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SUMMARY 

This thesis describes the development of palladium-catalyzed Heck and 

desaturation reactions of silyl-tethered phenols/alkenols and alcohols, respectively, 

involving novel Pd-hybrid radical intermediates.  

Chapter 1 describes a brief overview of transition metal-catalyzed intramolecular 

Heck reaction of unactivated alkyl halides. Selected examples are highlighted to 

demonstrate the reaction scope, limitations, and reaction mechanism of the 

transformation. Also, Chapter 1 highlights endo-selective cyclization trends in the area of 

radical chemistry involving halomethylsilyl tethers.    

Chapter 2 describes the development of the first endo-selective Pd-catalyzed silyl 

methyl Heck reaction of iodomethylsilyl ethers of phenols and aliphatic alkenols. Our 

methodology enabled the synthesis of 7-, 8-, and 9-membered endo-siloxycycles in high 

yield and regioselectivity. Mechanistic studies involving radical clock and deuterium 

labeling tests revealed that this silyl methyl Heck reaction operates via a hybrid Pd-

radical process and that the silicon atom is crucial for the observed endo selectivity and it 

also enables post-modification of the obtained products. Thus, the obtained siloxycycles 

can be oxidized to form Z-allylic alcohols or can be further functionalized via the 

intramolecular Hosomi-Sakurai reaction to produce spiro benzofuran skeleton. We 

envision that this protocol may become a useful tool for a formal Z-hydroxymethylation 

of a broad range of alkenols. The experimental details for the palladium-catalyzed silyl 

methyl Heck reaction are presented in Chapter 3.  
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The second part of the thesis begins with Chapter 4. This chapter covers the two 

state-of-the-art areas for desaturation of aliphatic systems: transition metal-catalyzed and 

oxidative radical approaches. The next chapter (chapter 5) describes work that pertains to 

the direct photoinduced formation of an aryl hybrid Pd-radical species capable of 

hydrogen-atom-transfer (HAT). This transformation enabled the direct α-/β-desaturation 

of silyl ethers in synthetically valuable silyl enol ethers. Various mechanistic studies were 

conducted, which supported an aryl hybrid Pd-radical pathway of the transformation and 

not the conventional concerted-metalation-deprotonation (CMD) pathway for Pd-

catalyzed C–H functionalization reactions.  Chapter 6 discloses my recent work on the 

visible-light induced palladium-catalyzed remote desaturation of aliphatic alcohols. This 

strategy involves the employment of easily installable/removable Si-tethers possessing 

hydrogen atom abstracting groups, which allowed for site-controlled desaturation at 

unactivated C(sp3)–H sites. The mechanism of the transformation operates via a hybrid 

Pd-radical pathway, where the formed intermediates possess both radical and Pd 

character that enables a radical-type HAT reaction and a Pd-involved β-hydride 

elimination endgame event to occur. The latter feature of the mechanism allows for the 

formation of alkenols with superior degrees of regioselectivity compared to the prior 

state-of-the-art desaturation methods. The experimental details for both visible light 

induced Pd-catalyzed α-/β-desaturation of silyl ethers and selective β-/γ-, γ-/δ-, and δ-/ε- 

desaturation of alcohols, featured in Chapters 5 and 6, are described in Chapter 7.  
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PART ONE: ENDO-SELECTIVE PALLADIUM-CATALYZED SILYL METHYL 

HECK REACTION (Previously Published as Parasram, M.; Iaroshenko, V. O.; 

Gevorgyan, V. “Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction.” J. 

Am. Chem. Soc. 2014, 136, 17926.) 

1. Introduction  

The Mizoroki-Heck reaction is a fundamental transformation that enables 

coupling of carbohalides/pseudohalides with olefins to form substituted alkenes.1 Since 

its discovery,2 numerous advances have been made involving C(sp2)–X, aryl and vinyl 

halides, in both inter- and intramolecular fashion (Scheme 1). Between the two pathways, 

the intramolecular mode enables facile construction of carbo- and heterocycles and thus 

has been extensively featured in various total syntheses toward important natural 

products and various pharmaceutically relevant compounds.3 A range of ring sizes can be 

formed, from small (n=3-4), normal (n=5-7), medium (n=8-14), to large (n>14) sized 

rings, as defined by Oestreich.1 Depending on the ring size, cyclization can either occur 

via exo- or endo-trig-cyclization. In most cases, the regiochemical outcome follows 

Baldwin’s rules for radical cyclization.4 Hence, exo-trig-cyclization is favored for small 

to normal sized rings and endo-trig-cyclization is predominant for medium to large sized 

rings. Although very rare, intramolecular Heck reaction of C(sp2)–X producing normal 

sized rings can occur endo selectively based on steric interactions upon cyclization,5 

additives,6 and electronic bias of the alkene.7 However, reported endo selective Heck 

reactions can be ambiguous. In 1992, Negishi and co-workers informed the scientific 

community on apparent 6-endo selective outcomes for Heck reactions of vinyl halides.8 

After extensive mechanistic studies, they reported that formation of the 
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thermodynamically favored 6-endo adduct occurs via 5-exo-trig/3-exo-trig cascade 

reaction, followed by rearrangement of the formed cyclopropane.  

 

Scheme 1: Mechanism of the (a) intermolecular/(b) intramolecular Heck reaction of 

aryl/vinyl halides.  
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 Another underdeveloped area of the Heck reaction is the alkyl Heck reaction. 

Limitations of this reaction are due to a premature β-hydride elimination issue (Scheme 

2).9 Employment of transition metals (TM) other than Pd, such as Ti10 and Co,11 has 

successfully facilitated the intramolecular alkyl Heck reaction. However, these cases 

require stoichiometric amounts of Grignard reagents to form the active metal species, 

which limits the scope of the reaction. In his pioneering work, Fu realized the first Pd-

catalyzed intramolecular Heck reaction of unactivated bromides and chlorides.12 The 

success of the reaction was due to the employment of bulky NHC ligands, which 

promoted migratory insertion over the competing premature β-hydride elimination 

pathway. Later, Alexanian13 and co-workers reported an elegant intramolecular Heck 

reaction of alkyl iodides occurring via a novel hybrid Pd-radical mechanism.14 The nature 

of the mechanism allows for the formation of radical intermediates that are less 

susceptible to premature β-hydride elimination. Since their report, alkyl Heck-type 

reactions have flourished. However, intramolecular modes are still limited to 5-exo-

trig/6-exo-trig cyclization. Prior to our studies, no endo-selective alkyl Heck reactions 

have been reported. Development of an endo-selective Heck transformation will not only 

be interesting from a conceptual perspective, but also from a synthetic standpoint as it 

would provide a novel retrosynthetic disconnection toward endocyclic cycloalkenes.  
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Scheme 2: Mechanism of the intramolecular alkyl-Heck reaction. 

   

 Endo-selective trends in Heck-type reactions are rare but are established in 

reductive radical transformations, specifically for halomethylsilanes tethers. In 1981, Wilt 

and co-workers studied the kinetics of radical cyclization of 

halomethylhomoallylsilanes.15 It was found that endo-trig cyclization was favored over 

exo-trig cyclization. Later, Koreeda supported Wilt studies in his work on the 7-endo-trig 

cyclization of halomethylsilyl tethered homoallylic alcohols, which served as a general 

tool for the formation of 1,5 diols.16 These studies indicate that the inherent features of 

the halomethylsilane moiety can enable selective endo-trig cyclization. Thus, employing 

this moiety for a Pd-catalyzed Heck-type could potentially generate the first endo-

selective alkyl Heck reaction.  
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1.1. Intramolecular Alkyl Heck-Type Reactions  

 

 In 2006, Oshima reported the first Co-catalyzed alkyl Heck reaction of 

unactivated alkyl iodides.11 However, employment of excess Grignard reagents were 

required to form the active Co-complex in order to promote the transformation, which 

resulted in limited substrate scope. Nevertheless, an impressive number of examples were 

reported (Scheme 3).  Intramolecular Heck reaction of alkyl iodides 1 resulted in 5-exo-

trig-cyclization to afford cyclopentene derivatives 2 in good yield. In some cases, 

however, the products were generated with low diastereoselectivity due to the radical 

nature of the transformation, a common mechanistic feature when first-row metals are 

employed.17   

 

Scheme 3: Oshima’s Co-catalyzed alkyl Heck reaction. 

 

 An interesting application for a Co-catalyzed alkyl Heck reaction was featured in 

Carreira’s total synthesis of (+)-daphmanidin E.18 In the presence of cobaloxime catalyst 

A and visible light, cyclization of alkyl iodide 3 resulted in the formation of (+)-

daphmanidin E core 4 in excellent yield (Scheme 4). Notably, the reaction followed the 
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endo mode of cyclization due to the polar effects of the alkene. In his follow-up report 

using neutral/non-biased alkenes, intramolecular Heck cyclization occurred exo-

selectively (Scheme 5).19       

 

Scheme 4:  Carreira’s alkyl Heck reaction en route to (+)-daphmanidin E. 

 

Scheme 5: Scope of Carreira’s alkyl Heck reaction. 

 

 In 2012, Cuerva reported Ti/Ni multimetallic system for intramolecular Heck 
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(Scheme 6). The endgame mode of the transformation, formation of the alkene, was 

speculated to occur via the Ni-involved β-Hydride elimination or via a direct H-

abstraction with the Ti- reagent.    

  

Scheme 6: Cuerva’s multimetallic alkyl Heck reaction. 

 

 Thus far, alkyl Heck-type reactions with substrates bearing β-hydrogens have 

been successful for first-row TM because of the inherent radical features of the metals 

employed. Utilization of conventional Heck reaction conditions, involving Pd-catalysis, 
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employed. It was found that the electron-rich substituent on the dba ligand of Pd2(OMe-

dba)3 allows for an increase of reaction rates due to a facile release of the less tightly-

bound ligand from Pd(0) (Scheme 8).21 Moreover, the bulky NHC ligand employed 

prevents β-agostic interactions of the OA intermediate 15 (Scheme 9),22 as well as blocks 

a vacant pre-coordination site, both requisites for β–H elimination, and thus promotes the 

migratory insertion over competing β–H elimination (15→18). In order to distinguish if 

the operative mechanism occurs via a classical or radical pathway, the authors studied the 

reaction outcome of deuterium labeled substrate 19 (Scheme 10). Subjecting 19 to the 

reaction conditions resulted in 20 as a single diastereomer, which is consistent with an 

SN2 mechanism for OA and, thus, is distinct from the aforementioned radical type-

pathways.    

  

 

Scheme 7: Scope of Fu’s alkyl Heck reaction.  

 

Scheme 8: Rationale for employment of Pd2(OMe-dba)3. 
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Scheme 9: Effect of SiPr ligand.  

 

Scheme 10: Fu’s deuterium labeled study.  

 

 Heck reactions of unactivated alkyl iodides remained elusive until Alexanian’s 

groundbreaking work in 2011.13 His report featured an efficient intramolecular Heck 

reaction of alkyl iodides using simple Pd(PPh3)4 catalyst under positive CO pressure 

(Scheme 11). Interestingly, no formation of carbonylative Heck products were detected 

under these reactions conditions, thus it was speculated that CO forms a less electron-rich 

Pd(0) complex that promotes the transformation. The scope of the reaction was found to 

complement that of Fu’s alkyl Heck reaction as various substituted alkenes and secondary 

alkyl electrophiles were tolerated. Moreover, 6-exo-trig cyclization of 21b into 22b 

occurred efficiently. The authors probed the reaction mechanism by addition of TEMPO 
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to the reaction conditions, which resulted in TEMPO trapped adduct 23 in 24% NMR 

yield along with unreacted starting material (Scheme 12). This result supported 

involvement of radical intermediates via a hybrid Pd-radical mechanism (Scheme 13).14  

The authors proposed that the active Pd(0) species undergoes  a SET process with alkyl 

halide 21b to generate 24 and a putative Pd(I)I species. Exo-trig-cyclization of 24 forms 

secondary radical intermediate 25. Recombination of 25 with Pd(I)I and a subsequent β-

H elimination results in alkyl Heck product 22b. It should be mentioned that due to the 

nature of this process, a premature β–H elimination is not competitive since the formed 

radical species (24) are less predisposed toward 1,2-elimination.    

 

Scheme 11: Alexanian’s Heck reaction of unactivated alkyl iodides. 

 

Scheme 12: Alexanian’s TEMPO trapping study.  

I
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Scheme 13: Hybrid Pd-radical mechanism of Alexanian’s alkyl Heck reaction.  

 

 Liu and co-workers reported a Pd-catalyzed 6-endo-selective alkyl Heck reaction 

(Scheme 14). 23  Their strategy allowed for rapid access to bioactive endocyclic 

tetrahydropyridine derivatives in good yields with high endo selectivity (27→30). Similar 

to Alexanian’s report, the authors proposed a hybrid-Pd-radical mechanism.14 However, 

the scope of the reaction is limited to use of α-phenyl substituted alkenes, which drives 

cyclization to occur via endo-trig cyclization due to the formation of a more stable 

tertiary benzyl radical intermediate 29 compared to the less stable primary radical 28, 

which would form via exo-trig cyclization. 

HPd(II)I22d 21d

B
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Scheme 14: Liu’s 6-endo-selective alkyl Heck reaction. 

 Although the works presented above represents a significant advance for the area 

of intramolecular alkyl Heck reactions, considerable limitations exist. Firstly, the scope 

of these reactions is limited to the formation of 5/6-memebered cyclopentenes via 5/6-

exo-trig cyclization. Secondly, harsh reaction conditions are typically employed to 

promote the alkyl Heck transformation. Lastly, no non-biased endo-selective alkyl 

reactions have been reported.  

 

1.2. Endo-Selective Radical Cyclizations of Halomethylsilanes  

 In 1981, Wilt and co-workers studied the rate of radical cyclization of 2-sila-5-

hexenyl and its carbon analog (Table 1, entries 1-2).15 As expected, the latter underwent 

smooth 5-exo-trig cyclization, preferably (entry 2). In sharp contrast, radical cyclization 

of 2-sila-5-hexenyl led to a reversal in regioselectivity; the endo-trig-cyclization product 

was obtained as the major isomer. The profound regioselecivity preference is attributed to 

several factors: 1) decreased rate of 5-exo-trig cyclization; 2) longer Si–C bond length 

that enable efficient cyclization at the terminal end of the alkene; 3) favorable polar 

effects of the endo ring closure transition state (Scheme 15).24  The 6-endo-TS bears a 

partial negative charge α- to the silane moiety, which is favored, and a partial positive 
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charge developed on the secondary carbon (32). The exo-TS, however, is disfavored due 

to the developed partial positive charge on the primary carbon (31).  

Table 1: Wilt’s studies on 5-Hexenyl radical cyclizations.  

 

Entry 

 

 

  

1 
 24 0.3 

2 

 >200 0.2 

3 

 0.7 1.6 

4 
 6.3 0.4 

 

 

Scheme 15: Exo- and endo-transition states of radical cyclization of silyl methyl radical.   

 

  A few years later, Nishiyama employed bromomethylsilanes as a formal tool for 

hydro-hydroxymethylation of cinnamyl alcohols (Scheme 16).25 In all cases, products of 

5-exo-trig cyclization were formed selectively. However, for terminal alkenes, 

appreciable amounts of the 6-endo-trig adduct were obtained (Table 2). The formation of 
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the 6-endo-trig by-products supported the observation disclosed by Wilt and co-workers. 

It should be mentioned that after Nishiyama’s report, several research groups have 

employed this concept in many natural product syntheses, specifically, for the formation 

of syn-1,3- diols from allylic alcohols.24  

 

Scheme 16: Nishiyama’s hydro-hydroxymethylation of allylic alcohols. 

Table 2: Scope of Nishiyama’s transformation with terminal alkenes.  

 

 

Entry 

 

   
 

1 R = Me 66% 14% 15% 

2 R = i-Pr 74% - 16% 

3 R = t-Bu 66% - 26% 

4 R = vinyl 52% 9% 24% 

5 R = Ph 48% 4% 36% 

 

 

 In 1986, Koreeda and co-workers reported an interesting 6-endo-trig cyclization 

of bromomethylsilane-tethered steroids (Scheme 17).26 The authors’ approach enabled 

the formation of two new stereogenic centers (C-17 and C-20) upon cyclization. 

Ph OH Ph O Si Br
Si BrCl SnBu3H

Si
O

Me Me

Ph

OH

Ph

OH

[O]

AIBN33 34
35 36

MeMe
MeMe

R

O Si Br
MeMe R

OH

OH
5-exo-syn

R

OH

OH
5-exo-anti

R

OH
OH

6-endo



 

	 	15	

Moreover, upon facile oxidation of the formed silyloxycycle, 1,4-diols were generated. 

Although confirmation effects and employment of a geometrically defined substituted 

alkene increased the inherent propensity for endo-trig cyclization, this constituted a 

significant advance for endo-selective reactions of alkyl radicals. 

 

Scheme 17: Koreeda’s 6-endo-trig cyclization of bromomethylsilane-tethered steroids. 

 

 The same group reported a novel chirality transfer reaction of homoallylic 

alcohols via 6-exo-trig cyclization of bromomethylsilane-tethered alkenols (Scheme 

18).16 Under the reaction conditions, cyclization of bromomethylsilane with substituted 

alkenes generally produced the 6-exo-trig products (44, 49) with high yields and 

regioselectivity. In contrast, when unbiased terminal alkenes were employed, a 7-endo-

trig cyclization occurred, resulting in 46 and 51 as the sole regioisomers. This unexpected 

outcome was rationalized due to the lower energy TS for endo-trig-cyclization (53) 

compared to that of exo-trig cyclization (54) (Scheme 19), which is in agreement with 

Wilt’s observations.15 Notably, the obtained 6-exo-trig adducts were formed due to 

unfavorable steric interactions of the alkyl groups at the β-position of the alkene and the 
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silyl methyl radical, which redirected the mode of cyclization from endo to exo. Although 

Koreeda did not capitalize on this unique endo-selective outcome, it showcased the 

potential for using halomethylsilane tethers as a tool for endo-selective cyclization, as 

well as for hydro-hydromethylation of homoallylic alcohols toward 1,5-diols.   

 

 

Scheme 18: Koreeda’s chirality transfer reaction of homoallylic alcohols via 6-exo-trig 

cyclization and 7-endo-trig cyclization depending on the substitution pattern at the 

alkene.   

 

Scheme 19: Transition states for endo and exo modes of cyclization with differently 

substituted alkenes.  
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1.3. Conclusions 

  Since the discovery of the Heck reaction in the early 1970’s, numerous advances 

and methodological developments have been accomplished. The intramolecular Heck 

reaction has become a mainstream approach toward formation of carbocycles and 

heterocycles when sp2 electrophiles are employed. Much less developed, however, is the 

alkyl Heck reaction. Although advances have been reported in this area, significant 

limitations still exist, specifically for the mode of cyclization. All reported intramolecular 

alkyl Heck reactions occur via either 5/6-exo-trig cyclization. To date, no precedents for 

an endo-selective Heck reaction have been reported. Undoubtedly, the discovery of the 

endo selective alkyl Heck reactions will be a considerable advance, as it would allow for 

the facile formation of endocyclic systems, which are prevalent in various natural 

products and pharmaceutically relevant compounds. Delightfully, reports in the area of 

reductive radical chemistry has left clues toward achieving an endo selective alkyl Heck 

reaction using halomethylsilanes. Studies indicate that these moieties undergo endo-trig 

cyclization selectively. Thus, if this preferred regiochemical outcome could be translated 

to a Heck-type reaction, it would allow for the first endo-selective alkyl Heck reaction.                 
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2. ENDO-SELECTIVE PALLADIUM-CATALYZED SILYL METHYL HECK 

REACTION (Previously Published as Parasram, M.; Iaroshenko, V. O.; 

Gevorgyan, V. “Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction.” J. 

Am. Chem. Soc. 2014, 136, 17926.) 

2.1. Reaction Development 

As discussed above, Heck reactions employing alkyl electrophiles are rare, but 

endo-selective alkyl Heck reactions are virtually non-existent. Inspired by Koreeda’s 

report16 on the selective endo-trig-cyclization of halomethylsilyl-tethered homoallylic 

alcohols under typical radical conditions (Scheme 20, 54→55), we hypothesized that if 

this unique selectivity outcome would translate into a Heck-type reaction, it would allow 

for the first endo selective alkyl Heck reaction (Scheme 20, 58→59). Moreover, it would 

allow for the selective formation of valuable Z-allylic silanes (59), which can be further 

oxidized into important Z-1,5-alkenol-diols (60). Overall, the proposed method will serve 

as a formal tool for Z-hydroxymethylation of alkenols (57→60).  
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Scheme 20:  Proposed endo-selective silyl methyl Heck reaction.  

 

2.2. Synthesis of Iodomethyldiisopropylsilane Tether   

 Based on the mechanism of the Heck reaction,1 oxidative addition of Pd(0) with 

iodomethylsilane moiety is required. In 2009, Cloke and co-workers studied the oxidative 

addition of (iodomethyl)trimethylsilanes 62 with Pd(0) NHC complex 61. However, the 

expected oxidative addition adduct 63 was not obtained; instead products of carbon–

silicon bond activation were obtained (64, 65, 66, Scheme 21). 27  Based on this 

observation, we envisioned that employment of a bulkier iodomethylsilyl tether might 

circumvent this potential pathway and promote oxidative addition. Hence, we focused 

our efforts toward the synthesis of (iodomethyl)diisopropylsilane 69 (Scheme 22). It was 

surmised that the i-Pr-groups on silicon tether would not only provide the required steric 

bulk, but also increase stability and possibly increase the rate of cyclization via Thorpe-

Ingold effect reactivity. 28  First, alkylation of commercially-available 

diisopropylchlorosilane 67 followed by a Finkelstein reaction, generated iodomethyl 

silane product 68. A subsequent chlorination reaction using trichloroisocyanuric acid 

(TCCA) resulted in 69 in overall 50% yield (for 3-steps). The iodomethylchlorosilane 

reagent 69 can be installed onto homoallylic alcohols using established coupling 

procedures developed in our laboratory.28 
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Scheme 21: Cloke’s seminal work on OA of halomethylsilanes with Pd(0).  

 

Scheme 22: Synthesis of 69 and its coupling with alcohols.   

2.3. Optimization of the Reaction Conditions    

 Next, optimization of the reaction conditions was conducted. Obviously, by 

design, a premature β-hydride elimination event is not a competitive pathway for the 

iodomethylsilane tether. Our optimization studies commenced using conformationally 

biased substrate 74 tested under reported Pd-catalyzed conditions (Fu12 and 

Alexanian’s13 conditions) for alkyl Heck reaction (Table 3). However, these reaction 

conditions were not effective (entries 1-2). In addition, use of monodentate ligands was 

inefficient (entries 3-5). Excitingly, employment of dppf ligand resulted in selective 

formation of the endo adduct 75a, albeit in low yield, 24% (entry 6). Interestingly, 

addition of AgOTf increased the reaction yield to 60% (entry 7). Screening other ligands 

from the ferrocene family, such as ligand L, worked but did not increase the overall yield 
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(entries 8-10). Lowering the reaction temperature from 120 to 85 °C shut down the 

reaction (entry 11), however, employment of ligand L at this temperature led to a 

dramatic increase in overall yield 76% (entry 12). Next, it was found that AgOTF did not 

help the overall reaction efficiency at lower temperatures (entry 13). Lowering the 

reaction temperature to 75 °C proved to be optimal, as 75a was generated in high yield 

(92% GC yield, 79% isolated yield, entry 14). Finally, a control study indicated that the 

Pd-catalyst is required for this transformation (entry 15). 

