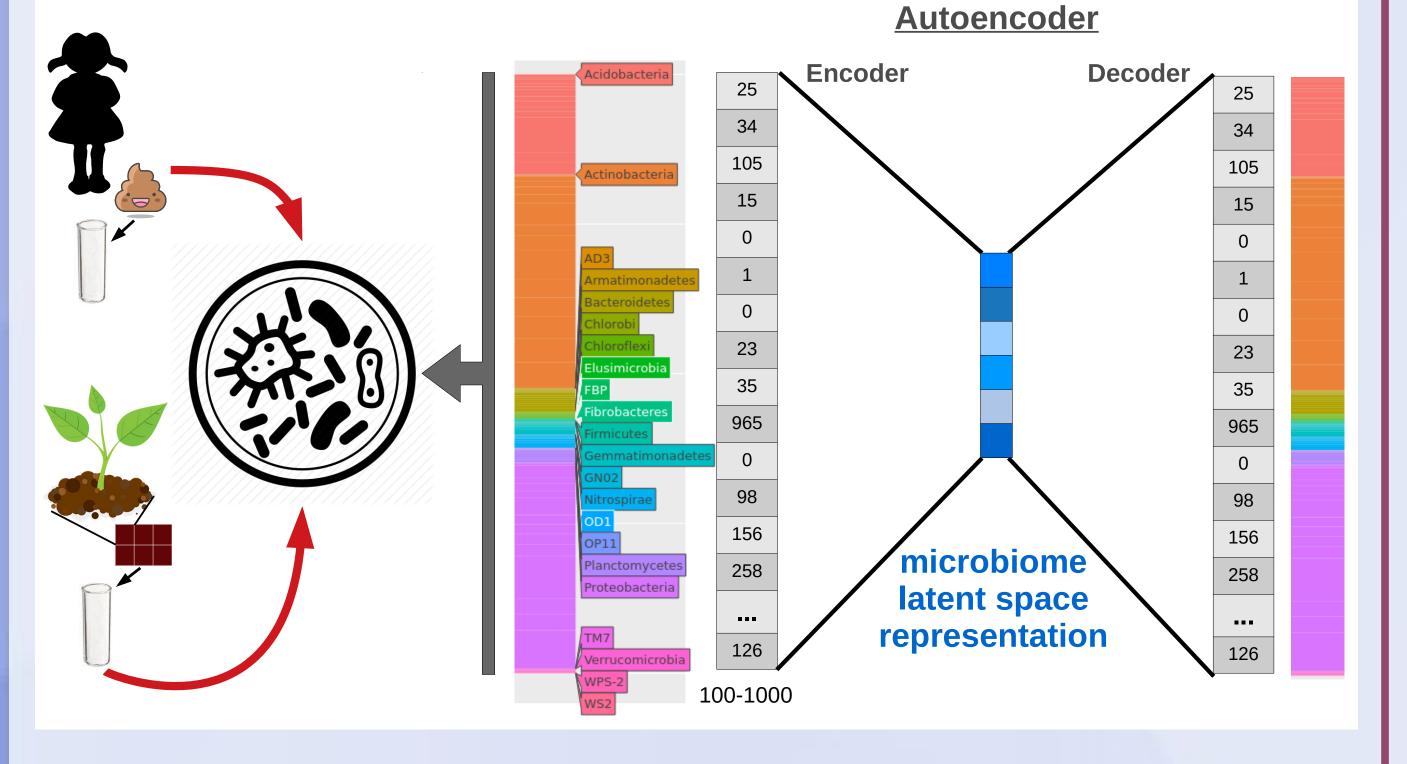
Condensed Microbiome Representation using Transfer and Deep Learning to Promote Microbial Composition Prediction

