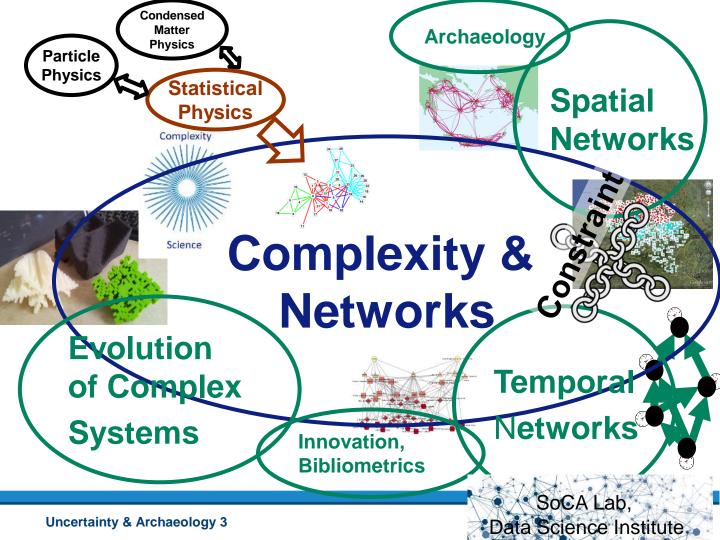
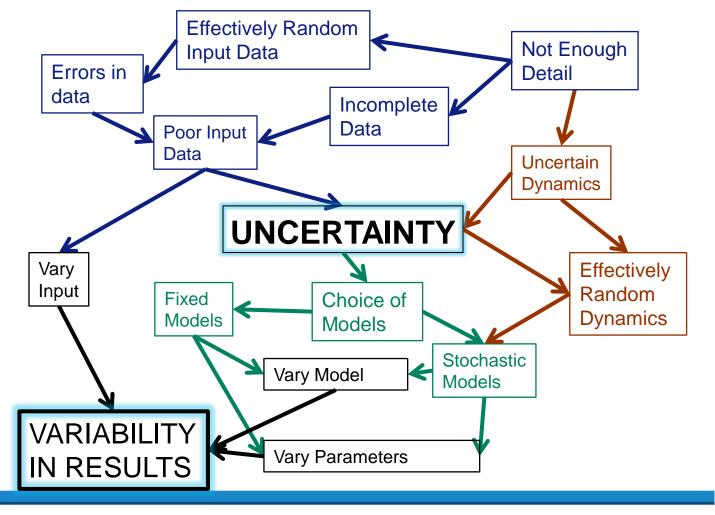
Imperial College London

Complexity Science and Past Complex Systems, a TORCH PastNet workshop, Oxford 18th November 2019 Slides at http://doi.org/19.6084/m9.figshare.10316723

was Thebes Really Necessary? Uncertainty in Spatial Modelling


Tim Evans

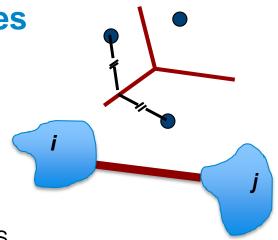

Uncertainty & Archaeology 1

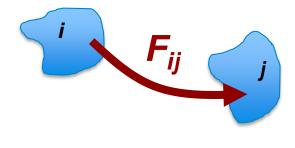
Introduction

- Uncertainty
- Spatial Modelling
- Example: Central Greece
- Missing Sites Examples

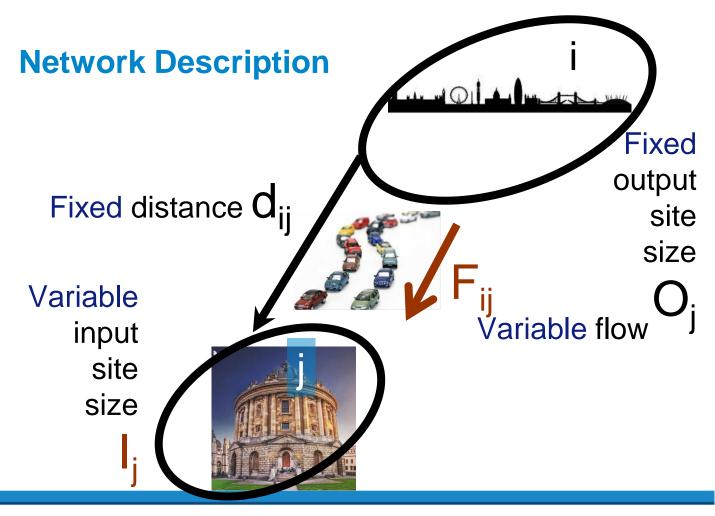
- Introduction
- Uncertainty
- Spatial Modelling
- Example: Central Greece
- Missing Sites Examples