 

Table 3: Optimization of the reaction conditions. 

 

Entry Catalyst Ligand Base Additive T 
(°C) 

h 75a : 
75a’ 

GC Yield, 
%, of 
75aa,b 

1 Pd(PPh3)4 - PMP - 110 24 - NRc 
2 Pd2(4OMe

-dba)3 
SIMesHBF4 Cs2CO3 KOtBu 65 24 - Decompd,e 

3 Pd2dba3 t-BuPPh2 i-Pr2NEt - 120 24 1 : 1 10d 
4 Pd(OAc)2 PtBuHBF4 i-Pr2NEt	 - 120 24 1 :2.3 23 
5 Pd(OAc)2 P(ad)2n-Bu i-Pr2NEt	 - 120 24 1 :1 5 
6 Pd(OAc)2 dppf i-Pr2NEt	 - 120 24 40 : 1 24 
7 Pd(OAc)2 dppf i-Pr2NEt	 AgOTf 120 24 50 : 1 60 
8 Pd(OAc)2 diprpf i-Pr2NEt	 AgOTf 120 24 50 : 1 20 
9 Pd(OAc)2 dtbupf i-Pr2NEt	 AgOTf 120 24 50 : 1 11 
10 Pd(OAc)2 L i-Pr2NEt	 AgOTf 120 24 50 : 1 40 
11 Pd(OAc)2 dppf i-Pr2NEt	 AgOTf 85 24 - NR 
12 Pd(OAc)2 L i-Pr2NEt	 AgOTf 85 24 50 : 1 76 (68) 

L

10 mol % Catalyst
20 mol % Ligand

2.2 equiv Base
PhMe, T, h

Fe

PPh2

P(t-Bu)2

O Si
i-Pr
i-Pr

I

SiO
i-Pr

i-Pr

7-endo-trig
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+

6-endo-trig
75a’

SiO i-Pr
i-Pr
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13 Pd(OAc)2 L i-Pr2NEt	 - 85 3 40 : 1 89 (73) 

14 Pd(OAc)2 L i-Pr2NEt	 - 75 12 40 : 1 92 (79) 
15 Pd(OAc)2 L i-Pr2NEt	 - 65 24 - 50%. conv 
16 - - i-Pr2NEt	  75 12  <2 

aGC was calibrated using tetradecane as an internal standard. bIsolated yields are in 

parentheses. cReaction was conducted under 10 atm of CO. d5 mol % of catalyst was 

used. eMeCN was used as solvent. 

 

2.4. Scope and Limitations 

After identifying the optimized conditions, the generality of the transformation was 

tested on arene-tethered substrates. Pleasantly, the regiochemical outcome was unaffected 

by the electronic nature of the substituents at the arene moiety (Table 4, entries 2-8). 

Next, it was found that this method enables a facile synthesis of medium size rings via 8-

endo-trig- and 9-endo-trig cyclization of 74i and 74j, respectively. Importantly, 

employment of secondary bromomethylsilane 74k worked well, as the 7-endo-aryl-

substituted allylsilane product 75k was obtained in 67% yield. Next, we turned our 

attention to the effect of the substitution pattern at the alkene on the regiochemical 

outcome of the reaction. It was revealed that cyclization of substrates possessing 

substituents at the β-position proceeded uneventfully; producing the endo adducts, 75l 

and 75m, selectively. In contrast, substitution at the α-position of alkene led to a 

regioselectivity reversal; exo-trig products 75n and 75o were formed exclusively (entries 

14, 15). The observed reversal of the regioselectivity trend is in agreement with 

Koreeda’s observation on the impediment of the endo-trig cyclization due to steric effects 

at the terminal end of the alkene (Scheme 19).16   
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Table 4: Endo silyl methyl Heck reaction of arene-tethered substrates. 

 

 

# 74  75  Yield, %a 

 

 

     
1 74a 

 

75a R=H 79 (73b) 
2 74b 75b OMe 87 
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6 74f 75f NO2 33 
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9 
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10 
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12 74l 75l H 96 

13 74m 75m Ph 64c,g 

14 

 

74n 

 

75n  78h 

15 

 

74o 

 

75o  76 

aIsolated yields. bReaction performed at 3.8 mmol scale. cReaction performed at 120 °C. 

dNMR ratio of product to hydro-dehalogenation side product is 12 : 1. eNMR ratio of 

product to hydro-dehalogenation side product is 1.6 : 1. fReaction time = 36h. gAg(OTf) 

was used as an additive. hMixture of isomers. 

Next, we tested this method on challenging homoallylic alcohols. For these cases, 

the regiochemical outcome of the cyclization seemed uncertain since they are sterically 

unbiased and hence less predisposed toward endo-selective cyclization. Also, due to the 

availability of alternative sites for β-hydride elimination, other regioisomers, such as 

homoallylic silanes, may form. Indeed, it was found that subjecting 76a-c to the reaction 

conditions resulted in formation of homoallylic silanes 77a-c in good yields with 

excellent endo selectivity (Table 5). Interestingly, it was found that increasing the steric 

bulk (two geminal substituents) at the α-position of the alcohol (76d, e) resulted in the 

selective formation of allylic silanes via endo-trig cyclization (77d, e). Apparently, sterics 

at the α-position of alcohol plays a curial role during the β-H elimination event, where 

increasing substitution pattern favors allylic silane formation over the homoallylsilane 
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(vide infra). This observed phenomenon is in agreement with Waston’s observation on the 

steric influence on the regiochemistry of β-H elimination of the intermolecular silyl Heck 

reaction.29 Gratifyingly, 8-endo-trig- and 9-endo-trig-cyclization of 76g and 76h was 

achieved, resulting in formation of medium sized rings 77g and 77h in 85% and 44% 

yield, respectively. Finally, applying this method to naturally occurring terpene, 

isopulegol, resulted in two isomers of 7-endo-trig cyclization, from which the 

homoallylsilane 77j was isolated as the major product.         

Table 5: Endo silyl methyl Heck reaction of homoallylic alcohols. 

 

# 76  77  Yield, %a 

 

 

 

 

   
1 76a 77a R=nPr 65 
2 76b 77b nPent 76 
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6 

 

76f 
 
77f  71 

7 
 
76g 

 

77g  80d 

8 
 
76h 

 

77h  85e 

9 
 
76i 

 
77i  44f,g 

10 

 

76j 

 

77j  
45 
(90h) 

aIsolated yields bDABCO was used instead of iPr2NEt. cAg(OTf) was not used as an 

additive. dMajor product shown, ratio of major product to homoallylic side product is 7 : 

1. eMajor product shown, ratio of major product to homoallylic side product is 17 : 1. 

fReaction performed at 130 °C. gMajor product shown, ratio of major product to hydro-

dehalogenation side product is 1 : 1. hMajor product shown, ratio of major product to 

allylic side product is 3.5 : 1. Isomers were separated. 

 

2.5. Further Transformations of Obtained Siloxycyclic Products    

 The formed allylic siloxycycles are valuable entities that are widely used as 

reactive substrates toward further functionalizations.30  Thus, the synthetic utility of the 

reaction products were investigated. First, Tamao oxidation of 75a resulted in formation 
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of Z-1,5-alkenoldiol 78 in excellent yield (Scheme 23). This transformation highlights 

our protocol as a formal tool for Z-hydroxymethylation of alkenols. Next, Hosomi-

Sakurai30a reaction of 75a with ketoacetal 1,1-dimethoxycyclohexane was attempted, 

however, only traces of the reaction product 80 were observed. It was speculated that 

steric encumbrance of the i-Pr groups at the silane moiety of 75a prevented the Hosomi-

Sakurai reaction to occur. To this end, in order to form a more flexible and, thus, less 

encumbered allyl silane, a ring opening of 75a with MeLi was conducted, which resulted 

in formation of 79 in 70% yield. Exposure of 79 to standard Hosomi-Sakurai reaction 

conditions in the presence of 1,1-dimethoxycyclohexane resulted in smooth formation of 

80 in excellent yield. The latent preference of silyl-tethered alkyl iodide toward endo-

selective Heck reaction, as well as potential for development of regiodivergent 

cyclizations, were highlighted in cyclization of dienol 81. Remarkably, due to the 

influence of the silane moiety, 6-endo-trig of 81 occurred first, followed by “normal” 5-

exo-trig cyclization to produce the tricyclic compound 82 as a single product. It should be 

mentioned that this example constitutes a rare cascade Heck reaction initiated by endo-

trig cyclization.31 A subsequent Woerpel oxidation32 of 82 resulted in 1,4-indenediol 83 

in good yield. Lastly, testing complex steroid 84 highlighted the late-stage applicability 

of the transformation. It was found that endo-selective silyl methyl Heck reaction and 

successive Tamao oxidation33 of 84 occurred smoothly, furnishing diol 86 in good yield.  

	 	

Scheme 23: Tamao oxidation of the endo-Heck product 75a. 

OH OHSiO
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Scheme 24: Hosomi-Sakurai reaction of 75a. 

 

Scheme 25: Novel cascade 6-endo/5-exo Heck reaction of 81 into 82 and its subsequent 

oxidation.  

 

Scheme 26: Complex molecule application.  

2.6. Mechanistic Considerations    

Naturally, after the scope of the reaction was established, the mechanism of the 

transformation was investigated. Two mechanistic scenarios were envisioned for the 

transformation, a classical-Heck-type1 (Scheme 2) or a hybrid Pd-radical mechanism14 

(Scheme 13). Since the regiochemical outcome of the transformation matched the endo 

trends reported for radical cyclization of halomethylsilanes (Table 1 and Scheme 18), it 
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was speculated that radical intermediates were involved in our transformation. To 

confirm this, radical-trapping experiments were conducted (Table 6). Employment of 

BHT did not affect the reaction outcome, but faster radical traps such as galvinoxyl and 

TEMPO resulted in lower reaction efficiency or complete shut down the reaction, 

respectively. For the latter case, however, the TEMPO adduct 87 was not detected. Due 

to the ambiguity of the aforementioned studies,34 we decided to employ radical clock 

studies to probe the nature of the transformation.       

Table 6: Radical trap studies for endo silyl methyl Heck reaction. 

 

Entry Radical Scavenger GC Yield, %, of 75aa,b 
1 none 92 
2 BHT 92 
3 Galvinoxyl 68 
4 TEMPO NR 

 

 

Scheme 27: TEMPO trapped adduct 87.  

Since Newcomb’s systematic studies 35  on the rates of radical ring-opening of 

methylcyclopropanes (Scheme 28), these systems have been implemented for probing the 
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rates of many radical-type transformations. More recently, they have been employed as 

useful tools for detection of radical intermediates in transition metal-catalyzed 

transformations. 36  Hence, the nature of cyclization of compound 94 (Scheme 29), 

possessing a radical clock, was tested. It was found that 94 underwent cyclization and 

subsequent ring-opening of the cyclopropane unit, resulting in 1:1 mixture of 96 and 97. 

Notably, reaction product with intact cyclopropane unit (95) was not detected. However, 

this probe did not allow for distinguishing between radical opening of the 

cyclopropylmethyl (Scheme 28) and the β-C elimination process of cyclopropylmethyl 

palladium species (Scheme 30), 37  which has been well documented for 

methylcyclopropanes. Therefore, our transformation was tested on unambiguous radical 

clock 104 (Scheme 31). This probe can verify whether the nature of cyclization occurs 

via involvement radical- or a carbopalladated intermediates based on the regiochemical 

outcome of ring-opening of the cyclopropane unit. If the Pd-involved cyclization is 

operative, then, it is anticipated that 104 will produce a mixture of 106 and 107 based on 

an unselective Pd-involved β-C elimination process (101→102→103, Scheme 30). 

Conversely, if radical intermediates are involved, then formation of 106 is expected to be 

the sole product (92→93, Scheme 30). It was found that exposure of 104 to our 

optimized conditions resulted in sole formation of ring-opening product 106 and thus 

strongly supports the radical nature of our transformation (Scheme 31).    

 

Scheme 28: Newcomb’s radical clocks.  

ring opening

k25 = 9.4 x 107 s-1
90 91

ring opening

k25 = 3.0 x 1011 s-1
92 93Ph Ph
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Scheme 29: Radical clock test of 94.  

 

Scheme 30: Pd β–C elimination of methylcyclopropanes.  

 

Scheme 31: Radical clock test of 104.  

 In order to provide additional evidence on whether the cyclization step follows a 

classical Heck mechanism, involving carbopalladated intermediates, or a radical pathway, 

endo-Heck reaction of deuterium-labeled substrate 108 was studied (Scheme 32). If a 

classical Heck pathway were operative, then a stereo-defined alkyl palladium species 

would be produced upon cyclization (108→111), which will undergo syn β-hydride 
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elimination resulting in complete retention of deuterium (111→112). In contrast, upon 

radical cyclization (108→114), the recombination of an alkyl radical with putative Pd(I) 

could occur from either face, producing a non-stereodefined alkyl palladium intermediate 

(115). This intermediate, upon β-hydride elimination, would result in a product with a 

loss of nearly half of deuterium label at the alkene moiety (112b). Hence, under our 

optimized conditions, 108, with 88% deuterium incorporation, underwent endo-trig 

cyclization to generate 112a with the substantial loss of deuterium (47% deuterium 

incorporation), which supported a hybrid-Pd radical pathway for this transformation 

(Scheme 33).          

 

Scheme 32: Rationale for deuterium-labeled study of the endo-selective silyl methyl 

Heck reaction.  

 

Scheme 33: Results of the deuterium labeled study.  
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regiochemical outcome of substrate 116 was tested against its carbon analog 118 under 

the same reaction conditions (Scheme 34). As expected, it was found that only the silyl 

methyl substrate 116 underwent selective endo-trig cyclization (116→117a), whereas the 

carbon analog 118 generated the exo-trig adduct 119b selectively. Thus, confirming that 

the silicon atom is crucial for the observed endo selectivity for the transformation.  

 

 

Scheme 34: Comparison study on the regiochemcial outcome of Heck cyclization of 

iodomethylsilane 116 and carbon analog 118.  

 

 Based on the above mechanistic studies, a hybrid Pd-radical mechanism14 is 

proposed for the endo-selective silyl methyl Heck reaction (Scheme 35). First, a SET 

process occurs with the active Pd(0) species and the iodomethylsilane moiety 120, which 

produces the putative Pd(I)I species and the silyl methyl radical intermediate 121. The 

latter intermediate, possessing radical character, will follow typical cyclization trends 

reported by Koreeda and Wilt for silyl methyl radicals (vide supra). Hence, for substrates 
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possessing substituent(s) at the β-position of alkene, endo-trig cyclization is impeded and 

exo-trig cyclization occurs selectively (121→122). However, with substrates possessing 

terminal double bond, 121 undergoes selective endo-trig cyclization to generate radical 

silyloxycyle 123. This regiochemical outcome is due to several reasons (1) elongated Si-

C bond length that allows for efficient cyclization at the terminal end of the alkene; (2) 

slower relative rate of competitive exo cyclization; (3) and favorable stability of the endo 

transition state proposed for radical cyclizations of halomethylsilanes. Next, 

recombination of 123 with Pd(I)I results in formation of alkylpalladium intermediate 124. 

Evidently, 124 contains two β-hydrogens, Hh and Ha, for Pd-β-hydride elimination to 

occur, which can lead to either homoallylic- (125) or allylic silanes (126), respectively. 

Based on the analysis of the substrate scope, it was found that sterics at the α-position of 

the homoallylic alcohol plays an important role during the β-hydride elimination event, 

where increasing substitution pattern favors allylic silane formation. After Pd-β-hydride 

elimination, the endo products are formed and the active catalyst is regenerated.  
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Scheme 35: Hybrid Pd-radical mechanism for the endo-selective silyl methyl Heck 

reaction.  

 

2.7. Summary  

In summary, we have shown that iodomethylsilanes are capable tethers for enabling 

the first endo-selective alkyl Heck reaction of 2-vinylphenols and homoallylic alcohols. 
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derivatives, which were functionalized via an intramolecular Hosomi-Sakurai reaction to 

produce a spiro benzofuran skeleton. Moreover, the reaction products were efficiently 
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this transformation by developing a novel cascade alkyl Heck reaction commenced by 
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labeled experiments supports that a hybrid Pd-radical mechanism is operative. This dual 

radical and transition metal-type nature of this transformation allows for both an inherent 

endo-trig cyclization of silyl methyl radical intermediate, and a β-hydride elimination 

event, which enabled the formation of the endo-selective Heck reaction products.   
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3. Experimental Section (Previously Published as Parasram, M.; Iaroshenko, V. 

O.; Gevorgyan, V. “Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction.” 

J. Am. Chem. Soc. 2014, 136, 17926.) 

3.1. General Information  

NMR spectra were recorded on BrukerAvance DRX-500 (500 MHz) or DPX-400 (400 

MHz) instrument. LRMS and HRMS analyses were performed on Micromass 70 VSE 

mass spectrometer. GC/MS analysis was performed on a Hewlett Packard Model 6890 

GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 m x 0.25 mm 

capillary column, HP-5MS). Column chromatography was carried out employing 

Silicycle Silica flash chromatography (40-63 µm) and/or Florisil® (60-100 mesh). 

Precoated silica gel plates F-254 were used for thin-layer analytical chromatography. All 

manipulations with transition metal catalysts were conducted in oven-dried glassware 

under inert atmosphere using a combination of glovebox and standard Schlenk 

techniques. Anhydrous solvents purchased from Aldrich were additionally purified on 

PureSolv PS-400-4 by Innovative Technology, Inc. purification system and/or stored over 

calcium hydride. All other starting materials were purchased from Strem Chemicals, 

Aldrich, Gelest Inc., Alfa Aesar, or TCI. 

 

 

 

 

 

 



 

	 	38	

3.2. Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction  

  3.2.1. Preparation of Starting Materials 

Synthesis of chloro(iodomethyl)diisopropylsilane tether 69: 
  

 

To an oven-dried 250 mL Schlenk flask charged with a stir-bar and septum under Ar, a 

solution of chlorodiisopropylsilane (6.8 mL, 1 equiv, 40 mmol) and chloroiodomethane 

(4.4 mL, 1.5 equiv, 60 mmol) in THF (50 mL) was added. This mixture was cooled to -78 

°C. Then, MeLi-LiBr complex (1.5 M in ether, 40 mL, 60 mmol) was added dropwise. 

The reaction mixture was stirred at -78 °C for 1 h and then allowed to warm to room 

temperature before being quenched with saturated ammonium chloride solution (10 mL. 

The aqueous layer was extracted with hexane (3x50 mL). The combined organic layers 

was dried over anhydrous magnesium sulfate and concentrated in vacuo. The crude 

product, (chloromethyl)diisopropylsilane, was used for the next step without further 

purification.  

To a solution of NaI (18 g, 3 equiv, 120 mmol) in ACS standard acetone (40 mL), crude 

(chloromethyl)diisopropylsilane in acetone (5 mL)  was added. The resulting reaction 

mixture was refluxed at 85 °C for 1 h. Then, the reaction was cooled to room temperature 

before being quenching with saturated solution of Na2S2O3 (50 mL). The aqueous layer 

was extracted with hexane (3x50 mL). The combined organic layer was dried over 

anhydrous magnesium sulfate and concentrated in vacuo. The crude product, 5.1g, (50% 

yield) (iodomethyl)diisopropylsilane, was used for the next step without further 

purification.  

Si
i-Pr i-Pr

Cl
I

69
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To a solution of TCCA (1.67 g, 0.36 equiv, 7.2 mmol) in dry DCM (40 mL), 

(chloromethyl)diisopropylsilane (5.1 g, 1 equiv, 20 mmol) in DCM (5 mL) was added 

dropwise under argon at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. Then, the 

mixture was allowed to warm to r.t. Next, the reaction mixture filtered through Celite and 

concentrated. The residue was then dissolved in hexanes and again re-filtered through 

Celite. Finally, the solution was concentrated in vacuo to yield 

chloro(iodomethyl)diisopropylsilane (quantitative, 5.8 g) as a pink/purple oil. The crude 

product, >95% purity, chloro(iodomethyl)diisopropylsilane, was used for the next step 

without further purification. 

Yield = 50% over three steps. 

1H NMR (500 MHz, CDCl3): δ ppm 2.22 (s, 2H), 1.41-1.47 (m, 2H), 1.12 -1.14 (dd, 

12H). 13C NMR (126 MHz, CDCl3): δ ppm 13.4, 16.9, 17.3. HRMS (EI) calcd. for 

C7H16ISiCl [M+H]: 289.9755, found: 289.9759. 

Synthesis of secondary chloro(bromo(phenyl)methyl)diisopropylsilane (74k-Tether): 
 

 

To an oven-dried 50 mL Schlenk flask charged with a stir-bar and septum under Ar, a 

solution of diisopropylamine (0.7 mL, 1 equiv, 5 mmol) in THF (10 mL) was added. This 

mixture was cooled to -78 °C. Then, a solution of n-BuLi (2.63 M in hexanes, 1.9 mL, 5 

mmol) was added dropwise at -78 °C. The reaction mixture was stirred at 0 °C for 0.5 h 

and then allowed to warm to room temperature for 0.5 h. The reaction mixture was then 

cooled down to -100 °C (EtOH and Liquid N2), followed by addition of BnBr (0.6 mL, 1 

Si
i-Pr i-Pr

Cl
Br

74k-Tether
Ph
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equiv, 5 mmol) and chlorodiisopropylsilane (1.02 mL, 1.1 equiv, 6 mmol) in THF:Hex -

1:1 (14 mL). The reaction was stirred overnight at -100 °C to r.t. before being quenched 

with saturated ammonium chloride solution (20 mL). The aqueous layer was extracted 

with hexane (3 x 30 mL). The combined organic layer was dried over anhydrous 

magnesium sulfate and concentrated in vacuo. The crude product, 

(bromo(phenyl)methyl)diisopropylsilane (52% yield, 830 mg), was used for the next step 

without further purification.  

To a solution of TCCA (0.15 g, 0.36 equiv, 0.64 mmol) in dry DCM (10 mL), 

(chloromethyl)diisopropylsilane (0.513 g, 1 equiv, 1.8 mmol) in DCM (5 mL) was added 

dropwise under Ar at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. Then, the 

mixture was allowed to warm to r.t. Next, the reaction mixture filtered through Celite and 

concentrated. The residue was then dissolved in hexanes and again re-filtered through 

Celite. Finally, the solution was concentrated in vacuo to yield 

chloro(bromo(phenyl)methyl)diisopropylsilane (quantitative) as a white solid. The crude 

product, chloro(bromo(phenyl)methyl)diisopropylsilane (>95% purity, quantitative), was 

used for the next step without further purification (vide infra). 

Synthesis of silyl-tethered phenols 74a-o and alcohols 76a-3j: 

 

Method A: To a stirred mixture of imidazole (450 mg, 6.6 mmol, 2.2 equiv) and THF 

(20 mL), chloro(iodomethyl)diisopropylsilane (69) (872 mg, 3 mmol, 1 equiv) was added 

at r.t. under argon atmosphere. To this mixture, phenol/alcohol (3.3 mmol, 1.1 equiv) in 5 

mL of THF was added. The mixture was stirred until completion of the reaction (3 h) as 

OH
ClSi(i-Pr)2CH2I (69)

Base,THF

O Si

I

i-Pr
i-Pr
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judged by GC/MS. To this mixture, hexane (20 mL) was added and filtered. The filtrate 

was then concentrated under reduced pressure. The residue was purified by column 

chromatography in hexanes.  

