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SUMMARY 

 

This thesis has four main contributions. A brief introduction to the four contributions is 

presented as follows.  

The first contribution of this thesis is that it provides a new warfarin prediction model for 

patients of specific ethnicity (African-American (AA) patients). After examining three powerful 

machine learning–based methods (Artificial Neural Networks, Support Vector Regression, and 

Multivariate Linear Regression),  a regression model is developed for AA patients which 

outperforms four popular dose prediction models in the literature known as IWPC Clinical 

model, IWPC Pharamacogenetic model, Gage Clinical model, and Gage  Pharamacogenetic 

model. 

The second contribution is that it presents a new methodology for developing prediction 

models for Warfarin dosing. The proposed methodology estimates the initial dose for Warfarin in 

two stages. In the first stage, using relevance vector machines, the patients are classified into two 

classes; patients requiring high doses (>30mg/wk) and patients who require low doses 

(≤30mg/wk). In the second stage, for each class, using two different regression models, the dose 

is predicted. The proposed model was examined against Gage, IWPC Clinical models, the 

regression model for AA patients that was mentioned above, and the fixed-dose approach. It 

outperformed all of them in terms of prediction accuracy. 

The third contribution is developing a companion model for IWPC Clinical model. IWPC 

Clinical model is one of the most widely used prediction models in application. The companion 

model functions as a decision support system which helps clinicians to identify the patients for 

whom using the IWPC Clinical is most beneficial. It is expected that using the proposed 
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companion model decreases the risk of misdosing (Overdosing/ Underdosing) by IWPC Clinical 

model significantly. 

The fourth contribution of this paper is the development of an approach to estimate the 

amount of percentage error for initial doses prescribed by the physicians using shrinkage 

methods. By applying this estimation, the prescribed doses were revised accordingly. It was 

shown that by revising physicians’ doses, the resulting doses are much more accurate than the 

original values of doses and the values predicted by Gage Clinical model. This approach is 

promising and warrants further study that may produce a functional clinical decision support 

system to assist with initial dosing of Warfarin. 
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1 INTRODUCTION 
 

In this Chapter the introduction of Warfarin and the significance of concentration on this 

drug are presented. 

1.1 What is Warfarin? 
 

Warfarin is one of the most commonly prescribed drugs in the United States (Kirley et al. 

2012). This drug was initially invented in 1954 as a pesticide for mice and rats. Warfarin has 

been found to be quite effective to avoid blood thrombosis (formation of blood clots inside blood 

vessels). Since 1954, by approving the effectiveness of this drug, it has been prescribed and used 

commonly.  This drug is the most popular and most widely prescribed oral anticoagulant in 

America. Although this drug has been proven to have significant impact for preventing 

thrombosis, its treatment has been quite challenging. With existence of several competitors in the 

market (Connolly et al. 2009)(Patel et al. 2011)(Granger et al. 2011)(Mega 2011), in 2011, more 

than 33 million prescriptions were dispensed in United States (Informatics 2011). 

1.2 Importance of concentration on Warfarin Dosing 
 

Determination of the optimal dose for this drug is quite challenging considering its narrow 

therapeutic index and the substantial inter-patient variability in dose requirements to attain ideal 

anticoagulation (Elaine M Hylek et al. 2007). This means that mis-dosing (overdosing/under 

dosing) puts patients at risk of thrombosis, such as deep vein thrombosis or pulmonary embolism 

for under dosing, and bleeding for overdosing. For the time being, this drug ranks as the major 

drug-related cause of adverse effects resulting in hospitalization among the elderly (Palareti et al. 

1996). Warfarin dose is determined based on a blood test called as International Normalized 
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Ratio (INR), which measures anticoagulation activity (Hutten et al. 2000).  An INR of 2 to 3 is 

targeted for most indications. If the INR surpasses 3, the patient is at higher risk for bleeding. If 

the INR falls below 2, the patient is at increased risk for thrombosis (E. M. Hylek et al. 

2006)(Wittkowsky 2004). The risk of bleeding or thrombosis with Warfarin is highest during the 

initial months of treatment. There are several factors affecting the activity of Warfarin, including 

age, body size, co-morbidities, genetic variants in the drug metabolizing enzyme, CYP2C9, and 

the drug target, VKORC1. In 2007, UFDA (US Food and Drug Administration), has suggested to 

modify Warfarin labels by providing information regarding VKORC1 and CYP2C9 variants 

(Brian F. Gage and Lesko 2008). One of the most important factors which affect Warfarin’s 

activity is patients’ diets. The level of consumption of vitamin K, which is mainly stored in green 

vegetables such as    Broccoli, Cabbage, Parsley, and Apiaceae, have a significant impact on this 

drug’s activity. See Figure 1.  

 

Figure 1. Factors Affecting Warfarin's Activity 

 

The process of Warfarin treatment initiates by determination of the initial dose by the 

clinicians (Physicians, Nurses, etc.). The initial dose will then be refined according to the result 

of its corresponding INR test, which indicates the level of coagulation. This phase is known as 
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dose refinement. The process of dose refinement continues once the maintenance dose 

(Therapeutic Dose) is reached. An appropriate choice of initial dose will shorten the length of 

dose refinement process and also decrease the risk of unfavorable outcomes for patients. 

Considering the variety of different factors affecting Warfarin’s activity, estimating the 

initial dose is very critical. Therefore, different clinicians approach the dosing problem from 

different perspectives. One of the popular methods for Warfarin treatment is known as Loading 

Dose procedure. In this procedure, a dose higher than the desired maintenance dose will be 

prescribed and then it will be decreased gradually to reach the maintenance dose.  

The time to reach the maintenance dose is dependent on how fast this drug is removed 

from the system. Therefore, if initial dose is close to the maintenance dose, it will take almost 

five-times the half-life of Warfarin for reaching the maintenance dose (Eriksson and Wadelius 

2012).  

Another approach is to use mathematical models for prediction of the initial dose for each 

patient. There are different mathematical models in the literature which are trained by the data of 

different cohorts of patients. The mathematical models range from traditional statistical models 

to more advance machine learning models.  The major focus of this thesis is to develop new 

mathematical models or improve the performance of existing popular models in the literature 

from different perspectives. In section 1.3 the structure of materials in this thesis is presented.  

1.3 Chapter Synopsis 

 

In Chapter 2, a comprehensive review of the used mathematical models for predicting the 

initial dose for Warfarin is presented. In Chapter 3, the required mathematical background for the 

methodologies which were applied in the thesis are presented; starting from introducing machine 
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learning methods, supervised learning, and five powerful methods in the family of supervised 

learners (Regression Modeling, Decision Trees, Support Vector Machines, Relevance Vector 

Machines, and Shrinkage Methods) to evaluating the modeling results are discussed.  In Chapter 

4, development of a new prediction model for African-American patients is explained. In 

Chapter 5, a novel methodology for developing prediction model is presented. This methodology 

functions in two stages which uses a classification method in the first stage and prediction 

models in the second stage. In Chapter 6, developing a companion classification model for IWPC 

Clinical model is described. The developed model functions as the identifier of the appropriate 

cohort for using IWPC Clinical model. Finally, in Chapter 7, a new approach towards choosing 

an appropriate initial dose is presented. In the proposed approach, using the shrinkage methods, 

the amount of percentage error for doses prescribed by the physicians are estimated and the 

doses are revised accordingly. It is shown that the modified doses are much more accurate than 

the original values and doses predicted by the Gage Clinical model.  
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2 LITERATURE REVIEW 
 

In this Chapter, a comprehensive review of mathematical models for Warfarin dosing that 

have been proposed in the literature is presented.  

2.1 Dosing Methods for Warfarin  

 

In 2005, Sconce et al, proposed a PKG model containing the variables Age, Height, 

CYP2C9, and VKOR1. They used the data of 297 patients for their derivation cohort and the 

data of 38 patients for the validation cohort. The resulting model provided a satisfactory level of 

fitness (R
2 

= 55%) (Sconce et al. 2005). In 2008, a research led by Dr. Brian Gage (from 

Department of Internal Medicine, Washington University School of Medicine, St. Louis, 

Missouri, USA) developed two prediction models for the Warfarin initiation dose. They used the 

data of 1,015 as their derivation cohort and 292 patients in validation cohort. 83% of the data that 

they used for modeling constitutes the data of White patients. The first model that was proposed 

by this team was a Clinical model (CL) and the other model was the Pharmacogenetic model 

(PKG). These models are known as “Gage Models”.  The variables that were applied in the CL 

model were BSA (Body Surface Area), target INR, Smoking status, Age, Amiodarone, and 

DVT/PE (Deep Vein Thrombosis/Pulmonary Embolism). However, in PKG model several 

variables for genomic data were utilized. In Table 1-2 the coefficients for both models are 

presented. It must be noted that in the data preprocessing phase, the response variable 

(Maintenance Dose) was transformed using logarithmic transformation. Therefore, after applying 

both models, the results have to be exponentiated to get transformed back to the original format. 

They evaluated their models’ performance with respect to the level of fitness (R
2
) and Median 

absolute prediction error, mg/day after applying the model on the validation set. The R
2 

for the 
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CL model was 17% and for PKG mode 54%. Also, the median absolute error for the CL model 

was 1.5 mg/day and for the PKG model 1.0 mg/day (B F Gage et al. 2008).  

In 2009, International Warfarin Pharmacogenetics Consortium (IWPC) research team also 

collected the data of 5052 patients. The data was collected from 21 research teams in 9 countries 

over 4 continents. They used 80% of the data set (4043 patients) as their derivation cohort and 

the remaining 20% (1009 patients) as their validation set.  