Uncertainty & Archaeology 5

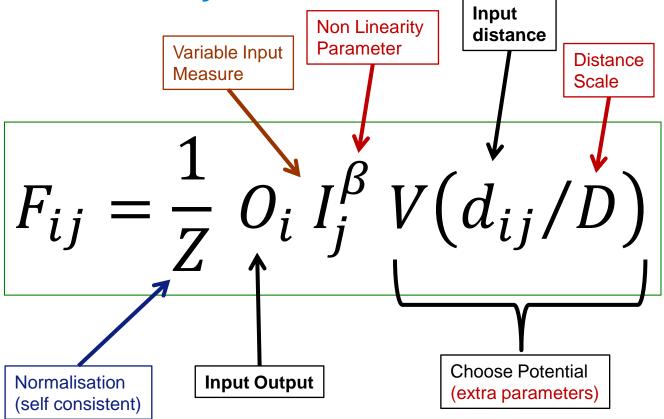

- Introduction
- Uncertainty
- Spatial Modelling
- Example: Central Greece
- Missing Sites Examples


Interactions between sites

- Boundaries between sites
- Model binary interactions
 ⇒ SPATIAL NETWORKS
- Model flows
 ⇒ SPATIAL INTERACTION MODELS


Could be exchange of:-

- Bulk Goods
- Elite goods
- Social Exchange
- Political Exchange



Uncertainty & Archaeology 7

Uncertainty & Archaeology 8

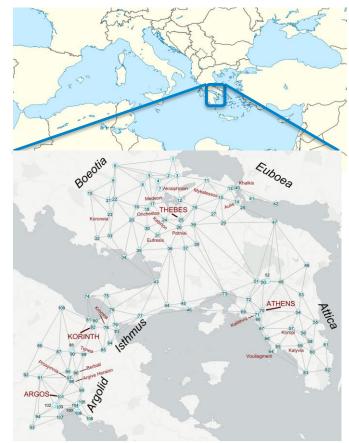
Retail Gravity Model

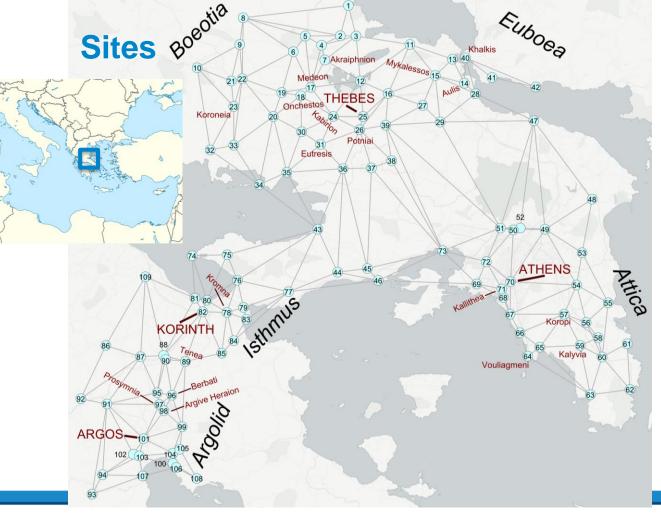
Uncertainty & Archaeology 9

- Introduction
- Uncertainty
- Spatial Modelling
- Example: Central Greece
- Missing Sites Examples

Should Thebes exist?

Thebes is one of the leading cities in classical Greece C5th BCE


Question: Was it inevitable that Thebes emerges as a regional centre due to its location?


Example of how one can add include when modelling.