Method B: To a stirred mixture of DMAP (18.3 mg, 0.15 mmol, 5 mol %), 

chloro(iodomethyl)diisopropylsilane (69)  (872 mg, 3 mmol, 1 equiv), triethylamine (0.3 

mL, 3 mmol, 1 equiv) DCM (10 mL), phenol/alcohol (3.3 mmol, 1.1 equiv) in 5 mL of 

DCM was added at 0 °C under argon atmosphere. The mixture was stirred until 

completion of the reaction (1 h) as judged by GC/MS. After completion the mixture was 

quenched with saturated ammonium chloride solution and extracted with DCM (3 x 50 

mL). The combined organic layer was washed with brine. The organic layer was dried 

with Na2SO4, filtered, and then evaporated by rotary evaporator under reduced pressure. 

The residue was purified by column chromatography in hexanes.  

Method C: To a stirred mixture of phenol/alcohol (3.3 mmol, 1.1 equiv) and THF (10 

mL), MeLi (2.06 mL, 1.5 M, 3.3 mmol, 1.1 equiv) was added dropwise at 0 °C under 

argon atmosphere. To this mixture, chloro(iodomethyl)diisopropylsilane (69)  (872 mg, 3 

mmol, 1 equiv) in 5 mL of THF was added at 0 °C. The mixture was stirred until 

completion of the reaction (1 h) as judged by GC/MS. After completion the mixture was 

quenched with saturated ammonium chloride solution and extracted with DCM (3 x 50 

mL). The combined organic layer was washed with brine. The organic layer was dried 

with Na2SO4, filtered, and then evaporated by rotary evaporator under reduced pressure. 

The residue was purified by column chromatography in hexanes. 

Method D: To a stirred mixture of phenol/alcohol (3.3 mmol, 1.1 equiv) and THF (10 

mL), MeLi (2.06 mL, 1.5 M, 3.3 mmol, 1.1 equiv) was added dropwise at 0 °C under 
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argon atmosphere. To this mixture, HMPA (0.57 mL, 3.3 mmol, 1.1 equiv) was added, 

followed by, chloro(iodomethyl)diisopropylsilane (69) (872 mg, 3 mmol, 1 equiv) in 5 

mL of THF was added at 0 °C. The mixture was stirred until completion of the reaction 

by (1 h) GC/MS. After completion the mixture was quenched with saturated ammonium 

chloride solution and extracted with DCM (3 x 50 mL). The combined organic layer was 

washed with brine. The organic layer was dried with Na2SO4, filtered, and then 

evaporated by rotary evaporator under reduced pressure. The residue was purified by 

column chromatography in hexanes. 

Benzene tethered substrates, 74a-74o: 
 

 
 
Coupling of 2-vinyl-phenol38 with 69 using Method A. 

Isolated yield = 84%, 943 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.52 (dd, J=7.70, 1.83 Hz, 1 H), 7.07 - 7.18 (m, 2 

H), 6.95-7.01 (m, 1 H), 6.85 (dd, J=8.07, 1.10 Hz, 1 H), 5.71 (dd, J=17.97, 1.47 Hz, 1 H), 

5.28 (dd, J=11.00, 1.47 Hz, 1 H), 2.26 (s, 2 H) 1.40-1.50 (m, 2 H) 1.12-1.21 (m, 12 H). 

13C NMR (126 MHz, CDCl3): δ ppm 12.7, 17.4, 17.7, 114.1, 119.3, 121.8, 126.2, 128.7, 

128.9, 131.8, 152.3. HRMS (ESI) calcd. for C15H23IOSi [M+H]: 375.0641, found: 

375.0647 
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Isolated yield = 62%, 752 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.43 (d, J=8.77 Hz, 1 H), 7.00 (dd, J=17.54, 11.11 

Hz, 1 H), 6.54 (dd, J=8.77, 2.34 Hz, 1 H), 5.57 (dd, J=17.83, 1.46 Hz, 1 H), 5.14 (dd, 

J=11.11, 1.17 Hz, 1 H), 3.79 (s, 3 H) 2.25 (s, 2 H) 1.35-1.54 (m, 2 H) 1.09-1.19 (m, 12 

H). 13C NMR (126 MHz, CDCl3): δ ppm 12.7, 17.4, 17.7, 55.4, 105.5, 107.3, 111.8, 

121.9, 126.8, 131.3, 151.2, 160.1. HRMS (ESI) calcd. for C16H25IO2Si [M+H]: 405.0747, 

found: 405.0751. 

 

 
 
Coupling of 5-fluoro-2-vinylphenol38 with 69 using Method A.  

Isolated yield = 69%, 812 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.40-7.50 (m, 1 H), 6.99 (dd, J=17.69, 10.96 Hz, 1 

H), 6.65-6.74 (m, 1 H), 6.51 - 6.62 (m, 1 H), 5.61 (d, J=17.83 Hz, 1 H), 5.23 (d, J=11.11 

Hz, 1 H), 2.21-2.28 (m, 2 H), 1.35-1.50 (m, 2 H), 1.08-1.18 (m, 12 H). 13C NMR (126 

MHz, CDCl3): δ ppm 12.7, 17.3, 17.6, 106.7, 106.9, 108.8, 108.9, 113.7, 125.3, 125.4 

127.1, 127.2, 130.9, 153.1, 161.7, 163.6. HRMS (ESI) calcd. for C15H22FIOSi [M+H]: 

393.0547, found: 393.0551. 

 

 
 
Coupling of 4-methyl-2-vinylphenol39 with 69 using Method A.  

Isolated yield = 68%, 792 mg. 
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1H NMR (500 MHz, CDCl3): δ ppm 7.17 (dd, J=9.65, 2.92 Hz, 1 H), 7.02 (ddd, J=17.76, 

11.03, 1.61 Hz, 1 H), 6.74 - 6.88 (m, 2 H), 5.67 (dd, J=17.83, 0.88 Hz, 1 H), 5.26 - 5.36 

(m, 1 H), 2.29 (s, 3H), 2.23 (s, 3H), 1.37-1.45 (m, 2H), 1.05 -1.18 (m, 12H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.7, 17.4, 17.7, 20.7, 113.7, 119.1, 126.6, 128.4, 129.3, 

130.9, 131.9, 150.1. HRMS (EI) calcd. for C16H25IOSi [M]: 388.0719, found: 388.0716. 

 

 
 
Coupling of 4-chloro-2-vinylphenol40with 69 using Method A.  

Isolated yield = 84%, 1.03 g. 

1H NMR (500 MHz, CDCl3): δ ppm 7.46 (d, J=2.93 Hz, 1 H), 7.09 (dd, J=8.44, 2.57 Hz, 

1 H), 7.01 (dd, J=17.79, 11.19 Hz, 1 H), 6.75 - 6.81 (m, 1 H), 5.70 (d, =17.97 Hz, 1 H), 

5.31 (d, J =11.00 Hz, 1 H), 2.24 (s, 2H), 1.39-1.46 (m, 2H), 1.11 -1.15 (m, 12H). 13C 

NMR (126 MHz, CDCl3): δ ppm 12.7, 17.4, 17.7, 115.4, 120.5, 126.1, 126.8, 128.4, 

130.5, 130.8, 150.6. HRMS (EI) calcd. for C15H22IClOSi [M+H]: 408.0173, found: 

408.0172 

 
 
Coupling of 4-nitro-2-vinylphenol38 with 69 using Method A.  

Isolated yield = 48%, 603 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 8.40 (d, J=2.93 Hz, 1 H), 7.99 - 8.12 (m, 1 H), 7.03 

(dd, J=17.61, 11.00 Hz, 1 H), 6.86 - 6.96 (m, 1 H), 5.79 - 5.93 (m, 1 H), 5.37 - 5.48 (m, 1 

H), 2.26 (s, 2H), 1.41-1.49 (m, 2H), 1.13 -1.17 (m, 12H). 13C NMR (126 MHz, CDCl3): δ 

O Si

I

i-Pr
i-Pr
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Cl
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I
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O2N
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ppm 12.7, 17.3, 17.5, 117.2, 119.3, 122.2, 124.2, 129.9, 130.0, 142.4, 157.6. HRMS 

(ESI) calcd. for C15H22INO3Si [M+H]: 420.0492, found: 420.0489. 

 

 
 
Coupling of 2-methoxy-6-vinylphenol41 with 69 using Method A.  

Isolated yield = 43%, 521 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.08 - 7.19 (m, 7H), 6.85-6.92 (m, 1H), 6.76 (dd, 

J=8.0, 1.6 Hz, 1H), 5.67 (dd, J=17.7, 1.3 Hz, 1H), 5.26 (dd, J=11.1, 1.5 Hz, 1H), 3.80 (s, 

3H), 2.26 (s, 2H), 1.36-1.44 (m, 2H), 1.08 -1.13 (m, 12H). 13C NMR (125 MHz, CDCl3): 

δ ppm 13.3, 17.6, 17.8, 55.1, 110.5, 114.2, 117.8, 121.2, 129.6, 131.9, 142.0, 150.0. 

HRMS (EI) calcd. for C16H25IO2Si [M]: 404.0669, found: 404.0671. 

 

 
 
Coupling of 2-fluoro-6-vinylphenol42with 69 using Method A.  

Isolated yield = 61%, 717 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.23 - 7.30 (m, 1 H), 7.03 - 7.13 (m, 1 H), 6.93 - 

7.01 (m, 1 H), 6.83 - 6.93 (m, 1 H), 5.67 - 5.76 (m, 1 H), 5.32 (d, J=11.11 Hz, 1 H), 2.27 

(s, 2H), 1.41-1.49 (m, 2H), 1.11 -1.17 (m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 

12.9, 17.3, 17.6, 106.7, 106.9, 108.8, 108.9, 113.7, 125.4, 127.0, 127.1, 130.1, 153.1, 

161.67, 163.6. HRMS (EI) calcd. for C15H22FIOSi [M+H]: 392.0469, found: 392.0467. 
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Coupling of 2-vinylbenzylol40 with 69 using Method B.  

Isolated yield = 70%, 815 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.48 (s, 2 H), 7.22-7.36 (m, 3 H), 6.96 (ddd, 

J=17.24, 11.00, 3.30 Hz, 1 H), 5.66 (dt, J=17.24, 1.65 Hz, 1 H), 5.32 (dt, J=10.73, 1.79 

Hz, 1 H), 4.95 (s, 2H), 2.13 (s, 2H), 1.24-1.34 (m, 2H), 1.11-1.12 (m, 12H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.4, 17.5, 17.7, 63.7, 116.0, 125.6, 126.9, 127.4, 127.7, 

133.9, 135.8, 137.6. HRMS (EI) calcd. for C16H25IOSi [M]: 388.0719, found: 388.0720. 

 

 
 
Coupling of 2-vinylphenethanol38 with 69 using Method B.  

Isolated yield = 70%, 845 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.45 - 7.55 (m, 3 H), 7.15 - 7.25 (m, 11 H), 7.05 (dd, 

J=17.24, 11.00 Hz, 1 H), 5.65 (d, J=17.24 Hz, 1 H), 5.31 (d, J=11.00 Hz, 1 H), 3.89 (t, 

J=7.15 Hz, 2 H), 2.98 (t, J=7.15 Hz, 2 H), 2.00 (s, 2H), 1.17-1.21 (m, 2H), 1.03-1.05 (m, 

12H). 13C NMR (126 MHz, CDCl3): δ ppm 12.2, 17.4, 17.6, 36.7, 64.3, 115.7, 125.7, 

126.7, 127.7, 130.5, 134.7, 136.0, 137.0. HRMS (ESI) calcd. for C17H27IOSi [M+H]: 

403.0954, found: 403.0958.  
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Coupling of 2-vinylphenol with 74k-Tether (vide supra) using Method A.  

Isolated yield = 68%, 823 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.53 (dd, J=7.60, 1.46 1H), 7.45 (d, J=7.02 Hz, 2H), 

7.20-7.30 (m, 3H), 7.08-7.16 (m, 2H), 6.97 (t, J=7.45 Hz, 1H), 6.84 (d, J=8.18 Hz, 1H), 

5.69 (dd, J=17.83, 1.17 Hz, 1H), 5.23-5.26 (m, 1H), 4.62 (s, 1H), 1.55-1.62 (m, 1H), 

1.39-1.45 (m, 1H), 1.15-1.21 (m, 6H) 0.99-1.07 (m, 6H). 13C NMR (126 MHz, CDCl3): δ 

ppm 13.1, 13.2, 17.4, 17.5, 17.6, 17.7, 17.8, 18.0, 38.2,113.9, 119.4, 121.7, 126.6, 127.4, 

128.5, 128.6, 128.7, 129.3, 131.9, 139.6, 152.1. HRMS (ESI) calcd. for C21H28BrOSi 

[M+H]: 403.1093, found: 403.1088. 

 

 
 
Coupling of 2-(1-phenylvinyl)phenol43 with 69 using Method A.  

Isolated yield = 87%, 1.17 g. 

1H NMR (500 MHz, CDCl3): δ ppm 7.22-7.33 (m, 7H), 6.99-7.03 (m, 1H), 6.87 (d, J=8.1 

Hz, 1H), 5.75 (s, 1H), 5.32 (s, 1H), 2.03 (s, 2H), 1.19-1.25 (m, 2H), 0.91-0.97 (m, 12H). 

13C NMR (126 MHz, CDCl3): δ ppm 12.5, 17.1, 17.5, 115.7, 119.0, 121.4, 126.6, 127.4, 

128.1, 128.8, 131.7, 133.0, 140.5, 147.4, 152.5. HRMS (ESI) calcd. for C21H27IOSi 

[M+H]: 451.0954, found: 451.0947. 
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In a V-vial charged with 2-bromophenol (34 µL, 1 equiv, 0.3 mmol), vinyl-B(Pin) 

(i)44(0.184 g, 2 equiv, 0.6 mmol), Pd(OAc)2 (6.8 mg, 0.1 equiv, 0.03mmol), dppf (33 mg, 

0.2 equiv, 0.06 mmol), K3PO4 (0.191 g, 3 equiv, 0.9 mmol) under N2 atmosphere (glove 

box). Dry dioxane was added via syringe and the reaction vessel was capped with 

pressure screw cap. The reaction mixture was heated at 110 °C for 12 h. The resulting 

mixture was cooled down to room temperature and filtered through a short layer of silica 

gel over Celite plug with the aid of DCM. The filtrate was concentrated under reduced 

pressure and purified by column chromatography 2:1 Hex:EtOAc. Isolated yield of ii = 

88%, 72 mg. 1H NMR (500 MHz, CDCl3): δ ppm 7.30-7.39 (m, 7H), 7.21 (s, 1H), 7.17-

7.19 (m, 3H) 7.08-7.12 (m, 3H) 6.94-6.98 (t, 2H), 5.06 (s, 1H). 13C NMR (126 MHz, 

CDCl3): δ ppm 115.9, 121.1, 125.9, 127.1, 127.8, 128.2, 128.4,128.6, 128.9, 129.7, 

130.5, 131.0, 136.2, 136.4, 141.7, 153.8. HRMS (EI) calcd. for C20H16O [M]: 272.1201, 

found: 272.1201.  

Synthesis of 74m was obtained via coupling of ii with 69 using Method D.  

Isolated yield = 76%, 1.2 g. 

1H NMR (500 MHz, CDCl3): δ ppm 7.41-7.43 (m, 2H), 7.28-7.35 (m, 4H), 7.13-7.19 (m, 

7H), 6.92-7.01 (m, 2H), 2.05 (s, 2H), 1.15-1.27 (m, 2H), 0.91-0.97 (m, 12H). 13C NMR 

(126MHz, CDCl3): δ ppm 12.7, 17.3, 17.5, 118.7, 121.7, 127.3, 128.0, 128.2, 128.8, 

128.9, 129.3, 131.0, 132.4, 137.6, 139.4, 142.5. 153.0. HRMS (ESI) calcd. for 

C27H31IOSi [M+H]: 527.1267, found: 527.1262. 
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Coupling of (Z)-2-(prop-1-enyl)phenol45with 69 using Method A.  

Isolated yield = 58%, 675 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.23-7.31 (m, 1 H) 7.09-7.17 (m, 1 H) 6.93 - 7.02 

(m, 1 H) 6.88 (d, J=8.07 Hz, 1 H) 6.56 (d, J=11.74 Hz, 1 H) 5.82 (dq, J=11.55, 7.03 Hz, 

1 H) 2.24 (m, 2 H) 1.84 (dd, J=6.97, 1.83 Hz, 3 H) 1.41 (m,  2 H) 1.06 - 1.19 (m, 12 H). 

13C NMR (126 MHz, CDCl3): δ ppm 12.7, 14.6, 17.3, 17.7, 119.4, 121.2, 126.2, 126.8, 

127.8, 128.7, 130.5, 152.8. HRMS (EI) calcd. for C16H25IOSi [M]: 388.0709, found 

388.0708 

 

 
 
Coupling of 2-(2-methylprop-1-enyl)phenol40 with 69 using Method A.  

Isolated yield = 72%, 869 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.18 (d, J=7.34 Hz, 1 H) 7.07 - 7.13 (m, 1 H) 6.93 - 

6.98 (m, 1 H) 6.86 (d, J=8.07 Hz, 1 H) 6.33 (br. s., 1 H), 2.20 (s, 2H) 1.92 (s, 3H), 1.79 

(s, 3H) 1.37-1.42 (m, 2H), 1.10-1.15 (m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 

12.6, 17.3, 17.6, 19.4, 26.4, 119.4, 121.3, 121.7, 127.2, 130.13, 130.6, 135.14, 152.7. 

HRMS (EI) calcd. for C17H27IOSi [M]: 403.0954, found: 403.0954. 

O Si

I

i-Pr
i-Pr

74n
Me

O Si

I

i-Pr
i-Pr

74o
Me Me



 

	 	50	

 

A 25 mL Schlenk flask under argon was charged with 2-bromostyrene (0.62 mL, 1 equiv, 

5 mmol) and THF (10 mL). The solution was cooled to -78 °C. n-BuLi (2.12 mL, 1.1 

equiv, 2.6 M, 5.5 mmol) was added dropwise. After stirring at -78 °C for 1 h, 3-methyl-

buten-2-one (0.54 mL, 1.1 equiv, 5.5 mmol) in 5 mL THF was added to the reaction pot. 

The reaction was allowed to stir for 1 h at -78 °C. A saturated ammonium chloride 

solution was added and the aqueous phase was extracted with DCM (3 x 50 mL). The 

organic phase was dried over Na2SO4, filtered and concentrated. The compound was 

purified by column chromatography (10:1 Hex:EtOAc) to give iii a clear oil (72%, 683 

mg).  

1H NMR (500 MHz, CDCl3): δ ppm 7.54-7.56 (m, 1H), 7.44-7.46 (m, 1H), 7.25-7.31 (m, 

3H), 5.51-5.55 (d, 1H), 5.21-5.23 (d, 1H), 5.12 (s, 1H), 4.97 (s, 1H), 2.07 (s, 1H), 1.74 (s, 

3H), 1.65 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 19.6, 28.9, 20.6, 111.3, 115.5, 

125,9, 127.4, 127.4, 127.8, 142.4, 150.3.  

Synthesis of 81 was obtained via coupling of iii with 69 using Method D.  

Isolated yield = 48%, 637 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.55-7.49 (m, 2H), 7.32-7.38 (dd, J=17.24, 11.00 

Hz, 1H), 7.23-7.26 (m, 2H), 5.50 (dd, J=17.24, 1.47 Hz, 1 H) 5.20 (s, 1 H) 5.11 (dd, 

J=10.82, 1.28 Hz, 1 H) 4.91-4.94 (m, 1 H), 1.94-2.01 (m, 2H) 1.83 (s, 3H) 1.56 (s, 3H) 

1.21-1.28 (m, 1H) 1.11-1.16 (m, 1H) 1.07-1.08 (dd, J=7.34, 1.47 Hz, 6H) 0.94-0.99 (t, 

J=8.07 Hz, 6H). 13C NMR (500 MHz, CDCl3): δ ppm 13.5, 13.6, 17.7, 17.8, 17.9, 18.1, 

n-BuLi
THF, -78 °C

69
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19.8, 29.3, 79.9, 113.8, 126.1, 127.1, 127.2, 127.6, 137.0, 137.2, 142.4, 150.9.HRMS (EI) 

calcd. for C20H31IOSi [M]: 442.1189, found: 442.1192. 

 

  

To a 100 mL flask equipped with a stirring bar, argon inlet, and septum, deoxoestrone 

substrate iv46 (1.35 g, 1 equiv, 5.27 mmol), In(OTf)3 (296 mg, 0.1 equiv, 0.527 mmol), 

NIS (1.3 g, 1.1 equiv, 5.8 mmol) and MeCN (10 mL) was added. The reaction was then 

stirred at room temperature for 8 h. Upon completion as judged by GC/MS, the reaction 

was filtered through Celite and concentrated. The residue was purified by column 

chromatography 9:1 Hex: EtOAc. The iodination intermediate was obtained as white 

crystals (59%, 118 g). In a V-vial charged with iodinated steroid (0.77 g, 1 equiv, 2.01 

mmol), vinyltributlytin (1.17 mL, 2 equiv, 4.02 mmol), Pd(Pt-Bu3)2 (52 mg, 0.05 equiv, 

0.1mmol), under N2  atmosphere (glove box). Dry THF (10 mL) was added via syringes 

and the reaction vessel was capped with pressure screw cap. The reaction mixture was 

heated at 110 °C for 12 h. The resulting mixture was cooled down to room temperature 

and filtered through a short layer of silica gel over Celite plug with the aid of DCM. The 

filtrate was concentrated under reduced pressure and purified by column chromatography 

9:1 Hex:EtOAc to yield v as white crystals (86%, 490 mg). Overall yield = 48% over two 

steps.  

1H NMR (500 MHz, CDCl3): δ ppm 7.33 (s, 1H), 6.89-6.95 (dd, 1H), 6.53 (s, 1H), 5.69-

5.73 (dd, 1H), 5.30-5.32 (dd, 1H), 4.99 (s, 1H), 2.80-2.84 (m, 2H), 2.31-2.35 (m, 1H), 

HO
H

H

Me

H

1) 10 mol % In(OTf)3
     1.1 equiv NIS
     MeCN, rt, 8 h

2) 5 mol % Pd(Pt-Bu3)2
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2.18-2.21 (m, 1H), 1.89-1.92 (m, 2H), 1.69-1.80 (4H), 1.52-1.54 (m, 2H), 1.13-1.40, (m, 

10H), 0.94-0.97, (t, 1H), 0.77 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 13.6, 17.6, 

20.6, 25.3, 26.8, 28.1, 29.5, 38.8, 39.2, 41.1, 43.9, 53.6, 114.7, 115.8, 124.3, 131.9, 133.4, 

138.1, 150.6. 

Synthesis of 84 was obtained via coupling of v with 69 using Method D.  

Isolated yield = 66%, 1.06 g. 

1H NMR (500 MHz, CDCl3): δ ppm 7.41 (s, 1H), 7.03 (dd, J=17.79, 11.19 Hz, 1 H), 6.52 

(s, 1H), 5.63 (d, J=17.61 Hz, 1 H), 5.17 (d, J=11.37 Hz, 1 H), 2.74-2.81, (m, 2H), 2.31-

2.34 (m, 1H) 2.23 (s, 2H) 2.18-2.19 (m, 1H), 1.87-1.92 (m, 2H) 1.64-1.69 (m, 3H) 1.49-

1.58 (m, 2H), 1.22-1.45 (m, 9H), 1.07-1.16 (m, 16H), 0.75 (s, 3H). 13C NMR (126 MHz, 

CDCl3): δ ppm 12.3, 12.7, 17.4, 17.6, 17.6, 17.7, 18.7, 20.6, 25.2, 26.7, 28.1, 29.6, 31.6, 

39.1, 40.5, 41.1, 44.1, 53.6, 59.5, 112.7, 119.1, 122.9, 125.9, 132.2, 134.0, 137.7, 149.9. 