Table 1. Variables and Coefficients for Gage CL 

Variable Name Corresponding Coefficient in the model 

Intercept 0.613 

BSA 0.425 

Age -0.0075 

African-American Race 0.156 

Target INR 0.216 

Amiodarone -0.257 

Smoking Status 0.108 

DVT/PE DVT/PE 

 

Table 2. Variables and Coefficients for Gage PKG 

Variable Name Corresponding Coefficient in the model 

Intercept 0.9751 

BSA 0.4317 

Age -0.00745 

African-American Race − 0.0901 

Target INR 0.2029 

Amiodarone − 0.2538 

VKOR3673G>A − 0.3238 

CYP2C9*3 − 0.4008 

CYP2C9*2 − 0.2066 

Smoking Status 0.0922 

DVT/PE 0.0664 

 

After performing the data preprocessing, several modeling techniques were implemented on 

the data for reaching the best model. The prediction models were ordinary linear regression, 
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multivariate adaptive regression splines, support vector regression, regression trees, model trees, 

least-angle regression, and Lasso Regression. Among those modeling techniques, the linear 

regression model appeared to be the most effective. They developed two linear regression 

models (IWPC CL and IWPC PKG). The response variable was transformed by logarithmic 

transformation and square-root transformation. However, the square-root transformation was 

selected for modeling. Instead of using the actual values for Age, the Age-Decade was applied (1 

represented 10-19 years old, 2 represented 20-29, etc.). Also, actual values for Height and 

Weight were utilized in the model instead of BSA. In addition, a new variable entered the model 

as Enzyme Inducer Status which takes the value of 1, if the patients consumed any of the 

following drugs: carbamazepine, phenytoin, rifampin, or rifampicin, otherwise it takes the value 

of 0. In addition, three binary variables were involved in the model indicating whether Race, 

VKORC1, or CYP2C9 are missing or not. In Table 3-4 the variables in each model and their 

corresponding coefficients are presented. They assessed the performance of each algorithm in 

three categories; patients requiring less than or equal to 21 mg per week, between 21 to 49 mg 

per week, and more than or equal to 49 mg per week. The models were compared against the 

fixed-dose approach (35 mg per week) in each category. The proposed modeling approaches 

were significantly more accurate than the fixed dose approach for patients requiring less than or 

equal to 21 mg per week, or more than or equal to 49 mg per week. These categories constitute 

46.2% of the population.  In both categories, the PKG model appeared to be more accurate than 

the CL model (Klein et al. 2009).      
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Table 3. Variables and Coefficients for IWPC CL 

Variable Name Corresponding Coefficient in the model 

Intercept 4.0376 

Age (Decades) -0.2546 

Height (Cm) 0.0118 

Weight (Kg) 0.0134 

Asian -0.6752 

Black 0.406 

Missing or Mixed Race 0.0443 

Enzyme Inducer Status 1.2799 

Amiodarone -0.5695 

 

Table 4. Variables and Coefficients for IWPC PKG 

Variable Name Corresponding Coefficient in the model 

Intercept 5.6044 

Age (Decades) -0.2614 

Height (Cm) 0.0087 

Weight (Kg) 0.0128 

VKORC1^A/G -0.8677 

VKORC1A/A -1.6974 

VKORC1 genotype unknown -0.4854 

CYP2C9*1/*2 -0.5211 

CYP2C9*1/*3 -0.9357 

CYP2C9*2/*2 -1.0616 

CYP2C9*2/*3 -1.9206 

CYP2C9*3/*3 -2.3312 

CYP2C9 genotype unknown -0.2188 

Asian -0.1092 

Black -0.276 

Missing or Mixed Race -0.1032 

Enzyme Inducer Status 1.1816 

Amiodarone -0.5503 

 

According to “Clinical Pharmacogenetics Implementation Consortium Guidelines for 

CYP2C9 and VKORC1 Genotypes and Warfarin Dosing” which was published in 2011 by 
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Johnson et al., the models proposed by Gage and IWPC are the most recommended models for 

predicting warfarin initiation dose (Johnson et al. 2011).  

The majority of patients in the data sets that were both used by IWPC and Gage et al., were 

Caucasian. Therefore, the performance of models were significantly less accurate for patients of 

different ethnicities; namely African-American and Asian patients. This biased modeling 

procedure is also evident in works of Wadelius et al.(Wadelius et al. 2007)(Wadelius et al. 

2009), Limdi et al. (Limdi et al. 2008)(Limdi et al. 2010), and Shellman et al. (Schelleman et al. 

2008)(Schelleman, Limdi, and Kimmel 2008). This limitation called for developing prediction 

models which produce accurate results for patients of specific ethnicities.  

In the next section, the models that were developed for these specific cohorts of patients are 

presented.  

 

2.2 Dosing methods for specific cohort of patients   

  

A PKG model was developed by Hernandez et al using the cohort of 349 AA patients. The 

developed model was compared to IWPC models (CL and PKG) and its outperformance was 

proven (Hernandez et al. 2014).  

Grossi et al. developed a PKG prediction model using Artificial Neural Networks (ANN) 

using the data of 377 patients. The patients were all Caucasian and over the age of 18. Their 

model outperformed the models developed by IWPC and Gage (Grossi et al. 2013).  

Cosgun et al. examined three powerful machine learning based models in developing PKG 

models for AA patients. The methods were Random Forest Regression, Boosted Regression 
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Tree, and Support Vector Regression. They compared their models with popular prediction 

models in terms of level of fitness (R
2
)(Cosgun, Limdi, and Duarte 2011). 

Oztaner et al, developed a Bayesian estimation framework for developing PKG models. 

They examined their procedure both on IWPC data set and a local data set of Turkish patients 

(N=107). The proposed methodology was examined against famous prediction models and it was 

proven that the model provides a better level of fitness (Serdar Oztaner et al. 2014).  

Xu et al., also developed a refined PKG model for Chinese patients. By incorporating 

additional genes in the modeling, the proposed models outperformed the conventional PKG 

model (with CYP2C9 and VKOR1) and the fixed dose approach (3 mg/day) in terms of level of 

fitness (Xu et al. 2012). 

2.3 Hesitation Regarding Involving Genetic Data in Modeling 
 

Involving the genetic factors in dose prediction has been a challenging procedure. Applying 

PKG in practice requires the availability of genetic data. Acquiring such data is not feasible for 

most institutions in the world. Therefore, a major hesitation towards applying the genetic factors 

in modeling exists.  

In 2013, two randomized and controlled trials for evaluating the performance of PKG 

models were published. The study known as EU-PACT (European Pharmacogenetics of 

Anticoagulation Therapy) found that the modified version of the IWPC model (PKG) 

outperformed the conventional one (Pirmohamed et al. 2013). In a different study known as 

COAG (Clarification of Optimal Anticoagulation through Genetics), it was found that by 

involving the genetic factors in the models, no more benefit can be achieved than CL models 

(Kimmel et al. 2013). The major limitation found in both studies was that the population of 
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patients involved were predominantly European (They only included the principle genetic 

determinants of Warfarin dosing for European patients; vitamin K epoxide reductase complex 1 

(VKORC1) − 1639 G>A (rs9923231), cytochrome P450 2C9 (CYP2C9) *2, and CYP2C9*3 

polymorphisms). However, for patients of other ethnicities the hesitation for performance of 

genetic factors remains. Drozda et al. investigated the involvement of important genetic factors 

for AA patients such as (CYP2C9*5, CYP2C9*6, CYP2C9*8, CYP2C9*11 alleles and 

rs12777823 G>A genotype) in the modeling. Using the cohort of 274 AA patients, they found 

out that removing the genetic variables from modeling results in a massive increase in prediction 

error (Drozda et al. 2015). In a study known as ‘Marshfield Clinic Research Foundation 

(MCRF)’, Burmester et al. investigated the time to reach the therapeutic dose on two patient 

cohorts. They proved that Pharmacogenetic factors did not accelerate the process of reaching the 

therapeutic dose (Burmester et al. 2011).  

No robust conclusions were achieved from these studies regarding the involvement of 

Pharmacogenetic factors on Warfarin dosing. Detailed investigation of the above-mentioned 

studies are presented in some reviews (Scott and Lubitz 2014)(Cavallari and Nutescu 2014). 

In 2013, Yang et al., investigated the influence of VKOR1 and CYP2C9 genotypes on the 

risk of hemorrhagic
1
 complications for patients who are under Warfarin treatment (Yang et al. 

2013). They performed a meta-analysis using 22 publications and concluded that “both CYP2C9 

and VKORC1 genotypes are associated with an increased risk for warfarin over-anticoagulation, 

with VKORC1 c. −1639 G >A more sensitive early in the course of anticoagulation. CYP2C9*3 

is the main genetic risk factor for Warfarin hemorrhagic complications” (Yang et al. 2013). 

 

 

                                                           
1
 Pertaining to bleeding or the abnormal flow of blood. 
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3 PRELIMINARIES 
 

    In this Chapter, the required mathematical background that has been applied in 

Chapters 4-7 is presented.  

 

3.1 Machine Learning 
 

     The science of learning plays a crucially important role in different fields such as 

Artificial Intelligence (AI), Statistics, and Data Mining. Machine Learning (ML) which is 

one of the branches of AI, is about developing algorithms to assist computers to learn 

similar to human beings (Hastie et al. 2009). ML is also known as Statistical Learning to 

statisticians and mathematicians’ community. This field aims to develop and study 

algorithms for learning from the data. The data set that is used in the learning process is 

known as the training set. According to the nature of the data in the training set and the 

scope of the study, different types of learning might be of interest. If the data set contains 

one or more target variables (which function as outputs) that we are interested to describe 

their current behavior and estimate its future behavior using other variables (which function 

as inputs) in the data set, the type of learning will be a Supervised Learning. The target 

variable is also known as Label, Response Variable, and Dependent Variable. Subsequently, 

if the target variables are missing in the data set the type of learning will be an Unsupervised 

Learning (Jiawei and Kamber 2001). There is also a third class of learning which is known 

as Semi-supervised learning in which the target variable is partially available. However, this 

class of learning is out of the scope of this thesis.  

In the next sections, the Supervised Learning methods will be explored, specifically the 

methods that were applied in different Chapters of this document, in detail.           
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3.2 Supervised Learning Methods 
 

       As mentioned in 3.1, when the data set contains the target variable(s), the nature of the 

learning will be a Supervised Learning. There are numerous methods in the family of supervised 

learners which differ from each other in different perspectives. When the target variable takes 

continuous values (Quantitative variable), the type of prediction will be Regression (or 

Prediction) and when it takes discrete values (Qualitative variable) the type of prediction will be 

known as classification. In sections 3.2.1 - 3.2.5, there are powerful prediction and classification 

techniques which are applied in the later Chapters are presented.  

3.2.1 Linear Regression Modeling 

 

Assuming that Y is the response variable in our data set and X= (X1, X2,..., Xp ) are the set of 

explanatory variables, in linear regression modeling it is presumed that the E(Y|X) is linear or 

linear model is an appropriate approximation for it. This assumption, although might seem too 

simple, enables the analysts to create interpretable and efficient models. In terms of prediction, 

these models sometimes create more accurate results than famous nonlinear and complex 

models. In this section, the application of linear regression for prediction is only discussed; 

however, they can also be applied for classification.     

The linear regression model has the form  

 0

1

( )
p

j j

j

f X X 


   (1) 

The j s in (1) are known as the model parameters or the coefficients and the jX s   might 

come from different sources such as quantitative inputs, different transformations of the 

quantitative inputs such as square-root and log transformation, basis expressions like ( 2X = 3

4X ) 
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, dummy coding a qualitative inputs, or the interactions between variables like ( 2X = 4 5.X X ). It 

is extremely important to note that when entering a categorical variable into the modeling, they 

have to be converted to dummy variables. For example, when entering a variable Race in the 

modeling, which takes discrete values (White, Hispanic, African-American, and Asian), three 

binary variables are created for three values and leave the fourth one as the reference.  

Therefore in regression, the goal is to estimate the parameters   using the data points in the 

training set  

 1 1 2 2{( , ),( , ),..., ( , )}N Nx y x y x y  (2) 

For each case i,  1 2( , ,..., )T

i i i ipx x x x represents the vector of measurements for each feature. 

One of the most popular methods for estimating the model parameters 0 1( , ,..., )T

p    is the 

least squares in which the set of coefficients that minimize the residuals sum of squares will be 

selected. 

