Supplementary Information

Direct chemoselective synthesis of $\mathbf{N}-\mathbf{3}$ substituted pyrimidinones in a microwave-assisted method

Burgula Laxminarayana and Lal Mohan Kundu*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
*Corresponding author E-mail: lmkundu@,iitg.ernet.in

Graphical abstract

Table of Contents

1. General Information
2. Procedure for the products
3. Characterization Data
4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and NOESY spectra
5. HRMS and XRD data
6. References for melting point data of the already reported compounds
7. General Information: All chemicals were purchased from reputed pharmaceuticals and were used without further purification. All microwave-directed reactions were carried out in a closed vessel CEM Discover LabMate microwave reactor at about $145^{\circ} \mathrm{C}$ for variable durations. The temperature of the reaction mixtures were all measured by an internal built-in IR sensor. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) were all recorded from a $D R X-400$ Varian spectrometer using CDCl_{3} and DMSO-D ${ }_{6}$ as solvents. Chemical shifts are reported in parts per million (ppm). Melting points were determined using Büchi B-545 apparatus and are uncorrected. High resolution mass spectrometry was analyzed from Agilent Q-TOF 6500 LC/MS system and Micromass Q-TOF ESI-MS instrument (model HAB 273). X-Ray data were collected from a Bruker SMART APEX equipped with a CCD area detector using Mo. The structures were solved by direct method using SHELLX-97 (Göttingen, Germany). The melting points, characterization and relevant literature of the reported compounds are given.

2. Procedure for the products

A). General Procedure (compound 1-19): A β-ketoester (2 mmol), taken in a reactor vessel was mixed thoroughly for 1 min with urea derivative (2.6 mmol). The vessel was closed immediately and was subjected to microwave irradiation at about $145^{\circ} \mathrm{C}$. Reactions were also performed at $130^{\circ} \mathrm{C}$ and $140^{\circ} \mathrm{C}$, however, best results were obtained at $145^{\circ} \mathrm{C}$. The compound (1-18) was further purified by column chromatography (50-65\% ethyl acetate in hexane). The time of irradiation and observed yield of the compounds are listed in Table 1.

Synthesis using $\mathbf{B F}_{3} . \mathbf{E t}_{2} \mathbf{O}$ (1-19): A β-ketoester (2 mmol), taken in a reactor vessel with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ ($339 \mathrm{mg}, 2.4 \mathrm{mmol}$) was mixed thoroughly for 1 min with urea derivatives $(2.6 \mathrm{mmol})$. The vessel was closed immediately and was subjected to microwave irradiation at $145^{\circ} \mathrm{C}$. The compound (1-18) was further purified by column chromatography. The time of irradiation and observed yield of the compounds are listed in Table 1.
B). Procedure for synthesis of compound 4: Ethyl 3-oxo-3-phenylpropanoate (4a, 2mmol), taken in a reactor vessel, was mixed thoroughly for 1 min with Methyl urea (2.6 mmol). The vessel was closed immediately and was subjected to microwave irradiation for 12 min at about $145^{\circ} \mathrm{C}$. The completion of reaction was monitored by checking TLC at regular time interval. Compound (4) was further purified by column chromatography (Silica gel 60-120 mesh, 60\% ethyl acetate in hexane).
C). Procedure for synthesis of compound 4 with Lewis acid: Ethyl 3-oxo-3-phenylpropanoate ($\mathbf{4 a}, 2 \mathrm{mmol}$), taken in a reactor vessel with $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(339 \mathrm{mg}, 2.4 \mathrm{mmol})$ was mixed thoroughly for 1 min with urea $(2.6 \mathrm{mmol})$. The vessel was closed immediately and was subjected to microwave irradiation at $145^{\circ} \mathrm{C}$ for about 8 min . Reaction was complete within 8 min irradiation, which was verified by TLC. Compound (4) was further purified by column chromatography (Silica gel 60-120 mesh, 60% ethyl acetate in hexane).