Sara Cabello, Beatriz García-Jiménez and Mark D. Wilkinson

- <u>Motivation</u>: Reducing the dimensionality of microbiome datasets to apply knowledge discovery approaches
- <u>Methods</u>: We selected a Deep Learning architecture an autoencoder to condense a long vector of OTU abundances (hundreds), that describes a microbiome sample, into an encoded representation (< 10 values) • <u>Results</u>: We transfer knowledge from a published dataset [<u>Walters et al., 2018</u>] of around 5000 maize root microbiome samples into our autoencoder model, reducing from 717 taxa to a latent space of 6 rational numbers representing the microbial composition. Additionally, we predict microbial composition of maize root microbiome using a few environmental variables (plant age, temperature or precipitation) **Keywords:** Microbiome, Deep Learning, Transfer Learning, Autoencoder, Dimensionality reduction

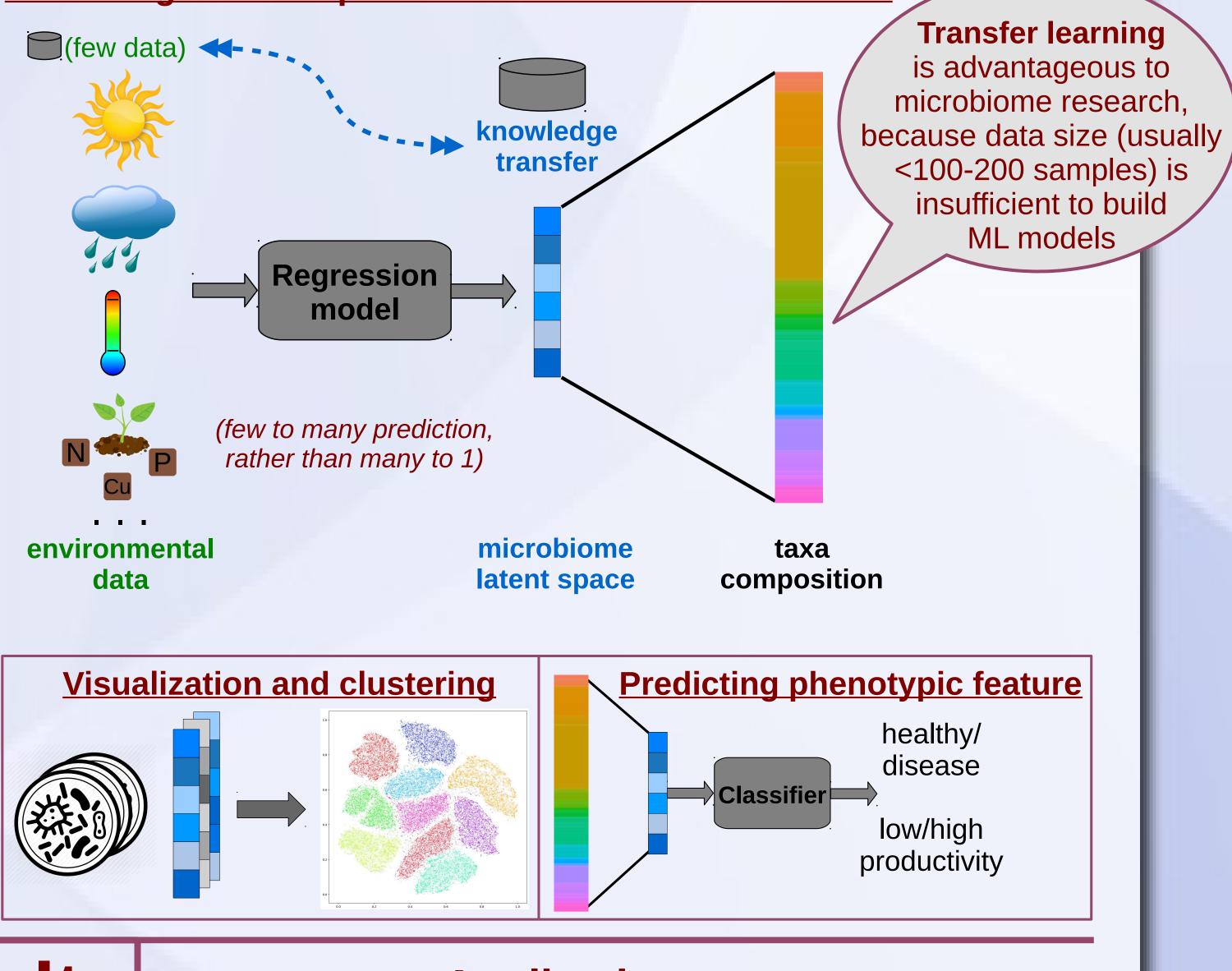
Applications

Predicting taxa composition from environmental data



Case study: maize rhizosphere

- Walters et al., 2018: <u>doi:10.1073/pnas.1800918115</u>
- Study the influence of microbiome in agronomically important plants (maize: *Zea mays L. subsp.mays*)
- 4,855 samples & 717 OTUs
- Mapping variables:
 - elevation, T, precipitation, plant age, maize line and variety