 
2 2

0

1 1 1

( ) ( ( )) ( )
pN N

i i i ij j

i i j

RSS y f x y x  
  

        (3) 

The criterion for least squares method to succeed is that ix ’s should be drawn randomly from 

the population or the iy ’s are conditionally independent given the ix ’s .The geometry of the 

least squares fitting is displayed in Figure 2.  
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Figure 2. Geometry of the least squares fitting 

 

 

In order to minimize (3), it must be noted that X is matrix with N × (𝑃 + 1) dimentions. 

Therefore, the ( )RSS  can be written as  

 ( )RSS    ( ) ( )Ty X y X    (4) 

By differentiating (4) with respect to  , we have 

 
2

2 ( )

2

T

T

T

RSS
X y X

RSS
X X




 


  






 

 (5) 

TX X  will be a positive definite matrix if  X is full rank column matrix and therefore, by 

setting the derivatives to zero we have 
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 ( ) 0TX y X   (6) 

And 

 1( )T TX X X y   (7) 

 Using the estimated vector of coefficients, the prediction values will be  

 1( )T Ty X X X X X y    (8) 

In which 
1( )T TH X X X X is known as the Hat Matrix. The Hat Matrix computes the 

orthogonal projection of y and therefore it is also called the projection matrix. 

There are major assumptions in regression modeling which must be validated unless the 

reliability of the built model will be under question.  

The important assumption about iy s are that they are uncorrelated and have a constant 

variance
2 . The variance-covariance matrix of   can be easily driven from (8), given by 

 1 2( ) ( )TVar X X   (9) 

and estimated by 

 
2 2

1

1
( )

1

N

i i

i

y y
N p




 
 

  (10) 

The reason for choosing N-p-1 instead of N in (10) is to make 
2 and unbiased estimator. 

Another assumption is that the deviation of y around its expected values are Gaussian and 

additive  

 

1 2

0

1

( | , ,..., )p

p

j j

j

Y E Y X X X

X  




  
 (11) 

The   has the Gaussian distribution with mean of zero and a constant variance: 
2~ (0, )N  . 

Based on (11) it is easy to show that 
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 1 2~ ( ,( ) )TN X X    (12) 

The reason for investigating the distributional properties of  is to perform different tests of 

hypothesis and develop confidence intervals for each j . For example, to test that if j = 0, we 

use the Z-score 

 
j

j

j

z
v




  (13) 

where jv is the jth element of the diagonal of 
1( )TX X 
 matrix.  

After developing a regression model, the regression assumptions should be examined using 

the diagnostic tests. 
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3.2.2 Support Vector Machines 

 

Among numerous classifiers that are proposed in machine learning literature, Support 

Vector Machine (SVM) is one of the most popular classification techniques. This model was first 

introduced by Vapnik in 1992 (Vapnik and Vapnik 1998). SVMs use a simple linear method 

applied to the data but in a high-dimensional feature space which is non-linearly associated to the 

input space (Steinwart and Christmann 2008).  

In a typical classification problem, the data set consists of several features X1, X2,..., XL  

and one or several variables for labels C1,C2,...,Cp. The goal is to develop a model to assign the 

objects (data points) to their classes. In a two class classification problem (C1 and C2), the 

objective is to develop a classifier using the N data points in the training set. Therefore for each 

point in the training set {𝑥𝑛 }𝑛=1
𝑁  a label zn ∈ {−1,1}, n = 1,..., N should be estimated.  The 

classifier is defined as  

 ( ; ) ( )Ty x w w x b   (14) 

or 

 
1

( ; ) ( )
M

i i

i

y x w w x b


  (15) 

 where w ∈ R
M 

is the weight vector, and b ∈ R is the constant and (.)  is the transformation 

function. The predicted labels are computed using the sgn(.) function; sgn(y(x)). Assuming the 

data is linearly separable, there exists a vector w(w
*
) and b(b

*
) which yield a hyperplane that 

completely separates the data to two disjoint areas. This hyperplane is called the decision 

boundary (D) and the predicted labels for the data points and the value of y(xn) have the same 

sign; ( zny(xn) > 0;  ∀xn ∈ R
D 

and zn ∈ {−1,1}). The minimum distance of the points in the training 
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set to D is called the margin (See Figure 3) which is computed using min
𝑛∈{1,….,𝑁}

𝑧𝑛𝑦(𝑥𝑛)

||𝑤||
 ; ||·||  is the 

L
2
- norm.   

 
Figure 3.The separating hyper plane 

 

 

The objective in SVM is choosing the values for W and b which maximizes the margin 

and also minimizes the classification error.  The values for w
*
 and b

* 
are yielded by solving the 

following optimization problem 

 

 max
𝑤 ∈ ℝ𝑀,   𝑏 ∈ ℝ

{
1

‖𝑤‖
min

𝑛 ∈{1,….,𝑁}
[𝑧𝑛(𝑤𝑇𝜙(𝑥𝑛) + 𝑏)]} (16) 

The w
*
 and b

*
 which are resulted from (16) are also the solutions to the following minimization 

problem (17).   

 
min𝑤 ∈ ℝ𝑀,   𝑏 ∈ ℝ

1

2
‖𝑤‖2                      

                                                   subject to 

(17) 
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                                                               𝑧𝑛(𝑤𝑇𝜙(𝑥𝑛) + 𝑏) ≥ 1     

where 𝑥𝑛 ∈ ℝ𝐷 , 𝑧𝑛 ∈ {−1,1}, and 𝑛 = 1, … , 𝑁 

 

The optimization problem in (17) can also be solved by applying Lagrange multipliers (λn ∈ R, n 

= 1,...,N). The Lagrangian formation of (17) is 

 ℒ(𝑤, 𝑏, 𝜆) =
1

2
||𝑤||

2
− ∑ 𝜆𝑛[𝑧𝑛(𝑤𝑇𝜙(𝑥𝑛) + 𝑏) − 1]

𝑁

𝑛=1

 (18) 

The first-order conditions for optimality in (18) are ∑ 𝜆𝑛𝑧𝑛𝜙(𝑥𝑛) = 𝑤𝑁
𝑛=1  and ∑ 𝜆𝑛𝑧𝑛 

𝑁
𝑛=1 = 0. 

After applying the conditions, the dual form of (17) will be resulted as follows(19).  

 

                                                                                   max
𝜆 ∈ ℝ𝑁

ℒ(𝜆) 

                                                        subject to 

 

             𝜆𝑛 ≥ 0, 𝑛 = 1, … , 𝑁 

∑ 𝜆𝑛

𝑁

𝑛=1

𝑧𝑛 = 0 

(19) 

 

                                                            

Where ℒ(𝜆) ≜ ∑ 𝜆𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝜆𝑛𝜆𝑚𝑧𝑛𝑧𝑚𝑘(𝑥𝑛, 𝑥𝑚)𝑁

𝑚=1
𝑁
𝑛=1   and  𝑘(𝑥, 𝑥′) =  𝜙𝑇(𝑥)𝜙(𝑥′) is 

called the kernel function. The KKT (Karush-Kuhn–Tucker) conditions for optimality of 

optimization problems in (17, 19)  

are 𝜆𝑛 ≥ 0 , 𝑧𝑛𝑦(𝑥𝑛) − 1 ≥ 0, and 𝜆𝑛(𝑧𝑛𝑦(𝑥𝑛) − 1) = 0 where n = 1,...,N.  

Those data points for which the corresponding 𝜆𝑛 is non-zero are called support vectors. These 

points play a crucial role in classifying new points. 

If the points in the data set are not linearly separable, by using slack variables (ξn ≥ 0) the concept 

of soft-margin classifiers (See Figure 4) will be defined. In this family of classifiers, by assigning 



21 
 

a penalty for the points that lay on the wrong side of the boundary, the optimization problem in 

(17) will be rewritten as follow in (20)  

 

Figure 4. Soft Margin Classifiers 

 

 

                                                         min
𝑤 ∈ ℝ𝑀 ,𝑏 ∈ ℝ ,𝜉 ∈ ℝ𝑁 

𝐶 ∑ 𝜉𝑛 +𝑁
𝑛=1  

1

2
||𝑤||

2
   

                                           subject to 

𝑧𝑛𝑦(𝑥𝑛) ≥ 1 −  𝜉𝑛 ,    𝑛 = 1, … , 𝑁 

𝜉𝑛 ≥ 0, 𝑛 = 1, … , 𝑁 

(20) 

 

C > 0 is called the complexity parameter. The Lagrangian method can again be applied for 

solving (20) which has the form (21) 

 ℒ(𝑤, 𝑏, 𝜆, 𝜉) =
1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑛

𝑁

𝑛=1

− ∑ 𝜆𝑛(𝑧𝑛𝑦(𝑥𝑛) − 1 + 𝜉𝑛)

𝑁

𝑛=1

− ∑ 𝜇𝑛𝜉𝑛

𝑁

𝑛=1

 (21) 

where  𝑤 = ∑ 𝜆𝑛𝑧𝑛
𝑁
𝑛=1 𝜙(𝑥𝑛), 0 = ∑ 𝜆𝑛𝑧𝑛

𝑁
𝑛=1 , 𝜆𝑛 = 𝐶 − 𝜇𝑛,   𝑛 = 1, … , 𝑁, and 𝜆𝑛 ≥ 0.  

The dual form of this optimization problem is presented in (22) 
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min𝜆 ∈ ℝ𝑁 ℒ( 𝜆)     

subject to 

0 ≤ λn ≤ C,n = 1,...,N  

∑ 𝜆𝑛

𝑁

𝑛=1

𝑧𝑛 = 0 

(22) 

 

When the data space is not linearly separable, SVMs use a suitable mapping 〈Φ〉 of the input data 

values to a higher dimensional feature space which will be regulated by the kernel function. The 

data set will be linearly separable in the transformed space. The kernel function returns the inner 

product of two images of x and x′, i.e., k (x, x’) =〈Φ(x), Φ(x′)〉. Based on the nature of the data 

set, different kernel functions can be most effective: i.e. the polynomial kernel K(x, x′) =

(〈x, x′〉 + 1)2, Multi-Layer Perceptron  K(x, x′) = tanh (〈x, x′〉 + ϑ), Gaussian RBF Kernel 

K(x, x′) = exp (−
||x−x′||2

2δ2 ), ANOVA kernel K(x, x′) = ∑ Exp(−σ(xk − x′k)2)dn
k=1  , etc.  

 

The major drawbacks of SVM are: 

 The linear growth of the number of support vectors with the number of data points in the 

training set. 

 Providing a hard binary decision. In most applications it would be much more useful 

when the level of certainty is addressed when classifying new objects.  

 It is necessary to  estimate the C (complexity parameter) which requires the cross-

validation.  