- Early study **RW** = **Rihll & Wilson** 1987 & 1991
- Later study Evans & Rivers 2017

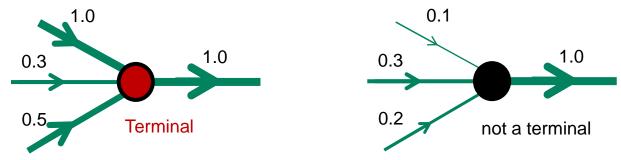
Data

- Same data set as RW Rihll and Wilson 1987, 1991 (RW87 & RW91)
- Late Geometric Period
- Part of central southern mainland Greece
 - Boeotia, Attica, Isthmus, Argolid
- RW aim to look at rise of unequal cities from equal sized settlements
 - Thebes, Athens, Corinth, Argos

Uncertainty & Archaeology 13

https://doi.org/10.6084/m9.figshare.868961

RW Procedure


- Take 109 important sites at start of period.
- Find the distances between these sites
- Assume all sites equally important initially
- Run the model to produce site importance
- Visualise and analyse

[Nystuen & Dacey 1961, Rihll & Wilson 1991]

Sparsification using Terminals

Rihll & Wilson define Terminal Sites

Terminal sites satisfy

Total Flow In > Largest Single flow out

More people owe you than you owe others

Terminals Dominant

Rihll & Wilson identify terminal sites as dominant sites emerging from equal sized ^{Ko} villages

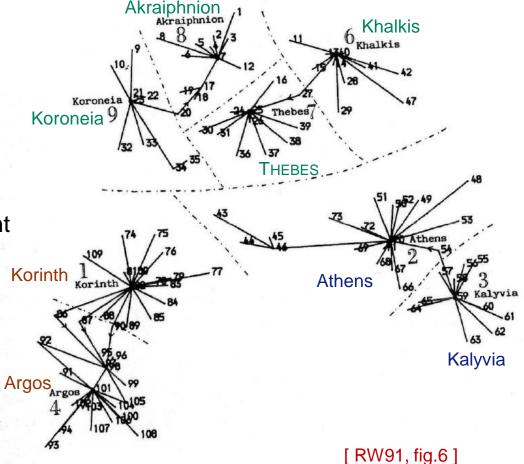
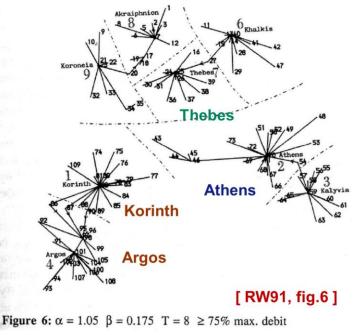



Figure 6: $\alpha = 1.05 \ \beta = 0.175 \ T = 8 \ge 75\%$ max. debit

Uncertainty & Archaeology 16

Uncertainty

- Rihll & Wilson looked at several parameter values but typically found similar results
 - Thebes and Athens always identified

- Korinth and Argos or close neighbours often identified
- Other centres also found in addition

Uncertainty in Results

- Remarkably stable key results
- Only qualitative assessment of uncertainty
- Only one form of distance potential used pure exponential $\exp(-d_{ij}/D)$
- No uncertainty in site locations of distances
- Unverifiable
 - no comprehensive list of site locations and distances used

until now

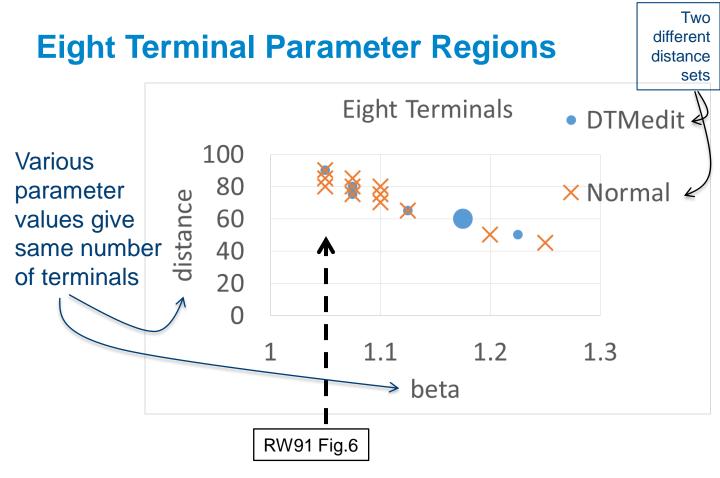
Evans & Rivers Procedure

- Take 109 important sites at start of period.
- Find the distances between these sites
- Assume all sites equally important initially
- Run the model to produce site importance
- Visualise and analyse
- Try moving locations slightly ×
- Try different definitions of distance ✓
- Try different Models ×
- Try Different Model Parameters ✓

