
exascaleproject.org

Git Workflows

Jared O’Neal
Mathematics and Computer Science Division
Argonne National Laboratory

Better Scientific Software Tutorial
SC19, Denver, Colorado

See slide 2 for
license details

2 SC19, Monday November 18, 2019

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation for the overall tutorial is: David E. Bernholdt, Anshu Dubey, Michael A.

Heroux, and Jared O’Neal, Better Scientific Software tutorial, in SC ‘19: International Conference for
High Performance Computing, Networking, Storage and Analysis, Denver, Colorado, 2019. DOI:
10.6084/m9.figshare.10114880

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• Anshu Dubey, Klaus Weide, Saurabh Chawdhary, Carlo Graziani, and Iulian Grindeanu
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne,
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.10114880

3 SC19, Monday November 18, 2019

Goals

Development teams would like to use version control to
collaborate productively and ensure correct code
• Understand challenges related to parallel code development via distributed version

control

• Understand extra dimensions of distributed version control & how to use them
– Local vs. remote repositories
– Branches
– Issues, Pull Requests, & Code Reviews (Previous talk)

• Exposure to workflows of different complexity

• What to think about when evaluating different workflows

• Motivate continuous integration

4 SC19, Monday November 18, 2019

Distributed Version Control System (DVCS)

Two developers collaborating via Git
• Local copies of master branch synched to origin
• Each develops on local copy of master branch
• All copies of master immediately diverge
• How to integrate work on origin?

5 SC19, Monday November 18, 2019

DVCS Race Condition

Integration of independent work occurs when
local repos interact with remote repo
• Alice pushes her local commits to remote

repo first
• No integration conflicts
• No risk
• Alice’s local repo identical to remote repo

6 SC19, Monday November 18, 2019

Integration Conflicts Happen

Bob’s push to remote repo is rejected
• Alice updated code in commit D
• Bob updated same code in commit E
• Alice and Bob need to study conflict and decide

on resolution at pull (time-consuming)
• Possibility of introducing bug on master branch

(risky)
loops.cpp (commit C) loops.cpp (commit D) loops.cpp (commit E)

7 SC19, Monday November 18, 2019

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?
• What if team members works on different parts of the code?
• Working directly on master

https://www.atlassian.com/git/tutorials/comparing-workflows

8 SC19, Monday November 18, 2019

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

9 SC19, Monday November 18, 2019

Control Branch Complexity

Workflow policy is needed
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
– Can multiple people work on one branch?

10 SC19, Monday November 18, 2019

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

11 SC19, Monday November 18, 2019

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

12 SC19, Monday November 18, 2019

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

13 SC19, Monday November 18, 2019

Feature Branches Summary
• Multiple, parallel lines of development possible on single local repo

• Easily maintain local master up-to-date and useable

• Integration with rebase on local repo is safe and can be aborted

• Testing before updating local and remote master branches

• Rebase is advanced Git command
– Rebase can cause complications and should be used carefully.

• Hide actual workflow
– History in repo does not represent actual development history
– Less communication
– Fewer back-ups using remote repo

• Does it scale with team size? What if team integrates frequently?

• Commits on master can be broken

• See Atlassian/BitBucket for a richer Feature Branch Workflow

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://www.atlassian.com/git/tutorials/comparing-workflows

14 SC19, Monday November 18, 2019

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

15 SC19, Monday November 18, 2019

Current FLASH5 Workflow

Test-driven workflow

• Feature branches start and end with master

• All feature branches are merged into development
for integration & manual testing

• All feature branches are then merged into staged
for full, automated testing

Workflow designed so that

• All commits in master are in
staged & development

• infinite branches don’t diverge

• Merge conflicts first exposed
on development

16 SC19, Monday November 18, 2019

Branch Rules

Why base feature branches off master?
• Start from correct, verified commit
• Clean and simple to learn/enforce
• Isolate master from integration environment

Motivates more rules
• Development never merged into

another branch
• Staged never merged into

another branch

17 SC19, Monday November 18, 2019

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?

https://github.com/nvie/gitflow

18 SC19, Monday November 18, 2019

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable
2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review

http://scottchacon.com/2011/08/31/github-flow.html

19 SC19, Monday November 18, 2019

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

20 SC19, Monday November 18, 2019

Considerations for Choosing a Git Workflow

Want to establish a clear set of polices that

• results in correct code on a particular branch (usually master),

• ensures that a team can develop in parallel and communicate well,

• minimizes difficulties associated with parallel and distributed work, and

• minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary

	Git Workflows
	License, Citation and Acknowledgements
	Goals
	Distributed Version Control System (DVCS)
	DVCS Race Condition
	Integration Conflicts Happen
	Our First Workflow
	Branches
	Control Branch Complexity
	Feature Branches
	Feature Branch Divergence
	Feature Race Condition
	Feature Branches Summary
	More Branches
	Current FLASH5 Workflow
	Branch Rules
	Git Flow
	GitHub Flow
	GitLab Flow
	Considerations for Choosing a Git Workflow

