
exascaleproject.org

An Introduction to Software Licensing

David E. Bernholdt
Oak Ridge National Laboratory

James Willenbring, Michael A. Heroux
Sandia National Laboratories

Better Scientific Software Tutorial
SC19, Denver, Colorado

See slide 2 for
license details

2

Disclaimer, License, Citation and Acknowledgements
Disclaimers
• This is not legal advice (TINLA). Consult with true experts before making any consequential decisions
• Copyright laws differ by country. Some info may be US-centric

License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Michael A. Heroux,

and Jared O’Neal, Better Scientific Software tutorial, in SC ‘19: International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver, Colorado, 2019. DOI:
10.6084/m9.figshare.10114880

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…
Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND NO SAND2017-5474 PE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.10114880

3

Bottom line up front

How you choose to license your software should be viewed as a tool to help
accomplish your goals for that software.

There is no universal “right answer”!

The answer may not be your decision.

This tutorial will present common terminology, and examples of some of the
considerations that might go into choosing a license.

The intent is to get you thinking, not to give you answers.

4

Some terminology and background

5

Copyright, patents, trademarks, and licenses

• Copyright grants the creator of an original work exclusive rights to its use and
distribution, including limits on derivative works

• A patent grants the inventor of something new, useful, and non-obvious the
rights to its production, use, and distribution

• A trademark is a sign, design, or expression which identifies products or
services from a particular source, as distinguished from other sources

• Licenses are used to transfer (selected) rights in a work, invention, or mark from
one party to another
– Software licenses are mostly about copyright, but can contain clauses on patents and

trademarks too

6

Your software starts out copyrighted

• Under the law, the software you write is subject to copyright on creation
– You don’t have to do anything special to claim copyright
– Unless you specify some license, all rights are reserved to the owner of the copyright

• The copyright owner may be you, or your employer
– “Work for hire” (i.e. as part of your job) is probably owned by your employer. Employment

contracts often make IP rights explicit.
– Question 1: Who owns the rights in the work you create?
– Homework: Find out!
– If your employer owns the copyright, you probably have to get formal permission to license

and distribute your software

• Exception: Works created by the US government cannot be copyrighted
– They are considered to be in the public domain

• Comment: Originally to ensure public access to the US legal code

7

The licensing spectrum

All Rights Reserved Public Domain

Proprietary or
Closed Licenses

Free or Open
Licenses

Free vs Open Source?
• “Free” in licensing discussions should refer strictly to

“freedom” (to do certain things with the software)
• Often gets conflated with “free as in beer”, muddling the

discussion. Hence some prefer term “open source”
Major names in Free/Open Source Software:
• Free Software Foundation (FSF) http://fsf.org/licensing
• Open Source Initiative (OSI) http://opensource.org

Copyleft Permissive

Common misconception:
Nothing in the definition of
free or open source software
prevents you from making
money from it! (more later)

http://fsf.org/licensing
http://opensource.org/

8

Defining free software: The four freedoms
From the Free Software Foundation

• The freedom to run the program for any purpose
• The freedom to study how the program works, and change it so it does your

computing as you wish
– Access to the source code is a precondition for this

• The freedom to redistribute copies so you can help your neighbor
• The freedom to distribute copies of your modified versions to others. By

doing this you can give the whole community a chance to benefit from your
changes
– Access to the source code is a precondition for this

The OSI has a definition which amounts to the same thing, for most purposes

9

Permissive vs copyleft OS licenses

Permissive
• Licensee can distribute

derivative works as they see fit
– Relicensing of derivatives is

allowed
– Including proprietary licenses

• Examples
– Apache License
– MIT License
– BSD License

Copyleft
• Licensee must distribute

derivative works as open source
– Also referred to as “restrictive” or

“viral”

• Examples
– GPL (v2 and v3)
– LGPL

Note: Derived works may be held private and never released

10

What is a derivative work?