HRMS (ESI) calcd. for C27H41IOSi [M+H]: 537.2050, found: 537.2054. 

 

Silyl-tethered aliphatic alkenols, 76a-j: 
 

 
Coupling of 1-heptene-4-ol with 69 using Method B.  

Isolated yield = 79%, 873 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 5.79-5.87 (m, 1H), 5.04-5.08 (m, 2H), 3.90-3.95 (m, 

1H), 2.22-2.32 (m, 2H), 2.08 (s, 2H), 1.43-1.50 (m, 2H), 1.31-1.40 (m, 2H), 1.18-1.25 

(m, 2H), 1.07-1.10 (t, J=7.34 Hz, 12H), 0.91 (t, J=7.34 Hz, 3H). 13C NMR (126 MHz, 

CDCl3): δ ppm 12.6, 14.3, 17.5, 17.8, 18.3, 38.9, 41.6, 72.5, 116.9, 134.9, HRMS (CI) 

calcd. for C14H29IOSi [M+H]: 369.1111, found: 369.1108 
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Coupling of 1-nonene-4-ol with 69 Method B.  

Isolated yield = 77%, 915 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 5.87-5.79 (m, 1 H), 5.08-5.03 (m, 2 H), 3.94-3.89 

(m, 1 H), 2.32-2.22 (m, 2 H), 2.08 (s, 2 H), 1.51-1.44 (m, 2H), 1.36-1.12 (m, 8 H), 1.09 

(t, J = 7.7 Hz, 12 H), 0.89 (t, J = 6.6 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ ppm 12.6, 

14.0, 17.5, 17.8, 22.6, 24.7, 32.0, 36.6, 41.5, 72.7, 116.9, 135.0. HRMS (CI) calcd. for 

C16H34OISi [M+H]: 397.14240, found: 397.14168. 

 

 
 
Coupling 4-phenyl-1-butene-4-ol with 69 using Method B.  

Isolated yield = 79%, 953 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.30-7.32 (m, 3H), 7.23-7.28 (m, 1H), 5.71-5.80 (m, 

1H), 5.02-5.04 (m, 2H), 5.00 (s, 1H), 4.85-4.88, (t, 3H), 2.52-2.58 (m, 1H), 2.42-2.47 (m, 

1H), 1.94 (d, 2H), 1.20-1.27 (m, 1H), 1.14-1.18 (m, 1H), 1.07-1.11 (dd, J=15.22, 7.52 

Hz, 6H) 0.94-1.00 (m, 6H). 13C NMR (126MHz, CDCl3): δ ppm 12.4, 12.5, 17.3, 17.5, 

17.6, 17.9, 45.5, 75.5, 117.3, 126.0, 127.3, 128.1, 134.6, 144.5. HRMS (CI) calcd. for 

C17H27IOSi [M+H]: 403.09545, found: 403.09531. 

 
 
Coupling 4-n-propyl-1-heptene-4-ol with 69 using Method D.  

O Si

I

i-Pr
i-Pr

C5H1176b
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Isolated yield = 58%, 739 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 5.79-5.88 (m, 1H), 5.02-5.06 (m, 2H), 2.27-2.28 (d, 

2H), 2.10 (s, 2H), 1.44-1.55 (m, 4H), 1.32-1.36 (m, 4H), 1.14-1.26 (m, 2H), 1.07-1.10, 

(m, 14H), 0.88-0.91 (t, J=7.34 Hz, 6H). 13C NMR (126 MHz, CDCl3): δ ppm 13.7, 14.7, 

17.1, 17.5, 17.9, 18.2, 42.7, 44.8, 78.6, 117.0, 134.9. HRMS (CI) calcd. for C17H35IOSi 

[M+H]: 411.15805, found: 411.15814. 

 
 
Coupling of 1-allyl-cyclohexanol with 69 using Method D.  

Isolated yield = 44%, 520 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 5.82-5.91 (m, 1H), 5.02-5.07 (m, 2H), 2.33-2.34 (d, 

J=7.3 Hz, 2H), 2.12 (s, 2H), 1.59-1.65 (m, 4H), 1.47-1.50 (m, 2H), 1.15-1.25 (m, 2H), 

1.08-1.10, (m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 13.7, 17.1, 17.5, 17.9, 18.2, 

22.8, 25.5, 38.1, 75.9, 117.0, 134.7. HRMS (EI) calcd. for C16H31IOSi [M+H]: 394.1189 

found: 394.1189. 

 

 
 
Coupling of (1R,2S)-2-vinylcyclohexanol47 with 69 using Method B.  

Isolated yield = 65%, 741 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 5.81-5.90 (m, 1H), 4.98-5.05 (m, 2H), 3.50-3.56 (m, 

1H), 2.07 (s, 2H), 1.73-2.00 (m, 2H), 1.54-1.75 (m, 3H), 1.30-1.43 (m, 1H) 1.14-1.30 (m, 

O Si
i-Pr i-Pr

I

76e

O Si
i-Pr
i-Pr

I
76f
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5H), 1.05-1.09, (m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 13.0, 13.1, 17.9, 18.0, 

18.2, 18.4, 24.9, 25.1, 30.8, 36.1, 50.2, 75.7, 114.6, 142.1. HRMS (CI) calcd. for 

C15H29IOSi [M+H]: 381.11110, found: 381.11144. 

 

 
 
Coupling of 3-phenylbut-3-en-1-ol48 with 69 using Method B.  

Isolated yield = 72%, 869 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.41-7.44 (m, 2H), 7.32-7.35 (t, 2H), 7.26-7.29 (m, 

1H), 5.36 (s, 1H), 5.13 (s, 1H), 3.85 (t, J=7.15 Hz, 2H), 2.79-2.82 (t, J=7.15 Hz, 2H), 

2.03 (s, 2H), 1.17-1.21 (m, 2H), 1.04-1.06, (m, 12H). 13C NMR (126 MHz, CDCl3): δ 

ppm 12.2, 17.4, 17.7,38.7, 62.9, 114.1, 126.1, 127.4, 128.3, 140.9, 145.1. HRMS (EI) 

calcd. for C17H27IOSi [M+H]: 402.0876, found: 402.0880. 

 

 
 
Coupling of 4-phenylpent-4-en-1-ol49with 69 using Method B.  

Isolated yield = 74%, 924 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.42-7.44 (m, 2H), 7.31-7.35 (m, 2H), 7.26-7.28 (m, 

1H), 5.31 (s, 1H), 5.09 (s, 1H), 3.77 (t, J=6.24 Hz, 2H), 2.61 (t, J=7.70 Hz, 2H), 2.07 (s, 

2H), 1.70-1.74 (m, 2H), 1.19-1.25 (m, 2H), 1.05-1.09, (m, 12H). 13C NMR (126 MHz, 

CDCl3): δ ppm 12.3, 17.5, 17.7, 31.4, 31.5, 63.2, 112.4, 126.1, 127.4, 128.3, 141.1, 

148.1. HRMS (EI) calcd. for C18H29IOSi [M+H]: 416.1032, found: 416.1040. 
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Coupling of 5-phenylhex-5-en-1-ol50with 69 using Method B.  

Isolated yield= 69%, 891 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.40-7.42 (d, 2H), 7.31-7.34 (t, 2H), 7.26-7.28 (d, 

1H), 5.27-5.28 (dd, 1H), 5.07-5.07 (dd, 1H), 3.74 (t, J=6.42 Hz, 2H), 2.54 (t, J=7.34 Hz, 

2H), 2.06 (s, 2H), 1.52-1.62 (m, 4H), 1.17-1.25 (m, 2H), 1.03-1.09, (m, 12H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.3, 17.4, 17.7, 24.4, 32.4, 35.0, 63.6, 112.3, 126.1, 127.3, 

128.3, 141.3, 148.5. HRMS (ESI) calcd. for C19H31IOSi [M+H]: 431.1267, found: 

431.1268. 

 

 
 
Coupling of isopulegol with 69 using Method C.  

Isolated yield= 68%, 833 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 4.75-4.77 (m, 2H), 3.70-3.76 (m, 1H), 3.72-3.75 (t, 

2H), 2.05-2.06 (m, 2H), 1.88-1.97 (m, 2H), 1.72 (s, 3H), 1.59-1.64, (m, 2H), 1.41-1.48 

(m, 1H), 1.26-1.35 (m, 1H), 1.11-1.23 (m, 2H), 1.04-1.09 (m, 12H), 0.87-0.94 (m, 

4H).13C NMR (126 MHz, CDCl3): δ ppm 12.7, 12.9, 17.5, 17.6, 17.8, 17.9, 20.9, 22.3, 

30.6, 31.6, 34.3, 45.4, 53.6, 73.8, 111.2, 126.1, 147.8. HRMS (ESI) calcd. for C17H33IOSi 

[M]+H: 409.1424, found: 409.1421 
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3.2.2. Endo-Selective Silyl Methyl Heck Reaction   

 

An oven dried 2.5 mL Wheaton V-vial, containing a stirring bar, was charged with 

phenol/alcohol-derived iodomethylsilanes (0.2 mmol), Pd(OAc)2 (4.5 mg, 0.01 mmol), 

Ligand L (20.6 mg, 0.02 mmol), (and AgOTf (51.2 mg, 0.2 mmol) for 74m, 76a-c and 

76f-i) under N2 atmosphere (glove box). 2 mL of dry toluene (5 mL toluene for 74j-k, 

76i) and i-Pr2NEt (76 µL, 0.44 mmol) (DABCO instead of i-Pr2NEt, 50 mg, 0.44 mmol 

for 76d-c) were added via syringes and the reaction vessel was capped with pressure 

screw cap. The reaction mixture was heated at 75 °C for 5-20 h (extended time (36 h) and 

higher temperature (110-130 °C) are required for 74i, 74j-k, 74m, 76i). The resulting 

mixture was cooled down to room temperature and filtered through a short layer of silica 

gel over Celite plug with the aid of DCM. The filtrate was concentrated under reduced 

pressure and purified by column chromatography (Hexanes - 75i-2j, 77a-f. Hexanes: 

EtOAc = 50:1 – 75i, 75l, 75p, 75r, 77f, 77j. Hexanes: EtOAc = 50:1 à 35:1 – 75j-k, 

75m, 76g-i.) 

Endo Silyl Methyl Heck products of Benzene Tethered Systems, 75a-o: 
 

 
0.2 mmol scale: Isolated yield = 79%, 38.9 mg. Endo:Exo = 33:1 (GC Ratio) 

L

10 mol % Pd(OAc)2
20 mol % L

2.2 equiv i-Pr2NEt
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3.8 mmol scale: Isolated yield = 72%, 674 mg. Endo:Exo = 33:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.13-7.18 (m, 1H), 7.07-7.10 (m, 1H), 6.93-7.00 (m, 

2H), 6.29 (d, J = 10.8 Hz, 1H), 6.06-6.13 (m, 1H), 1.63 (d, J = 7.6 Hz, 2H), 1.08-1.23 (m, 

14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.4, 13.6, 17.5, 17.7, 120.9, 121.6, 126.1, 

127.8, 128.1, 130.9, 154.2. HRMS (ESI) calcd. for C15H22OSi [M+H]: 247.1518, found: 

247.1520. 

 

 
 
Isolated yield = 87%, 48.1 mg. Endo:Exo = 99: 1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.96-6.99 (m, 1H), 6.53-6.55 (m, 2H), 6.21 (d, J = 

11 Hz, 1H), 5.96-5.99 (m, 1H), 3.79 (s, 3H), 1.61 (d, J = 7.3 Hz, 2H), 1.06-1.19 (m, 

14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.1, 13.6, 17.4, 17.7, 55.3, 106.6, 107.5, 

121.0, 125.8, 126.3, 131.6, 155.1, 159.5. HRMS (ESI) calcd. for C16H24O2Si [M+H]: 

277.1624, found: 277.1622. 

 

 
 
Isolated yield = 74%, 39.1 mg. Endo:Exo = 99:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.99-7.00 (m, 1H), 6.65-6.70 (m, 2H), 6.21 (d, J= 

10.6, 1H), 6.01-6.07 (m, 1H), 1.61 (d, J = 7.7 Hz, 2H), 1.06-1.20 (m, 14H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.4, 13.6, 17.4, 17.6, 108.2, 108.3, 108.5, 108.6,124.4, 125.3, 

SiO i-Pr
i-Pr

MeO
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SiO i-Pr
i-Pr

F

75c
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127.7, 131.6, 131.7, 155.0. HRMS (ESI) calcd. for C15H21FOSi [M+H]: 265.1413, found: 

265.1419. 

 

 
 
Isolated yield = 76%, 39.5 mg. Endo:Exo = 25:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.95-6.97 (m, 1H), 6.88-6.90 (m, 2H), 6.25 (d, J = 

11 Hz, 1H), 6.06-6.12 (m, 1H), 2.30 (s, 3H), 1.61 (d, J = 7.4 Hz, 2H), 1.08-1.20 (m, 

14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.3, 13.6, 17.5, 17.7, 20.5, 121.4, 127.9, 

128.0, 128.5, 130.1, 131.2, 151.9. HRMS (ESI) calcd. for C16H24OSi [M+H]: 261.1675, 

found: 261.1668. 

 

 
 
Isolated yield= 72%, 40.4 mg. Endo:Exo = 25:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.07-7.09 (m, 1H), 7.04 (s, 1H), 6.88-6.90 (m, 1H), 

6.18 (d, J = 11 Hz, 1H), 6.09-6.14 (m, 1H), 1.62 (d, J = 7.3 Hz, 2H), 1.05-1.18 (m, 14H). 

13C NMR (126 MHz, CDCl3): δ ppm 12.4, 13.6, 17.4, 17.7, 122.9, 124.9, 125.7, 127.6, 

129.5, 130.2, 152.7. HRMS (ESI) calcd. for C15H21ClOSi [M+H]: 281.1128, found: 

281.1132. 
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Isolated yield= 33%, 19.2 mg. Endo:Exo = 32:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 8.01-8.03 (m, 2H), 7.01-7.03 (m, 1H), 6.27 (d, J= 

11, 1H), 6.18-6.23 (m, 1H), 1.66 (d, J = 7.3 Hz, 2H), 1.16-1.23 (m, 2H), 1.06-1.10 (m, 

12H). 13C NMR (126 MHz, CDCl3): δ ppm 12.6, 13.6, 17.3, 17.5, 122.2, 123.4, 124.5, 

127.1, 128.8, 130.5, 141.7, 159.6. HRMS (ESI) calcd. for C15H21NO3Si [M+H]: 

292.1369, found: 292.1372. 

 

 
 
Isolated yield= 90%, 49.7 mg. Endo:Exo = 99:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.87-6.90 (m, 1H), 6.76-6.78 (m, 2H), 6.68-6.69 (m, 

2H), 6.26 (d, J = 11 Hz, 1H), 6.09-6.13 (m, 1H), 3.85 (s, 3H), 1.61 (d, J = 7.3 Hz, 2H), 

1.07-1.20 (m, 14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.1, 13.6, 17.4, 17.7, 55.8, 

110.2, 120.7, 122.5, 125.7, 128.7, 129.4, 143.6, 151.5. HRMS (ESI) calcd. for 

C16H24O2Si [M+H]: 277.1624, found: 277.1629. 

 

 
 

Isolated yield= 74%, 39.1 mg. Endo:Exo = 99:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.93-6.97 (m, 1H), 6.82-6.87 (m, 2H), 6.26 (d, J= 

10.6, 1H), 6.10-6.15 (m, 1H), 1.64 (d, J = 7.34 Hz, 2H), 1.07-1.23 (m, 14H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.4, 13.6, 17.2, 17.4, 114.0, 114.2, 120.5, 120.6, 125.1, 

SiO i-Pr
i-PrOMe
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SiO i-Pr
i-PrF
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125.2, 125.63, 125.66, 129.2, 130.8, 142.2, 142.3, 153.8, 155.8. HRMS (ESI) calcd. for 

C15H21FOSi [M]: 265.1424, found: 265.1424. 

 

 
 
Isolated yield= 60%, 31.2 mg. Endo:Exo:Hydrodehalogenation = 92:0:8 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.47-7.49 (m, 1H), 7.28-7.32 (m, 2H), 7.15-7.16 (m, 

1H), 6.50 (d, J = 11.0 Hz, 1H), 6.06-6.11 (m, 1H), 4.71 (s, 2H), 1.40 (d, J = 8.4 Hz, 2H), 

0.99-1.10 (m, 14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.2, 14.5, 17.3, 17.4, 65.2, 

126.3, 127.2, 127.9, 128.0, 130.1, 131.1, 137.8. HRMS (ESI) calcd. for C16H24OSi 

[M+H]: 261.1675, found: 261.1677. 

 

 
    75j                         :             75j’ 
 

Isolated yield= 33% of compound A, 18 mg. Total yield = 53%, 29 mg.  

Endo: Exo: Dehal = 1.6 : 0 : 1 (NMR Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.00-7.35 (m, 4H), 6.44 (d, J = 10.8 Hz, 1H), 6.06-

6.11 (m, 1H), 4.10-4.13 (t, J=7.15 Hz, 2H), 2.83-2.87 (t, J=7.15 Hz, 2H) 1.38 (d, J = 8.4 

Hz, 2H), 0.93-1.1 (m, 14H).13C NMR (126MHz, CDCl3): δ ppm 12.9, 15.7, 17.5, 17.7, 

65.1, 126.1, 126.9, 127.2, 128.6, 129.4, 130.0, 131.5, 139.3. HRMS (EI) calcd. for 

C17H26OSi [M+H]: 275.1831, found: 275.1829. 
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Isolated yield= 67%, 43.2 mg. Endo:Exo = >99 : 1 (GC Ratio). 

1H NMR (500 MHz, CDCl3): δ ppm7.29-7.32 (m, 2H), 7.13-7.25 (m, 4H), 6.98-7.06 (m, 

3H), 6.33-6.36 (m, 1H), 6.25-6.30 (m, 1H), 3.41-3.43 (m, 1H), 1.07-1.37 (m, 14H).13C 

NMR (126 MHz, CDCl3): δ ppm 12.4, 14.3, 17.3, 17.5, 18.0, 18.8, 36.9, 121.1, 121.6, 

123.9, 125.3, 127.7, 127.8, 128.2, 128.3, 128.7, 130.9, 134.3, 140.7, 154.1. HRMS (EI) 

calcd. for C21H26OSi [M+H]: 322.1753, found: 322.1756. 

 

 
 
Isolated yield = 96%, 62 mg. Endo:Exo = 100: 0 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.20-7.30 (m, 6H), 7.06-7.07 (m, 1H), 6.91-6.96 (m, 

2H), 6.34 (t, J= 8.1, 1H), 1.74 (d, J = 8.1 Hz, 2H), 1.16-1.24 (m, 2H), 1.09-1.11 (d, 12H). 

13C NMR (126 MHz, CDCl3): δ ppm 13.4, 13.5, 17.5, 17.8, 121.3, 121.6, 126.0, 126.5, 

128.0, 128.3, 130.7, 131.9, 137.1, 143.9 154.9. HRMS (ESI) calcd. for C21H26OSi 

[M+H]: 323.1831, found: 323.1830. 

 

 
 
Isolated yield = 64%, 51 mg. Endo:Exo = 100:0 (GC Ratio) 
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1H NMR (500 MHz, CDCl3): δ ppm 6.84-7.34 (m, 14H), 0.88-1.33 (m, 16H). 13C NMR 

(126 MHz, CDCl3): δ ppm 17.5, 17.8, 21.3, 121.9, 122.1, 125.8, 126.2,127.5, 127.7, 

128.1, 128.4, 129.7, 130.1, 131.7, 132.6, 133.6, 133.9, 137.3, 143.9, 144.1. HRMS (ESI) 

calcd. for C27H30OSi [M+H]: 398.2066, found: 398.2071. 

 

 
      75n               :          75n’             :             75n’’       :            75n’’’ 
 
Isolated = 78%, 40.6 mg. Ratio = 4.8 : 3.8 : 1.4  : 1 

1H NMR (500 MHz, CDCl3): δ ppm only olefinic proton were analyzed: 75n’ = 6.10 (s, 

3.8H), 75n’’’= 5.66-5.71 (m, 1H), 75n’’=5.50 – 5.55 (m, 1.4H), 75n= 5.08-5.17 (m, 

4.8H). 13C NMR (500 MHz, CDCl3): δ ppm – See below. HRMS (ESI) calcd. for 

C16H24OSi [M]+H: 261.165, found: 261.1672 

 

 
 
Isolated yield = 76%, 41.7 mg. Endo:Exo = 0:100 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.11-7.14 (m, 1H), 6.99-7.01 (m, 1H), 6.90-6.92 (m, 

1H), 6.84-6.88 (m, 1H), 5.01(s, 1H), 4.87 (s, 1H), 3.64 (dd, J=11.9, 4.2 Hz, 1H), 1.85 (s, 

3H), 0.99-1.24 (m, 16H). 13C NMR (126 MHz, CDCl3): δ ppm 11.1, 12.8, 13.2, 16.9, 

17.1, 17.3, 19.8, 43.5,112.9, 119.6, 120.5, 127.6, 127.9, 130.9, 147.9, 155.4. HRMS 

(ESI) calcd. for C17H26OSi [M+H]: 275.1831, found: 275.1828 
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Isolated yield = 87%, 54.7 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.44-7.46 (m, 2H), 7.23-7.32 (m, 2H), 5.47 (s, 1H), 

4.89 (s, 1H), 1.78-1.86 (m, 1H), 1.68-1.75 (m, 1H), 1.31 (s, 3H), 1.25 (s, 3H), 1.09 -1.11 

(d, 3H), 1.02-1.03 (d, 3H), 0.76-0.80 (m, 7H), 0.64-0.73 (m, 2H), 0.54-0.61 (m, 1H). 13C 

NMR (126 MHz, CDCl3): δ ppm 1.4, 13.2, 13.4, 16.9, 17.1, 17.3, 17.5, 20.7, 28.0, 33.3, 

51.2, 84.32, 102.2, 120.5, 123.4, 127.6, 128.6, 137.5, 150.6. HRMS (EI) calcd. for 

C20H30O2Si [M+H]: 315.2144, found: 315.2145. 

 
 
Isolated yield = 82%, 67 mg. Endo:Exo = 99:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 6.99 (s, 1H), 6.70 (s, 1H), 6.24 (d, J=11 Hz, 1H), 

5.98-6.03 (m, 1H), 2.82 (t, 2H), 2.19-2.29, (m, 2H), 1.86-1.93 (m, 2H), 1.65-1.78 (m, 3H) 

1.61 (d, J= 7.7 Hz, 2H), 1.49-1.56 (m, 3H), 1.31-1.40 (m, 3H), 1.21-1.30 (m, 3H), 1.06-

1.18 (m, 14H) 0.75 (s, 3H). 13C NMR (126MHz, CDCl3): δ ppm 12.4, 13.6, 13.7, 17.5, 

17.6, 17.7, 20.6, 25.2, 26.7, 28.2, 29.4, 38.9, 39.1, 40.5, 41.1, 44.0, 53.6, 121.2, 125.3, 

126.5, 127.1, 127.8, 133.3, 136.8, 151.8. HRMS (EI) calcd. for C27H40OSi [M+H]: 

408.2848, found: 408.2854. 
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Endo Silyl Methyl Heck Reaction Products of Aliphatic Systems, 77a-j:  
 
2,2-diisopropyl-7-propyl-2,3,4,7-tetrahydro-1,2-oxasilepine, 4a: 
 

 
 
Isolated yield = 65%, 31.2 mg. Endo: Exo = >50 : 1 (GC Ratio). 