Best match to RW91 Fig 6

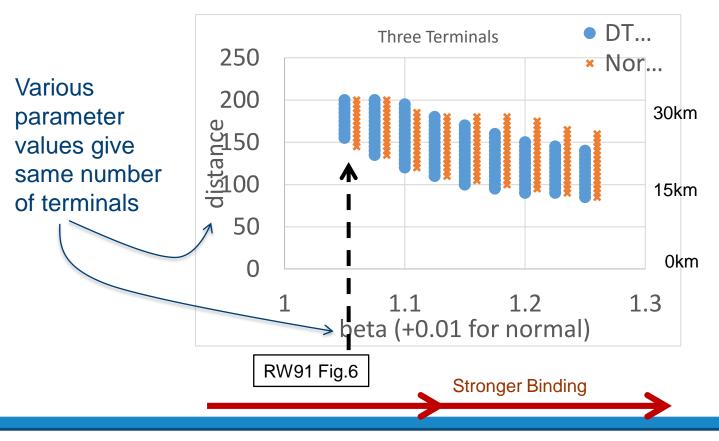
- Best estimate of RW site locations and distances
- Same *β=1.05*,
- Same exp potential
- vary distance **D**

⇒ same number of terminals 8

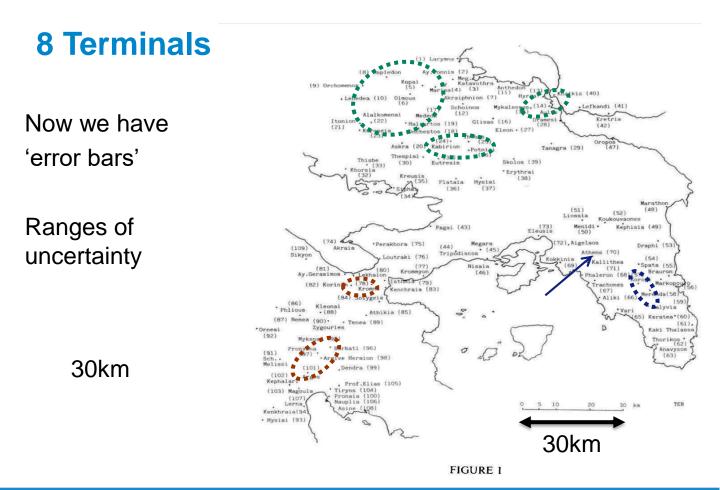

D=85 ≈ 14km

(34) (35)

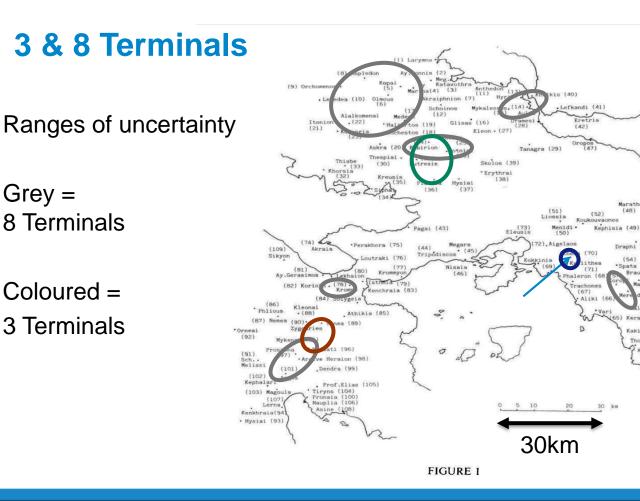
0


- 24 Kabirion
- 18 Onchestos
- 70 Athens
- 97 Prosymnia
- 57 Koropi
- 98 Argive_Heraion
- 78 Kromna
- 14 Aulis