• A derivative work is an expressive creation that includes major copyright-
protected elements of a previously created first work (Wikipedia)

• Basically: modifications to someone else’s software
• But what about linking to a library? (Statically vs dynamically?) Interacting via

pipes? Use as a component in a coupled multiphysics application?
– Opinions differ
– FSF (GPL) considers everything in a single executable to be a derived work (source of “viral”

label)
– LGPL created for libraries – says linking not considered derived work
– Matters less for permissive licenses
– Leads to concerns over “compatibility” in combining software under different licenses (more

later)

11

Test: Is this an open source license?
(A real-world example)

In order to acquire access to the code sources, the recipient agrees:

1. to compile/use the XYZZY source code AS IS without modification; users
however are welcome to request changes, or to contribute modifications subject
to approval of the authors;

2. if the copy of the XYZZY downloaded by the authorized user is made available
to third parties, to ensure that the user agreement is followed by the third parties;

3. to send a one-time email to xyzzy@example.com describing planned research
using that module

4. prior to publication, to email a draft of the article/letter/note to
xyzzy@example.com

5. to include in published results or presentations the proper code name(s) and
appropriate references.

12

Answer: Is this an open source license? No
(A real-world example)

In order to acquire access to the code sources, the recipient agrees:

1. to compile/use the XYZZY source code AS IS without modification; users
however are welcome to request changes, or to contribute modifications subject
to approval of the authors;

2. if the copy of the XYZZY downloaded by the authorized user is made available
to third parties, to ensure that the user agreement is followed by the third parties;

This violates the freedom of being able to distribute copies of your modified
version of the code to others
Perhaps they want to impose some measure of “quality control” over
modifications? Maybe they’ve had problems in the past with users distributing
modified code with errors that are believed to reflect poorly on the original code?
Possible alternative: Some open source licenses include a requirement that
derivatives must be clearly distinguished from the original (e.g., different name)

13

Choosing a license

14

Considerations in choosing a license
• What rights do you want to retain or grant?

– Who can use the program? (proprietary vs open)
– Can users see the source code? (proprietary vs open)
– Can users modify the source code? (proprietary vs open)
– Can the users redistribute original or modified code? (proprietary vs open)
– Can modified code be relicensed? (permissive vs copyleft)

• Compatibility with software under other licenses
– Permissive licenses have fewer issues
– http://www.fsf.org/licensing/

• Labeling of derived works
– Derived works must be identified

differently than original work

• Patent grant/retaliation
• Expectations of the community you want

to engage?

Use an existing
free/open source
license rather than
inventing a new one!

FSF and OSI certify
many existing licenses
(~80) as meeting their
criteria

15

Popular OSI-approved licenses

License Type GPL-
Compatible

Patent
Grant

Apache License 2.0 Permissive v3,not v2 yes
BSD 2-Clause and 3-Clause licenses Permissive yes silent
GNU General Public License (GPL) v3 Copyleft yes yes
GNU Library or "Lesser" General Public License (LGPL) v3 Weak Copyleft yes yes

MIT license (MIT) Permissive yes silent
Mozilla Public License 2.0 Permissive yes yes
Common Development and Distribution License Permissive no yes
Eclipse Public License 2.0 Weak Copyleft yes yes
Affero General Public License v3 (network use == distribution) Copyleft yes yes

16

ChooseALicense.com
(by GitHub)

• Primarily a decision-tree approach to
helping you choose a license

• But backed by a repository with
analysis of 30+ widely used licenses

• The easiest way to access the whole
list is to go to the “Appendix”
– https://choosealicense.com/appendix/
– A portion of the Appendix is shown at left

• This is implemented in a GitHub
repository with Jekyll, and open to pull
requests!