1H NMR (500 MHz, CDCl3): δ ppm 5.81-5.85 (m, 1H), 5.47-5.52 (m, 1H), 3.91-3.94 (m, 

1H), 2.17-2.32 (m, 2H), 1.57-1.64 (m, 2H), 1.42-1.53 (m, 2H), 1.30-1.39 (m, 2H), 0.98-

1.09 (m, 12H), 0.88-0.92 (m, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 11.6, 12.9, 13.1, 

14.1, 17.5, 17.6, 17.7, 19.1, 36.9, 40.9, 72.3, 126.0, 127.5. HRMS (ESI) calcd. for 

C14H28OSi [M+H]: 241.1988, found 241.1991. 

 

 
 
Isolated yield = 76% 40.8 mg. Endo:Exo = 36:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 5.81-5.85 (m, 1H), 5.47-5.51 (m, 1H), 3.89-3.93 (m, 

1H), 2.19-2.31 (m, 2H), 1.58-1.63 (m, 2H), 1.41-1.52 (m, 2H), 1.26-1.38 (m, 10H), 0.98-

1.09 (m, 14H), 0.87-0.92 (m, 5H). 13C NMR (126MHz, CDCl3): δ ppm 11.6, 12.9, 13.2, 

14.1, 17.5, 17.6, 17.7, 22.7, 25.6, 29.7, 31.8, 36.9, 38.7, 72.6, 126.0, 127.6. HRMS (ESI) 

calcd.for C16H32OSi [M+H]: 269.2301, found: 269.2302. 
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Isolated yield = 83%, 45.5 mg, isomers are separable.  

1H NMR (500 MHz, CDCl3): δ ppm 7.40 (d, J =7.34 Hz, 2H), 7.34 (t, J =7.34 Hz, 2H), 

7.23-7.26 (m, 1H), 5.92-5.97 (m, 1H), 5.53-5.58 (m, 1H), 5.11 (d, J =9.2 Hz 1H), 2.56-

2.62 (m, 1H), 2.45-2.50 (m, 1H), 1.75-1.80 (m, 1H), 1.66-1.71 (m, 1H), 0.99-1.21 (m, 

14H). 13C NMR (500 MHz, CDCl3): δ ppm 11.6, 12.9, 13.1, 17.6, 17.7, 17.8, 40.1, 74.3, 

125.3, 125.8, 126.7, 128.0, 128.2, 145.8. HRMS (ESI) calcd. for C17H26OSi [M+H]: 

275.1831, found: 275.1825. 

 
 

 
 
Isolated yield= 80%, 45.2 mg. Endo:Exo = 25:1 (GC Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 5.90-5.95 (m, 1H), 5.44-5.50 (m, 1H), 2.27 (d, J= 

7.7 Hz, 2H), 1.59 (d, J=6.97 Hz, 2H), 1.43-1.47 (m, 1H), 1.20-1.47 (m, 6H), 1.07-1.11 (t, 

4H), 0.99-0.98 (m, 12H), 0.89 (t, J=7.34 Hz, 6H). 13C NMR (126 MHz, CDCl3): δ ppm: 

12.0, 13.1, 13.9, 14.8, 17.3, 17.4, 17.70, 17.73, 74.3, 38.0, 42.0, 77.2, 124.5, 129.3. 

HRMS (ESI) calcd. for C17H34OSi [M]+H: 283.2457, found: 283.2461. 

 

 
 
Isolated yield= 75%, 39 mg. Endo:Exo = 16:1 (NMR Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 5.90-5.95 (m, 1H), 5.47-5.52 (m, 1H), 2.27 (d, J= 

7.7 Hz, 2H), 1.58-1.68 (m, 6H), 1.16-1.42(m, 6H), 0.99-1.01 (dd, 12H), 0.86-0.91 (m, 

O Si
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2H), 1.04-1.21 (m, 14H). 13C NMR (126MHz, CDCl3): δ ppm 11.8, 13.9, 13.1, 17.4, 

17.5, 17.7, 17.8, 22.3, 26.2, 38.8, 40.1, 73.6, 124.2, 129.1. HRMS (ESI) calcd. for 

C16H30OSi [M]+H: 267.2144, found: 267.2146.  

 

 
 
Isolated yield= 71%, 35.8 mg. Endo:Exo = 50:1 (GC Ratio)  

1H NMR (500 MHz, CDCl3): δ ppm 5.72-5.77 (m, 1H), 5.11-5.14 (m, 1H), 3.58-3.62 (m, 

1H), 2.23 (d, J= 7.7 Hz, 1H), 1.98-2.01 (m, 1H), 1.50-1.74 (m, 5H), 1.09-1.35 (m, 4H) 

0.88-1.02 (m, 14H). 13C NMR (126 MHz, CDCl3): δ ppm 11.3, 12.2, 13.23, 13.8, 17.5, 

17.7, 17.8, 25.1, 25.5, 32.6, 36.4, 46.4, 75.2, 125.2, 132.5. HRMS (ESI) calcd. for 

C15H28OSi [M+H]: 253.1988, found: 253.1990.  

 

 
  77g          :       77g’ 
 
Isolated yield= 80%, 44 mg. 77g : 77g’ = 7: 1 (NMR Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.29-7.36 (m, 5H), 6.23 (t, J=7.45 Hz, 1H), 4.07 (t, J 

= 5.3 Hz, 2H), 2.87 (t, J = 5.3 Hz 2H), 1.83 (d, J=7.6 Hz, 2H), 0.98-1.07 (m, 14H). 13C 

NMR (126 MHz, CDCl3): δ ppm 13.1, 17.6, 17.7, 34.9, 63.6, 125.5, 126.1, 126.3, 128.3, 

137.4, 143.5. HRMS (ESI) calcd. for C17H26OSi [M+H]: 275.1831, found: 274.1833 
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 77h         :          77h’ 
 
Isolated yield= 85%, 49 mg. 77h : 77h’ = 17 : 1 (NMR Ratio) 

1H NMR (500 MHz, CDCl3): δ ppm 7.38-7.40 (m, 2H), 7.29-7.34 (m, 2H), 7.20-7.23 (m, 

1H), 6.20 (t, J=8.18 Hz, 1H), 3.72 (t, J=5.3 Hz, 2H), 2.72 (t, J=5.3 Hz, 2H), 1.81 (d, 

J=8.5 Hz, 2H), 1.72-1.78 (m, 2H), 1.08-1.15 (m, 12H), 0.94-1.04 (m, 2H). 13C NMR (126 

MHz, CDCl3): δ ppm 12.6, 14.85, 17.6, 17.8, 24.5, 30.2, 60.6, 124.9, 125.6, 126.3, 128.4, 

135.9, 142.1. HRMS (EI) calcd. for C18H28OSi [M]: 289.1988, found: 289.1992. 

 

 
 
 77i                  :             77i’ 
 
Total yield = 88%, 53.2 mg. 77i : 77i’ = 1 : 1 (NMR Ratio), Yield of 77i = 44%, 26.6 mg. 
 

1H NMR (500 MHz, CDCl3): δ ppm -only olefinic proton were analyzed: 77i = 5.61 (t, 

J=8.8 Hz, 1H), 77i’= 5.28 (s, 1H), 77i’=5.07 (s, 1H), 13C NMR (126 MHz, CDCl3): δ 

ppm – See below. HRMS (ESI) calcd. for C19H30OSi [M]: 303.2144, found: 303.2142. 

 

 
 77j                     :               77j’ 
 
Total yield = 90%, 50 mg. 77j : 77j’ = 3.5 : 1 (NMR Ratio).  
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Isomers are separable. Yield of 77j = 45%, 25.2 mg. 

1H NMR (500 MHz, CDCl3): δ ppm of 4j = 4.84 (s, 2H), 4.80 (s, 1H), 3.51-3.56 (m, 1H), 

2.33-2.39 (m, 1H), 2.21-2.26 (m, 1H), 1.93-2.05 (m, 2H) 1.55-1.64 (m, 2H), 1.42-1.46 

(m, 1H), 1.26-1.36 (m, 1H), 0.91-1.11 (m, 19H), 0.76-0.83 (m, 2H). 13C NMR (126 MHz, 

CDCl3): δ ppm 11.8, 12.8, 13.7, 17.3, 17.5, 17.9, 22.1, 29.5, 31.7, 31.8, 34.5, 44.7, 53.3, 

74.9, 111.7, 155.4. HRMS (ESI) calcd. for C17H32OSi [M]+H: 281.2301, found: 

281.2302. 

 

3.3. Further Transformations of Obtained Siloxycyclic Products 

Ring opening:  
 

 
 
A 50 mL Schlenk flask equipped with a magnetic stir bar under Ar atmosphere was 

charged with compound 2a (0.611 g, 2.48 mmol, 1 eq) and 14 mL of dry THF. The 

mixture was cooled to -78 °C and 4.65 mL (7.44 mmol, 3 eq) MeLi in diethylether (1.6 

M in Et2O) was added drop-wise via syringe. Then, the reaction mixture was stirred at r.t. 

for 2 h. Upon completion (monitored by GC), the reaction was quenched with NH4Cl 

solution (20 mL) at 0 °C and 35 mL of CH2Cl2 was added. The aqueous layer was 

extracted 3x with 30 mL of CH2Cl2. The combined extracts were washed with brine and 

then dried with Na2SO4. The organic layer was concentrated in vacuo and the crude 

product was purified by silica gel column chromatography (EA: Hexanes – 1:50) to 

produce compound 79 as a clear and colorless oil.  
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Isolated yield = 70%, 456 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.16 (t, J = 7.3 Hz, 1 H), 7.09 (d, J = 7.3 Hz, 1 H), 

6.92 - 6.87 (m, 2 H), 6.21 (d, J = 11.2 Hz, 1 H), 6.05 - 6.00 (m, 1 H), 5.16 (s, 1 H), 1.61 

(dd, J = 8.4, 1.1 Hz, 2 H), 0.91-0.88 (m, 12 H), 0.12 (s, 3H). 13C NMR (126 MHz, 

CDCl3): δ ppm 9.2, 11.8, 14.3, 17.9, 114.9, 120.7, 128.4, 129.7, 134.3. HRMS (EI) calcd. 

for C16H27OSi [M+H]: 263.1831, found: 263.1833. 

Intramolecular Hosomi-Sakurai Reaction: 
 
 

 
 

A 2 mL vial equipped with a magnetic stir bar under Ar atmosphere was charged with 

compound 11 (100 mg, 0.38 mmol) and 1,1-dimethoxycyclohexane (66 mg, 0.46 mmol) 

with 1 mL of CH2Cl2. The reaction mixture was cooled to -78 °C, followed by addition of 

boron trifluoride diethyl etherate (108 mg, 0.76 mmol). The reaction mixture was stirred 

at r.t. for 60-90 min. Upon the completion (monitored by GC), the reaction was quenched 

with 5% NaHCO3 solution (2 mL). The aqueous layer was extracted 3x3 mL of CH2Cl2. 

The combined organic layers was then washed with brine and dried with Na2SO4. The 

organic layer was concentrated in vacuo and the crude product was purified bysilica gel 

column chromatography (EA:Hexanes = 1:100) to produce 80 as a clear and colorless oil 

(91%, 74 mg).  

1H NMR (500 MHz, CDCl3): δ ppm 7.13 (t, J = 7.7 Hz, 1 H), 7.05 (d, J = 7.4 Hz, 1 H), 

6.83 (dt, J = 7.3, 0.7 Hz, 1 H), 6.78 (d, J = 7.7 Hz, 1 H), 5.88-5.81 (m, 1 H), 5.21 - 5.17 

O

Si i-Pr
i-Pr

MeOH

8079

BF3•Et2O
DCM, -78 °C

OMe
OMe



 

	 	71	

(m, 2 H), 3.62  (d, J = 9.5 Hz, 1 H), 1.89-1.26 (m, 10 H). 13C NMR (126 MHz, CDCl3):δ 

ppm 22.2, 22.7, 25.4, 32.1, 37.1, 56.8, 90.6, 109.8, 117.4, 120.0, 125.4, 128.4, 130.0, 

136.0, 158.3. HRMS (EI) calcd. for C15H19O [M+H]: 215.1436, found: 215.1434. 

Tamao oxidation of 75a and 85:  
 
A 10 mL flask, containing a stirring bar, was charged with 75a (24.6 mg, 0.1 mmol) or 85 

(40.8 mg, 0.1 mmol), KHCO3 (100 mg, 1 mmol), and DMF (1 mL) and 50%. H2O2 (80 

µL) was added via syringes under Ar atmosphere. The reaction mixture was heated at 70 

°C for 6 h. The reaction was then cooled to room temperature, followed by addition of 

KF on Al2O3 (36.5 mg, 0.3 mmol). The reaction mixture was stirred for another 4h at 

room temperature. The product was purified by silica gel column chromatography 

(eluent: hexanes/AcOEt 4:1-1:1) to give 78 or 86 as white solids. 

 

 
 
Yield= 87%, 13 mg. 
 
1H NMR (500 MHz, DMSO-d6) δ ppm 9.46 (s, 1 H), 7.07 (t, J = 7.7 Hz, 1 H), 7.01 (d, J 

= 7.4 Hz, 1 H), 6.81 (d, J = 8.0 Hz, 1 H), 6.75 (t, J = 7.3 Hz, 1 H), 6.51 (d, J = 12.2 Hz, 1 

H), 5.74 - 5.69 (m, 1 H), 4.76 (t, J = 5.2 Hz, 1 H), 4.15-4.12 (m, 2 H). 13C NMR (126 

MHz, DMSO-d6) δ ppm 58.7, 115.6, 118.9, 123.9, 124.9, 128.9, 130.4, 132.5,  155.4. 

HRMS (EI) calcd. for C9H10O2 [M]: 150.0681, found: 150.0679.  
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Yield after extraction = 80%, 25 mg.  

A small portion was recrystallized in DCM for NMR spectra.   

1H NMR (500 MHz, DMSO-d6): δ ppm 9.12 (s, 1H), 6.90 (s, 1H), 6.48 (s, 1H), 6.46 (s, 

1H), 5.62-5.67 (m, 1H), 4.73 (t, J=5.14 Hz, 1H), ) 4.14 (t, J=5.32 Hz, 3H), 2.65-2.71 (m, 

2H), 2.49 (s, 2H), 2.20-2.23 (d, 1H), 2.09-2.12 (t, 1H), 1.80 (d, J=10.6 Hz, 2H), 1.59-1.71 

(m, 3H), 1.43-1.47 (m, 1H), 1.26-1.37 (m, 3H), 1.16-1.26 (m, 4H), 1.06-1.12 (m, 1H), 0.7 

(s, 3H). 13C NMR (126 MHz, DMSO-d6): δ ppm 17.9, 20.6, 25.2, 26.9, 28.1, 29.4, 30.9, 

38.8, 39.3, 41.1, 43.8, 53.4, 58.8, 115.3, 121.4, 125.2, 125.4, 127.2, 130.5, 131.5, 131.9, 

136.9, 153.0. HRMS (ESI) calcd. For C21H28O2 [M+Na]: 325.1987, found: 325.1986. 

 
Woerpel oxidation of 82 leading to 83: 

 

To an ice-cooled (0 °C) stirred solution of KH (57.8 mg, 1.44 mmol, dry powder, 95%.) 

in 1.5 mL of NMP was added tert-butyl hydroperoxide (0.22 mL, 5.0 ~ 6.0 M in decane) 

dropwise. The mixture was allowed to warm up to room temperature and kept for 10 min, 

then was added a solution of 82 (38 mg, 0.12 mmol) in 1.2 mL of NMP. The mixture was 

stirred overnight and then 1.5 mL TBAF (0.6mmol, 1.0 M solution in THF) was added. 

The mixture was stirred for another 3h and cooled to 0°C. 1.0 g of Na2S2O3•5H2O and 5.0 

mL of water were added. The mixture was stirred at 0°C for 30 min and neutralized of 

addition of NH4Cl. The mixture was extracted with diethyl ether (3 × 50 mL). The 

combined organic layers were washed with H2O (4 × 10 mL) and brine (10 mL), dried 

(Na2SO4), and concentrated. Flash silica gel column chromatography (1:2 - 1:1 

OHMe

Me

OH

83
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EtOAc/hexanes) purification of the residue gave 83 as a white solid. 

Isolated yield = 82%, 22 mg. 

1H NMR (500 MHz, CDCl3): δ ppm 7.44 (dd, J=13.57, 7.70 Hz, 2 H), 7.24-7.32 (m, 2 

H), 5.55 (s, 1 H), 4.94 (s, 1 H), 3.53-3.59 (m, 1 H), 3.31 - 3.37 (m, 1 H), 2.00-2.07 (m, 1 

H), 1.61 (ddd, J=14.7, 5.7, 2.9 Hz, 1 H), 1.31 (s, 3 H), 1.26 (br. s, 1H), 1.24 (s, 3 H) 13C 

NMR (126 MHz, CDCl3): δ ppm 21.9, 26.9, 41.7, 59.3, 81.8, 103.4, 120.2, 122.9, 128.1, 

129.1, 150.6, 154.9. HRMS (APCG) calcd. for C14H28O2 [M-H2O]: 200.1201, found 

200.1207. 

3.4. Mechanistic Experiments  

Radical Clock Experiments:  
 

 
To a suspension of MePPh3Br (8.8 equiv) in THF (50 mL), t-BuOK was added in one 

portion (8.8 equiv) and the resulting mixture was stirred at room temperature 2 h. The 

reaction mixture was cooled to -78 °C and vi51  (1.0 equiv) was added over 10 min. The 

mixture was stirred overnight at room temperature. A saturated ammonium chloride 

solution was added and the aqueous phase was extracted with ether (3 x 50 mL). The 

organic phase was dried over Na2SO4, filtered and concentrated. The compound was 

purified by flash (20:1 Hex:EtOAc) to give vii a clear/yellow oil.  

Isolated yield = 28%, 180 mg.  

1H NMR (500 MHz, CDCl3) δ ppm 7.19 (dt, J = 7.3, 1.5 Hz, 1 H), 7.14 (dd, J = 7.6, 1.8 

Hz, 1 H), 6.93 (dd, J = 8.2, 0.6 Hz, 1 H), 7.14 (dt, J = 7.3, 1.2 Hz, 1 H), 5.63 (s, 1 H), 
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5.30 (s, 1 H), 5.05 (d, J = 1.2 Hz, 1 H), 1.68 - 1.59 (m, 1 H), 0.82 - 0.77 (m, 2 H), 0.56 - 

0.52 (m, 2 H).13C NMR (126 MHz, CDCl3) δ ppm 152.4, 147.3, 128.9, 128.8, 119.9, 

115.3, 112.8, 17.1, 6.81.HRMS (EI) calcd. for C17H29OSi [M]+: 277.1988, found: 

277.1984. 

Synthesis of 94 was obtained via coupling of vii with 69 using Method A. 

Isolated Yield: 70%, 870 mg. 

1H NMR (500 MHz, CDCl3) δ ppm 7.18-7.15 (m, 2 H), 6.95 (t, J = 7.3 Hz, 1 H), 6.87 (d, 

J = 8.5 Hz, 1 H), 5.08 (s, 1 H), 4.96 (s, 1 H), 2.26 (s, 2H), 1.78 - 1.75 (m, 1 H), 1.46 - 

1.40  (m, 2 H), 1.17 (d, J = 7.3 Hz, 6 H), 1.13 (d, J = 7.3 Hz, 6 H), 0.73 - 0.70 (m, 2 H), 

0.52 – 0.48 (m, 2 H). 13C NMR (126 MHz, CDCl3) δ ppm 7.0, 12.6, 16.9, 17.4, 17.7, 

111.3, 119.3, 121.4, 128.1, 130.5, 133.7, 149.6, 152.0. HRMS (ESI) calcd. for 

C18H27OISi [M]+H: 414.0954, found: 414.0952 

 

To a 100 mL flask equipped with a magnetic stir bar, argon inlet, and septum, NaH (1.06 

g, 44 mmol) and trimethylsulfoxonium iodide (9.68 g, 44 mmol) was added. Followed by 

slow addition of DMSO (30 mL) and stirred at r.t. for 30 min. After H2 evolution, 2'-

Hydroxychalcone viii in 10 mL DMSO was added slowly. The reaction was stirred 

overnight at r.t. Then, the reaction was quenched by addition of 50 mL H2O and extracted 

3x with 30 mL Et2O. The organic phase was dried over Na2SO4, filtered and 

concentrated. The compound was purified by column chromatography (20:1 Hex:EtOAc) 

to give cyclopropane derivative as a clear/yellow oil (44%, 2.72 g). Next, t-BuOK was 

OH
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added to a suspension of MePPh3Br (2.2 equiv, 7.2 g, 20.1 mmol) in THF (30 mL) in one 

portion (2.2 equiv, 2.26 g, 20.1) and the resulting mixture was stirred at room 

temperature 2 h. The reaction mixture was cooled to 0 °C and cyclopropane derivative 

(1.0 equiv, 2.72 g, 8.76 mmol) in 10 mL THF was added over 10 min. The mixture was 

stirred overnight at 55 °C. A saturated ammonium chloride solution was added and the 

aqueous phase was extracted with ether (3 x 50 mL). The organic phase was dried over 

Na2SO4, filtered and concentrated. The compound was purified by flash (20:1 

Hex:EtOAc) to give ix clear/yellow oil (41%, 857 mg). 1H NMR (500 MHz, CDCl3) δ 

ppm 7.27-7.30 (m, 2H), 7.10-7.22 (m, 6H), 6.94-6.96 (m, 1 H), 6.88-6.91 (m,1H), 5.54 ( 

s, 1 H), 5.40 (s, 1 H), 5.14 (s, 1 H), 2.00-2.03 (m, 1 H), 1.93-1.97 (m, 1H) , 1.96-2.05 (m, 

1 H), 1.24-1.29 (m, 2 H). 13C NMR (126 MHz, CDCl3) δ ppm 152.41, 146.1, 141.8, 

129.0, 128.9, 128.5, 125.9, 125.8, 120.1, 115.5, 113.5, 29.3, 25.6, 15.9. HRMS (ESI) 

calcd. for C17H16OSi [M]+H: 237.1279, found: 237.1278. 

Synthesis of 104 was obtained via coupling of ix with 69 using Method C. 

Isolated yield = 47%, 691 mg. 

1H NMR (500 MHz, CDCl3) δ ppm 7.23-7.26 (t, J=8.8 Hz, 2H), 7.12-7.16 (m, 3H), 7.07 

(d, J=8.8 Hz, 2H), 6.92-6.95 (td, J=7.7, 1.1 Hz, 1H), 6.83-6.85 (d, J=8.5, 1H), 5.15 (s, 

1H), 5.02 (s, 1H), 2.19  (s, 2 H), 2.02-2.06 (m, 1H), 1.93-1.97 (m, 1H), 1.35-1.41 (m, 

2H), 1.15-1.22 (m, 2H), 1.06-1.12 (m, 14H).13C NMR (126 MHz, CDCl3) δ ppm 12.6, 

17.3, 17.7, 25.7, 29.1, 111.9, 119.3, 121.4, 125.5, 125.8, 128.2, 128.3, 130.5, 133.3, 

142.8, 148.2, 152.1. HRMS (ESI) calcd. for C24H31OISi [M+H]: 491.1268, found: 

491.1267.  
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96            :           97 
Isolated yield= 58%, 33.2 mg. Endo:Exo = >99 : 1 (GC Ratio), 96: 97 = 1:1, Isomers are 

separable.  