Uncertainty & Archaeology 20



Uncertainty & Archaeology 21


Three Terminal Parameter Regions

Uncertainty & Archaeology 22

Uncertainty & Archaeology 23

Uncertainty & Archaeology 24

Tim Evans, Imperial College

Marathor (48)

Draphi (53)

*Spata (55

Brauron

(65) Keratea*(60

arkopo

tal SR

vuin

Kaki Thalass

Thorikos . (62)

Anavysos

TER

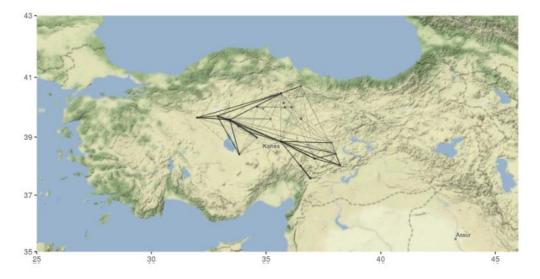
(63)

(59

(61)

(54)

Summary

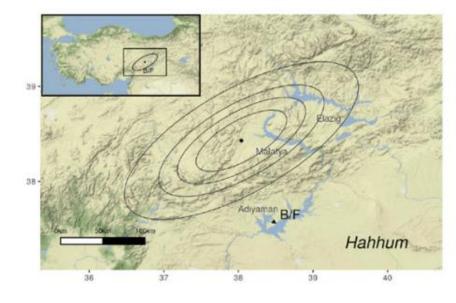

- Uncertainty should be reflected in results
- Should see "errors" variability measures
 - − Vary initial conditions ✓
 - Stochastic dynamics × (but ariadne/ERG)
 - − Vary parameters ✓
 - − Different Models ✓
- Illustration with Rihll and Wilson data (1987, 1991)

Related Slides: http://dx.doi.org/10.6084/m9.figshare.3840249

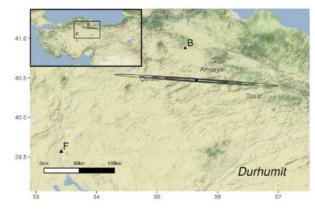
- Introduction
- Uncertainty
- Spatial Modelling
- Example: Central Greece
- Missing Sites Examples

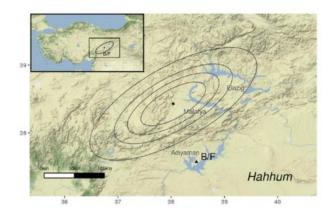
For example

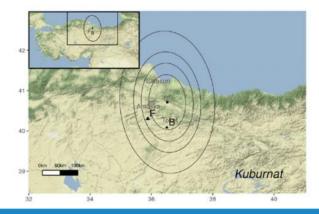
- Assyrian [Barjamovic et al, 2019]
- Minoan Crete, [Palliou & Bevan 2016]

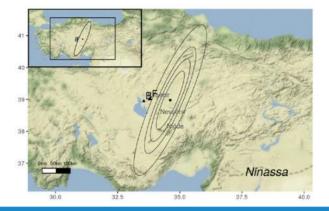


Assyrian Cities, Bronze age in Anatolia, Turkey


- 15 known sites, 10 unknown
- 198 Tablets with 227 itineraries


[Barjamovic et al, 2019]


- Assign locations to missing sites
- Flows modelled with form of the gravity model



- Interesting economic theory derivation
- Match to data on shipment counts
- NLLS estimators to optimise missing site locations
- Includes uncertainties (typical error 0.5° ~50km)

Uncertainty & Archaeology 30

Slides:10.6084/m9.figshare.9927080Summaryhttp://bit.ly/2mMc8Kx

- Use of modelling networks is increasing in archaeology
- Many models very simple but sufficient
- Role of geography relatively easy to study
- Comparing against finds much harder
- Many options remain to be explored

All my work done with Carl Knappett (Toronto) Ray Rivers (Imperial)

