hydrogel composite before and after swelling, respectively.

The value of  $\chi$  can be calculated experimentally from the temperature coefficient of volume fraction  $(\frac{d\phi}{dT})$  using equation (S3):

$$\chi = \left[\phi(1 - \phi)^{-1} + N\ln(1 - \phi) + N\phi\right] \left[2\phi - \phi^2 N - \phi^2 T^{-1} \left(\frac{d\phi}{dT}\right)^{-1}\right]^{-1}$$
(S3)

where,  $N = \left(\frac{\varphi^2}{3} - \frac{2}{3}\right) \left(\varphi^{\frac{1}{3}} - \frac{2}{3}\varphi\right)^{-1}$  and  $\left(\frac{d\varphi}{dT}\right)$  is the slope obtained by plotting the volume fraction data versus temperature (K). For this purpose swelling experiments were conducted at 303, 313 and 323K.

The crosslink density,  $\rho$  of the polymer network was determined from equation (S4):

$$\rho = \frac{d_p}{M_c} \tag{S4}$$

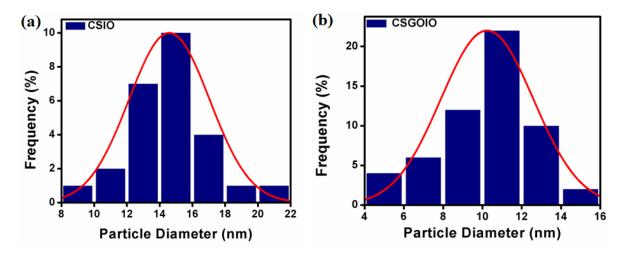
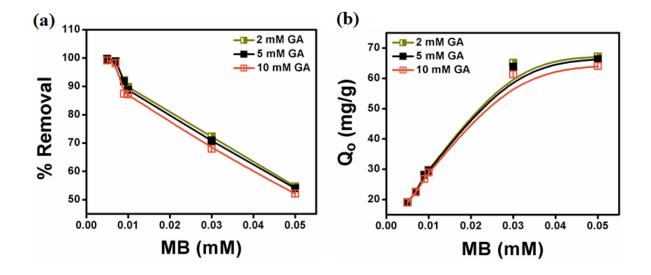
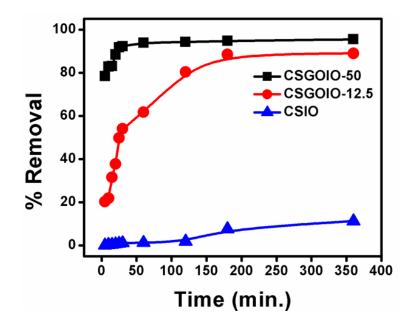
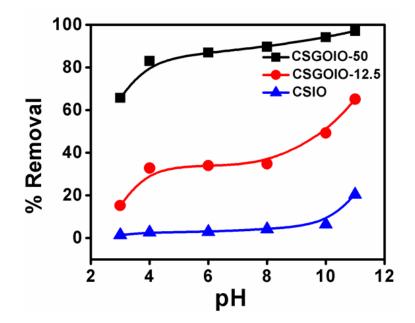



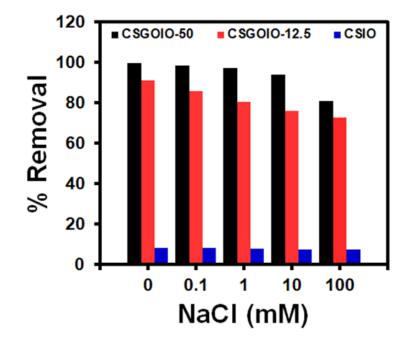

Figure S1. Particle size distribution obtained from TEM images of (a) CSIO and (b) CSGOIO.


Table S2. Detailed porosity properties of CSIO, CSGOIO-12.5 and CSGOIO-50 obtained from

| Sample      | BET surface area $(m^2 g^{-1})$ | Total pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Average pore<br>diameter (nm) |
|-------------|---------------------------------|---------------------------------------------------------|-------------------------------|
| CSIO        | 1.35                            | 0.0021                                                  | 6.36                          |
| CSGOIO-12.5 | 22.37                           | 0.0181                                                  | 3.24                          |
| CSGOIO-50   | 25.83                           | 0.0198                                                  | 3.07                          |


BET and the BJH methods.




**Figure S2.** Effect of cross linker dosage (GA) on MB adsorption onto CSGOIO-50: (a) % of dye removal and (b) adsorption capacity. [Initial MB concentration 0.005 - 0.05 mM, adsorbent dosage 0.2 mg/mL, contact time 300 min, pH = 7.4, temperature 298 K].