To overcome the above-mentioned shortcomings, in the next section the Relevance Vector 

Machines (RVM) will be introduced. 
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3.2.3 Relevance Vector Machines 
 

Relevance Vector Machines (RVM) belong to the family of sparse Bayesian learners. This 

method, which can be used for both classification and regression, was introduced by Tipping 

(Tipping 2001). One of the most important advantages of RVM is its ability for handling 

classification problems when the cost of misclassification is different for different classes. In a 

classification problem, RVM assigns a class membership probability for a given point (x); 

p(Ck|x,X,Z) where X is the feature set and Z is the set of labels in the training set. Assuming that 

the posterior probability of a target variable in C1  is calculated by  

 p(zn = 1|xn,w) =  
1

1+𝑒−(𝑥𝑛
𝑇𝜙(𝑥)+𝑏)

 , n = 1,...,N (23) 

 

we will configure the likelihood function (LF). Using σ(.) for the logit function, the right side of  

(23) can be denoted as σ(y(xn)). Therefore, in our binary classification problem, the LF is  

 𝑝(𝑍|𝑋, 𝑤) = ∏ 𝑝(𝑧|𝑥𝑛, 𝑤)

𝑁

𝑛=1

= ∏ 𝜎(𝑦(𝑥𝑛))
𝑧𝑛

 (1 − 𝜎(𝑦(𝑥𝑛)))
1−𝑧𝑛

𝑁

𝑛=1

 (24) 

 

 The weight parameters (w) in (24) have a Gaussian distribution with a mean of zero. However 

the variance of each wi i = 1,...,M could be different. So, the prior distribution of the weight 

vector will be 

 𝑝(𝑤|𝛼) = ∏ 𝒩(𝑤𝑛; 0, 𝛼𝑛
−1)

𝑀

𝑛=1

 (25) 
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where αi, i = 1,...,M is known as hyperparameters and are the inverse of the Gaussian distribution 

variance. For any new point (x) the posterior probability can be calculated as 𝑝(𝑧|𝑥, 𝑋, 𝑍). This 

probability is computed by marginalizing the 𝑝(𝑧, 𝑥, 𝑋, 𝑍, 𝑤, 𝛼);  

 𝑝(𝑧|𝑥, 𝑋, 𝑍) = ∫ ∫ 𝑝(𝑧|𝑥, 𝑋, 𝑍, 𝑤, 𝛼)
∞

−∞

× 𝑝(𝑤|𝑥, 𝑋, 𝑍, 𝛼)𝑝(𝛼|𝑥, 𝑋, 𝑍)𝑑𝑤𝑑
∞

−∞

𝛼 (26) 

 

Solving (26) can be done by using approximation, in which the vector of α will be used as a 

constant (𝛼∗). 𝛼∗ is the value which maximizes the p(Z|X,α). Therefore, (26) will be equal to  

 ∫ 𝑝(𝑧|𝑥, 𝑋, 𝑍, 𝑤, 𝛼∗)𝑝(𝑤|𝑥, 𝑋, 𝑍, 𝛼∗)
∞

−∞

𝑑𝑤 (27) 

Furthermore, 𝑝(𝑤|(𝑥, 𝑋, 𝑍, 𝛼) =
𝑝(𝑍|𝑥,𝑋,𝑤,𝛼)𝑝(𝑤|𝑥,𝑋,𝛼)

𝑝(𝑍|𝑥,𝑋,𝛼)
=

𝑝(𝑍|𝑋,𝑤)𝑝(𝑤|𝛼)

𝑝(𝑍|𝑋,𝛼)
. This probability should 

also be approximated. The approximation process aims to detect the vector of w which 

maximizes p(w|x,X,Z,α). The maximization problem (𝑤∗) is 

 max
𝑤 ∈ ℝ𝑀

{ln(𝑝(𝑍|𝑋, 𝑤)𝑝(𝑤|𝛼)) − ln 𝑝(𝑍|𝑋, 𝛼)} (28) 

and the marginal LF 𝑝(𝑍|𝑋, 𝛼) will be  

 ∫ 𝑝(𝑍|𝑋, 𝑤, 𝛼)𝑝(𝑤|𝑋, 𝛼)𝑑𝑤
∞

−∞

= ∫ 𝑝(𝑍|𝑋, 𝑤)𝑝(𝑤|𝛼)𝑑𝑤
∞

−∞

 (29) 

 

which, using the Laplace approximation method, is equivalent to 

 𝑝(𝑍|𝑋, 𝑤∗)𝑝(𝑤∗|𝛼)(2𝜋)
𝑁

2⁄ (𝑑𝑒𝑡Σ)
1

2⁄  (30) 

 

 The Σ in (30) is the covariance matrix of the Gaussian approximation. Using the approximation 

method, the vector of 𝛼 and w will be estimated. Surprisingly enough, the value of  𝛼 for most 

weights go to infinity which will result in minimizing w to zero. Therefore, this process will yield 
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a much sparser model. The points in the training set for which the corresponding w is non-zero 

are called the relevance vectors.  

 

3.2.4 Decision Trees 

 

Decision trees (DT) are also a powerful family of classifiers. A Decision tree is a 

collection of rules which are configured as a tree.  The process of creating the Decision tree starts 

with picking the variables one by one and determining the criteria for splitting them. Each node 

in the tree represents a feature in the data set which can take either a continuous or a categorical 

value. In order to clarify this method, the following definitions are needed;   

Definition 1: Tree Root: The first feature that is chosen and is placed on top of the tree is known 

as root. 

Definition 2: Tree Leaves: The class labels which will be placed at the bottom of the tree are 

known as leaves. 

Definition 3: Tree Branches: The conjunction of attributes which will lead to the leaves 

(Classes). 

Definition 4: Recursive Partitioning: The process of splitting the data set into subsets based on 

the value of one attribute and repeating this process on each resulted subset. 

DT aims to classify the points in the data set by sorting them down from the root node to the leaf 

node. The process of choosing the attributes is to get the nodes with highest purity. There are 

several indexes to measure the purity in a node such as: Gain-Ratio, Information-Gain, Gini-

Index, and Accuracy. One of the most popular indexes to quantify the level of purity in each 

node is the node’s Entropy. In a multi-class classification situation the Entropy is defined as: 
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 H(S) = ∑ −𝑃𝑐𝐿𝑜𝑔2𝑃𝑐𝑐∈𝐶 .  (31) 

 

    

C represents the set of classes in the data set and Pc represents the proportion of points of class c 

in subset S. Information gain is the reduction in Entropy:  

 Gain(S,A) = H(S) - ∑
|𝑆𝑣|

|𝑆|
H(𝑆𝑣) 𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)  (32) 

 

Where values (A) indicates the set of all possible values that the attribute A can take. In addition, 

Sv in (32) represents the subset of S for which attribute A contains value v. (Prabhu et al. 2007)  

 

3.2.5 Shrinkage Regression 

 

An alternative approach to least square method (and ridge regression) towards estimating 

a linear model’s coefficients is lasso (Least Absolute Shrinkage and Selection Operator). The 

objective in lasso is to minimize the residual sum of square subject to the summation of the 

absolute values of coefficients to be less than a constant. 

 

𝐴𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑗

)2

𝑁

𝑖=1

} 

Subject to 

∑ |𝛽𝑗|

𝑗

≤ 𝜆 

 

(33) 

 One of the most important characteristics associated to lasso is that it enforces 

some coefficients to be exactly equal to zero and hence it results in a simpler model. However, 



27 
 

by choosing a significantly large value for  , this property will be nullified (and lasso regression 

will be the regular least square model). Therefore, an appropriate choice of 𝜆 is quite critical. 

Because of this important attribute, the variable selection and modeling phases take place 

simultaneously. This idea can be considered as a major improvement over ridge regression where 

some coefficients will tend to zero but not exactly zero (See 34). 

 

 

𝐴𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑗

)2

𝑁

𝑖=1

} 

Subject to 

∑ 𝛽𝑗
2

𝑗

≤ 𝜆 

 

(34) 

 

Another major advantage of lasso is its interpretability. As opposed some more complex 

nonlinear models such as neural networks, lasso will result in an interpretable model which is 

very important especially in clinical studies. For a detailed study over lasso see Tibshirani’s 

original paper [(Tibshirani,1996)]) 
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3.3   Model Evaluation 

 

There are several methods to evaluate a classification method. A confusion matrix is a 

tabulated presentation of correctly or incorrectly classified points in the data set. The definition 

of the cell values in the confusion matrix is presented below: 

 True positives (TP): number of positive examples that were predicted correctly 

 False positives (FP): number of positive examples that were predicted incorrectly 

 True negatives (TN): number of negative examples that were predicted correctly 

 False negatives (FN): number of negative examples that were predicted incorrectly. 

 The measures that were considered to pick the best model are: 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (33) 

 Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 (34) 

 Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                     (35) 

 Precision+ = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (36) 

 Precision- = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (37) 

 

 

 In Figure 5, the model evaluation process for classification problems is displayed.                                       
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            In prediction models, the method’s prediction accuracy is evaluated based on RMSE 

(Root Mean Squared Error); √𝑚𝑒𝑎𝑛[(𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒)2] and MAE (Mean 

Absolute Error); mean (|𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒|).   

 

 

Figure 5. Evaluation Process 
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4 DOSE PREDICTION MODELS FOR PATIENTS OF SPECIFIC 

ETHNICITIES 
 

4.1 Problem Definition  

 

As mentioned in Chapter 2, several dose prediction models for estimating the initial dose 

of Warfarin are proposed in the literature. The key problem at hand is that one does not know 

how well these commonly used dose prediction equations perform in patients of African descent. 

This is because the data sets used to build the models contained only 10% of patients of African 

descent.  

There are key differences between African American and non-African American patients, 

such as differential distribution and effects of influential genetic traits that effect warfarin dose. 

The ultimate goal of this line of work is to generate race/ethnicity specific dose prediction 

equations that out perform traditional equations which ultimately result in better dose predictions 

for these patients. Therefore, the objective of this Chapter is to explore different modeling 

approaches in a cohort of warfarin treated African Americans and compare their performance of 

predicting a stable Warfarin dose. The ultimate goal is to generate warfarin dose prediction 

models that account for ethnic differences and ultimately outperform (more accurate) existing 

equations.  

 

4.2 Data Set Description 
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The Cavallari group has developed a database of over 326 warfarin-treated African 

Americans containing each patient’s observed stable dose and a rich set of covariates. The data 

were collected over a ten-year period at the University of Illinois Hospital and Health Science 

System, Chicago, IL.  For each patient, several features were measured that are presented in 

Table 5. 

Table 5. List of features in the dataset. 

Variable Number Variable Name/Type 

1 Age (continuous value) 

2 Sex (Male=1, Female=0) 

3 Height (continuous value) 

4 Weight (continuous value) 

5 Amiodarone (AMIO)(Yes=1,No=0) 

6 Smoking (Yes=1,No=0) 

7 DVT/PE (Yes=1,No=0) 

8 Diabetes (Yes=1,No=0) 

9 Cancer (Yes=1,No=0) 

10 Hypertension[HTN] (Yes=1,No=0) 

11 Stable INR (continues values) 

12 Stable Warfarin Dosage  

 

4.3 Methods 
 

Three machine learning techniques were used for the prediction of warfarin dosing of 

African American patients. The techniques include Artificial Neural Networks, Support Vector 

Regression models, and Linear Multivariate Regression. The modeling details and comparisons 

are provided below.  