https://choosealicense.com/appendix/

17

Consideration: Software business models
Approach Proprietary Copyleft Permissive

Sell the software yes yes yes
“Fremium” or “dual licensing” allows free use by some,
paid by others

yes yes yes

Relicense to proprietary n/a no yes
Sell convenience, e.g., packaging, installation media, pre-
compiled executables

yes yes yes

Sell professional services around the software, e.g.,
training, technical support, consulting

yes yes yes

Sell custom development services, e.g., proprietary
extensions, accelerated development

yes yes yes

Sell software-as-a-service (SaaS) yes yes yes
Sell the research yes yes yes

18

Consideration: Don’t want others to profit from my open source
software
• A permissive license allows someone else to take derivatives proprietary
• A copyleft license will prevent that
But there may be other considerations…
• What if you do want a commercial entity to use your software?

– Exposure, broader distribution
• Copyleft is scary to many commercial entities

– How far does the viral license reach into other parts of the product?
– Legal opinions differ, no case law yet

• Lawyers will tend toward a conservative answer: avoid copyleft software
• Experience: some companies will not consider working with copyleft software
• Experience: some companies consider staff working on copyleft software to be “contaminated” and

will not allow them work on other software

• Even in non-commercial environments, copyleft may raise compatibility concerns

19

The software-as-a-service conundrum

• Many software-as-a-service (SaaS) products make extensive use of open source
software

• Some software developers don’t like the possibility that another company can
trivially monetize (other people’s) software by turning it into a SaaS product
– It may compete with their own SaaS offerings
– The SaaS provider can keep enhancements proprietary and while making the benefits

available in the SaaS product

• Attempts to curb this via licensing result in licenses that are not open source
– In some cases, key modules are changed to proprietary licenses, while others remain open

• See: https://arstechnica.com/information-technology/2019/10/is-the-software-
world-taking-too-much-from-the-open-source-community/

https://arstechnica.com/information-technology/2019/10/is-the-software-world-taking-too-much-from-the-open-source-community/

20

Consideration: Protecting my intellectual property

• If I make my source code freely available, then others can use the novel ideas
embodied in it to “scoop” me

• Proprietary licenses (obviously) allow you to keep source private
• Open source licenses don’t require that you make derived works public, only that

if you do, you make the source available
• Delay public release until you’ve had a reasonable chance to exploit the results

of your work
– Until initial papers are published
– Fixed time period (e.g., one year)

• A similar compromise is sometimes used in academic publishing: sponsor may want open access but
allow publisher a proprietary exploitation period (often 1 year) before making it openly available

21

Patent clauses in software licenses

• Software patents can be a serious consideration today
– Regardless of philosophical arguments for or against, software patents are a reality
– If you’re using a piece of software (even open source) that is covered by a patent and you

don’t have a license for the patent, you’re infringing
– Not being aware of a patent does not excuse the infringement
– You can be sued for monetary damages

• Many common software licenses are silent on patents
– Especially older ones (e.g., BSD, GPLv2)

• Some newer licenses do include patent clauses
– Usually a royalty-free license to use patented content (e.g. Apache 2.0, GPLv3)
– Some explicitly say that they do not grant any patent rights (e.g., BSD 3-Clause Clear)
– Or retaliation clauses: “if you sue me for patent infringement, you can’t use this software”

22

License compatibility

• In practice, most software is a combined work of some kind
– Multiple packages with (potentially) different licenses (e.g. main package and dependencies)
– Do the license terms allow the packages to be distributed (or even used) together?
– Is the combined work considered a derived work?