**Figure S3.** % removal of MB by CSIO, CSGOIO-12.5 and CSGOIO-50 as a function of contact time. [Initial MB concentration 0.05 mM, adsorbent dosage 2 mg/mL, contact time 5 - 360 min, pH = 7.4, temperature 298 K].



**Figure S4.** % removal of MB by CSIO, CSGOIO-12.5 and CSGOIO-50 at different pH of the solutions. [Initial MB concentration 0.05 mM, adsorbent dosage 0.6 mg/mL, contact time 300 min, pH = 3-11, temperature 298 K].



**Figure S5.** % removal of MB by CSIO, CSGOIO-12.5 and CSGOIO-50 at different ionic strength of the solutions. [Initial MB concentration 0.05 mM, adsorbent dosage 0.6 mg/mL, contact time 300 min, pH = 7.4, temperature 298 K].

**Table S3.** Thermodynamics parameters for the adsorption of MB onto CSIO, CSGOIO-12.5 and CSGOIO-50 at different temperatures.

| Adsorbents  | Temperature | $\Delta G^{o}$          | $\Delta \mathrm{H}^{\mathrm{o}}$ | $\Delta S^{o}$         |
|-------------|-------------|-------------------------|----------------------------------|------------------------|
|             | (K)         | (kJ mol <sup>-1</sup> ) | (kJ mol <sup>-1</sup> )          | $(kJ mol^{-1} K^{-1})$ |
| CSIO        | 298         | -0.25                   |                                  |                        |
|             | 318         | -0.89                   | +9.23                            | +0.031                 |
|             | 338         | -1.53                   |                                  |                        |
| CSGOIO-12.5 | 298         | -1.85                   |                                  |                        |
|             | 318         | -2.34                   | +5.46                            | +0.024                 |
|             | 338         | -2.83                   |                                  |                        |
| CSGOIO-50   | 298         | -5.39                   |                                  |                        |
|             | 318         | -6.28                   | +7.84                            | +0.044                 |
|             | 338         | -7.17                   |                                  |                        |

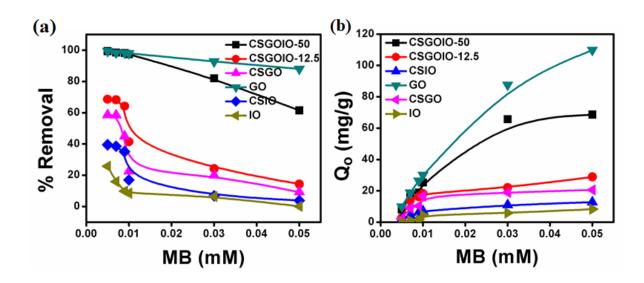
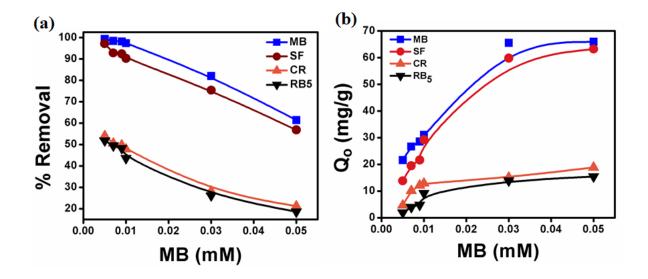




Figure S6. (a) % removal and (b) adsorption capacity of different adsorbents for MB. [Initial MB concentration 0.005 - 0.05 mM, adsorbent dosage 0.2 mg/mL, contact time 300 min, pH = 7.4, temperature 298 K].



**Figure S7.** (a) % removal and (b) adsorption capacity of CSGOIO-50 for cationic (MB, SF) and anionic (RB<sub>5</sub>, CR) dyes. [Initial MB concentration 0.005 - 0.05 mM, adsorbent dosage 0.2 mg/mL, contact time 300 min, pH = 7.4, temperature 298 K].

### References

- Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.
- Dhopte, K. B.; Zambare, R. S.; Patwardhan, A. V.; Nemade, P. R. Role of Graphene Oxide as Heterogeneous Acid Catalyst and Benign Oxidant for Synthesis of Benzimidazoles and Benzothiazoles. *RSC Adv.* 2016, *6*, 8164–8172.
- Singh, B.; Singh, B. Influence of graphene-oxide nanosheets impregnation on properties of sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization. *Int. J. Biol. Macromol.* 2017, 99, 699–712.