One of the prediction methods that was used in this Chapter is Artificial Neural Networks.   

The concept of brain-style computation was originally rooted over 60 years ago in the research 

of McCulloch and Pitts (1943)(McCulloch and Pitts 1943) and furthermore in (1949)(Hebb 

1949).. The basic structure of the neural network is presented in Figure 6. 
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Figure 6. Single hidden layer feed-forward neural network 

 

 

 

The fundamental components of neural networks are known as neurons. Each processing unit is 

considered by an activity level which represents a node’s level of polarization; an output which 

represents a node’s firing rate; the input and output connections and a bias value (Fullér 2000). 

There are weights associated to each connection which determine the strength of the effect of the 

input on the unit’s activation level (See Figure 7). 

 

Figure 7. Functionality of the neural network 

 

In Figure 7, Wi  denotes the weight from one input node to its associated output node. Therefore 

we can describe our system as 
1

( )
n

j j

i

f w x


 . The challenge is to find the appropriate Wi’s. 
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The function f is called the activation function. The weights are adjusted in the process of  

perceptron learning method (for details see (Yegnanarayana 1994)).  

The second method that was applied in this Chapter was Support Vector Regression. The theory 

behind Support Vector Machines was discussed in Chapter 3.  

By changing the loss function in (20), which is called the ξ -insensitive loss function, SVMs can 

also be used for regression (Karatzoglou, Meyer, and Hornik 2006). This loss function will only 

accept the error terms which are greater than a predefined threshold (ξ).  

 

minimize t(w, ξ) = 
1

2
 ‖𝑤‖2 +  

𝐶

𝑚
∑ (ξ𝑖 +  ξ𝑖

∗)𝑚
𝑖=1  

subject to (〈Φ(𝑥𝑖), 𝐰〉 + 𝑏) – yi ≤  𝜖 −  ξ𝑖 

yi – (〈Φ(𝑥𝑖), 𝐰〉 + 𝑏) ≤  𝜖 −  ξ𝑖
∗ 

ξ𝑖
∗  ≥ 0       (𝑖 = 1, … , 𝑚) 

 

(38) 

The third model that was used for modeling was Linear Multivariate Regression. When 

performing the modeling, 80% of the data set was selected randomly for our training set and the 

remaining 20% was used for validating our models. Before starting the modeling, the data from 

patients with a stable INR between 2 and 3 were selected, and then the data cleansing was 

performed. All the missing values were imputed using K-nearest neighbor method. To avoid any 

collinearity between Height and Weight, BSA (Body Surface Area) was used. In the process of 

modeling, patients whose stable dose was between 25 mg/wk and 65 mg/wk were selected since 

90% of our patients had the stable dose within this range (Figure 8-9).  
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Figure 8. Density graph of the stable dose after selecting the desired dose range 

 

By selecting the aforementioned range, our data became significantly more amenable (Figure 9). 

 

 

Figure 9. Density graph of the stable dose 

 The first model was built upon designing an artificial neural network with 2 hidden layers.  The 

back propagation for calibrating the weights was used. (See Figure 10). The minimum error at 

1% and the epoch at 5,000,000 were set and the activation function was tanh(s). 
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Figure 10. Artificial Neural Network 

 

After testing numerous different numbers for hidden layers therefore, the model with 2 hidden 

layers turned out to have the minimum validation error. 

In Table 6, RMSE (root mean squared error) and MAE (mean absolute error) are shown. 

 

Table 6. Prediction performance of Neural Network 

Method RMSE MAE 

Neural Network 21.6 20.2 

 

 

The next model that was tested is Support Vector Regression. As mentioned in Chapter 3, this 

method works by identifying the support vectors in the training set and then using those vectors, 
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the model’s coefficients will be calibrated. The Gaussian RBF kernel k(x,x') = exp(-σ |x - x'|
2
) 

was used. The result of this model is presented in Table 7.  

Table 7. Prediction performance of Support Vector Machine 

Method RMSE MAE 

Support Vector Regression 17.3 16.1 

 

The last model that was tested was Multiple Linear Regression. The model coefficients were 

calibrated using the Least Square technique. To support the assumption of normality, the 

logarithmic transformation was implemented on the stable doses. In Table 8, the estimations for 

model coefficients along with their P-values are presented. 

Table 8. Model Coefficients for the regression model 

Variable Name Corresponding Coefficient in the model P-Values 

(Intercept) 3.755 ~ 0 

BSA 0.124 0.038 

Age -0.004 0 

Sex 0.013 0.736 

Smoke 0.066 0.138 

HTN -0.068 0.096 

DVT/PE -0.001 0.98 

Diabetes 0.051 0.164 

Cancer -0.032 0.79 

Amiodarone -0.187 0.043 

 

Since some of the variables are not significant at the 0.05 level of confidence, the step-wise 

method was used to select the best subset for modeling. The resulting model coefficients are 

presented in Table 9. 
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Table 9. Model Coefficients for after implementing the stepwise model selection 

Variable Name Corresponding Coefficient in the model P-Values 

(Intercept) 3.778 ~ 0 

BSA 0.117 0.035 

Age -0.004 0 

Smoke 0.066 0.031 

HTN -0.068 0.089 

Diabetes 0.051 0.061 

Amiodarone -0.192 0.034 
 

The model assumptions were examined through investigating the residuals, the assumption of 

independency and normality of residuals were confirmed (See Figure 11). In parts a and b in 

Figure 11. both the raw values of residuals and the squared root of the standardized values of 

residuals versus the fitted values are graphed. The stability of the variance of random error is 

quite evident. In part c, using the Q-Q plot, the validity of the assumption of normality of random 

errors is illustrated. In part d, the robustness of the model in presence of leverage point using 

Cook’s Distance is examined. 

The model performance was quite satisfactory. In Table 10. the model performance is presented. 

 

Table 10. Results for multivariable Regression 

Method RMSE MAE 

Multivariable  Regression 14.51 12.2 

 

The three new models were examined against the IWPC and Gage models. In Figure 12., all six 

models are compared. While Artificial Neural Network and Support Vector Machine methods 

perform poorly compared to the available techniques (IWPC and GAGE), the multi regression 

model outperforms the IWPC and Gage models.  
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Figure 11. Checking the model assumptions 
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Figure 12. Comparing the performance of different models. 
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4.4 Results 
 

In this Chapter, machine learning techniques were used to develop a new model for the 

prediction of the optimal warfarin dosing for African American patients. To develop the new 

model, three different machine learning techniques were specifically examined, namely support 

vector machines, neural networks, and multivariable regression. It was shown that the new model 

has a better prediction accuracy than the existing popular dosing algorithms. Therefore, the new 

model would be safer in determining the optimal warfarin dosing for African American patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

5 NEW METHODOLOGY TOWARDS MULTI-ETHNIC 

PREDICTION MODELING 
 

5.1 Problem Definition  
 

In this Chapter, a novel method for warfarin dosing is developed. In this proposed methodology, 

the patients are primarily categorized into two classes. Class 1 contains patients who need doses 

of > 30 mg/wk. Class 2 contains those patients who need doses of ≤ 30 mg/wk. In the next stage, 

dose prediction takes place for each class individually. This method was compared with the most 

popular dose prediction models in the literature along with the method proposed in Chapter 4 and 

its outperformance in terms of prediction accuracy was proved.  

 

5.2 Data Set Description 
 

The data set that was used in this Chapter is the IWPC data set which is a well-known multi-

ethnic warfarin data set. This data set is one of the most widely used and publically available 

warfarin data sets, as evident by its citations in the literature (SM Oztaner et al. 2014). The 

missing values in the data set were imputed using the K-nearest Neighbor (KNN) method with 

k=1 (Hastie et al. 2009). The variables whose percentage of missing values were more than 50% 

were not involved in the model. The variables used in the modeling were only the clinical and 

demographic variables which are presented in Table 11. In order to develop a robust prediction 

model, the CRISP-DM methodology was followed in order to build our models (Wirth and Hipp 

2000). 50% of the data points were randomly selected to comprise the training set (derivation 

cohort) and the remaining 50% were assigned to the testing set (validation cohort). The data in 

the test set were used for the models’ performance in dealing with unseen data points.    
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Table 11. IWPC data set description1 

Continuous Variables 
    

Target International 

Normalized Ratio 

Mean 2.5 
    

Std. Deviation 0.1 
    

Minimum 1.8 
    

Maximum 3.5 
    

Body Surface Area 

Mean 1.94 
    

Std. Deviation 0.3 
    

Minimum 1.2 
    

Maximum 3.4 
    

Categorical Variables 

Gender 

Values Frequency Percent 

Amiodarone 

Values Frequency Percent 

0 1822 43.00% 0 3984 94.03% 

1 2415 57.00% 1 253 5.97% 

Race 

Values Frequency Percent 

Carbamazepine 

Values Frequency Percent 

1 2663 62.85% 0 4195 99.01% 

2 656 15.48% 1 42 0.99% 

3 918 21.67% 

Phenytoin 

Values Frequency Percent 

Deep Vein Thrombosis 

and Pulmonary 

Embolism (DVT/PE) 

Values Frequency Percent 0 4197 99.06% 

0 3846 90.77% 1 40 0.94% 

1 391 9.23% 

Rifampin 

Values Frequency Percent 

Diabetes 

Values Frequency Percent 0 4231 99.86% 

0 3500 82.61% 1 6 0.14% 

1 737 17.39% 

Sulfonamide 

Antibiotics 

Values Frequency Percent 

Congestive Heart 

Failure 

Values Frequency Percent 0 4214 99.46% 

0 3492 82.42% 1 23 0.54% 

1 745 17.58% 

Macrolide 

Antibiotics 

Values Frequency Percent 

Valve Replacement 

Values Frequency Percent 0 4225 99.72% 

0 3243 76.54% 1 12 0.28% 

1 994 23.46% 

Anti-fungal 

Azoles 

Values Frequency Percent 

Aspirin 

Values Frequency Percent 0 4210 99.36% 

0 3199 75.50% 1 27 0.64% 

1 1038 24.50% 

Smoker 

Values Frequency Percent 

Simvastatin 

Values Frequency Percent 0 3733 88.10% 

0 3608 85.15% 1 504 11.90% 

1 629 14.85% 

Enzyme 

Values Frequency Percent 

Atorvastatin 

Values Frequency Percent 0 4150 97.95% 

0 3810 89.92% 1 87 2.05% 

1 427 10.08%  Values Frequency Percent 
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Fluvastatin 

Values Frequency Percent Age 1 9 0.21% 

0 4220 99.60% 2 94 2.22% 

1 17 0.40% 3 189 4.46% 

Lovastatin 

Values Frequency Percent 4 444 10.48% 

0 4153 98.02% 5 806 19.02% 

1 84 1.98% 6 1023 24.14% 

Pravastatin 

Values Frequency Percent 7 1133 26.74% 

0 4121 97.26% 8 511 12.06% 

1 116 2.74% 9 28 0.66% 

Rosuvastatin 

Values Frequency Percent 
    

0 4208 99.32% 
    

1 29 0.68% 
    

 

1 The variable Gender takes 0 for Female patients and 1 for Male patients. The variable Race takes 1 for 

White, 2 for African-American, and 3 for Asian patients. Consumption of any drug or possession of any 

disease is indicated with 1 and 0 otherwise. The variable Age is coded in Age-decade format (1 represents 

10-19 years old, 2 represents 20-29 etc.).  