• Different licenses have different concepts of what constitutes a derived work and
how derivatives may or must be licensed
– Example: strong copyleft considers linking to produce a derived work, and requires derivatives

be distributed under the same license as the original

• There are different interpretations of what licenses are compatible
– Little litigation so far

• Most significant concerns tend to be about distribution of software
– Larger projects starting to pay more attention to his

23

License compatibility in pictures

One view of license compatibility between common FOSS software licenses. The arrows denote a
one directional compatibility, therefore better compatibility on the left side than on the right side.
By David A. Wheeler - http://www.dwheeler.com/essays/floss-license-slide.html, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=41060008
via https://en.wikipedia.org/wiki/License_compatibility

http://www.dwheeler.com/essays/floss-license-slide.html
https://commons.wikimedia.org/w/index.php?curid=41060008
https://en.wikipedia.org/wiki/License_compatibility

24

Considerations favoring open source

• Challenges of managing and archiving the paperwork associated with proprietary
licenses

• Explicit license agreements can inhibit (legal) use of software
• I want to support peer review and reproducibility in science
• My sponsor requires that I release my software as open source
• I believe that the results of publicly-funded research should be publicly available
• I want to build a self-sustaining community around my software

25

A few more points about our real-world example

In order to acquire access to the code sources, the recipient agrees:

1. to compile/use the XYZZY source code AS IS without modification; users
however are welcome to request changes, or to contribute modifications subject
to approval of the authors;

2. if the copy of the XYZZY downloaded by the authorized user is made available to
third parties, to ensure that the user agreement is followed by the third parties;

3. to send a one-time email to xyzzy@example.com describing planned research
using that module

4. prior to publication, to email a draft of the article/letter/note to
xyzzy@example.com

5. to include in published results or presentations the proper code name(s) and
appropriate references.

26

Why are these clauses included?

4. prior to publication, to email a draft of the article/letter/note to
xyzzy@example.com

An attempt to address prior experience with users misusing the code and producing
publications with erroneous results, thus reflecting poorly on the code used to
obtain them.
Creates a burden on the code owners.
Not sure how strongly they attempt to enforce this.

5. to include in published results or presentations the proper code name(s) and
appropriate references.

A natural desire for the software to be credited in papers where it is used.
Does not violate free/open source software principles.
Some licenses require attribution, but usually only in source code.
• Creative Commons licenses can include an attribution clause (see later slide)
Possible alternative: CITATION file?

27

Some related matters

28

Software licenses can be changed

• You may start out using one license for your code and later discover
unanticipated problems

• Or maybe your goals change
But changing licenses is not necessarily easy
• (Generally) each and every contributor to a code holds a copyright interest in it
• Each and every contributor must be contacted and agree to the relicensing

– In practice, different institutions may have different ideas of “due diligence”
– Keep good records of contributors; try to keep them current

• Contributor license agreements (CLAs) and contribution transfer agreements
(CTAs) can simplify this
– But present different challenges (see upcoming slide)

29

Changing license example #1

• Organization owns copyright for several software packages
– Licensed LGPL

• Authorship agreements were signed at time copyright was asserted
• Several packages contained third-party source files

– A variety of licenses

• Many packages received contributions from other authors since initial copyright
assertion

• Many prospective (particularly industry) customers were wary of LGPL
– Decision was made to relicense to BSD

30

Changing license example #1 (continued)

• Contributions were deemed to be substantive or “bug fix”
– This was a distinction suggested by a lawyer, every situation will be different

• All third-party software was judged to have a compatible or incompatible license
• Most packages were eventually relicensed, a few were not
• A contributor agreement was adopted after this

– Proved challenging in practice and is largely not used.

• Considered building an agreement into pull-request template
– Not clear if that is enforceable
– Often people do not have the ability to agree on behalf of their employer

31

Changing license example #2

• Another case of moving to a less restrictive license
• Effort was made to obtain agreement from all 400+ contributors
• This was successful, except one contributor had passed away

– His contribution was removed from the code base

• This was a more careful and exhaustive effort than the first example
– Not implying it is better or worse

32

Accepting code contributions
• Code contributions are implicitly offered under the current license
• Some projects require a contributor agreement

– Contributor license agreement (CLA) defines the terms between the contributor and the
maintainers of the software

– Contributor transfer agreement (CTA) transfers copyright ownership from contributor to
maintainers

• Why?
– Clarify or make explicit terms of contribution (awareness by contributor)
– Obtain additional rights, e.g., relicensing, patents, etc.
– Ensure “clear title” to make the contribution

• Why not?
– Creates “barriers to entry” – may discourage potential contributors
– Legal agreements that may require official review and signature

• Experience: Lost funding for a project because lawyers wouldn’t agree to terms of a CLA
• See Resources slide for several viewpoints

33

Managing copyright notices in software

• All this does no good if you don’t make the license you’ve chosen clear to all
• Need to assert copyright and make license terms explicit
• Do these centrally or in every file?