Running the reaction at 110 °C for 36 h:  Isolated yield = 68%, 38.9 mg, 96:97 = 0:100  

 
96 

1H NMR (500 MHz, CDCl3): δ ppm 7.13-7.19 (m, 2H), 6.88-7.00 (m, 2H), 6.70-6.78 (m, 

1H), 6.14-6.20 (m, 1H), 4.91-5.32 (m, 2H), 2.67-2.74 (m, 2H), 0.97-1.22 (m, 16H). 

HRMS (EI) calcd. for C17H26OSi [M]+H: 286.1753, found: 286.1750. 

97 

1H NMR (500 MHz, CDCl3): δ ppm 7.24 (d, J=7.70 Hz, 1H), 7.18 (t, J=7.70 Hz, 1H), 

6.96-7.01 (m, 2H), 6.17 (d, J=15.4 Hz, 1H), 5.97 (t, J=8.1 Hz, 1H), 5.46 (dd, J=15.22, 

6.79 Hz, 1H), 1.73 (d, J=6.6 Hz, 3H), 1.57 (d, J=8.07 Hz, 2H) 1.06-1.17 (m, 14H).13C 

NMR (126 MHz, CDCl3): δ ppm 12.6, 13.3, 17.5, 17.7, 18.2, 120.9, 121.8, 124.3, 125.7, 

128.1, 128.7, 131.3, 133.9, 135.1, 154.1. HRMS (EI) calcd. for C18H26OSi [M]+H: 

286.1753, found: 286.1753. 

 

 
 
Isolated yield = 91%, 66 mg. E:Z = 7 : 1 
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1H NMR (500 MHz, CDCl3): δ ppm 7.52 (d, J=7.7 Hz, 2H), 7.39 (t, J=7.7 Hz, 2H), 7.19-

7.30 (m, 5H), 6.95-6.98 (m, 2H), 6.69 (d, J=15.8 Hz, 1H), 6.38 (d, J=11.0 Hz, 1H), 2.87-

2.90 (m, 2H), 1.15-1.18 (m, 2H), 1.04-1.14 (m, 14H). 13C NMR (126 MHz, CDCl3): δ 

ppm  10.4, 13.2, 17.1, 17.2., 26.1, 120.9, 121.2, 124.7, 126.4, 126.5, 127.5, 128.6, 128.7, 

129.1, 129.9, 133.3, 153.6. HRMS (ESI) calcd. for C24H30OSi [M]+H: 363.2144, found: 

363.2139. 

Deuterium Labeled Study:  
 

 
 

Coupling of (Z)-2-(vinyl-2-d)phenol52 with 69 using Method A.  

Isolated yield= 51%, 574 mg. 88% D-incorporation.  

1H NMR (500 MHz, CDCl3): δ ppm 7.50 (m, 1 H), 7.12-7.15 (m, 1 H), 7.07-7.09 (m, 

1H), 6.96 (t, J = 7.3 Hz, 1 H), 6.84 (d, J = 8.1 Hz, 1 H), 5.68 (d, J = 17.7 Hz, 0.1 H), 5.25 

(d, J = 11.0 Hz, 0.9 H), 2.24 (s, 2 H), 1.40-1.46 (m, 2 H), 1.16 (s, 3 H), 1.15 (s, 3 H), 1.14 

(s, 3H), 1.12 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm -21.3, 12.7, 17.4, 17.7, 113.6, 

114.0, 119.4, 121.8, 126.3, 128.7, 129.0, 131.8, 152.3. 2H NMR (500 MHz, CCl4): δ ppm 

5.99-6.02. HRMS (EI) calcd. for C15H22DOSiI [M]: 376.0704, found: 376.0704 
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1H NMR (500 MHz, CDCl3): δ ppm 7.13-7.16 (m, 1H), 7.07-7.09 (m, 2H), 6.93-6.99 (m, 

2H), 6.27-6.29 (m, 1H), 6.06-6.11 (m, 0.53H), 1.62-1.63 (m, 2H), 1.15-1.23 (m, 2H), 

1.07-1.14 (m, 14H). 13C NMR (126 MHz, CDCl3): δ ppm 12.2, 12.3, 13.6, 17.4, 17.7, 

120.9, 121.6, 125.9, 128.1, 128.4, 130.9, 154.1. 2H NMR (500 MHz, CCl4): δ ppm 6.36. 

HRMS calcd. for C15H21DOSi[M]: 247.1503, found: 247.1500. 

Comparison Study:  
 

 

Isolated yield= 50% (over two steps) 

1H NMR (500 MHz, CDCl3): δ ppm 7.56-7.50 (m, 2H), 7.39 (t, J = 7.7, 1H), 7.28-7.26 

(m, 1H), 6.99 (ddd, J=16.87, 11.00, 2.93 Hz, 1 H) 5.65 (dd, J=17.24, 2.93 Hz, 1 H) 5.32 

(dd, J=10.82, 2.75 Hz, 1 H), 2.30 (s, 3H), 0.51 (s, 6H). 13C NMR (500 MHz, CDCl3): δ 

ppm -12.6, -1.3, 116.0, 125.6, 127.0, 130.1, 134.8, 136.5, 137.7, 144.0.  

 

 

Isolated yield = 80% 

1H NMR (500 MHz, CDCl3): δ ppm 7.59 (d, J=7.3 Hz, 1H), 7.42-7.46 (m, 1H), 7.30-7.34 

(m, 1H), 7.18-7.20 (d, J=7.6 Hz, 1H), 6.51 (dd, J=10.5, 2.1 Hz, 1H), 6.14-6.19 (m, 1H), 

1.69-1.71 (dd, J=5.6, 2.1 Hz, 2H), 0.41 (s, 6H). 13C NMR (500 MHz, CDCl3): δ ppm 

2.2, 13.2, 126.6, 127.1, 128.1, 129.8, 130.7, 132.9, 133.4, 141.9. HRMS (EI) calcd. for 

C11H14Si [M]:  174.0865, found : 174.0866. 
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Isolated Yield = 7%.  

1H NMR (500 MHz, DMSO-d6) δ = 7.37 - 7.25 (m, 4H), 5.53 - 5.49 (m, 1H), 5.35 - 5.32 

(m, 1H), 3.70-3.69 (m, 2H), 1.60 (s, 3H), 1.59 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 

= 142.6, 138.3, 130.1, 127.7, 126.6, 116.9, 39.7, 29.3, 23.3. 

 

 

Isolated yield = 58% 

1H NMR (500 MHz, CDCl3) δ = 7.32-7.20 (m, 4 H), 6.04 (s, 1 H), 2.11 (s, 3 H), 1.31 (s, 

6H), 1.60 (s, 3 H), 1.59 (s, 3 H). 13C NMR (126 MHz, CDCl3) δ = 154.0, 144.1, 142.2, 

135.6, 126.3, 124.9, 120.9, 119.1, 48.1, 24.7, 12.8. 
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PART TWO: VISIBLE LIGHT-INDUCED PALLADIUM-CATALYZED 

DESATURATION OF ALIPHATIC ALCOHOLS 

4.1. Introduction  

 The alkene moiety is one of the most privileged functional groups in organic 

synthesis due to its intrinsic reactivity and functionalization capabilities.53 Over the past 

century, a plethora of fundamental transformations have been developed in order to 

access these privileged synthons (Scheme 36). However, all of these approaches suffer 

from one common limitation: pre-functionalized substrates are required for the synthesis 

of alkenes. To date, methods for a direct desaturation of an aliphatic chain into an alkene 

moiety are underdeveloped owning to the inherent difficulty of activating kinetically 

stable C(sp3)–H bonds. Nature, however, can accomplish this feat easily with desaturase 

enzymes. One well-studied example is the site-selective desaturation of fatty acids 

(Scheme 37).54 It is believed that the desaturase enzyme enables a hydrogen atom 

abstraction event (127→128) to occur at the C-9 position of the fatty acid, which forms 

alkyl radical intermediate 128. Ensuing oxidation of 128 results in carbocation 

intermediate 129, followed by a proton loss step that results in desaturation product 130. 

Inspired by this phenomenon, many research groups have focused their efforts on 

desaturation of aliphatic systems into privileged olefins. Modern approaches can be 

divided into two categories, transition metal-catalyzed desaturation via concerted 

metalation-deprotonation (CMD) 55  and oxidative radical desaturation, 56  Scheme 38. 

Although these approaches have enabled challenging remote desaturation of aliphatic 

systems, considerable limitations exist. For instance, the transition metal-catalyzed 

approach suffers from limited substrate scope, low selectivity and efficiency, and harsh 
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reaction conditions are typically employed. Moreover, the site of functionalization is 

often restricted to the inherent preference for a 5/6-membered TM-cyclic intermediate 

and is limited to activation of 1° and 2° γ-/δ-C–H bonds.55 Whereas, the oxidative radical 

approach typically enables activation of 3° γ-/δ-C–H bonds under milder reaction 

conditions, however, it provides low variability of C–H activation sites.56 In addition, due 

to the nature of the mechanism, this approach is plagued with regioselectivity issues due 

to a non-selective proton elimination step from the cationic intermediates. Both of these 

protocols have found limited applications in chemical synthesis due to these 

aforementioned limitations.  

 

Scheme 36: Methods for synthesis of olefins.  
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Scheme 37: Biosynthetic desaturation of fatty acids with desaturase enzymes.  

 

Scheme 38: Approaches for desaturation of aliphatic systems. a) CMD mechanism. b) 

Oxidative radical desaturation.  
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benzylic carbon atom (132e).58 Notably, activation of challenging secondary C–H sites 

was achieved, resulting in internal olefin 132f in good yield and selectivity. However, in 

cases with competitive C–H activation sites (131g), not surprisingly, activation of the 

primary C–H was preferred, leading to terminal olefin 132g. Interestingly, subjecting 

substrate 131h, possessing a methyl substituent at the benzylic position, formation of 

cyclobutane product 132h’ was formed predominately over the β-/γ- desaturation product 

132h. This result highlights the inherent preference for formation of the favorable 5-

membered palladacycle (vide infra), which resulted in 132h’ via a subsequent reductive 

elimination.55 The applicability of the authors’ transformation was demonstrated in the 

total synthesis of verapamil (131i→132i).59  Finally, a general CMD mechanism of 

transformation for the mechanism was proposed (Scheme 40).55 
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Scheme 39: Baudoin’s Pd-catalyzed β-/γ-desaturation of propyl benzene derivatives 
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Scheme 40: Baudoin’s Pd-catalyzed β-/γ-desaturation of propyl benzene derivatives. 
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group (133d) was present, desaturation via mode A did not occur, but instead the product 

of C–H activation leading to 134d’ was obtained selectively. This result indicates the 

preference of this method for activation of less sterically hindered primary C–H sites. 

Overall, for both modes, milder reaction conditions were employed compared to that of 

the Baudoin’s approach,57 however, the substrate scope and reaction yields were modest. 

 

Scheme 41: Catellani’s Pd-catalyzed α-/β-desaturation of propyl benzene derivatives. 
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  In 2011, Stahl and co-workers reported an oxidative Pd-catalyzed α-/β-

desaturation of cyclic ketones under mild reaction conditions.62 Importantly, no over-

oxidation of the reaction products (into phenol derivatives) was observed. 

Cyclohexylketone derivatives underwent smooth α-/β-desaturation in good yields (138a-

d). Moreover, heterocycles such as methylpiperidinone and chromanone reacted well, 

resulting in desaturation products 138e and 138g in 74% and 80% yields, respectively. 

For unsymmetrical substrates possessing a phenyl substituent at the α-position, 

desaturation resulted in the conjugated product 138h, selectively. However, when the 

phenyl substituent was moved to the β-position, desaturation of 137i resulted in the non-

conjugated product 138i due to steric effects. Next, Stahl and co-workers successfully 

applied their desaturation methodology in a complex setting, where desaturation of 

complex steroid derivatives occurred efficiently (138j-k). The authors showcased the 

power of their method in the synthesis of 138l, an important core en route to natural 

product (-)-terpestain. It was found that employment of these conditions, resulted in core 

138l in 90% yield, whereas classical approaches relying on IBX oxidation63 or use of 

stoichiometric amounts of Pd-metal64 resulted in no reaction or lower efficiency of the 

product 138l, respectively. Stahl and co-workers proposed the following mechanism 

(Scheme 43). Ligand exchange with the Pd(II)X2 catalyst and cyclic ketone substrate 137 

results in C–Pd enolate intermediate 140.65 Next a subsequent β-hydride elimination 

process occurs to form the α-/β-desaturation product 138 and Pd(II)HX species. The 

latter species undergoes a reductive elimination event to form the Pd(0) complex, which 

is successively oxidized into the active Pd(II) species 139 with molecular oxygen.    
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Scheme 42: Stahl’s α-/β-desaturation of cyclic ketones.  
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Scheme 43: Mechanism of Stahl’s α-/β-desaturation of cyclic ketones. 
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formation of a “soft” enolate species 150 (Scheme 46) and precludes the use of strong 

base, which consequently broadens the overall scope of the transformation.  

 

 

Scheme 44: Newhouse’s Pd-catalyzed desaturation of activated systems.  
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Scheme 45: Mechanism of Newhouse’s Pd-catalyzed desaturation of activated systems.  

 

 

Scheme 46: Dong’s Pd-catalyzed desaturation of lactams.  
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directing group (Scheme 47, 151), which facilitated a CMD event of the primary γ–C–H 

site (152), followed by β–H elimination to produce terminal olefin 153 in 66% yield. In 

order to render this approach catalytic, the aid of on an external oxidant benzoquinone 

was required. Unfortunately, catalytic desaturation was found to be quite challenging, as 

desaturation of linear and cyclic systems were inefficient (Scheme 48). Only desaturation 

of substrate 151c, possessing an α-C–H site, worked well (154c). Although a substantial 

reaction development is needed, this seminal work constitutes a significant advance in the 

area of remote desaturation of aliphatic systems.  

 

Scheme 47: Yu’s stoichiometric studies on desaturation of aliphatic systems.  

 

Scheme 48: Yu’s Pd(II)-catalyzed desaturation of unactivated aliphatic systems. 
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 Another common method for desaturation of unactivated aliphatic systems is the 

transfer hydrogenation approach pioneered by Crabtree (Scheme 49A) using his well-

studied Ir-catalyst.69 However, the obtained TON (turnover number) was significantly 

low and the required high reaction temperatures employed led to catalyst decomposition. 

Later, Goldman 70  and Brookhart 71  developed a thermodynamically stable Ir-pincer 

complex 157 that allowed the reaction to run at higher temperatures, which accordingly 

led to higher TONs for desaturation of unactivated systems (Scheme 49B). Although 

many advances have been made in this area,72 the substrate scope of the transformation is 

not general. Only cycloalkanes possessing high degrees of transannular strain reacted 

well (144→145), whereas linear alkanes73 generated a mixture of alkene isomers under 

these reaction conditions (Scheme 50). The mechanism of this transformation is depicted 

in Scheme 51.  

 

Scheme 49: Ir-catalyzed transfer hydrogenation reactions. (A) Crabtree’s seminal work. 

(B) Goldman and Brookhart’s modification using Ir-pincer catalyst 157. 
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Scheme 50: Ir-catalyzed transfer hydrogenation of linear alkanes into alkenes. 

 

Scheme 51: Mechanism of Ir-pincer-catalyzed transfer hydrogenation of linear alkanes 

into alkenes. 
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these approaches are not practical and will likely not translate to the industrial and 

pharmaceutical sectors. In addition, TM-catalyzed site-selective desaturation of aliphatic 

systems via activation of 3° C–H sites have not been reported.   

 

4.1.2. Desaturation of Aliphatic Systems via Oxidative Radical Approaches. 

 

 Classical radical approaches have provided solutions for functionalization of 

unactivated 3° C–H sites. Thus, in 1979, Breslow reported a novel remote desaturation at 

the A-ring of steroid frameworks (Scheme 52, 160→161).74 In this pioneering work, 

Breslow employed a benzophenone-tether (160), which adopted a favorable quasi-linear 

confirmation for C14–H-specific functionalization. The mechanism for desaturation 

involved the photolytic formation of high-energy diradical intermediate 162. Based on 

the design of the template, the oxygen radical from 162 undergoes site-selective 

hydrogen atom abstraction of C-14 to generate alkyl radical 163. Then, this intermediate 

undergoes a subsequent HAT event at the adjacent C–H site (C-15) and a successive 

radical collapse to generate desaturation product 161. Although incredibly innovative, 

this design is limited to specific steroids systems, lacks generality and practically due to 

the employment of harmful UV-light, and low variability for C–H abstraction.   
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Scheme 52: Breslow’s remote desaturation of steroids.  
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tetrahydrofuran derivative 166d in good yield, via activation of the 1°δ-C–H bond, which 

is a rather difficult task in field of radical chemistry. Again, no rearrangement products 

were observed and based on the cyclization product obtained, it was speculated that the 

transformation proceeds via formation of an alkyl-Cu intermediate. Based on the reaction 

scope and mechanistic studies, the authors proposed the following mechanism (Scheme 

54). First, the alkyl hydroperoxide 164 decomposes into oxygen radical intermediate 165 

mediated by Fe(II). Next, 1,5-HAT of 165 results in the formation of transposed alkyl 

radical intermediate 167, which subsequently reacts with Cu(II)OAc to form 169. A 

concerted elimination of the latter forms the desaturated alcohols 166/166’. Overall, 

Čekovic’s work highlights the power and reactivity of heteroatom radicals, namely 

oxygen radicals, for HAT from which many works are derived from.77 However, the 

presented method suffers from lack of practically due employment of inconvenient 

starting materials, use of stoichiometric amounts of transition metals, and low 

regiocontrol of the elimination step. 

 

Scheme 53: Čekovic’s desaturation of alkyl peroxides into alkenols.  
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Scheme 54: Mechanism of Čekovic’s desaturation of alkyl peroxides into alkenols.  
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Breslow’s pioneering work (tether approach, Scheme 52) and the biosynthesis of fatty 

acids via desaturases (mechanism, Scheme 37). The scope of transformation was found to 

be quite broad, as a number of aliphatic alcohols and amine possessing important 

functional groups worked well (Scheme 57). Secondary alcohols possessing competitive 

sites for functionalization resulted in selective γ-/δ-desaturation at tertiary C–H sites 

(184a-d), albeit with low efficiency. Also, employment of amino acid derivatives was 

found to competent substrates, as the corresponding γ-/δ-desaturation products were 

formed efficiently. However, not surprisingly, due to the formation of cationic 

intermediate 181 (Scheme 56), a handful of substrates resulted in low yields and 

regioselectivity of the reaction products (184e,f,k), and, in some cases, the employed 

substrates resulted in formation of undesired rearrangements products (183q→184q’). 

Nevertheless, prior to our work, Baran’s invention represented the state-of-the-art method 

for desaturation of aliphatic systems.   

 

Scheme 55: Baran’s synthesis of intermediate 175 en route to epieudesmantetrol.  
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Scheme 56: Baran’s concept of remote desaturation using a tether approach.  
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Scheme 57: Scope of Baran’s desaturation method.  
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4.1.2. Conclusion 

        To date, methods for desaturation of aliphatic systems are still underdeveloped. 

Strategies over the past decades in transition-metal catalyzed desaturation via CMD and 

oxidative radical chemistry have provided significant advances for this important 

transformation. However, numerous limitations exist in each direction. For the TM-

catalyzed approach, site-controlled functionalization is	often	 limited to activation of 1° 

and 2° γ-/δ-C–H bonds and good regiocontrol of elimination. In contrast, for oxidative 

radical methods, activation is limited to 3° γ-/δ-C–H sites and the regiocontrol of 

elimination is very poor. Both approaches employ hash or unpractical reaction conditions 

and suffer from low efficiency and variability of the functionalization site. Hence, 

development for a general, site-controlled, and efficient desaturation of aliphatic systems 

is highly justified.	           
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5. Photoinduced Formation of Hybrid Aryl Pd-Radicals Species Capable of 1,5-

HAT: Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers (Previously 

Published as Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. 

“Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-

HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers.” J. 

Am. Chem. Soc. 2016, 138, 6340.) 

 
5.1. Reaction Development 

 
 
Aryl halides are widely used starting materials for many transition metal-

catalyzed reactions. In the presence of Pd(0), these substrates undergo a concerted three-

centered two-electron oxidative addition process (185→186) to generate Pd(II) complex 

187 (Scheme 58).22 This complex is a key intermediate featured in many cross-coupling 

reactions that has led the development of important C–C bond forming events. 80 

Although well defined and established, changing the nature of this intermediate into a 

hybrid Pd-radical species has not been investigated.81 Thus, we envisioned, if direct 

formation of a novel hybrid aryl Pd-radical species, possessing both Pd and radical 

character, could be realized (185→188), it may empower the development of new 

transformations.           
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Scheme 58: Mechanism of OA with ArX and proposed formation of 188.  

 

 Although the transition metal-catalyzed formation of aryl radicals (from aryl 

halides) are scarce,17,82 they are easily formed and widely used intermediates in radical 

chemistry. In 1988, Curran reported an impressive remote C–H functionalization strategy 

via radical 1,5-hydrogen translocation of the formed C(sp2) radicals from aryl/vinyl 

halides to a remote C(sp3)–H sites. 83  One striking example was his remote C–H 

functionalization of alcohols utilizing a halo-aryl silane tether 189 (Scheme 59). 
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Scheme 59: Curran’s translocation chemistry.  

 We hypothesized that if an aryl hybrid Pd-radical species (193) could be 

generated  (Scheme 60); it, due to its inherent radical characteristics, may enable a 

translocation event to occur via HAT (193→194). Then, the transposed radical could 

recombine with the putative Pd species to form the alkyl-Pd intermediate 195, which 

would allow for Pd-type transformation to occur at a remote C(sp3)–H site. One 

transformation, in particular, is β–H elimination (195→196),9,14,84 which would generate 

alkene 196. Overall, our proposed transformation is formally an oxidative version of 

Curran’s chemistry that allows for the direct desaturation of silyl ethers into synthetically 

valuable silyl enol ethers (192→196), to which only a few inefficient methods exist.85 

Also, the proposed transformation represents a new mechanistic mode for Pd-catalyzed 

C–H functionalization of aliphatic systems.  

 

Scheme 60: Proposed direct desaturation of silyl ether in silyl enol ethers via formation 

of novel aryl hybrid Pd-radical intermediates.   
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5.2. Optimization of Reaction Conditions, Scope, and Limitations    

 This project was a collaborative effort in which my colleagues Padon 

Chuentragool and Dr. Dhruba Sarkar optimized the reaction parameters and developed 

the substrate scope of the transformation. Scheme 61 contains a brief summary of their 

results. In summary, it was found that transformation was promoted by visible-light,86 

without exogenous photosensitizers,87 and the employed of ligand (L) provided optimal 

yields of the desaturated products. Also, the scope was found to be quite board, as 

desaturation of cyclic-, acyclic-, and unsymmetrical linear-silyl ethers worked well. My 

work for this project focused on the development of the concept and deducing the 

operative mechanism of the transformation by conducting various mechanistic studies. 