3. Characterization Data

3,6-dimethylpyrimidine-2,4(1H,3H)-dione (1):

Yield: 85%, white solid, m.p: $260-265^{\circ} \mathrm{C}$ (lit ${ }^{1,2}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.13$ (s, $1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 167.8,153.6$, 152.3, 99.6, 27.8, 19.1. HRMS (ESI) m/z [M+H] ${ }^{+}$calculated ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$): 141.0659; observed: 141.0659 .

6-ethyl-3-methylpyrimidine-2,4(1H,3H)-dione (2):

Yield: 80%, white solid, m.p: $240-243^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 5.44$ ($\mathrm{s}, 1 \mathrm{H}$), $3.08(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.14(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 157.3,152.5,150.9,97.2,27.9,25.5,12.1$ HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 155.0815; observed: 155.0811.

3-methyl-6-propylpyrimidine-2,4(1H,3H)-dione (3):

Yield: 78%, white solid, m.p: $245-248^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 5.45$ $(\mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}).) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$) $\delta 160.0,156.4,153.0,98.5,31.1,27.5,21.3,14.2$. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 169.0972; observed: 169.0969.

Crystal data: CCDC\# 991094; C8 H12 N2 O2; $\mathrm{M}=168.20$, m.p. $=245-248^{\circ} \mathrm{C}$, monoclinic; $\mathrm{P} 21 / \mathrm{c}, \mathrm{a}=4.7152(8) \AA ; \mathrm{b}=21.823(3) \AA, \mathrm{c}=8.8290(15) \AA, \alpha=90^{\circ}, \beta=94.553(11)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=$ $905.6(3) \AA, \mathrm{Z}=4, \mu=0.090 \mathrm{~m}^{\mathrm{m}-1}, \rho=1.234 \mathrm{~g} \cdot \mathrm{c}^{\mathrm{m}-3}, \mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\mathrm{R} 1=0.1520$, $\mathrm{wR} 2=$ $0.1299, S=0.922$.

3-methyl-6-phenylpyrimidine-2,4(1H,3H)-dione (4):

Yield: 90%, white solid, m.p: $230-232^{\circ} \mathrm{C}\left(\right.$ lit $\left.^{1}\right),{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.41(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO_{6}) $\delta 164.3,152.6,151.7,132.0,129.6,128.4,127.5,97.5,27.3$. HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 203.0815 ; observed: 203.0817.
Crystal data: CCDC\# 991093; C11 H10 N2 O2; $\mathrm{M}=202.21$, m.p. $=230-232^{\circ} \mathrm{C}$, monoclinic; $\mathrm{P} 21 / \mathrm{n}, \mathrm{a}=5.8924(19) \AA ; \mathrm{b}=21.161(6) \AA, \mathrm{c}=8.054(3) \AA, \alpha=90^{\circ}, \beta=103.67(2)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=$
$975.8(5) \AA, \mathrm{Z}=4, \mu=0.097 \mathrm{~m}^{\mathrm{m}-1}, \rho=1.376 \mathrm{~g} . \mathrm{c}^{\mathrm{m}-3}, \mathrm{Mo}-$ к α radiation, $\mathrm{R} 1=0.0621, \mathrm{wR} 2=0.1032$, $\mathrm{S}=0.968$.

6-isopropyl-3-methylpyrimidine-2,4(1H,3H)-dione (5):

Yield: 75%, white solid, m.p: $235-238^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.52(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta$ 164.2 159.3, 153.9, 97.2, 31.9, 27.1, 20.4. HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 169.0972; observed: 169.0978 .

6,7-dihydro-3-methyl-1H-cyclopenta[d]pyrimidine-2,4(3H,5H)-dione (6):

Yield: 73%, white solid, m.p: $225-228^{\circ}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 11.38(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $3 \mathrm{H}), 2.67(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.50-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$. HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 167.0815; observed: 167.0814.

3-benzyl-6-methylpyrimidine-2,4(1H,3H)-dione (7):

Yield: 72%, white solid, m.p: $194-198^{\circ} \mathrm{C}\left(\right.$ lit $\left.^{3,4}\right),{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 10.43(\mathrm{~s}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 163.5,158.6,152.0,137.0,128.2,128.1,127.1,99.1,42.9,18.4$. HRMS (ESI) m/z [M+H] calculated $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 217.0972; observed: 217.0973.

