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Latent space performance

Sara Cabello, Beatriz García-Jiménez and Mark D. Wilkinson 

Contributions: 
● Novel dimensionality reduction approach to define latent space in 16S microbiome. It could be applied to any 
environment (gut, ocean, urban soil, etc.) where enough samples available

● Ability to undertake challenging tasks in microbiome data analysis, such as to predict the microbial composition of 
hundreds of taxa based on a small number of features, rather than the common prediction of a phenotypic feature

● The knowledge encoded within our microbiome autoencoder model can be reused, via Transfer Learning, into 
novel but related studies with fewer samples 

Applications

Case study: maize rhizosphere 

Results

● Relevant features (agree with [Walters et al., 2018]):
● plant age, precipitation

Application
 

Predicting taxa composition from environmental data

Challenge: Obtaining 717 abundance values from only a 
few environmental variables
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●  Walters et al., 2018: doi:10.1073/pnas.1800918115
●  Study the influence of microbiome in agronomically important  
plants (maize: Zea mays L. subsp.mays)

●  4,855 samples & 717 OTUs
●  Mapping variables: 

● elevation, T, precipitation, plant age, maize line and variety

Transfer learning
is advantageous to 

microbiome research, 
because data size (usually 

<100-200 samples) is 
insufficient to build

ML models
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Encoder Decoder

100-1000

(few to many prediction, 
rather than many to 1)

Avg. performance MSE SMAPE Pearson corr.

All OTUs (717) 0.0007 65.61% 0.57

OTUs corr.>0.5 (458) 0.0009 53.48% 0.77

Method

Predictor MSE SMAPE

Default 0.0027 71.71%

Without code 0.0022 71.68%

Latent space (code) 0.0018 68.69%

MSE SMAPE

126 353 34 82 548 27

● Performance

● OTUs predicted better than default
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Note: MSE: Mean Square Error.   SMAPE: Symmetric Mean Absolute Percentage Error

● Motivation: Reducing the dimensionality of microbiome datasets to apply knowledge discovery approaches
● Methods: We selected a Deep Learning architecture - an autoencoder - to condense a long vector of OTU 
abundances (hundreds), that describes a microbiome sample, into an encoded representation (< 10 values)

● Results: We transfer knowledge from a published dataset [Walters et al., 2018] of around 5000 maize root 
microbiome samples into our autoencoder model, reducing from 717 taxa to a latent space of 6 rational numbers 
representing the microbial composition. Additionally, we predict microbial composition of maize root microbiome 
using a few environmental variables (plant age, temperature or precipitation)
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