Page 31

Bibliography

- Barjamovic, G., Chaney, T., Cosar A and Hortacsu, A., 2019, "Trade, Merchants, and the Lost Cities of the Bronze Age," The Quarterly Journal of Economics, vol. 134, no. August 2019, pp. 1455–1503.
- Bevan, A., 2010. Political Geography and Palatial Crete, Journal of Mediterranean Archaeology 23.1, 27-54.
- Broodbank, C., 2000. An Island Archaeology of the Early Cyclades, CUP.
- Brookes, S. and Huynh, H. N., 2018. "Transport networks and towns in Roman and early medieval England: An application of PageRank to archaeological questions," Journal of Archaeological Science: Reports, 17, 477–490.
- Brughmans, T., 201. "Connecting the Dots: Towards Archaeological Network Analysis", Oxford Journal of Archaeology, Blackwell Publishing Ltd, 29, 277-303
- Cole, Ann, 2013.
- 'Travel and Communication in Anglo-Saxon England', Leverhulme Trust funded project
- 97 (2016), Collar, A, 2007. Network Theory and Religious Innovation Mediterranean Historical Review, 22, 149-162.
- Evans, T.S., 2004. Complex Networks, Contemporary Physics, 45, 455-474.
- Evans, T.; Knappett, C. & Rivers, R., Physical and Relational Networks in the Aegean Bronze Age ,in *Proceedings of The European Conference on Complex Systems*, J. Jost, F. R.-T. & Schuster, P. (*Eds.*), *ECCS*, 2006, 81. <u>http://dx.doi.org/10.6084/m9.figshare.750447</u>
- Evans, T., Knappett, C., & R. Rivers, 2009. Using statistical physics to understand relational space: a case study from Mediterranean prehistory, in D. Lane, S. van der Leeuw, D. Pumain & G. West (eds.), *Complexity perspectives in innovation and social change*: 451-79. Berlin: Springer Methodos Series. http://dx.doi.org/10.1007/978-1-4020-9663-1
- Evans, T.S., Knappett, C., & R.J. Rivers, 2012. Interactions in Space for Archaeological Models, Advances in Complex Systems 15, 1150009 (http://dx.doi.org/10.1142/S021952591100327X)
- Evans, T., Knappett, C., Rivers, R., 2013. Thirty Nine Minoan Sites, Figshare http://dx.doi.org/10.6084/m9.figshare.97395
- Evans T.S. and Rivers, R. 2017. "Was Thebes Necessary? Contingency in Spatial Modelling," Frontiers in Digital Humanities , **4**, 8. https://doi.org/10.3389/fdigh.2017.00008
- Evans, Tim (2013). Locations of 109 Archaic Greek settlements used in Rihll and Wilson 1987. figshare. Dataset. https://doi.org/10.6084/m9.figshare.868961
- Graham, S. 2006. Networks, Agent-Based Modeling, and the Antonine Itineraries. *The Journal of Mediterranean Archaeology*, 19, 45-64
 <u>http://www.equinoxjournals.com/JMA/article/2436</u>
- Hage, P. & Harary, F. 1991. Exchange in Oceania: a graph theoretic analysis, Clarendon Press.
- Harris B. and Wilson, A., 1978. "Equilibrium values and dynamics of attractiveness terms in production-constrained spatial-interaction models," Environment and Planning A, **10**, no. 4, pp. 371–388.
- Irwin 1983. Chieftainship, kula and trade in Massim prehistory in Leach, J. & Leach, E. (Eds.) The Kula: New Perspectives on Massim Exchange, Cambridge: CUP, 29-72.