3-benzyl-6-propylpyrimidine-2,4(1H,3H)-dione (8):

Yield: 70%, white solid, m.p: $200-202^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.43(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 3 \mathrm{H}) 2.31(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.66-1.60$ (m, 2H), $0.98(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,158.1,154.3$, 139.6, 127.6, 126.6, 126.1, 97.5, 42.5, 34.4, 19.8, 12.7. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 245.1285 ; observed: 245.1286 .

3-benzyl-6-isopropylpyrimidine-2,4(1H,3H)-dione (9):

Yield: 65%, white solid, m.p: $215-220^{\circ} \mathrm{C}$, NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}) 2.59-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, 6 \mathrm{H}, J=7.2$ $\mathrm{Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,159.6,153.8,136.9,129.1,128.4,127.3 .97 .5,44.6$, 31.9, 20.3. HRMS (ESI) m/z [M+H] calculated $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right): 245.1285$; observed: 245.1292 .

3-benzyl-6-phenylpyrimidine-2,4(1H,3H)-dione (10):

Yield: 70%, white solid, m.p: $195-198^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, 2 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.42-7.35(\mathrm{~m}, 8 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9$, 155.7, 153.3, 139.3, 138.5, 128.7, 128.6, 128.5, 127.4, 127.3, 126.2, 98.9, 44.5. HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 279.1128; observed: 279.1128.

3-benzyl-5-isopropyl-6-methylpyrimidine-2,4(1H,3H)-dione (11):

Yield: 40%, white solid, m.p: $180-183^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.20$ $(\mathrm{m}, 5 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $163.8,159.4,153.8,139.2,137.0,129.1,128.8,127.5,107.6,43.7,32.0,20.4$. HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 259.1441 ; observed: 259.1444 .

3-ethyl-6-phenylpyrimidine-2,4(1H,3H)-dione (12):

Yield: 64%, white solid, m.p: $220-223^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.45$ $(\mathrm{m}, 5 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{q}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.15(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 163.5,152.8,150.5,136.2,131.4,126.5,125.6,98.7,35.6,14.5$. HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: 217.0972; observed: 217.0971.

3,6-diphenylpyrimidine-2,4(1H,3H)-dione (13):

Yield: 40%, white solid, m.p: 286-290 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{5}\right){ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 11.42(\mathrm{~s}, 1 \mathrm{H})$, 7.82 (d, 2H, $J=8.0 \mathrm{~Hz}$), 7.82-7.45 (m, 8H), 6.01 ($\mathrm{s}, 1 \mathrm{H}$).

2,3-dihydro-3-methyl-6-phenyl-2-thioxopyrimidin-4(1H)-one (14):

Yield: 85%, white solid, m.p: $240-245^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.8, 159.7, 157.6, 133.5, 130.7, 129.4, 127.7, 108.4, 41.0

6-isopropyl-3-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one(15):

Yield: 78%, white solid, m.p: $260-263^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}$, $1 \mathrm{H}), 4.82(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, 6 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1$, $164.0,103.7,37.3,31.0,21.0$

Crystal data: CCDC\# 991092; C8 H12 N2 O S; M $=184.26$, m.p. $=260-263^{\circ} \mathrm{C}$, monoclinic; $\mathrm{C} 2 / \mathrm{c}, \mathrm{a}=21.5926(10) \AA ; \mathrm{b}=6.8375(3) \AA, \mathrm{c}=14.9348(8) \AA, \alpha=90^{\circ}, \beta=122.333(4)^{\circ}, \gamma=90^{\circ}, \mathrm{V}$ $=1863.09(16) \AA, \mathrm{Z}=8, \mu=0.302 \mathrm{~m}^{\mathrm{m}-1}, \rho=1.314 \mathrm{~g} . \mathrm{c}^{\mathrm{m}-3}, \mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\mathrm{R} 1=0.0424$, wR2 $=$ $0.0766, S=1.083$

3-methyl-2-thioxo-2,3,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-4(5H)-one(16):
Yield: 75%, white solid, m.p: $296-300^{\circ} \mathrm{C}\left(\right.$ lit 6), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) 12.89 (s, IH), 3.35 (s, 1H), 2.74 (t, $J=7.2 \mathrm{~Hz}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{t}, J=7.2 \mathrm{~Hz})$.