Latent space performance

Avg. performance	MSE	SMAPE	Pearson corr.
All OTUs (717)	0.0007	65.61%	0.57
OTUs corr.>0.5 (458)	0.0009	53.48%	0.77

Results

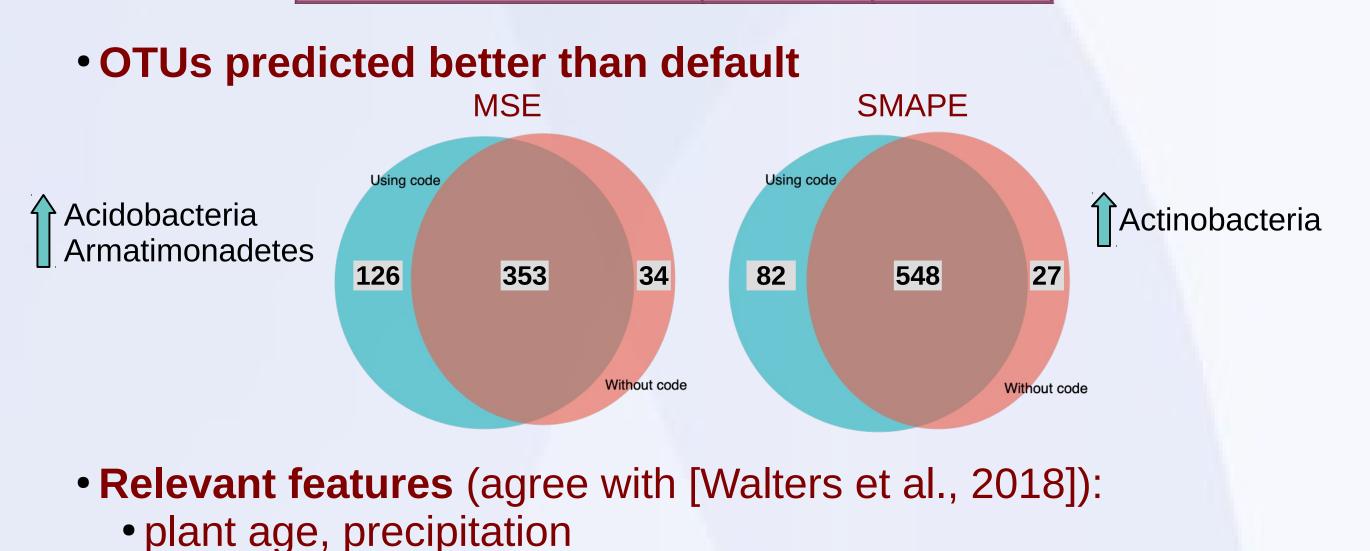
Application

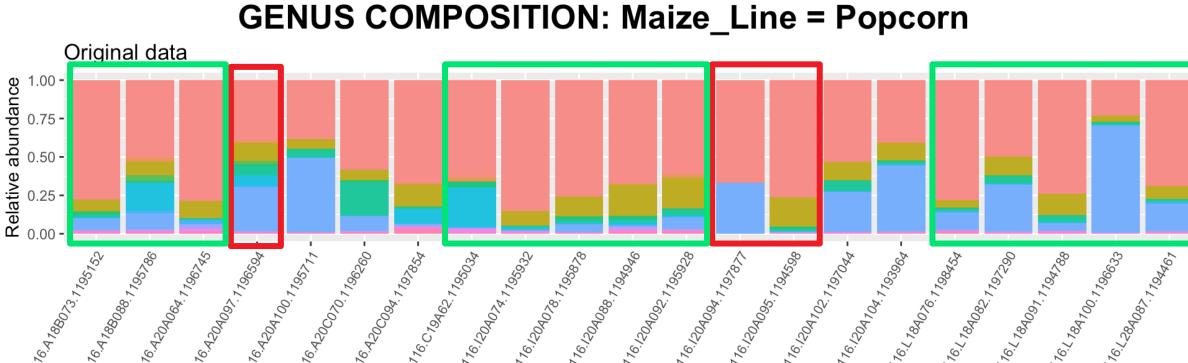
Predicting taxa composition from environmental data