 

5.3 Methods 
 

The dose prediction method that is proposed in this Chapter contains two phases. In the first 

phase, the data points in the test will be assigned to two classes. The first class contains patients 

who require doses of > 30 mg/wk (High-Required-Dose (HRD)) and the second class contains the 

patients who need doses of ≤ 30 mg/wk (Low-Required-Dose (LRD)).  

The selected cut-off point (30 mg/wk) was derived from the validation process in which the data 

in the Learning set was divided randomly into Training and Validation sets. Different values (15, 

20, 30, 35, 40, 45, and 50 mg/wk) were selected and examined to identify the threshold that 

maximized the classification accuracy. The optimal threshold, 30 mg/wk, from the validation 

process, was applied in the modeling procedure. 
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This phase is performed using a classification technique which incorporates Relevance Vector 

Machines (RVM). In the second phase, the optimal dose for each patient will be predicted by two 

regression clinical models which are customized for each class of patients (See Figure 13).   

 

 

Figure 13. The proposed two stage modeling 

 

 

The classification and the regression models are created using the data points in the learning set. 

Each data point in the learning set got labeled as 0 (LRD patients) or 1 (HRD patients) 
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depending on the value of the therapeutic dose. Now by considering the generated labels as the 

new response variable, the nature of the problem transforms to classification. A classification 

model (RVM) is trained using the data in the learning set. Additionally, the points in the learning 

set are assigned to two groups according to their label and a regression model for each group is 

generated.  

As it is shown in Figure 13., when the points are labeled as 1 or 0 by the classification model, 

they will be entered into the second phase which is the prediction phase. Using the RVM model, 

the data points in the testing set were classified to HRD and LRD classes and two regression 

models were developed for each class separately. The models are presented below.  

Model for HRD Class (Model I):  

Predicted Dose =Exp(2.85332 -0.07370 X Race -0.06513 X Age +0.10246 X DVT/PE + 0.05766 X 

Diabetes + 0.03742 X VR - 0.08763 X Lovastatin-0.12542X Amiodarone +  0.13207 X TargetINR + 

0.12403X Enzyme + 0.34487 X BSA ) 

Model for HRD Class (Model II):  

Predicted Dose =  Exp(3.44056 - 0.03649XRace - 0.04820  X Age+ 0.05059  X DVT/PE - 0.03060  X 

Aspirin - 0.06150 X Amiodarone -0.20356 X AfungalAzoles +0.05744 X Smoker + 0.10923 X Enzyme + 

0.24601 X BSA ) 

 

In the cross-validation phase, the trained models were applied on the data points in the testing 

set. The classification results for the two models are presented in Table 12. 

 

Table 12. Classification results for RVM 

Method Accuracy Sensitivity Specificity Precision + Precision - 

RVM 0.66 0.63 0.73 0.81 0.5 

 



45 
 

After classifying the points in the test set, 49% of the points were assigned to HRD class and 

51% to LRD class. The proposed method’s prediction accuracy got evaluated based on RMSE 

and MAE. The prediction results are presented in Table 13. 

 

Table 13. Comparing the prediction accuracy of the proposed methodology with IWPC Cl and Gage Cl models 

Methods RMSE MAE 

The Proposed Methodology 11.6 8.4 

IWPC Cl 13.8 9.1 

Gage Cl 12.2 9.9 

Sharabiani 18.1 12.7 

Fixed-dose approach 18.7 12.3 

 

As it is evident in Table 13., the proposed methodology for predicting the warfarin dose 

outperforms the IWPC cl model for 16% in terms of RMSE and 8% in terms of MAE. It also 

outperforms the Gage Cl model for 5% in terms of RMSE and 16% in terms of MAE. The 

proposed method was also compared with fixed-dose approach (35 mg/wk) and the prediction 

model proposed in (Sharabiani et al. 2013). The method resulted in significantly lower RMSE 

and MAE than both models (37%, 31% less than the fixed dose approach and 35%, 33% less 

than Sharabiani’s method in terms of RMSE and MAE respectively).   

 

The major limitations for comparing developed models with one another in warfarin dosing 

literature can be viewed from three perspectives. First, the variables that were involved in the 

reference model should be available in the data set that is used for developing new models. For 

example, not all variables that were applied in (Grossi et al. 2013) are available in IWPC data 

set. Therefore, it is not possible to measure the performance of the proposed model developed by 

(Grossi et al. 2013) on IWPC data set. The second limiting factor is the use of genetic variables 

in the model such as (Grossi et al. 2013) and (SM Oztaner et al. 2014). As discussed in the 
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Introduction, there is a serious hesitation towards applying such models in practice. Specially, 

applying these models require the data of quite costly variables, which are not available to most 

institutes around the world. Therefore, when developing clinical models, their performance must 

be compared to the existing clinical models. Thirdly, some models are developed targeting 

specific cohorts of patients (patients of different ethnicities, age groups, etc). Therefore, 

comparing models which target general public with these special models will result in a biased 

conclusion. For, example, in IWPC data set, African-American patients constitute about 16% of 

the whole population. Therefore, applying the models which are developed for African-

American patients (such as (Sharabiani et al. 2013), (Cosgun, Limdi, and Duarte 2011)) will 

result in an expected underperformance than general models. 

 

5.4 Results 

 

The significance of prescribing an accurate initial dose for warfarin is undeniably important. 

Therefore several mathematical models have been proposed in order to predict the optimal dose 

for each patient.  In this Chapter, a novel methodology for predicting the initial dose is proposed, 

which only relies on patients’ clinical and demographic data.  In this method, the patients are 

assigned to either one of two classes in the first phase. The patients who require doses of > 30 

mg/wk belong to the first class and the the patients who need doses of ≤ 30 mg/wk belong to the 

second class. This phase is implemented using (RVM).  Then, each patient’s dose will be 

determined using one of the two regression clinical models which are customized for each class. 

The proposed methodology outperformed two popular existing clinical prediction models (IWPC 

Cl, Gage Cl , and Sharabiani models) in addition to fixed-dose approach) in terms of prediction 
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accuracy. The methodology which is proposed in this work can be extended by investigating the 

best classifiers for patients of specific ethnicities. 

 

 

 

6 COMPANION CLASSIFICATION MODEL TO PREDICTION 

MODELS 
 

6.1 Problem Definition  

 

Considering the predominant uncertainty in using the Pharmacogenetic models in practice, 

in this Chapter, the concentration is aligned towards one of the most popular and generally used 

clinical models; the IWPC Cl model. Although, it has been reported that this model performs the 

best for patients with therapeutic range of less than or equal to 21 to more than or equal to 49 

mg/wk, since the therapeutic dose is not evident in early stages of the treatment, a companion 

classification model is proposed to help the clinicians to identify the patients whom are 

compatible with this dosing model.  

Using a sample of 4,237 patients, a companion classification model to one of the most popular 

dosing algorithms (IWPC clinical model) is proposed, which identifies the appropriate cohort of 

patients for applying this model. The proposed model will function as a clinical decision support 

system which assists clinicians in dosing. A classification model using Support Vector Machines, 

with a polynomial kernel function is developed to determine if applying the dose prediction 

model is appropriate for a given patient. The IWPC clinical model will only be used if the patient 

is classified as “Safe for the model” by the classification model. 

6.2 Data Set description 
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The data set that was used in this Chapter is the multi-ethnicity (IWPC) data set which is 

comprehensively described is section 5.2.   

 

6.3 Methods 

 

As mentioned in the previous section, the prediction model which we applied in the system 

development process is the IWPC clinical model. The variables, their corresponding coefficients, 

and their units are presented in Table 1.  For all patients in the data set, the dose prediction value 

using the IWPC model was generated. If the difference between the prediction value and the 

therapeutic dose is more than 15 mg/week (|Therapeutic Dose – IWPC Clinical | > 15 mg week), 

the patient will be labeled as ‘High-risk’ patient otherwise he/she will be labeled as ‘Safe for the 

model’. The objective is to develop a classification model to detect the High-risk patients, See 

Figure 14.  

 
Figure 14. The proposed methodology for using the IWPC clinical model 

 

 

For establishing a reliable model and testing its performance against the out-of-sample data 

points, the data set was assigned to Learning (50%) and Testing (50%) sets. The choice of 15 

mg/wk as a threshold was yielded through the validation phase where after trying different 



49 
 

thresholds, on the data points in the training set, the threshold 15 mg/wk resulted in the 

maximum classification accuracy. Several classification models were examined using K-fold 

cross validation with k=10 on the learning set. The sensitivity, specificity, and accuracy were 

used in comparing the classification models. The sensitivity and specificity were characterized 

by the balanced accuracy (Hastie et al. 2009);   Balanced Accuracy = (sensitivity + specificity)/2. 

After developing the model, it can be applied to determine if the patient is compatible with 

IWPC Cl model or not, and use the dosing model only if he/she is classified as ‘Safe for the 

model’. After labeling the patients using the classification model, if the patient is classified as 

“Safe for the model”, the clinician has a choice to apply IWPC Cl. 

 

 

Several classification methods were examined using the test data set and were compared based 

on their Accuracy and Balanced accuracy. The classification methods are Decision Trees (DT) 

with several parameter settings for minimum size for leaves, depth of the tree and minimum 

branch size, logistic regression, Naïve Bayes, Artificial Neural networks, SVM with linear 

kernel, SVM with Gaussian kernel, and SVM with a polynomial kernel. The classification results 

are presented in Table 14. 

 

 
Table 14. Comparing the performance of different classification models on the Test set 

Model Name Accuracy Sensitivity Specificity Balanced Accuracy 

DT(2,20,4) 51.9% 48.6% 55.2% 51.9% 

DT(4,10,5) 50.7% 45.3% 56.0% 50.7% 

DT(4,20,7) 51.7% 45.0% 58.4% 51.7% 

DT(10,20,20) 52.4% 45.7% 59.1% 52.4% 

Naïve Bayes 56.9% 42.9% 70.9% 56.9% 

Neural Nets 50.0% 100.0% 0.0% 50.0% 

SVM(Linear) 50.0% 100.0% 0.0% 50.0% 

SVM(Sigmoid) 50.0% 0.0% 100.0% 50.0% 

SVM(Polynomial) 59.0% 61.2% 55.1% 58.2% 

 

 



50 
 

The SVM with polynomial kernel was selected as the best model as it had the highest accuracy, 

59.0% and performed acceptably in both Specificity and Sensitivity, thus having the highest 

balanced accuracy, 58.2%. 

 

The SVM with a polynomial Kernel was applied to the patients in the test set to classify patients 

as either ‘Safe for model’ or ’High-risk’. Once the patients were classified as ’High-risk’, they 

were eliminated from the test set. For the remaining patients (Shrunken test set), the IWPC 

clinical model was used to predict the initial dose. 

