Aix * Marseille université *cnrs*

The Active Pupil

Pupil size in attention and active vision

Sebastiaan Mathôt

http://www.cogsci.nl/smathot

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 622738.

The pupillary light response

Henceforth *PLR* (pupillary light response)

The pupillary light response

Captures lots of light

Has lots of optical distortions

Captures less light

Has less optical distortions

The active pupil

- The PLR is traditionally considered a reflex
- Recent studies show cognitive influences
 - Brightness illusions and pictures of the sun (Laeng et al., 2012; Naber et al., 2013; Binda et al., 2013)
 - Binocular rivalry (Naber et al., 2011; Fahle et al., 2013; Harms, 1937)
 - Mental imagery (Laeng & Sulutvedt, 2014)
 - Shifts of attention (Binda et al., 2013; Mathôt et al., 2013, 2014; Naber et al., 2013)

Talk outline

- The pupillary light response as a measure of
 - endogenous (voluntary) attention
 - exogenous (reflexive) attention and inhibition of return
 - eye-movement preparation
- Pupillometry and human-computer interaction
 - Decoding attention
- Important:
 - Visual spatial attention ≠ mental effort
 - The pupillary light response ≠ effort-related dilation

Does your pupil constrict when you covertly attend to something bright?

Paradigm

Predictions

Results

Discussion

- Pupil size reflects the focus of attention
 - Attend to bright → Small pupil
 - Attend to dark → Large pupil

Does your pupil reveal exogenous orienting and inhibition of return?

Methods

Results

Prediction

Shortly after cue

Attend dark

Large pupil

Longer after cue

Results

Interim discussion

- Pupil size reflects exogenous orienting
- ... and subsequent inhibition of return
- Can we link this to behavior?
 - Strong inhibition of return → Strong inhibition of light response?

Results

Results

Discussion

- The strength of the inhibitory pupil effect is related to the strength of inhibition of return
- ... analogous to what we found before for endogenous orienting (Mathôt et al. 2013)

Does your pupil constrict already before an eye movement towards a bright stimulus?

Paradigm

Predictions

- Reduced light-response latency
 - If preparation is possible ...
 - the Constant condition
 - ... relative to when it is not
 - the Onset condition
- Initially (seemingly) inverse light response
 - If preparation is incongruent
 - the Swap condition

Results

Interim discussion

- We find that a pupillary light response is initiated during eye-movement preparation
- But how long before the eye movement does this start?

Modeling

Modeling results

Latency difference of ± 100 ms

Discussion

- A pupillary light response is initiated during eye-movement preparation ...
- About 100 ms before the eye movement
- This matches the time-course of the presaccadic shift of attention (Rolfs & Carrasco, 2012; Deubel, 2008)

Discussion

The pupil adjusts its size during eye-movement preparation as soon as attention shifts to the target of an upcoming eye movement

Can you build a 'pupil-computer interface' (PCI)?

With JB Melmi, Lotje van der Linden, and Stefan van der Stigchel

PCI

Laboratoire de Psychologie Cognitive

Does it work?

Results

Laboratoire de Psychologie Cognitive

Applications?

Applications

- Communication device
 - Patient groups
 - Muscular diseases, locked-in syndrome
 - Covert password input
- Training
 - Train sustained attention
- Assessment
 - Assessing sustained attention

Conclusion

Conclusion

- The pupillary light response is not a passive reflex to light ...
- ... but is a type of eye movement that reflects attention and eye-movement preparation
- ... and is useful for human-computer interaction
- To understand active vision, you therefore need to understand ...

Conclusion

The Active Pupil

Thank you for your attention

Sebastiaan Mathôt

Slides for this talk (and much more) are available from http://www.cogsci.nl/smathot

References

- Laeng, B., & Endestad, T. (2012). Bright illusions reduce the eye's pupil. Proceedings of the National Academy of Sciences, 109(6), 2162–2167. doi:10.1073/pnas.1118298109
- Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology, 4. doi:10.3389/fpsyq.2013.00919
- Naber, M., & Nakayama, K. (2013). Pupil responses to high-level image content. Journal of Vision, 13(6), e7. doi:10.1167/13.6.7
- Naber, M., Frassle, S., & Einhauser, W. (2011). Perceptual rivalry: Reflexes reveal the gradual nature of visual awareness. PloS ONE, 6(6), e20910. doi:doi:10.1371/journal.pone.0020910
- Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. The Journal of Neuroscience, 33(5), 2199–2204. doi:10.1523/JNEUROSCI.3440-12.2013
- Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Pupil constrictions to photographs of the sun. Journal of Vision, 13(6), e8. doi:10.1167/13.6.8
- Fahle, M. W., Stemmler, T., & Spang, K. M. (2011). How much of the "unconscious" is just pre-threshold? Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00120
- Harms, H. (1937). Ort und Wesen der Bildhemmung bei Schielenden. Graefe's Archive for Clinical and Experimental Ophthalmology, 138(1), 149–210. doi:10.1007/BF01854538
- Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary response to light reflects the focus of covert visual attention. PLoS ONE, 8(10), e78168. doi:10.1371/journal.pone.0078168
- Mathôt, S., Dalmaijer, E., Grainger, J., & Van der Stigchel, S. (2014). The pupillary light response reflects exogenous attention and inhibition of return. Journal of Vision, 14(14), 7. doi:10.1167/14.14.7
- Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2015). The pupillary light response reflects eye-movement preparation. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 28–35. doi:10.1037/a0038653
- Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. *Behavior Research Methods*, 44(2), 314–324. doi:10.3758/s13428-011-0168-7
- · Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychological Science. doi:10.1177/0956797613503556
- Rolfs, M., & Carrasco, M. (2012). Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. *The Journal of Neuroscience*, 32(40), 13744–13752a. doi:10.1523/JNEUROSCI.2676-12.2012
- Deubel, H. (2008). The time course of presaccadic attention shifts. Psychological Research, 72(6), 630-640. doi:10.1007/s00426-008-0165-3
- Van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. *Journal of Experimental Psychology: Human Perception and Performance*, 30(4), 746–759. doi:10.1037/0096-1523.30.4.749