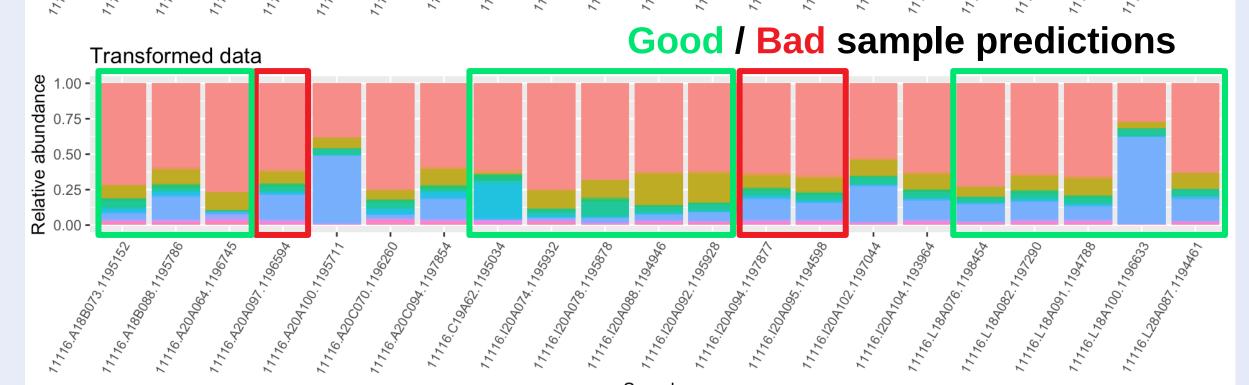
Challenge: Obtaining 717 abundance values from only a few environmental variables

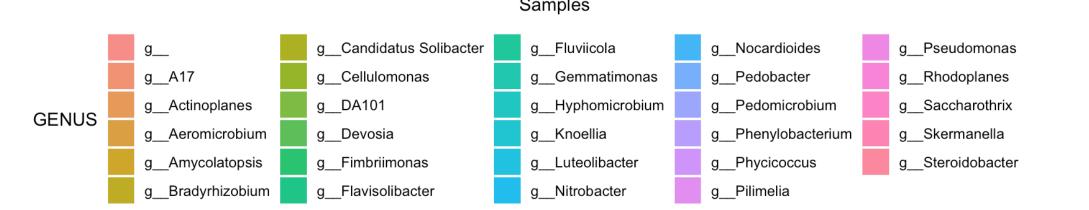
• Performance

Predictor	MSE	SMAPE
Default	0.0027	71.71%
Without code	0.0022	71.68%
Latent space (code)	0.0018	68.69%









Note: MSE: Mean Square Error. SMAPE: Symmetric Mean Absolute Percentage Error

Contributions:

- Novel dimensionality reduction approach to define latent space in 16S microbiome. It could be applied to any environment (gut, ocean, urban soil, etc.) where enough samples available
- Ability to undertake challenging tasks in microbiome data analysis, such as to predict the microbial composition of hundreds of taxa based on a small number of features, rather than the common prediction of a phenotypic feature • The knowledge encoded within our microbiome autoencoder model can be reused, via Transfer Learning, into novel but related studies with fewer samples

beatriz.garcia@upm.es http://wilkinsonlab.info/microbiomes

Research was supported by the "Severo Ochoa Program for Centres of Excellence in R&D" from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017-2021)) to the CBGP. BGJ was supported by a Postdoctoral contract associated to the Severo Ochoa Program.