Uncertainty & Archaeology 32

Bibliography

- Isaksen, L. 2006. Network Analysis of Transport Vectors in Roman Baetica, MSc Thesis, Univ. Southampton. <u>http://eprints.soton.ac.uk/204535/</u>
- Isaksen, L. 2008. The application of network analysis to ancient transport geography: A case study of Roman Baetica, Digital Medievalist, 4
 <u>http://www.digitalmedievalist.org/journal/4/isaksen/</u>
- Knappett, C., Evans, T. & R. Rivers, 2008. Modelling maritime interaction in the Aegean Bronze Age, *Antiquity* 82: 1009-24. <u>http://antiquity.ac.uk/ant/082/ant0821009.htm http://doi.org/10.1017/S0003598X0009774X</u>
- Knappett, C.; Evans, T. & Rivers, R., 2011. The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network, Antiquity, 85, 1008-1023. <u>http://antiquity.ac.uk/ant/085/ant0851008.htm ttp://doi.org/10.1017/S0003598X00068459</u>
- Ortúzar, J. d. D. & Willumsen, L. 1994. "Modelling Transport" Wiley.
- Paliou E. and Bevan A. 2016. "Evolving settlement patterns, spatial interaction and the socio-political organisation of late Prepalatial south-central Crete," Journal of Anthropological Archaeology, vol. 42, pp. 184–197.
- Renfrew, C. 1975. "Trade as action at a distance," in Ancient Civilization and Trade, J. A. Sabloff and C. C. Lamberg-Karlovsky, Eds. University of New Mexico Press, Albuquerque, pp. 3–59.
- Renfrew, C. 1981. "Space, Time and Man," Transactions of the Institute of British Geographers, vol. 6, no. 3, pp. 257–278.
- Renfrew C. and Level, E.V. 1979. "Exploring dominance: predicting polities from centres," in Transformations: Mathematical Approaches to Culture Change , A. C. Renfrew and K. L. Cooke, Eds. Academic Press, London, pp. 145–67.
- Rihll, T.E. & A.G. Wilson, 1987. Spatial interaction and structural models in historical analysis: some possibilities and an example, *Histoire & Mesure* 2: 5-32.
- Rihll, T.E. & A.G. Wilson, 1991. Modelling settlement structures in ancient Greece: new approaches to the polis, in J. Rich & A. Wallace-Hadrill (eds.), *City and country in the ancient world*: 59-95. London: Routledge.
- Rivers, R.; Knappett, C. & Evans, T., 2013. Network Models and Archaeological Spaces in *Computational Approaches to Archaeological Spaces,* A.Bevan & Lake, M. (*Eds.*), *Left Coast Press.*
- Sindbæk, S. M. 2007. The Small World of the Vikings: Networks in Early Medieval Communication and Exchange Norwegian Archaeological Review, 40, 59-74.
- Sindbæk, S.M. 2007. Networks and nodal points: the emergence of towns in early Viking Age Scandinavia, Antiquity 81, 119–132
- Renfrew & Level, 1979. Exploring dominance: predicting polities from centres, in Renfrew, A. & Cooke, K. (Eds.) Transformations: Mathematical Approaches to Culture Change, Academic Press, London, 145-67.
- Stouffer, S. A., 1940. Intervening Opportunities: A Theory Relating to Mobility and Distance, American Sociological Review 5, 845– 867. doi:10.2307/2084520.
- Terrell, J. 1977. Human biogeography in the Solomon Islands, Fieldiana, Anthropology, 68.
- Wilson, A.G. 1967. A statistical theory of spatial distribution models, Transport Research 1, 253-269

Uncertainty & Archaeology 34

8 Terminals – in order of 'hierarchy'

DTMedit D90	Normal D90	Normal D85	Normal D80	RW91 Fig 6
Potniai 26	Kabirion	Kabirion	Kabirion	Thebes (25)
				Akraiphnion (7),
Medeon 17	Athens	Onchestos	Onchestos	Koroneia (23)
Berbati 96	Prosymnia	Athens	Athens	Athens
Koropi 57	Koropi	Prosymnia	Koropi 57	Kalyvia 59
			Prosymnia	Argos (101)
Athens 70	Argive Heraion	Koropi	97	
			Argive	Argos (101)
Korinth 82	Onchestos	Argive Heraion	Heraion 98	
Argive Heraion				Korinth (82)
98	Kromna	Kromna	Kromna 78	
Mykalessos 15	Aulis	Aulis	Aulis 14	Khalkis (40)

8 Terminals – ordered by location

DTMedit	Normal	RW91 Fig 6	Wider Location	
D90	D80, D85, D90			
Mykalessos 15	Aulis 14	Khalkis 40	Euboea environs	
Potniai 26	Kabirion 24	Thebes 25	Neighbourhood of	
			Thebes	
Medeon 17	Onchestos 9	Akraiphnion 7	Northern Boeotia	
		Koroneia 23		
Athens 70	Athens 70	Athens	Athens	
Koropi 57	Koropi 57	Kalyvia 59	S.Attica	
Kewinth 02	Kromna 78	Korinth 82	Neighbourhood of	
Korinth 82			Corinth	
Berbati 96	Prosymnia 97		Neighbourhood of	
Argive Heraion	Argive Heraion	on Argos (101)		
98	98	_	Argos	