3-methyl-5-(naphthalen-1-ylmethyl)-6-phenyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one(17):
Yield: 59\%, white solid, m.p: 305-308 ${ }^{\circ}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ (s, 1H), 7.86-7.68 $(\mathrm{m}, 4 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,160.5,155.0,133.8,132.3,131.7,131.1,130.2,129.6,129.3,128.8,128.7$, 127.6, 127.4, 125.4, 124.6, 124.4, 117.7, 41.2, 29.9. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}\right): 359.1213$; observed: 359.1213 .

3-ethyl-2,3-dihydro-6-phenyl-2-thioxopyrimidin-4(1H)-one (18):

Yield: 62%, white solid, m.p: $206-208^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.82$ (d, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.58(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.21(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}$) $\delta 174.2,161.5,149.5,139.4,128.0,127.6,126.9$, 113.8, 43.0, 16.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}\right)$: 233.0743; observed: 233.0749 .

Intermidiates:

(Z)-Ethyl 3-(3-methylureido) but-2-enoate (Intermidiate for 1):

LRMS (ES) [M+Na] ${ }^{+}$calculated $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\right)$: 209.090; found:209.8277.
(Z)-ethyl 4-methyl-3-(3-methylthioureido)pent-2-enoate (Intermidiate for 15):

LRMS (ES) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}\right)$: 239.0830; found:239.6030
Ethyl 2-(3-methylthioureido)cyclopent-1-enecarboxylate (Intermidiate for 16):
LRMS (ES) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}\right)$: 251.0830; found:251.5941

4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and NOESY spectra:

Compound(1):

Compound(2):

Compound(3):

Compound(4):

Compound(5):

Compound(6):

Compound (7):

Compound (8):

Compound (9):

Compound (10):

Compound (11):

Compound (12):

$$
\begin{aligned}
& \begin{array}{l}
\text { LN-ph-N3-et- } \\
\text { exp1 s2pul }
\end{array}
\end{aligned}
$$

Compound (13):

LN-199-1

Compound (14):

Compound (15):

Compound (16):

Compound (17):

Compound (18):

Compound (1):

Compound (2):

Compound (4):

Compound (5):

Compond (7):

Compound (8):

Compound (15):

Compound (16):

5. HRMS and XRD data:

Sample Name	Position	Instrument Name	User Name
Inj Vol	InjPosition	SampleType	IRM Calibration Status
Data Filename	ACQ Method	Comment	Acquired Time

Sample Name	Position	Instrument Name	User Name
Inj Vol	InjPosition	SampleType	IRM Calibration Status
Data Filename	ACQ Method	Comment	Acquired Time

	SN-ET-PH-URACL	Position	-1	Instrument Name	Instrument 1	User Name Sample Name
InjPosition		SampleType	Sample	IRM Calibration Status	SUccess	Acquired Time

Sample Name	LN-NAPH-PH-THIO	Position	-1	Instrument Name	Instrument 1	User Name	
Inj Vol	-10	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	LN-NAPH-PH-THIO.d	ACQ Method		Comment		Acquired Time	

Intermidiates:

3-methyl-6-propylpyrimidine-2,4(1H,3H)-dione (3):

The crystal structure of compond 3 was obtained from DMSO-d6 solution

Table 2: Crystallographic data of compond 3	CCDC\# 991094
Chemical formula	C8 H12 N2 O2
Formula Mass	168.20
Temperature/K	296 K
Crystal system	Monoclinic
Space group	P21/c
a/ \AA	$4.7152(8)$
b / \AA	$21.823(3)$
c / \AA	$8.8290(15)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$94.553(11)$
$\gamma /{ }^{\circ}$	90
Unit cell volume $/ \AA$	$905.6(3)$
Z	4
$\mu(\mathrm{~mm}-1)$	0.090
ρ calcd (g cm-3)	1.234
No. of reflections measured	1627
No. of independent reflections	904
Final R1 values (I > 2б(I))	0.0553
Final wR(F2) values (I > 2 $\sigma(\mathrm{I}))$	0.1193
Final R1 values (all data)	0.1520
Final wR(F2) values (all data)	0.1299
Goodness of fit $\left(F^{2}\right)$	0.922