In Table 15., the prediction accuracy of the IWPC clinical model was compared between the 

original test set and the shrunken test set based on RMSE and MAE. 

Table 15. Comparing the prediction accuracy of the IWPC CL model on original and shrunken test sets 

Original Test Set 

Number of data points 2119 

Error (RMSE) 23.0 

Error (MAE) 16.6 

Shrunken Test Set 

Number of data points 1271 

Error (RMSE) 17.8 

Error (MAE) 14.03 

 

 After applying the proposed classification of "High-risk" or "Safe for the model", the model’s 

prediction error improved from 23.0 to 17.8 (5.2 absolute, 23% relative) for RMSE and similarly 

for the MAE method, improved from 16.6 to 14.0 (2.6 absolute, 15% relative). In the shrunken 

test set, 40% of the patients were labeled as “High-risk”. The proportion of patients that would 

be considered “High-risk” in any new set of patients cannot be determined prospectively and this 

is something that would need to be watched if this system were to be used on a new cohort of 

patients.  
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Clinically the knowledge of whether the patient was classified as "safe for model" or "high-risk" 

can be used to help decide on the use of clinical pharmacists, which are often a limited resource 

in healthcare settings. The "high-risk" patients may be the ones that a limited number of 

pharmacists are assigned to help with anticoagulation. Most patients being started on warfarin do 

not require continued admission until the INR is stable due to the use of low molecular weight 

heparin (LMWH). Knowledge of stratification of patients as “high-risk” for a poor dose could 

potentially be used to help decide the delay from discharge to the first visit for ambulatory 

monitoring of INR.   

 

6.4 Results 

 

In this Chapter, a novel methodology for identifying patients appropriate for the IWPC 

clinical model is proposed, functioning as a companion to IWPC clinical model. The multi-

ethnicity (IWPC) data set was used to develop, examine, and ultimately select the best 

classification model to identify the ‘Safe for model’ patients; the patients for whom the 

difference between the prediction by IWPC clinical model and their therapeutic dose is less than 

15 mg/wk, and ‘High-risk’ patients; the patients for whom the difference between the prediction 

by IWPC clinical model and their therapeutic dose is more than 15 mg/week. A support vector 

machine with a polynomial kernel function was found to be the best performing classification 

model. The patients classified as ‘High-risk’ were eliminated from the test set. For the remaining 

patients, the IWPC clinical model is used for predicting the initial dose. The performance of the 

approach was tested using RMSE and MAE comparisons on the original test set and the 

shrunken test set. The RMSE value improved by 23% and the MAE value by 15%. The 

application of the proposed methodology can be extended to the prediction models which are 

developed for specific ethnic groups and children.  
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The ability of this system to predict which patients may be appropriate or inappropriate for the 

IWPC model may have many clinical applications. This system could be used to help decide on 

the use of clinical pharmacists in assistance with warfarin dosing. The "high-risk" patients may 

be chosen as requiring pharmacy assistance in a situation with limited clinical pharmacists. In 

addition, stratification of patients as “High-risk” for a poor dose could potentially be used to help 

decide the delay from discharge to the first visit for ambulatory monitoring of INR. 
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7 A NEW APPROACH TOWARDS MINIMIZING THE RISK OF 

MIS-DOSING FOR POPULAR WARFARIN INITIATION DOSES 

PRESCRIBED BY THE PHYSICIANS 
 

7.1 Problem Definition  

 

In clinical practices, in order to determine the initiation dose of Warfarin, the clinicians 

face several alternatives. They can use the loading method, the dose prediction models that are 

proposed in the literature, or rely solely on their knowledge and experience. In this Chapter two 

objectives were pursued. The first objective is to minimize the risk of mis-dosing when the 

clinicians prescribe the initial dose based on their known judgment. The risk of mis-dosing is 

defined as the significant percentage difference between the initial dose and the therapeutic dose. 

Since the definition of a “significant percentage difference” is subject to individual 

interpretation, the proposed procedure is examined based on different scenarios. The proposed 

model estimates the amount of percentage error which can be either positive (in case of 

overdose) or negative (in case of under dose). Once the amount of percentage error is estimated, 

the initial dose can be modified accordingly. It is shown that by using the proposed method, the 

risk of mis-dosing decreases significantly.  

 

7.2 Data set Description 

 

 

The dataset which was used for this project contain the data of 150 warfarin-treated 

patients in the University of Illinois at Chicago Hospital who had reached the therapeutic dose in 
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their course of treatment. Numerous variables about these patients were measured. The variables 

in the data set and their frequencies are presented in Tables 16-17.  

 

 

Table 16. Categorical variables in the data set 
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Race 

African 

American 
1 79 53% 

Smoking 

Current 

Smoker 
1 13 9% 

Hispanic 2 34 23% Never Smoker 2 107 71% 

White 3 18 12% Ex-Smoker 3 30 20% 

Asian 4 4 3% 

EtOH 

Yes 1 24 16% 

Other 5 15 10% No 2 119 79% 

Gender 
Male 1 67 45% Missing NA 7 5% 

Female 2 83 55% 
Illicit 

Yes 1 6 4% 

Liver Disease 

Yes 1 3 2% No 2 144 96% 

No 2 125 83% 
Hypertension 

Yes 1 86 57% 

Missing NA 22 15% No 2 64 43% 

warfarin  

indication (WI) 

A.fib 1 25 17% 
Angina 

Yes 1 1 1% 

DVT 2 53 35% No 2 149 99% 

PE 3 34 23% 
Myocardial Infarction 

Yes 1 3 2% 

TKA/THA 4 13 9% No 2 147 98% 

MVR 5 1 1% Percutaneous Coronary  

Intervention (PCI) 

Yes 1 6 4% 

CVA 6 4 3% No 2 144 96% 

Other 7 20 13% coronary artery bypass 

 graft(CABG) 

Yes 1 5 3% 

Goal INR 

2-3 1 136 91% No 2 145 97% 

2.5-3.5 2 3 2% Atrial fibrillation  

or flutter 

Yes 1 11 7% 

1.8-2.5 3 11 7% No 2 139 93% 

Amioadarone 

Yes 1 5 3% 
Diabetes mellitus(DM) 

Yes 1 48 32% 

No 2 144 96% No 2 102 68% 

Missing NA 1 1% Stroke Yes 1 11 7% 
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Bactrim 

Yes 1 1 1% No 2 139 93% 

No 2 148 99% Chronic Renal  

Insufficiency 

Yes 1 15 10% 

Missing NA 1 1% No 2 135 90% 

Azole 

Yes 1 1 1% Chronic Obstructive  

Pulmonary Disease 

(COPD) 

Yes 1 7 5% 

No 2 148 99% No 2 143 95% 

Missing NA 1 1% 
Asthma 

Yes 1 18 12% 

Which  

Statin?(ST) 

None 0 93 62% No 2 132 88% 

Simva 1 14 9% 
Valvular Heart Disease 

Yes 1 1 1% 

Atrova 2 23 15% No 2 149 99% 

Prava 3 7 5% 
Sickle Cell 

Yes 1 3 2% 

Lova 4 8 5% No 2 147 98% 

Rosuva 5 4 3% 
Cancer History 

Yes 1 12 8% 

Missing NA 1 1% No 2 138 92% 

Dialysis 
Yes 1 8 5% 

pulmonary  Embolism 

(PE) 

Yes 1 5 3% 

No 2 142 95% No 2 144 96% 

Rheumatoid  

Arthritis 

Yes 1 1 1% Missing NA 1 1% 

No 2 149 99% 
Dyslipidemia 

Yes 1 53 35% 

Collagen vascular  

disease 

Yes 1 2 1% No 2 97 64% 

No 2 148 99% 
heart failure (HF) 

Yes 1 15 10% 

Deep vein  

thrombosis(DVT) 

Yes 1 10 7% No 2 135 90% 

No 2 140 93% Peripheral vascular  

disease (PVD) 

Yes 1 7 4% 

     
No 2 143 95% 

 

Table 17. Continuous variables in the data set 

Continuous Variables Unit 

Number 

of 

Missing 

Mean Median Sd Min Max 

Therapeutic Dose (Label) mg/day 0 5.68 2.87 5.1 0.9 16.8 

Initial Dose Prescribed By the 

Physician(IDP) 
mg/day 2 6.12 2.59 5 1 16 

Percentage Error 
 

2 0.26 0.7 0.12 -0.84 4.83 

Age 
 

0 54.29 17.82 57 18 91 

Height(Ht ) cm 0 168.28 10.35 169 142.2 195 

Weight(Wt) kg 0 89.9 31.12 83 40 220 

Creatinine Clearance (CrCl ) ml/min 2 64.79 36.32 63.65 3.6 146.5 

Albumin g/dl 17 3.12 0.65 3.2 1.4 4.3 

Aspartate Aminotransferase(AST ) u/L 22 33.56 41.04 22 9 379 

Alanine Aminotransferase(ALT) u/L 22 25.88 24.85 19 5 199 

Baseline INR 
 

1 1.18 0.14 1.2 1 1.8 
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In the next section, the set of steps for data preprocessing and data visualization are 

presented. 

7.3 Data Preprocessing & Visualization 

 

In order to measure the impact of initial dose on the trend of prescribed doses the 

following algorithm was used: 

 N = Number of patients in the data set 

 ni = Number of prescribed doses for patient i to reach the therapeutic dose  

 Dpi = [d1, d2 ,… , dni ] ; profile of  prescribed doses to patient i   

 CIDi  =Complexity Index for Dpi. ;  CID (Dpi)
 2

  = 
√∑ (𝑑𝑗−𝑑𝑗+1)2  𝑛𝑖−1

𝑗=1

𝑛𝑖
   

1. For patients 1:N compute CIDi store in Profile Complexity Vector(PCV); PCV=[CID1, 

CID2,…, CIDN] 

2. Perform the following test of Hypothesis:  

𝐻0:  𝜇𝑃𝐶𝑉 = 0 

𝐻1:  𝜇𝑃𝐶𝑉 > 0 
3. Rejecting the null hypothesis indicates that the prescribed doses in patients profile 

fluctuate significantly. 

 

  In order to perform the hypothesis test which is mentioned in step 3. of the algorithm 

above, the t-student test was performed. The test results are presented in Table 18. 

Table 18. Test of Hypothesis Results 

Test Results 

t.test(res,mu=0, alternative = c("One. Sided")) 

One Sample t-test 

t = 17.3833, p-value < 2.2e-16 
 

Based on the p-value in Table 18., it is safe to reject the null hypothesis with 95% level of 

confidence.  

                                                           
2
 CID stands for complexity-invariant distance which is designed to estimate the fluctuation level in a time series. 
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In an ideal dosing setting, the initial doses prescribed by the physicians have to be 

reasonably close to the therapeutic dose. In Figure 15., the correlation between these two 

variables is presented. The red line on Figure 15. indicates the ideal dosing scenario for each 

patient.  

 

Figure 15. IDP Vs. Therapeutic Dose 

It is evident that most physicians tend to prescribe doses at popular discrete dose values. 

