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Directed Acyclic Graphs = DAG

• A directed network with no cycles

• Defines a Partial Order on set of nodes

Order constrains direction of edges

• Citation networks 

e.g. papers, patents, court judgements, blogs

• Task scheduling

• Food webs

• Cryptocurrency Transactions (e.g. IOTA)

• Causal set approach to quantum gravity

e.g. Temporal Vertex Networks, 

vertices assigned a time, 

edges respect the arrow-of-time
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The Price model

• Node = scientific publication 

• Edge = from cited paper to citing paper

• Papers can only reference older papers, 

arrow-of-time

• Growing network model

= Directed version of Barabási-Albert model

T
IM

E(Science, 1965)
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• Add new node (t+1)

• Add m new edges to new node 

from existing node chosen using 

either

– with probability p use

Cumulative Advantage

= Preferential Attachment

Proportional to out-degree k(out)

or

– with probability (1-p) use 

Random Attachment

Price model
m=2 new edges

T
IM

E

New node (t+1)

existing

network

(1-p)

Random 

Attachment 

p

Preferential

Attachment
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Choosing an existing node with out-

degree k(out) with probability P

Price model

Π = 𝑝
𝑘(out)

𝐸(𝑡)
+ (1 − 𝑝)

1

𝑁(𝑡)

cumulative advantage = 

preferential attachment

random

attachment

New node (t+1)

m=2 new edges

T
IM

E

existing

network

(1-p)

Random 

Attachment 

p

Preferential

Attachment
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The Longest Path in Price Model

• The longest path is well-defined in a DAG

• Approximates geodesic in Minkowski

random DAGs [Brightwell & Gregory 91]

• Similar to “Main Path” of bibliometrics?

• Longest path length L ~ ℓ greedy path

length

Grey – SHORTEST =3

Green – GREEDY ℓ =4

Blue – LONGEST L= 5
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Longest Path

Longest Path (9)

 Geodesic

Shortest 

Path (4)

 Edges of Light 

Cones 

Minkowski PPP model
e.g. see Brightwell & Gregory 1991; 

Reid 2003; Evans and Clough 2016
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The Greedy Path in Price Model

DEFINITION

The next node on a Greedy Path 

is the closest in time

Conjecture:

Longest path length L ~ ℓ greedy path length

lim
𝑁→∞

ℓ

𝐿
= 𝑐 < 1

Grey – SHORTEST =3

Green – GREEDY ℓ =4

Blue – LONGEST L= 5

* Known for Minkowski Space PPP [Brightwell & Gregory 91]
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The Master Equation for the length of the greedy path

𝑃 ℓ, 𝑡 + 1 = ෍

𝑠=1

𝑡

𝑃 ℓ − 1, 𝑠 Π(𝑚𝑎𝑥)(𝑡, 𝑠)

ℓ(𝒕) = Length of greedy path 

from source node t=1

to node t

Probability node at time (t+1) has length ℓ

1

2

4

3

5
New node (t+1) = 5

m=2 

new 

edges

existing

networks=3

next node on

greedy path to 5

Π(𝑚𝑎𝑥)(𝑡, 𝑠) = Probability s is

largest time connected to t
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The Master Equation for the length of the greedy path

𝑃 ℓ, 𝑡 + 1 = ෍

𝑠=1

𝑡

𝑃 ℓ − 1, 𝑠 Π(𝑚𝑎𝑥)(𝑡, 𝑠)

The Longest Path in the Price Model

ℓ(𝒕) = Length of greedy path from source node t=1 to node t

Π(𝑚𝑎𝑥)(𝑡, 𝑠) = Π≤ 𝑡, 𝑠
𝑚

− Π≤ 𝑡, 𝑠 − 1
𝑚

Probability node

at time (t+1)

has length ℓ

Probability that 

closest node chosen 

at time (t+1) is s

Π≤ 𝑡, 𝑠 =෍
𝑟=1

𝑠

Π 𝑡, 𝑟cdf of attachment probability
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The Generating Function solution