ORTEP diagram of compond 3: The ellipsoid countour probablity level is 50\%

3-methyl-6-phenylpyrimidine-2,4(1H,3H)-dione (4):

The crystal structure of compound 4 was obtained from methanol/ethanol solution

Table 2: Crystallographic data of compound 4	CCDC\# 991093
Chemical formula	C11 H10 N2 O2
Formula Mass	202.21
Temperature/K	296 K
Crystal system	Monoclinic
Space group	P21/n
a/ \AA	$5.8924(19)$
b / \AA	$21.161(6)$
c/Å	$8.054(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$103.67(2)$
$\gamma /{ }^{\circ}$	90
Unit cell volume $/ \AA$	$975.8(5)$
Z	4
$\mu(m m-1)$	0.097
ρ calcd (g cm-3)	1.376
No. of reflections measured	1732
No. of independent reflections	1271
Final R1 values (I > 2 $\sigma(\mathrm{I})$)	0.0462
Final wR(F2) values (I > 2 $\sigma(\mathrm{I})$)	0.0952
Final R1 values (all data)	0.0621
Final wR(F2) values (all data)	0.1032
Goodness of fit $\left(F^{2}\right)$	0.968

ORTEP diagram of compound 4: The ellipsoid countour probablity level is 50%

6-isopropyl-3-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one(15):

The crystal structure of compound $\mathbf{1 5}$ was obtained from methanol/ethyl acetate solution

Table 2: Crystallographic data of compound 15	CCDC\# 991092
Chemical formula	C8 H12 N2 O S
Formula Mass	184.26
Temperature/K	296 K
Crystal system	Monoclinic
Space group	C2/c
a/ \AA	$21.5926(10)$
b / \AA	$6.8375(3)$
c/Å	$14.9348(8)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$122.333(4)$
$\gamma /{ }^{\circ}$	90
Unit cell volume $/ \AA$	$1863.09(16)$
Z	8
$\mu(m m-1)$	0.302
ρ calcd (g cm-3)	1.314
No. of reflections measured	1680
No. of independent reflections	1293
Final R1 values (I > 2 $\sigma(\mathrm{I})$)	0.0343
Final wR(F2) values (I > 2 $\sigma(\mathrm{I}))$	0.0739
Final R1 values (all data)	0.0424
Final wR(F2) values (all data)	0.0766
Goodness of fit $\left(F^{2}\right)$	1.083

ORTEP diagram of compound 15: The ellipsoid countour probablity level is 50%

Compound (3) supramolecular architecture diagram:

Compound (4) supramolecular architecture diagram:

Compound (15) supramolecular architecture diagram:

6. References:

1). Ahmed, S.; Lofthouse, R.; Shaw, G. J. Chem. Soc. Perkin Trans. 1, 1976, 18, 1969-1975.
2). Botta, M.; Cavalieri, M.; Ceci, D.; De Angelis, F.; Finizia, G.; Nicoletti, R. Tetrahedron. 1984, 17, 3313-3320.
3). Lacey, R. N.; J. Chem. Soc. 1954, 845-849.
4). Skulnick, H. I.; Ludens, J. H.; Wendling, M, G.; Glenn, E. M ; Rohloff, N. A.; Smith, R. J.; Wierenga, W.; J. Med. Chem. 1986, 29(8), 1499-504.
5). Robinson, R.; Tomlinson, M. L. J. Chem. Soc. 1935, 1283-284
6). De Stevens, G.; Halamandaris, A.; Wenk, P.; Mull, R. A.; Schlittler, E. Archives of Biochemistry and Biophysics. 1959. 83. 141-51.