Hence a pareto chart for measuring this tendency is created in Figure 16. 

 

Figure 16. Pareto chart for popular IDPs 
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As it is presented in Figure 16., 75% of patients in the dataset received dose values of 2.5, 

4, 5, 7.5, 10 mg/day. Therefore, by focusing on the patients who have received those doses, the 

objective is to estimate the percentage error at each dose value. In Figure 17., the distribution of 

the therapeutic dose at each level of the IDP is presented. Additionally, in Figure 18., a box plot 

for each level is created. 

 

Figure 17. Popular IDPs Vs. Therapeutic Dose 

 

Figure 18. Comparing the distribution of Therapeutic Dose for Popular IDPs using Boxplots 
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Using the initial dose which was prescribed by the clinicians and the value of the 

therapeutic dose, the amount of percentage error is calculated. The frequency of patients with 

different amounts of associated percentage error is presented in Figure 19. By a subjective 

definition of a significant percentage difference, the patients whom are at high risk/ low risk of 

mis-dosing can be identified. For instance, in Figure 19. it is assumed that 20% percentage 

difference is a significant difference and it is shown by dark vertical lines.   

 

Figure 19. Distribution of the percentage error 

Another point of interest is to identify the ranges of prescribed initial dose where higher 

values of percentage error occur. In Figure 3. the relationship between the initial dose and the 
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percentage error is presented.  Additionally, using a polynomial local regression, the fitted line 

describing their relationship along with its prediction confidence interval is presented in Figure 

20. The size of each point in Figure 20. is proportional to the amount of percentage error. It is 

evident from Figure 20. that the frequency of higher values of percentage error tends to increase 

at higher values of initial dose.     

 

Figure 20. Distribution of percentage error at each level of popular IDPs 

Our goal is to develop a prediction model which assigns potential risk of mis-dosing to 

any prescribed initial dose. Therefore, in order to identify the linear dependency among the 

variables, the correlation matrix was created and is presented in Figure 21. 
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Figure 21. Correlation Matrix 

In order to avoid collinearity in modeling, the variables that had the correlation more 

than or equal to 85%, were defined as highly correlated and only one of them was entered in 

the modeling phase.  

The data points which had missing values for their therapeutic dose were eliminated 

from the dataset and the missing values for other variables were imputed using KNN (K=1) 

method. The outliers in the data set were defined as those who had extremely high or low 

values for therapeutic dose (more than 90 or less than 10 mg/wk). The outliers constitute 

about 6% of the data set and were eliminated.  In the next section the modeling process along 

with the results are presented.  

7.4 Methods 

 

Considering that there exists significant number of variables in the data set compared to 

the number of data points in the data set, it is needed to select the best subset of variables. 

Therefore, using shrinkage methods the process of variable selection and developing a 

prediction model took place simultaneously. Accordingly, the categorical variables in the data 
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set were transformed into multiple binary dummy variables with one level kept out as the 

reference. After dividing the data randomly to derivation and validation cohorts (60% / 40%) 

the optimal prediction model was developed using LASSO. The optimal value of 𝜆 was 

selected by performing the k-fold cross validation (k=10). The resulting prediction model is 

presented in Table 18. 

Table 19. Model Coefficients 

Model Coefficients 

 

IDP AGE Ht Wt CrCl Albumi AST BaselieIR 

0.105 -0.001 0.000 -0.003 0.001 0.069 0.001 0.000 

Race2 Race3 Race5 Geder2 WI2 WI3 WI4 WI5 

0.268 -0.153 0.293 0.159 -0.052 -0.172 -0.073 0.000 

WI6 WI7 GoalIR2 GoalIR3 ST1 ST2 ST3 ST4 

0.309 -0.036 0.000 0.000 0.210 0.120 0.000 0.396 

Smokig2 Smokig3 EtOH2 HT2 DM2 Asthma2 Dyslipidemia2 
 

0.000 0.160 -0.031 -0.089 0.022 -0.064 0.009 
 

 

 

After developing the prediction model using the training set, its performance was 

evaluated on the testing set. Therefore, for every data point in the testing set the amount of 

percentage error was estimated. By defining a given threshold for determination of the 

significant percentage error, it can be decided whether it is need to revise IDP or use it as is. 

According to the estimated percentage error, the prescribed initial dose can be revised.  

𝑅𝑒𝑣𝑖𝑠𝑒𝑑 𝐷𝑜𝑠𝑒 = (1 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟) × 𝐼𝐷𝑃 

Therefore, the resulting revised initial dose values were compared against the original 

initial dose along with the Gage model in terms of RMSE.  Additionally, in order to examine 

the impact of involving IDP in the modeling process, a new prediction model was developed 
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with IDP being eliminated from the feature set. The developed model coefficients are 

presented in Table 19. 

Table 20. Estimates Coefficients of the linear model without involving IDP in modeling 

Model Coefficients 
(Intercept) AGE Ht Wt CrCl Albumi AST Baseline INR 

-0.026 -0.001 -0.003 0.005 0.003 0.037 0.003 -0.437 

Race2 Race3 Race5 Geder2 WI2 WI3 WI4 WI5 

0.315 -0.248 0.507 0.109 0.094 0.019 -0.166 0 

WI6 WI7 GoalIR2 GoalIR3 ST1 ST2 ST3 ST4 

0.376 -0.026 -0.698 0.145 0.331 0.080 -0.172 0.608 

Smokig2 Smokig3 EtOH2 HT2 DM2 Asthma2 Dyslipidemia2 

 0.214 0.441 -0.039 -0.293 0.039 -0.184 0.191   

 

Based on the results presented in Table 20., revising the initial doses prescribed by the 

clinicians will result in much more accurate estimations than the original dose values (RMSE 

= 2.38 ), the prediction values made by Gage model (RMSE = 2.05 ), and the developed linear 

model  without involving IDP in modeling (RMSE = 2.68 ).  

Table 21. Comparing the performance of the revised values of IDP with the original values of IDP and Gage CL model 

Threshold RMSE 
Outperformance  

than the Original IDP 

Outperformance  

than the Gage model 

Outperformance  

than the linear model 

without involving IDP 

0.1 1.65 31% 20% 38% 

0.15 1.76 26% 14% 34% 

0.2 1.77 26% 13.7% 34.0% 

0.25 1.9 20% 7.3% 29.1% 

0.3 1.96 18% 4.4% 26.9% 

0.35 1.96 18% 4.4% 26.9% 

0.4 2.06 13% -0.5% 23.1% 
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7.5 Conclusion 
 

In this Chapter, an intelligent clinical decision support system for prescribing the initial 

dose of warfarin is presented. In the proposed procedure the amount of percentage error for 

initial doses prescribed by the physicians are estimated using shrinkage methods. By applying 

this estimation, the prescribed doses were revised accordingly. It was shown that by revising 

physicians’ doses, the resulting doses are much more accurate than the original values of 

doses and the values predicted by Gage Clinical model. This approach is promising and 

warrants further study that may produce a functional clinical decision support system to assist 

with initial dosing of warfarin. The major limitation of this analysis is the small sample size 

that was used in its derivation. This limits the clinical implementability of our specific 

findings, however the method is novel and should be tested in larger data sets.  
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8 CONCLUSION AND FUTURE WORKS 
 

In this thesis, four major contributions towards increasing the efficiency of 

determination of the Warfarin initial dose are presented. After introducing Warfarin and 

discussing the significance of concentration of this drug in Chapter 1, a comprehensive review 

of the contributions in Warfarin dosing in the literature is mentioned in Chapter 2.  

The necessary mathematical background for exploring the machine learning methods 

that were utilized in Chapters 4-7 were discussed in Chapter 3. After presenting a holistic 

view towards machine learning methods, the particular prediction and classification methods 

of interest (Multivariate regression, Decision Tree, Support Vector Machines, Relevance 

Vector Machines, Shrinkage methods) were discussed.  

In Chapter 4, the process of developing customized prediction models for patients of 

specific ethnicities is discussed. Using the data of African-American patients at the University 

of Illinois at Chicago hospital, a prediction model for estimating the initial dose of Warfarin 

was developed. It is proven that the developed model has a better performance in terms of 

prediction accuracy than popular methods in the literature known as IWPC and Gage models.      

In Chapter 5, a novel procedure for determining the initial dose was introduced. In the 

proposed procedure, the patients are initially labeled as High-Required Dose and Low-

Required Dose. This phase is done using Relevance Vector Machines. After labeling the 

patients, a separate regression model for each class was developed. Using the proposed 

methodology it was proven that a more accurate estimation for warfarin initial dose can be 

achieved than IWPC CL, Gage Cl and the loading method. 
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In Chapter 6, a companion classification model for IWPC Clinical model was 

developed using Support Vector Machines with a polynomial kernel function. The 

classification model labels patients as Safe for the model or High-risk patients. Once the 

patients are classified, the IWPC Clinical model will only be used for patients who are labeled 

as Safe-for the model. The remaining patients will be eliminated from the validation set. It 

was shown that by applying this procedure, the model’s performance increases significantly. 

The choice of Support Vector Machines with a polynomial kernel function occurred after 

examining several classification models and choosing the method that yielded the best 

performance on the derivation set in terms of prediction accuracy. 

In Chapter 7, a new idea towards determination of the initial Warfarin dose was 

introduced. By involving physicians’ opinion on the initial dose in the modeling phase it was 

shown that much more accurate results can be achieved. The idea was to estimate the 

percentage error of doses prescribed by the physicians in practice for each individual patient. 

Based on this estimation, the prescribed dose might get revised accordingly (increases, 

decreases, kept unaltered). It was shown that the modified doses are significantly more 

accurate than the original dose values prescribed by the physicians and the predictions made 

by the Gage CL model. Additionally, the performance of the proposed procedure was 

compared against a linear prediction model developed without containing the physicians’ 

doses and its outperformance was proven.       
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8.1  FUTURE WORKS 
 

The future developments of the works discussed in this thesis can be categorized into 

three categories.  

First, as it was presented in Chapter 4 and 7, the idea of developing customized dosing 

protocols for each institution works more efficiently than applying generic techniques. 

Therefore, by utilizing several significant factors such as the local patients’ dominant race and 

the approaches taken by the clinicians at each institution, more efficient prediction models can 

be derived than popular dosing algorithms in the literature.  

Second, the idea of concentration on the initial dose can be generalized to the dose 

refinement phase. By determination of appropriate later doses (doses prescribed after the 

initial dose) the negative impact of an inappropriate initial dose can be weakened. 

Additionally, by studying the trend of prescribed doses until reaching the therapeutic dose, the 

process of dosing can be done more efficiently in order to increase the likelihood of keeping 

the patients INR in the therapeutic range.  

Lastly, by developing a dynamic modeling framework, the choice of the 

prediction/classification models or the models’ parameters can be modified by increasing the 

training set. In the current modeling setting, using a static data set, models are created and 

applied in practice. However, by linking the data analytics engine to the hospital’s data 

warehouse and updating the models by collecting more data points, more robust models can 

be achieved by evolving the derivation sets.  
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