Hence, the rest of this chapter will focus on my specific contributions to this project.     

 

Scheme 61: Visible-light induced Pd-catalyzed desaturation reaction of silyl enols into 

silyl enol ethers.  
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Scheme 62: Potential mechanisms for the transformation.  
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consequently undergoes a SET event with aryl iodide 192a to produce aryl hybrid Pd-

radical intermediate 197 via decomposition of the formed radical anion of 192a. 

Intermediate 197, however, can be formed through an alternative pathway involving 

oxidative addition of Pd(0) with 192a to generate 198, followed by its excitation with 

visible light into higher energy complex 199 and successive photoinduced homolysis.89 

Nevertheless, once formed, complex 197 undergoes a 1,5-HAT of Hα to furnish alkyl 

hybrid Pd-radical intermediate 200. Next, radical-Pd recombination affords alkyl Pd 

complex 201,14 which undergoes facile β-hydride (Hβ) elimination to generate silyl enol 

ether 196 and the active Pd(0) catalyst. Alternatively, 196 can be formed via different 

endgame pathways from 200, one of which is the Pd-involved direct Hβ-atom elimination 

(A2).90 Other pathways involve oxidation of the radical 200 with Pd(I)I to form cationic 

intermediate 202, followed by proton-loss step (A3). 91  Lastly, an atom-

transfer/elimination (200→203→196) protocol could be operative (A4).92  The second 

scenario involves a typical CMD mechanism (Path B).55 The oxidative addition adduct 

198 undergoes a CMD process of Hα (198→204) with the carbonate base to form 

palladacyle intermediate 205. The subsequent β-Hβ
 elimination results in 206, followed 

by reductive elimination to form silyl enol ether 196a’ and the active Pd(0) catalyst.  

 Apparently, depending on the operative mechanism, a different H-atom is 

incorporated in the aryl of the silane tether, Hα for Path A and Hβ for Path B. Thus, 

isotope labeling at a particular H-atom site and tracking the site of incorporation in the 

final product would distinguish the working mechanism (Scheme 63). α-Deuterium-

labeled substrate 192-d was synthesized with >98% d-incorporation and subjected to the 

reaction conditions. It was found that desaturation of 192-d resulted in 196-d as the sole 
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product with full deuterium-incorporation at the aryl silane tether. Therefore, a hybrid Pd-

radical pathway (Path A) appears to be an operative mechanism. Kinetic isotope effect 

(KIE) studies were also conducted (Scheme 64), which resulted in a value of 3.3 and 3.0 

for parallel and intermolecular KIE, respectively. These values indicate that HAT step is 

a rate-limiting event.93 

 

Scheme 63: Isotope labeling studies.  

 

Scheme 64: Kinetic isotope effect (KIE) studies.  
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 In order to provide further support for the Path A mechanism, radical trap and 

radical clock studies were performed. In the presence of various radical scavengers, the 

reaction either resulted in diminished yields of the desaturation product or completely 

shut down the reaction (Scheme 65). A radical clock test was conducted with 207, which 

resulted in smooth regioselective radical-ring opening adduct 210 as the sole product 

(Scheme 66).35 No products of intact cyclopropane unit 208 and/or Pd-β–Carbon 

elimination 209 were detected.37 Thus, the nature of the translocated species is radical in 

character. The outcomes of theses studies support the intermediacy of radicals in this 

transformation.  

 

Scheme 65: Radical Trap Studies.  

 

Scheme 66: Radical Clock Studies.  
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   Although the above experiments support the hybrid-Pd-radical pathway, the 

mechanism for formation of radical intermediate 197 was still unclear (Scheme 67). As 

mentioned above, this intermediate can be formed either by SET pathway (Route 1)14 or 

via photoinduced homolysis of the oxidative addition intermediate 199 (Route 2).89 In 

order to probe the latter pathway, we aimed to prepare the oxidative intermediate 199 

independently and test its outcome under photoirradiation (Scheme 68). However, under 

various reactions conditions and employment of different Pd(0) sources, the desired 

oxidation adduct was not obtained (198), only the starting material (192a) remained 

(Table 7). Presumably, oxidative addition was impeded due to unfavorable steric 

interactions with the bulky silane tether and the Pd(0) precursors.22,94 Interestingly, 

irradiating the stoichiometric reaction mixture with visible light resulted in full 

conversion of the starting material (192) into the desaturation product (196) by GC/MS 

analysis (Table 8). Importantly, no detectable amounts of the oxidative addition product 

198 were observed by NMR analysis of this reaction. Based on these results, it is very 

likely that formation of radical intermediate 197 occurs via a photoinduced SET process 

(Route 1) and not via oxidative addition/homolysis pathway (Route 2).  
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Scheme 67:  Possible pathways for the formation of radical intermediate 197. 

 

Scheme 68: Rationale for stoichiometric studies. 
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Table 7: Attempts to obtained complex 198 by stoichiometric studies. 

 

	

Entry  Pd(0) Temp, oC GC 
1 Pd(PPh3)4 rt NR, 192a stays 
2 Pd(PPh3)4 85 NR, 192a stays 
3 Pd(PPh3)4 150 NR, 192a stays 
4 Pd(dba)2/L rt NR, 192a stays 
5 Pd(dba)2/L	 85 NR, 192a stays 
6 Pd(dba)2/dppf	 rt NR, 192a stays 
7 Pd(dba)2/dppf	 85 NR, 192a stays 
8 Pd(OAc)2/L rt NR, 192a stays 
9 Pd(OAc)2/L 85 NR, 192a stays 
10 Pd(OAc)2/L 120 NR, 

decomposition, 
complex 192a 

was not observed 
by NMR 

 

Table 8: Photoinduced desaturation of 192a with stoichiometric amounts of Pd(0)  
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 As depicted in Scheme 69, formation of the silyl enol ether from intermediate 200 

can proceed via four different endgame possibilities: (A1) β-H-elimination; (A2) direct 

H-atom elimination; (A3) oxidation; and (A4) atom-transfer/elimination. However, at this 

stage, only route A4 can be ruled out based on the stoichiometric studies without 

employment of base, where no atom transfer intermediate 211 could be detected/observed 

by NMR/GCMS analysis of the crude reaction mixture (Table 9). For the other cases, 

more mechanistic studies are needed to elucidate the operative mechanism.  

 

Scheme 69:  Possible endgame pathways from 200 en route to 196a. 
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Table 9: Route A4 studies. 

 

Entry  Pd(0) 211 
(GCMS/NMR) 

196 (GC yield,%)  

1 Pd(PPh3)4 not observed  68  
2 Pd(OAc)2/L not observed 70 
3 Pd(OAc)2 (10%) / 

L (20%) 
not observed NR 

 
5.4 Summary  

 
In summary, we have shown the first photoinduced generation of an aryl Pd-

radical hybrid species, and its ability to enable a remote C–H functionalization event via 

a 1,5-HAT process. Overall, our photoinduced strategy enabled a mild, general, and 

direct synthesis of valuable silyl enol ethers from silyl ethers at room temperature without 

the use of exogenous photosensitizers or oxidants. Mechanistic studies supported the 

radical nature of this unprecedented transformation and provided evidence that the 

formation of the aryl radical intermediate occurs via a photoinduced SET process and not 

the expected oxidation addition/homolysis path. 
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6. General Remote Desaturation of Aliphatic Alcohols at Unactivated C(sp3)–H 

Sites Enabled by Auxiliary Controlled Visible Light-induced Hybrid Pd-Radical 

Catalysis 

 

6.1. Reaction Development 
 

 Alkenols, such as allylic-, homoallylic-, and bis-homoallylic alcohols, are an 

important class of functional groups, widely present in an array of important natural 

products (Scheme 70), and extensively used as building blocks in organic synthesis.95 

However, accessing these important moieties requires pre-functionalized systems and 

multi-step procedures.96 An attractive approach would be a direct desaturation of an 

aliphatic alcohol into the alkenol moiety, as it would enable late-stage desaturation of 

complex molecules and significantly reduce the number of steps toward accessing these 

fragments.  

 

Scheme 70: Important natural products possessing alkenol fragments.  
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approach is limited to the formation of homoallylic alcohols (218), via γ-/δ-desaturation 

of the parent aliphatic precursor (215), and due to the low variability of C–H activation of 

the employed tether 219. Also, the reaction products are formed with modest yields and 

low regioselectivity (Scheme 57). This is due to the nature of the mechanism, which 

involves formation of carbocation intermediate 217 and an “uncontrollable” proton loss 

step (217→218).  

 

Scheme 71: Baran’s state-of-the-art desaturation of alcohols.  

 

 Based on our previous work on the α-/β- desaturation of silyl ethers into silyl enol 

ethers, we envisioned that applying our translocative hybrid-Pd radical strategy (Scheme 

72) for remote C–H desaturation could solve the inherent limitations of Baran’s strategy, 

such as regioselectivity and efficiency issues. Specifically, our proposed mechanism 

involves an endgame Pd-involved β-H elimination step (223→224),14 which will provide 

a “controlled” elimination that will furnish alkenols with high degrees of regioselectivity. 

Moreover, we envisioned by leveraging the flexibility of easily installable/removable 
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reactive Si-tethers,97 it will allow for an auxiliary-controlled activation of β-, γ-, or δ- 

C(sp3)–H bonds (221), resulting in site-selective desaturation of aliphatic alcohols to 

afford allylic-, homoallylic, and bis-homoallylic alkenols (223→224). Not only will the 

presented concept provide a general strategy for a mild and efficient desaturation, but it 

will also feature a new mechanistic approach for Pd-catalyzed remote C(sp3)–H 

functionalization.   

 

Scheme 72: Our strategy for targeted remote desaturation of aliphatic alcohols involving 

hybrid-Pd radical intermediates.     

 

6.2. Optimization of the Reaction Conditions    

In the context of our prior work, employment of an aryl silyl-tether 225 (Scheme 

73) enabled a site-selective α-C–H abstraction event due to geometrical constraints, and a 

favored 1,5-HAT process, which allowed for efficient α-/β-desaturation of silyl ethers 
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tether may trigger a 1,n-HAT (n≥5) process of unactivated C(sp3)–H sites and, thus, 

empower a remote desaturation process (e.g. 226). Hence, we turned our attention toward 

employment of iodomethylsilane tethers (227-228) for the following reasons: (1) Based 

on our previous work, silyl methyl hybrid-Pd radicals can be easily formed in the 

presence of Pd(0) (Chapter 2); (2) there have been scattered reports on the propensity of 

silyl methyl radical species to undergo 1,n-HAT (n=5-8) with activated C(sp3)–H sites 

under reductive radical conditions;83e,98 and (3) based on the stability of Me3SiCH2–H 

(~100 kcal/mol) bonds, HAT of silyl methyl radical species with unactivated tertiary (95 

kcal/mol) and secondary (98 kcal/mol) C–H sites may be feasible. 99  The above 

hypothesis was tested on Baran’s challenging alcohol (229) using iodomethylsilane tether 

(T1). Gratifyingly, under our previously optimized visible light-induced conditions, 229 

resulted in γ-/δ-desaturation homoallylic alcohol 230a in 77% yield as the sole 

regioisomer. Compared to Baran’s approach (using TB, 55% yield, r.r. = 1.15:1), the 

reaction efficiency and regioselectivity outcome of our method was superior. This result 

supports our hypothesis, where the favorable nature of this novel mechanism provides a 

“controlled” Pd-involved β-H elimination9,14,22,84 event rather than an “uncontrolled” 

proton loss as in Baran’s protocol (vide supra).79 Test experiments indicated that light is 

required to promote the transformation; and attempts on performing this transformation 

under thermal means were ineffective (Scheme 74).   
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Scheme 73: Preference for C–H abstraction using different tethers based on distance of 

the formed radical.  

 

 

Scheme 74: Initial results and comparison to prior art.  

Based on our previous work on the endo selective silyl methyl Heck reaction 

using T1 (69, vide supra), installation of bulky T1 onto secondary and tertiary alcohols 

required harsh reaction conditions and was inefficient. Hence, in order to obviate the 

need of forcing reaction conditions and use of high molecular weight silicon tethers for 

installation onto bulkier alcohols, we opted to employ sterically less hindered 

dimethyl(iodomethyl)silane tether (T2). The synthesis of T2-Cl (232) is depicted in 

Scheme 75. Next, optimization of the reaction parameters was conducted on T2-tethered-

(-)-menthol (229f). It was found, however, that our previous reaction conditions were the 

most efficient (Table 10, entry 11). Interestingly, ligands that are typically employed for 

photoredox catalysis, such as bipyridine and phenantroline, were inefficient (entry 1-2).87 
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In addition, a control study indicated that the Pd-catalyst is required for this 

transformation (entry 14).   		    

 

Scheme 75: Synthesis of T2-Cl (232). 

Table 10: Optimization of the reaction conditions using benchmark substrate 229f. 

 

# catalyst ligand Si-230f : Si-230f’ GC 
yield,a% 

1 Pd(OAc)2 bipy - NR 

2 Pd(OAc)2 
1,10-
phen - NR 

3 Pd(PPh3)4 - 4 : 1 57 
4 Pd(OAc)2 SiPr - NR 
5 Pd(OAc)2 dppe - Traces 
6 Pd(OAc)2 Triphos 1 : 1 28 
7 Pd(OAc)2 DPEphos - NR 
8 Pd(OAc)2 Binap 1 : 0 47 
9 Pd(OAc)2 dppf 1 : 1 12 
10 Pd(OAc)2 xantphos - 72 
11 Pd(OAc)2 L 20 : 1 94 
12b Pd(OAc)2 L 20 : 1 60 
13 Pd(OAc)2 - - <2 
14 - L - <2 

 

aGC yields were calibrated using pentadecane as an internal standard. b5 mol % Pd /10 mol % L  
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6.3. Scope and Limitations  

After identifying the optimized reaction conditions, the scope of the γ-/δ-

desaturation of aliphatic alcohols toward homoallylic alcohols was examined (Scheme 

76). It should be mentioned that upon completion of the desaturation reaction, the silyl-

based tethers were removed by a standard desilylation protocol with TBAF (one-pot). For 

cases where desilylation would generate volatile alkenols, the silyl-protected alkenols 

were isolated instead. Various primary alcohols, possessing important functionalities 

such as alcohols (229b-c) and amides (229e), underwent smooth γ-/δ-desaturation into 

the corresponding homoallylic alcohols (230b-c,e) in good yield. Next, desaturation of 

secondary alcohols was tested (1f-1h). Important terpene building block (-)-isopulegol 

(230f) was obtained in 79% yield via γ-/δ-desaturation of a precursor (-)-menthol (229f). 

Desaturation of substrate 229g, possessing a remote olefin, resulted in diene 230g in good 

yield. Importantly, employment of substrates 229h and 229i possessing competitive sites 

of abstraction, Hβ/Hγ and Hγ/Hδ, respectively, resulted in selective activation of γ-C–H 

bonds, thus resulting in formation of 230h and 230i in good yields with high levels of 

regioselectivity. Based on these studies, the regiochemical preference for HAT using 

tethers T1 and T2 for substrates containing C–H sites with similar BDE99 is as follows: 

1,6 HAT of Hγ >1,5 HAT of Hβ > 1,7 HAT of Hδ. Tertiary alcohols were found to be 

also compatible with our desaturation protocol, as desaturation of 229j→230j proceeded 

efficiently. Excitingly, desaturation of challenging tertiary alcohol 229k, possessing inert 

2° C–H bonds, was also accomplished, producing 230k in good yield. Finally, we tested 

our γ-/δ-desaturation protocol on complex natural products and derivatives. It was found 

that desaturation of abietol worked quite well, generating 230l in respectable yield. Also, 
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γ-/δ-desaturation of steroid systems, such as secondary cis-androsterone (229m) and 

tertiary cholestanol derivative (229n), were efficient, furnishing 230m and 230n in good 

yields. 

 

Scheme 76: γ-/δ-desaturation of aliphatic alcohols toward homoallylic alcohols. 

aContains minor amount of hydrodehalogenation by-product. bThe desilylation step 

(TBAF) was omitted. r.r. = regioisomeric ratio. 
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2o–T2 was produced as a 1:1.5 mixture of β-/γ- and γ-/δ-desaturation products, 

respectively (Scheme 76). This result indicates that the innate preference for 1,6-HAT 

occurs regardless of the BDE99 of γ–C–H bond. Conversely, when T1 was employed on 

the same alcohol (229o-1), the β-/γ-desaturation product 230–1 was formed 

predominantly. In this case, it is likely that the steric interactions between the bulky 

isopropyl groups on Si-tether of T1 and the isopropyl group of the substrate disfavors the 

usually preferred confirmation for 1,6-HAT (230-T1), which consequently promoted for 

activation of the β-C–H site via 1,5-HAT.  

 

Scheme 77: Regiodivergent desaturation of ambident substrates employing different 

tethers.  
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efficient formation of allylic alcohols (230p-r). Moreover, tertiary cyclic- and bicyclic 

via

O

Me

H

Si
i-Pr i-Pr

O

Me

Me

H Si i-Pr
i-Pr

230-T1

Me H

favored disfavored

H
1,5-HAT

1,6-HAT

OH
Me

80%, γ /δ : β /γ  =  1 : 3.1
230o-1

OH
Me

93%, γ /δ : β /γ  =  1.5 : 1

230o-2

O

Me

Me

T1/2T2

Pd-cat.
then F-

T1

Pd-cat.
then F-

229o-1/2

H

δ

γ

β γ

β
γ

δ
H

γ



 

	 	125	

alcohols were found to be competent substrates as well, generating the corresponding 

products 230s-t in good yields. Next, desaturation of β-methyl cycloalkanes was tested. 

Exposure of the 5-membered cycloalkane 229u to the reaction conditions resulted in the 

thermodynamic alkene product 230u. Contrariwise, 6-membered cycloalkanes underwent 

desaturation into the kinetic exo-methylene products 230v–w. Also, complex limonene 

derivative 1x underwent smooth β-/γ-desaturation, furnishing exo-alkene 230x in 70% 

yield. Then, reaction of ambident substrate 229y, possessing competing β-/γ- and δ-/ε- 

desaturation sites, was examined. Expectedly, it was found that desaturation occurred 

selectively at the former site, leading to allylic alcohol 230y in 73% yield (vide supra).  

Finally, we pushed the limits of developed methodology toward unprecedented δ-

/ε- desaturation of alcohols. It was found that employment of primary (229z), secondary 

(229aa), and tertiary alcohols (229aa) all underwent smooth δ-/ε- desaturation in 

moderate to excellent yield (230z,aa-ab). Interestingly, desaturation of complex 

derivative, dehydroabietol 229ac, resulted in selective formation of δ-/ε- desaturation 

product 230ac, probably via a rare 2° ε- C–H activation event through 1,8-HAT.83e  
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Scheme 78: Beyond γ-/δ-desaturation. β-/γ- and δ-/ε-desaturation of aliphatic alcohols 

toward homoallylic and bis-homoallylic alcohols, respectively. aContains minor amount 

of hydrodehalogenation by-product. bThe desilylation step (TBAF) was omitted. r.r. = 

regioisomeric ratio. 
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Baran’s case, but via a hybrid-Pd-radical mechanism.14 In order to verify the 

intermediacy radicals in this transformation, typical radical test experiments were 

conducted (Scheme 79). In the presence of TEMPO, 229f resulted in TEMPO trapped 

adduct 233 in 49% NMR yield, which indicates that the radical is initially formed at the 

silyl methyl position. In addition, a radical clock study was performed. Cyclopropane 

radical clock substrate 234 was subjected to the reaction conditions and resulted in 

selective radical ring-opening product 237.35 This result supports the formation of a 

translocated radical species via the 1,6-HAT process. Based on these studies, a hybrid-

Pd-radical mechanism was proposed for this transformation (Scheme 80). The active 

photoinduced Pd(0) complex undergoes SET with Si-tethered alcohol 229 to generate the 

Pd(I)I complex and the silyl methyl radical species 238. The latter undergoes a 1,n-HAT 

(n=5-8) event to furnish alkyl hybrid-Pd radical intermediate 239. Next, a subsequent 

radical recombination of 239 with Pd(I)I produces alkyl Pd-intermediate 240. Finally, the 

latter undergoes a “controlled” Pd-involved β-hydride elimination step 

(240→230),9,14,22,84 which forms the desired alkenol fragment 230 and the Pd(II) 

complex. The latter undergoes base-induced reductive elimination to form the active 

Pd(0) complex and closes the catalytic cycle.     
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Scheme 79: Mechanistic studies.  

 

 

Scheme 80: Mechanism of the Pd-catalyzed desaturation of aliphatic alcohols. 
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6.5. Summary 

In summary, we have developed a mild, general, and selective Pd-catalyzed 

method for desaturation of aliphatic alcohols. The mechanism of this method operates via 

a hybrid-Pd radical approach, which synergistically combines the best features of the 

radical and Pd chemistry and thus, empowers this novel desaturation protocol to occur. It 

was shown for the first time that the formed hybrid Pd-radical intermediates are capable 

of a facile 1,n-HAT process at remote unactivated C(sp3)–H sites. Formation of these key 

hybrid Pd-radical intermediates are efficiently induced by visible light, without 

exogenous photosensitizers, from alkyl-iodides and Pd(0) complexes, thus, allowing 

desaturation of aliphatic alcohols to occur under neutral conditions at room temperature. 

Moreover, based on the nature of the mechanism, the endgame desaturation step occurs 

via “controlled,” Pd-involved β–H elimination step, which generates the alkenol products 

with unmatched for radical chemistry degrees of regioselectivity. In addition, our concept 

involves the utilization of easily installable/removable tethers capable of targeted 

activation of 2°/3°- β-, γ-, and δ-positions of aliphatic systems, resulting in valuable 

unsaturated alcohols. Overall, due to the nature of this novel mechanism, our approach 

solves the inherent limitations of previously developed desaturation protocols and 

provides a new direction for site-controlled Pd-catalyzed C–H functionalization of 

aliphatic molecules.  
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7. Experimental Section  

7.1. General Information  

NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DPX-400 (400 

MHz) instrument. 1H signals are referenced to residual CHCl3 at 7.26 ppm. 13C signals 

are referenced to CDCl3 at 77.0 ppm. GC/MS analysis was performed on a Hewlett 

Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective 

detector (15 m x 0.25 mm capillary column, HP-5MS). Column chromatography was 

carried out employing Silicycle Silica-P flash silica gel (40-63 µm). Precoated silica gel 

plates F-254 were used for thin-layer analytical chromatography. LRMS and HRMS 

analyses were performed on Micromass 70 VSE mass spectrometer. Anhydrous solvents 

purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative 

Technology, Inc. purification system and/or stored over calcium hydride. All starting 

materials were purchased from Strem Chemicals, Aldrich, Gelest Inc., TCI America, or 

Alfa Aesar, or synthesized via known literature procedures. The 34 W Blue LED lamp 

(Kessil KSH150B LED Grow Light), 23W Philips Household CFL, and Vornado 133 

Small Air Circulator fan were purchased from amazon.com. All manipulations with 

transition metal catalysts were conducted in oven-dried glassware under inert atmosphere 

using a combination of glovebox and standard Schlenk techniques. 
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7.2. Photoinduced Formation of Hybrid Aryl Pd-Radicals Species Capable of 1,5-

HAT: Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers (Previously 

Published as Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. 

“Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: 

Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers.” J. Am. Chem. 

Soc. 2016, 138, 6340.) 