𝐺 𝑧, 𝑡 = ෍

𝑧=0

∞

𝑧ℓ𝑃(ℓ, 𝑡)

𝐺 𝑧, 𝑡 = ෑ

𝑠=1

𝑡−1

𝑧 + (1 − 𝑧)
𝑠 − 1 + 𝑝

𝑠

𝑚

Simple linear form for attachment probability P allows for exact solution 

at finite time within mean field approximation.
Generating function is a product of m Gamma function ratios
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The Average Greedy Path Length

lim
𝑡→∞

ℓ 𝑡 = 𝑚 ҧ𝑝 ln 𝑡

−𝑚 ҧ𝑝 𝜓 𝑚 ҧ𝑝 + 1 +σ𝑛=2
𝑚 𝑚

𝑛
−1 𝑛−1 ҧ𝑝 𝑛𝜉 𝑛

+ 𝑂(𝑡−1)

m=

number of new 

edges at each 𝑡

𝑝 = 1 − 𝑝 probability to connect 

to existing nodes using random 

attachment

digamma function
Riemann’s zeta function
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The Greedy Path Length Distribution

lim
𝑡→∞

ℓ 𝑡 = 𝑚 ҧ𝑝 ln 𝑡 + O(1)

m=

number of new 

edges at each 𝑡

𝑝 = 1 − 𝑝 probability to connect 

to existing nodes using random 

attachment

Average:

Distribution:   BINOMIAL in long time limit
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Random Attachment gives Longest Path

2 edges added 

using Pref. Attach.

3 Edges added using 

Random Attach.

Pref. Attach. 

edges never on 

longest path

Random Attach. 

evenly distributed

m=5, p=2/5
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Numerical Example

𝑁 = 108

𝑚 = 5
ҧ𝑝 = 0.375

Average over 100 runs

𝑎obs
𝑎theo

= 0.96

Greedy path length scales 

very close to prediction: 

For the longest path the slope 

is more than twice as large as 

for the greedy path: 

𝑎(𝐿)

𝑎(ℓ)
= 2.37

ℓ 𝑡 = 𝑎 ln 𝑡 − 𝑏
P

a
th

 L
e
n
g
th

t
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Numerical Results

Greedy path ℓ scales as 𝑚ഥ𝑝 ln(t) 

greedy

longest

m+p/2

Fit to 𝑎 ln 𝑡 + b

𝑎

𝑚𝑝

Numerical errors 

are smaller than 

symbols
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Numerical Results

Longest path 𝐿 ≈ twice ℓ

m+p/2

Fit to 𝑎 ln 𝑡 + b

𝑎𝑙𝑜𝑛𝑔𝑒𝑠𝑡

𝑎𝑔𝑟𝑒𝑒𝑑𝑦

Numerical errors 

are smaller than 

symbols
m=2

m=6

p increasing
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Summary
Tim Evans, 

Lucille Calmon, 

Vaiva Vasiliauskaite

arXiv:1903.03667
Slides at
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DOI: 10.6084/m9.figshare.9933806

• An analytical solution for greedy 

path length in the Price model

• The length of longest and greedy 

paths in the Price model scale as 

log(N) in a network of N nodes

• The analytical and numerical 

results in excellent agreement.

The arrow-of-time inherent in growing network 

models produces new distinctive features.

http://arxiv.org/abs/1903.03667
http://bit.ly/2oR62sI
http://doi.org/10.6084/m9.figshare.9933806


The Longest Path in the Price Model 19 Tim EVANS, Imperial College

Extra Slides
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The second-to-leading order term

No clear scaling pattern

ℓ 𝑡 = 𝑎 ln 𝑡 − 𝑏
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Initial graph effect

Greedy path ℓ scales as 𝑚 ҧ𝑝 Longest path 𝐿 ≈ twice ℓ

Just a shift in the constant 
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