– Single COPYING or LICENSE file per package (or directory)
– In comments at the top of the file
– Advantages and disadvantages to each

• Best practice: do both
– Intelligently, to make it as easy to maintain as possible – script updates!

• Authorship (separate, but related)
– Version control is best way to maintain accurate records of authorship

• See Managing Copyright Information within a Free Software Project for details
• Also Software Package Data Exchange (SPDX, emerging standard)

http://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://spdx.org/

34

Open licensing of non-software artifacts

• Creative Commons is a family of licenses analogous to open source, but for
things other than software

• License variants
– CC BY (Attribution)
– CC BY-SA (Attribution-ShareAlike)
– CC BY-ND (Attribution-NoDerivs)
– CC BY-NC (Attribution-NonCommercial)
– CC BY-NC-SA (Attribution-NonCommercial-ShareAlike)
– CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)

• CC0 Public Domain Dedication
– Indicates intent to place artifact in the public domain
– Doesn’t satisfy legal requirements in all jurisdictions

• See https://creativecommons.org

https://creativecommons.org/

35

Resources
• https://opensource.org (OSI)
• http://www.fsf.org/licensing/ (FSF)
• https://choosealicense.com, https://choosealicense.com/appendix/ (GitHub)
• Software Freedom Law Center (SFLC)
• https://en.wikipedia.org/wiki/License_compatibility
• Managing Copyright Information within a Free Software Project
• Software Package Data Exchange (SPDX, emerging standard)
• http://contributoragreements.org/, https://developercertificate.org/ and

http://ebb.org/bkuhn/blog/2014/06/09/do-not-need-cla.html
• https://creativecommons.org (CC)
• US DOE ASCR (open source) software policy
• Your institution’s Technology Transfer Office (or equivalent)
• An Intellectual Property Lawyer (knowledgeable in software)
• Talk to colleagues and learn from their experiences

https://opensource.org/
http://www.fsf.org/licensing/
https://choosealicense.com/
https://choosealicense.com/appendix/
http://softwarefreedom.org/
https://en.wikipedia.org/wiki/License_compatibility
http://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://spdx.org/
http://contributoragreements.org/
https://developercertificate.org/
http://ebb.org/bkuhn/blog/2014/06/09/do-not-need-cla.html
https://creativecommons.org/
https://science.energy.gov/%7E/media/ascr/pdf/research/docs/Doe_lab_developed_software_policy.pdf

36

Additional resources recommended by others (1/3)

I have not yet studied these carefully myself, but I trust the people who
recommend them.

• Neil Chue Hong (Software Sustainability Institute) from his tutorial An
Introduction to Software Licensing (yes, the same title as this presentation, but
developed completely independently)
– The Whys and Hows of Licensing Scientific Code
– A Quick Guide to Software Licensing for the Scientist-Programmer
– The Legal Side to Open Source
– The International Free and Open Source Lawbook
– qLegal: advice for tech start-ups + entrepreneurs
– tl;dr legal: Software Licenses in Plain English
– Open Source Software Watch

https://www.software.ac.uk/about/staff/person/neil-chue-hong
https://softwaresaved.github.io/software-licensing-workshop/#/15
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002598
https://opensource.guide/legal/
http://ifosslawbook.org/
http://www.qlegal.qmul.ac.uk/
https://tldrlegal.com/
http://oss-watch.ac.uk/

37

Additional resources recommended by others (2/3)

I have not yet studied these carefully myself, but I trust the people who
recommend them.