Largely consistent on scale of about 10km

Uncertainty & Archaeology 36

3 Terminal Sites – Exponential Potential

Distance	Distance	Terminal Sites		
Data	D	Boeotia	Attica	Isthmus/ Argolid
Normal	150	24 Kabirion	70 Athens	96 Berbati
Normal	155, 160, 165,	31 Eutresis	70 Athens	96 Berbati
	170, 175, 180			
Normal	185	31 Eutresis	70 Athens	89 Tenea
Normal	190,200	36 Plataia	70 Athens	89 Tenea
DTMedit	155,160,170,	26 Potniai	71 Kallithea	96 Berbati
	175			
DTMedit	180,190,200	26 Potniai	71 Kallithea	89 Teneai

Exponential potential

Uncertainty & Archaeology 37

Archaeological Data

- Excavations necessarily partial
 - Unknown sites
 - Sites destroyed
 - Sites unreachable e.g. under modern site
- Large amounts of material
 - Documented artefacts only a tiny fraction
 - Representative items not all items
 - No universal parameters or standards
- Biased sample
 - Materials biodegrade
 - Social biases
- Paper Records
 - tiny fraction published

Lots of data! NOT Big Data Small/Dirty Data!

Uncertainty & Archaeology 38

Archaeological Data on Exchange

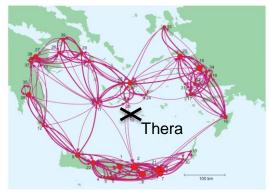
Exchange is hard to measure

- Most artefacts locally produced,
 - exchange a small fraction of that small fraction
 - ~10% of artefacts imported at Akrotiri
- Exchange difficult to identify by source
 - Analysis Expensive
 - Not always conclusive
- Direct Evidence Rare
 - Texts have biases

Uluburun Shipwreck 1300BC

Site-Site Interactions

- Archaeology can be "SITE CENTRIC"
 - Regional and global interactions hard to consider
- Models can emphasise interactions
 - Mesoscopic picture
 - Macroscopic effects



What did archaeological models ever do for us?

- Importance of Sites
 - o Network centrality
 - Location of missing sites
- Regions of Influence
 - o Political
 - o **Economic**
- Comparisons
 - Null models
 - Evolution in time
 - Different effect of social, geographical, economic factors

\Rightarrow Proof or Narrative ?

[Knappett, TSE, Rivers, Antiquity 2012]

Uncertainty & Archaeology 41

What is a Site?

Issues of scale:-

- Any Settlement
- Large Settlement
- Important Building e.g. shrine, fortification
- Region e.g. Valley defined by geography GIS methods

The scale of a settlement is not always obvious

- Missing sites
- Sites now underwater
- Size of sites beneath modern cities

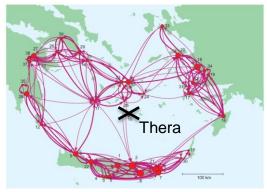
Different Spaces

Looking at relationships between "nodes" embedded in space

Focus here on two-dimensional geographical space

- Euclidean distance
- Cost of trip
- Ranked distance, intervening opportunities

Can apply to artefact spaces


- Artefact count
- Word frequency

What did Simple Spatial Interaction Models ever do for us?

- Test Basic Principles
 - e.g. is city attractiveness a non-linear function of population? [Bettencourt at al. 2007]
- Look at general properties How does space effect system
- Comparisons, Null Models
 - o e.g. Spatial Clustering [Expert at al. 2011]
- General Predictions
 - e.g. destruction of Thera only weakens Aegean networks

[Knappett, TSE, Rivers, Antiquity 2012]

Uncertainty & Archaeology 44

Proof by Example

Will illustrate some of these ideas by highlighting a few examples.

- Personal Favourites
- Several other examples of similar types of analysis
- Many other types of analysis not covered here

For more examples see

- [Brughmans 2010]
- "The Connected Past"
- Proceedings of CAA