• Todd Gamblin (LLNL)
– License compatibility resources

• Open Source Licenses and their Compatibility
• Which Licenses May Not be Included within Apache Products?

– (Re-) Licensing considerations of various organizations
• LLVM Contemplates Relicensing, LLVM Relicensing Effort
• HEP Software Foundation licensing working group, particularly:

– https://hepsoftwarefoundation.org/organization/2017/02/21/licensing.html
– https://hepsoftwarefoundation.org/organization/2018/05/09/licensing.html included this Update on Software

Licensing
• EasyBuild: GPLv2 licensing is a big issue, consider relicensing to BSD
• GEANT Intellectual Property Rights Policy

https://people.llnl.gov/gamblin2
https://janelia-flyem.github.io/licenses.html
https://www.apache.org/legal/resolved.html#category-x
https://lwn.net/Articles/701155/
https://llvm.org/foundation/relicensing/
https://hepsoftwarefoundation.org/activities/licensing.html
https://hepsoftwarefoundation.org/organization/2017/02/21/licensing.html
https://hepsoftwarefoundation.org/organization/2018/05/09/licensing.html
https://indico.cern.ch/event/727095/contributions/2992610/attachments/1647248/2633145/HSF_Licensing_Intro_2018-05-09.pdf
https://github.com/easybuilders/easybuild-framework/issues/335
https://geant3plus.archive.geant.net/About/Documents/GN3_10_325GEANTIPRPolicyv1.2_30SEP11.pdf

38

Additional resources recommended by others (3/3)

I have not yet studied these carefully myself, but I trust the people who
recommend them

• More from Todd Gamblin (LLNL)
– Patents in software licenses

• Why so little love for the patent grant in the MIT License?
• React’s New MIT License: The Circus Enters Its Third Ring
• GitLab freezes GraphQL project amid looming Facebook patent fears
• Rust: Rust license changing (very slightly), Why dual MIT/ASL2 license?

https://people.llnl.gov/gamblin2
https://opensource.com/article/18/3/patent-grant-mit-license
https://medium.com/@dwalsh.sdlr/reacts-new-mit-license-the-circus-enters-it-s-third-ring-2f1bf989a67f
https://www.theregister.co.uk/2017/09/20/gitlab_suspends_graphql_project_over_facebook_license_terms/
https://mail.mozilla.org/pipermail/rust-dev/2012-November/002664.html
https://doc.rust-lang.org/1.4.0/complement-project-faq.html#why-dual-mit/asl2-license?

	An Introduction to Software Licensing
	Disclaimer, License, Citation and Acknowledgements
	Bottom line up front
	Some terminology and background
	Copyright, patents, trademarks, and licenses
	Your software starts out copyrighted
	The licensing spectrum
	Defining free software: The four freedoms
	Permissive vs copyleft OS licenses
	What is a derivative work?
	Test: Is this an open source license?�(A real-world example)
	Answer: Is this an open source license? No�(A real-world example)
	Choosing a license
	Considerations in choosing a license
	Popular OSI-approved licenses
	ChooseALicense.com �(by GitHub)
	Consideration: Software business models
	Consideration: Don’t want others to profit from my open source software
	The software-as-a-service conundrum
	Consideration: Protecting my intellectual property
	Patent clauses in software licenses
	License compatibility
	License compatibility in pictures
	Considerations favoring open source
	A few more points about our real-world example
	Why are these clauses included?
	Some related matters
	Software licenses can be changed
	Changing license example #1
	Changing license example #1 (continued)
	Changing license example #2
	Accepting code contributions
	Managing copyright notices in software
	Open licensing of non-software artifacts
	Resources
	Additional resources recommended by others (1/3)
	Additional resources recommended by others (2/3)
	Additional resources recommended by others (3/3)