 

7.2.1 Analytics of the Substrates Employed for Mechanistic Studies 

Starting Materials: 

 

Isolated yield = 32% yield. Colorless oil. Rf (hexanes): 0.31.  

1H NMR (500 MHz, CDCl3): δ ppm 7.83-7.85 (m, 1H), 7.64-7.62 (m, 1H), 7.36-7.33 (m, 

1H), 7.05-7.01 (m, 1H), 3.80-3.74 (m, 1H), 1.87-1.85 (m, 2H), 1.76-1.75 (m, 2H), 1.52-

1.42 (m, 3H), 1.28-1.23 (m, 3H), 1.14-1.0.98 (m, 4H), 0.96-0.93 (m, 6H). 13C NMR (126 

MHz, CDCl3) δ ppm 5.5, 7.0, 24.2, 25.6, 35.9, 71.4, 102.7, 126.8, 130.9, 138.1, 139.6, 

142.8. HRMS (EI+) calcd. for C16H25IOSi [M]: 388.0720, found: 388.0722. 

 

Isolated yield = 41%. Colorless oil. Rf (hexanes): 0.35.  
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1H NMR (500 MHz, CDCl3): δ ppm 7.85-7.84 (m, 1H), 7.61-7.59 (m, 1H), 7.35-7.32 (m, 

1H), 7.05-7.01 (m, 1H), 3.68-3.61 (m, 1H), 2.02-2.00 (m, 2H), 1.77-1.75 (m, 2H), 1.43-

1.37 (m, 2H), 1.13-1.03 (m, 2H), 1.03-1.01 (m, 1H), 1.01-0.98 (m, 2H), 0.98-0.94 (m, 

8H), 0.85-0.83 (m, 9H). 13C NMR (126 MHz, CDCl3) δ ppm 5.4, 7.0, 25.8, 27.6, 32.3, 

36.4, 47.2, 72.6, 102.7, 126.8, 130.9, 138.1, 139.7, 142.8. HRMS (ESI) calcd. for 

C20H33IOSi [M+1]: 444.1345, found: 444.1347. 

 

Isolated yield = 55%. >98% D incorporation. Colorless oil. Rf (hexanes): 0.20. 1H NMR 

(500 MHz, CDCl3): δ ppm 7.85 (d, J = 8.07 Hz, 1H), 7.64 (dd, J = 7.34 Hz, J = 1.47 Hz, 

1H), 7.34 (m, 1H), 7.03 (td, J = 8.07 Hz, J = 1.83 Hz, 1H), 1.87-1.85 (m, 2H), 1.76-1.73 

(m, 2H), 1.52-1.43 (m, 3H), 1.31-1.22 (m, 3H), 1.14-0.98 (m, 4H), 0.96-0.94 (m, 6H). 13C 

NMR (126 MHz, CDCl3) δ ppm 5.4, 7.0, 24.2, 25.7, 35.8, 102.7, 126.8, 130.9, 138.1, 

139.7, 142.8. 2H NMR (77 MHz, CCl4) δ ppm 3.97. HRMS (EI+) calcd. for C16H24DIOSi 

[M]: 389.0782, found: 375.0794. 

 

Isolated yield = 40% yield. Diastereomeric Ratio = 1.5:1 (GC). Clear and Colorless oil. 

Rf (50:1 Hexanes : Ethyl Acetate): 0.3. 1H NMR (500 MHz, CDCl3): δ ppm 7.88-7.82 

(m, 1H), 7.65- 7.59 (m, 1H), 7.37-7.24 (m, 3H), 7.17-7.14 (m, 1H), 7.07-7.00 (m, 3H), 

3.71-3.67 (m, 1H), 1.91-1.79 (m, 1H), 1.39-1.36 (m, 3H), 1.18-0.88 (m, 13H). 13C NMR 
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(126 MHz, CDCl3) δ ppm 5.3, 5.4, 5.5, 5.6, 6.9, 7.0, 13.4, 14.5, 20.6, 21.7, 23.7, 23.9, 

30.8, 31.0, 71.9, 72.0, 102.7, 102.8, 125.3, 125.4, 125.8, 125.9, 126.9, 128.2, 128.3, 

130.9, 131.0, 138.0, 138.2, 139.7, 139.8, 142.5, 142.6, 143.0, 143.2. HRMS (EI) calcd. 

for C21H27IOSi [M]: : 450.0876, found: 450.0880. 

Reaction Products:  

 

Isolated yield = 79%. Yellow oil. Rf (hexanes): 0.34. 

1H NMR (500 MHz, CDCl3): δ ppm 7.60-7.58 (m, 2H), 7.39-7.36 (m, 3H), 4.88-4.86 (m, 

1H), 2.04-2.01 (m, 2H), 1.98-1.95 (m, 2H), 1.66-1.61 (m, 2H), 1.51-1.46 (m, 2H), 1.14-

1.07 (m, 2H), 1.03-0.90 (m, 8H). 13C NMR (126 MHz, CDCl3) δ ppm 6.6, 6.7, 22.3, 23.2, 

23.8, 29.8, 104.3, 127.7, 129.4, 133.9, 136.4, 150.4. HRMS (ESI) calcd. for C16H24OSi 

[M]+1: 261.1677, found: 261.1675. 

 

Isolated yield = 65%. Yellow oil. Rf (hexanes): 0.35.  

1H NMR (500 MHz, CDCl3): δ ppm 7.60-7.58 (m, 2H), 7.40-7.7.36 (m, 3H), 4.85-4.85 

(m, 1H), 2.14-2.03 (m, 2H), 1.80-1.77 (m, 3H), 1.27-1.22 (m, 2H), 1.12-0.97 (m, 10H), 

0.86-0.83 (s, 9H). 13C NMR (126 MHz, CDCl3) δ ppm 5.5, 7.0, 24.4, 25.1, 27.3, 27.6, 

30.8, 43.9, 103.9, 127.7, 129.4, 133.6, 133.9, 150.3. HRMS (ESI) calcd. for C20H32OSi 

[M]+1: 317.2301, found: 317.2311. 
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Isolated yield = 69% yield. Clear and colorless oil. Rf (hexanes): 0.34. 1H NMR (500 

MHz, CDCl3): δ ppm 7.53-7.51 (m, 1H), 7.33-7.31 (m, 3H), 4.77-4.76 (m, 1H), 2.03-2.01 

(m, 2H), 1.99-1.96 (m, 4H), 1.67-1.63 (m, 2H), 1.53-1.49 (m, 2H), 1.03-0.99 (m, 6H), 

0.88-0.92 (m, 4H). 2H NMR (77 MHz, CCl4) δ ppm 7.75. HRMS (AP+) calcd. for 

C16H24DOSi [M]+1: 262.1737, found: 262.1746. 

 

53% NMR yield of Trans and 25% NMR yield of Cis; Total Yield = 78%. Crude 1H 

NMR (500 MHz, C6D6) Trans (only olefinic and the methyl group protons are reported): 

δ ppm 7.57 (dd, J = 10.6 Hz, J = 15.7 Hz, 1H), 6.50 (d, J = 16.4 Hz, 1H), 5.48 (d, J = 

10.6 Hz, 1H), 1.79 (s, 3H). Crude 1H NMR (500 MHz, C6D6) Cis (only Olefinic and the 

methyl group protons are reported): δ ppm 6.93 (dd, J = 11.0 Hz, J = 15.4 Hz, 1H), 5.94 

(d, J = 11.0 Hz, 1H), 1.95 (s, 3H). HRMS (EI) calcd. for C21H26OSi [M]: 322.1753, 

found: 322.1749. 
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7.3. General Remote Desaturation of Aliphatic Alcohols at Unactivated C(sp3)–H 

Sites Enabled by Auxiliary Controlled Visible Light-induced Hybrid Pd-Radical 

Catalysis 

 

7.3.1. Preparation of Starting Materials 

Synthesis of chloro(iodomethyl)dimethylsilane tether (T2-Cl): 
 

 

Allyl(chloromethyl)dimethylsilane (5.6 mL, 34 mmol, 1 equiv) in MeCN (10 mL) was 

added to the solution of sodium iodide (15.4 g, 102 mmol, 3 equiv) in MeCN (20 mL) 

under Ar atmosphere. The mixture was refluxed for 36 hours. The reaction was cooled to 

rt, diluted with EtOAc (60 mL), then washed with Na2S2O3(sat) solution (30 mL) and 

water (30 mL), dried over Na2SO4(anh), concentrated and purified by flash 

chromatography (hexanes) to afford 4.8 g (67%) of the Finkelstein reaction product. The 

product was transferred to a 250 mL Schlenk flask equipped with a reflux condenser and 

then purged with Ar. The substrate was diluted with dry Et2O (20 mL). Then, dry HCl 

(48 mL, 97 mmol, 2 M Et2O) was added at rt under Ar. The mixture was then refluxed at 

85 °C for 120 h. After completion, the mixture was cooled down to rt and then filtered 

with Celite under Ar atmosphere. The mixture was then concentrated in vacuo to furnish 

3.9 g (86%, 95% pure) T2-Cl as a greenish-yellow oil. The substrate was used for the 

next step without further purification. Warning: T2-Cl is highly moisture sensitive! 1H 

NMR (500 MHz, CDCl3): δ ppm 2.24 (s, 2H), 0.6 (s, 6H). 13C NMR (126 MHz, CDCl3): 

δ ppm -0.14, 0.99. 

Si
Me Me

I
ClSi

Me Me
Cl

1) 3 equiv NaI
    MeCN, 85 °C, 36 h

2) HCl in ether (5 equiv)
    Et2O, 85 °C, 120 h T2-Cl
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General Method for Synthesis of T1 and T2 tethered alcohols 

 

Method A: To a stirred mixture of imidazole (410 mg, 4 mmol, 2 equiv) and THF (5 

mL), chlorosilane T1-Cl (640 mg, 2.2 mmol, 1.1 equiv) was added at rt under Ar 

atmosphere. To this mixture, primary alcohol (2 mmol, 1 equiv) in 5 mL of THF was 

added. The mixture was stirred until completion of the reaction as judged by GC/MS 

analysis. To this mixture, hexanes (10 mL) was added and then filtered. The filtrate was 

then concentrated under reduced pressure. The residue was purified by column 

chromatography in hexanes.  

 

Method B: To a stirred mixture of primary/secondary alcohol (2 mmol, 1 equiv) and 

THF (5 mL), MeLi (1.34 mL, 1.5 M, 2 mmol, 1 equiv) was added dropwise at 0 °C under 

Ar atmosphere. To this mixture, HMPA (0.35 mL, 2 mmol, 1 equiv) was added, followed 

by, T1-Cl (640 mg, 2.2 mmol, 1.1 equiv) in 5 mL of THF at 0 °C. The mixture was 

stirred until completion of the reaction as judged by GC/MS analysis. Then, the mixture 

was quenched with NH4Cl(sat) solution (30 mL) and extracted with Et2O (3 x 20 mL). The 

combined organic layer was washed with brine. The organic layer was dried and filtered. 

The filtrate was then concentrated under reduced pressure. The residue was purified by 

column chromatography in hexanes. 

 

+R1

OH
base

THF, rt, 2-3 hCl
Si

i-Pr i-Pr
I

1o/2o

H

n
R1

O H

n

Si
i-Pr i-Pr

I

T1-Cl (69)



 

	 	137	

 

 

Method C: To a stirred mixture of imidazole (410 mg, 4 mmol, 2 equiv) and THF (5 

mL), chlorosilane T2-Cl (520 mg, 2.2 mmol, 1.1equiv) was added at rt under Ar 

atmosphere. To this mixture, secondary/tertiary alcohol (2 mmol, 1 equiv) in 5 mL of 

THF was added. The mixture was stirred until completion of the reaction as judged by 

GC/MS analysis. To this mixture, hexanes (10 mL) was added and then filtered. The 

filtrate was then concentrated under reduced pressure. The residue was purified by 

column chromatography in hexanes.  

 

Method D: To a stirred mixture of imidazole (410 mg, 4 mmol, 2 equiv) and MeCN (3 

mL), dimethyl(bromomethyl-)chlorosilane (0.3 mL, 2.2 mmol, 1.1 equiv) was added at rt 

under Ar atmosphere. To this mixture, secondary/tertiary alcohol (2 mmol, 1 equiv) in 2 

mL of MeCN was added. The mixture was stirred until completion of the reaction as 

judged by GC/MS analysis. Then, NaI (900 mg, 3 equiv) was added directly to the 

reaction mixture. The mixture was heated to 85 oC for 2-12 h. After completion, the 

mixture was cooled to rt, diluted with EtOAc (60 mL), then washed with Na2S2O3(sat) 

solution (30 mL) and water (30 mL), dried over Na2SO4(anh), concentrated and purified by 

flash chromatography in hexanes. 
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229a was prepared according to the general Method A in 71% yield. Clear and colorless 

liquid. Rf (hexanes): 0.60. 1H NMR (500 MHz, CDCl3): δ ppm 3.79-3.72 (m, 1H), 2.08 

(s, 2H), 1.59-1.50 (m, 3H), 1.38-1.12 (m, 6H), 1.16-1.03 (m, 16H), 0.87 (t, J = 6.6 Hz, 

9H). 13C NMR (126 MHz, CDCl3): δ ppm 12.3, 17.4, 17.6, 19.9, 22.6, 22.7, 24.7, 27.9, 

29.4, 39.2, 39.9, 62.2.		

 

 

229b was prepared according to the general Method A in 40% yield. Clear and colorless 

liquid. Rf (hexanes:EtOAc = 9:1): 0.20. 1H NMR (500 MHz, CDCl3): δ ppm 3.81-3.68 

(m, 4H), 2.80-2.07 (s, 2H), 1.77-1.75 (m, 1H), 1.64-1.60 (m, 2H), 1.46-1.40 (m, 2H), 

1.32 (bs, 1H), 1.25-1.19 (m, 2H), 1.09-1.06 (m, 13H), 0.94-0.92 (m, 3H). 13C NMR (126 

MHz, CDCl3): δ ppm 12.3, 17.4, 17.7, 19.9, 26.3, 39.7, 39.9, 61.1, 61.9. 

 

 

229c was prepared according to the general Method A in 62% yield. Clear and colorless 

liquid. Rf (hexanes:EtOAc = 9:1): 0.38. 1H NMR (500 MHz, CDCl3): δ ppm 3.89-3.87 

(m, 1H), 3.78-3.76 (m, 1H), 2,09 (s, 2H), 1.98 (bs, 1H), 1.90-1.85 (m, 1H), 1.65-1.62 (m, 

1H), 1.38-1.32 (m, 1H), 1.27-1.21, (m, 2H), 1.19 (s, 3H), 1.17-1.15 (m, 3H), 1.10-1.07 

OSi
i-Pr
i-Pr

I 229a

HO O
Si i-Pr
i-Pr

I
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HO O
Si i-Pr
i-Pr
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(m, 12H), 0.95-0.93 (d, J = 6.9 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 12.3, 17.4, 

17.7, 25.8, 27.7, 35.0, 41.3, 62.7, 72.8. 

 

 

229d was prepared according to the general Method A in 58% yield. Clear and colorless 

liquid. Rf (hexanes): 0.58. 1H NMR (500 MHz, CDCl3): δ ppm 3.76 (t, J = 6.7 Hz, 1H), 

2.08 (s, 2H), 1.72-1.40 (m, 14H), 1.26-1.15 (m, 4H), 1.09-1.03 (m, 12H). 13C NMR (126 

MHz, CDCl3): δ ppm 12.3, 17.4, 17.7, 26.4, 28.5, 34.6, 35.6, 40.9, 62.3. 

 

 

229e was prepared according to the general Method A in 58% yield. Clear and colorless 

oil. Rf (hexanes): 0.48. 1H NMR (500 MHz, CDCl3): δ ppm 4.72-4.74 (m, 1H), 3.79 (dd, 

J = 10.2, 3.8 Hz, 1H), 3.39 (m, 1H), 2.09 (s, 2H), 1.93-1.84 (m, 1H), 1.44 (m, 9H), 1.29-

1.18 (m, 2H), 1.09-1.06 (m, 12H), 0.96-0.93 (m, 6H). 13CNMR (126 MHz, CDCl3): δ 

ppm 12.3, 17.3, 17.4, 17.5, 17.6, 17.7, 18.8, 19.7, 28.4, 29.0, 57.1, 63.9, 79.9, 155.9. 
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229f was prepared according to the general Method D in 58% yield. Clear and colorless 

liquid. Rf (hexanes): 0.20. 1H NMR (500 MHz, CDCl3): δ ppm 3.48-3.43 (m, 1H), 2.16-

2.13 (m, 1H), 2.04 (s, 2H), 1.85-1.84 (m, 1H), 1.65-1.58 (m, 2H), 1.39-1.36 (m, 1H), 

1.16-1.12 (m, 1H), 1.06-0.99 (m, 1H), 0.90-0.89 (m, 7H), 0.87-0.81 (m, 1H), 0.73 (d, J = 

6.9 Hz, 3H), 0.30 (s, 6H). 13C NMR (126 MHz, CDCl3): δ ppm -1.8, 15.9, 21.2, 22.3, 

22.9, 25.3, 31.7, 34.4, 45.4, 49.9, 73.2. 

 

 

1g was prepared according to the general Method D in 53% yield. dr = 1:1. Clear and 

colorless liquid. Rf (hexanes): 0.71. 1H NMR (500 MHz, CDCl3): δ ppm 5.09-5.08 (m, 

1H), 3.96-3.91 (m, 1H), 2.02-1.93 (m, 5H), 1.68 (s, 3H), 1.60 (s, 3H), 1.53-1.47 (m, 1H), 

1.36-1.26 (m, 3H), 1.17-1.09, (m, 6H), 0.89-0.86 (m, 4H), 0.29 (m, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm -2.0, 17.6, 19.5, 20.0, 23.9, 24.6, 25.4, 25.7, 28.8, 29.3, 37.1, 37.6, 

47.1, 67.3, 67.6, 124.8, 131.1. 

 

 

229h was prepared according to the general Method A in 78% yield. Colorless liquid. Rf 

(hexanes): 0.62. 1H NMR (500 MHz, CDCl3): δ ppm 3.83-3.80 (m, 1H), 2.08 (s, 2H), 

1.79-1.76 (m, 1H), 1.67-1.65 (m, 1H), 1.31-1.18 (m, 4H), 1.10-1.07 (m, 12H), 0.92-0.88 
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(m, 9H), 0.83-0.81 (d, J = 6.6 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 12.8, 16.7, 

17.6, 17.8, 17.9, 22.8, 23.2, 24.5, 32.8, 42.2, 75.5. 

 

 

229i was prepared according to the general Method D in 94% yield. 92% Purity. Clear 

and colorless liquid. Rf (hexanes): 0.43. 1H NMR (500 MHz, CDCl3): δ ppm 3.75-3.70 

(m, 1H), 2.04 (m, 2H), 1.71-1.63 (m, 1H), 1.43-1.23 (m, 15H), 0.91-0.82 (m, 12H), 0.29 

(s, 6H). 13C NMR (126 MHz, CDCl3): δ ppm -1.9, 10.9, 14.2, 22.5, 23.1, 23.3, 24.5, 25.8, 

28.6, 28.9, 32.7, 34.7, 38.9, 46.5, 72.1. 

 

 

229j was prepared according to the general Method C in 50% yield. Clear and colorless 

liquid. Rf (hexanes): 0.79. 1H NMR (500 MHz, CDCl3): δ ppm 2.06 (s, 2H), 1.75-1.68 

(m, 3H), 1.43 (d, J = 5.5 Hz, 6H), 0.94 (d, J = 6.7 Hz, 18H), 0.3 (s, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm -14.0 (not shown), 0.4, 24.2, 25.1, 49.1, 81.4. 
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229k was prepared according to the general Method C in 65% yield. Clear and colorless 

liquid. Rf (hexanes): 0.61. 1H NMR (500 MHz, CDCl3): δ ppm 2.02 (s, 2H), 1.41-1.38 

(m, 6H), 1.30-1.25 (m, 6H), 0.90-0.87 (m, 9H), 0.28 (s, 6H). 13C NMR (126 MHz, 

CDCl3): δ ppm -14.0 (not shown), 0.2, 14.7, 17.1, 42.2, 79.4. 

 

229l was prepared according to the general Method B in 36% yield. Clear and colorless 

thick liquid. Rf (hexanes): 0.77. 1H NMR (500 MHz, CDCl3): δ ppm 5.78 (s, 1H), 5.40-

5.39 (m, 1H), 3.44 (d, J = 9.4 Hz, 1H), 3.25 (d, J = 9.4 Hz, 1H), 2.22 (d, 1H), 2.10-2.08 

(m, 3H), 2.05 (s, 2H), 1.98-1.95 (m, 1H), 1.90-1.79 (m, 3H), 1.63-1.16 (m, 8H), 1.09-

1.00 (m, 20H), 0.86 (s, 3H), 0.81 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 12.2, 12.3, 

14.2, 17.5, 17.6, 17.7, 18.3, 20.8, 21.4, 22.7, 24.0, 27.4, 34.6, 34.8, 36.1, 37.9, 38.9, 43.6, 

50.7, 72.6, 121.2, 122.6, 135.3, 144.9. 

 

 

229m was prepared according to the general Method A in 40% yield. Clear and colorless 

thick liquid. Rf (hexanes:EtOAc = 9:1): 0.47. 1H NMR (500 MHz, CDCl3): δ ppm 4.16-
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4.15 (m, 1H), 2.43 (dd, J = 19.1 Hz, 8.4 Hz, 1H), 2.06 (s, 2H), 1.95-1.90 (m, 1H), 1.80-

1.79 (m, 2H), 1.69-1.16 (m, 18H), 1.09-1.00 (m, 14H), 0.85 (s, 3H), 0.78 (s, 3H). 13C 

NMR (126 MHz, CDCl3): δ ppm 11.4, 12.6, 13.8, 17.6, 17.7, 17.8, 20.1, 21.8, 28.3, 29.8, 

30.9, 31.6, 32.4, 35.1, 35.9, 36.2, 36.8, 39.1, 47.8, 51.5, 54.5, 67.7, 221.6. 

 

 

229n was prepared according to the general Method C in 46% yield. White-pale solid. Rf 

(hexanes): 0.78. 1H NMR (500 MHz, CDCl3): δ ppm 2.04 (s, 2H), 2.02 (s, 1H), 1.98-1.95 

(m, 1H), 1.83-0.96 (m, 36H), 0.91-0.85 (m, 16H), 0.72 (s, 3H), 0.65 (s, 3H), 0.3 (s, 6H). 

13C NMR (126 MHz, CDCl3): δ ppm -14.0 (not shown), 0.36, 0.23, 11.6, 12.1, 18.7, 21.0, 

22.5, 22.7, 22.8, 23.8, 24.2, 28.0, 28.3, 28.5, 28.7, 32.2, 32.7, 33.4, 34.1, 35.6, 35.7, 35.8, 

36.2, 39.5, 40.1, 40.4, 40.7, 42.4, 42.6, 54.4, 56.3, 56.3. 76.9. 

 

229o-1 was prepared according to the general Method A in 67% yield. Colorless liquid. 

Rf (hexanes): 0.61. 1H NMR (500 MHz, CDCl3): δ ppm 3.70-3.67 (m, 1H), 2.08 (s, 2H), 

1.78-1.74 (m, 1H), 1.41-1.41 (m, 2H), 1.32-1.19 (m, 10H), 1.09 (t, J = 7.34 Hz, 12H), 
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0.90-0.84 (m, 9H). 13C NMR (126 MHz, CDCl3): δ ppm 12.8, 14.1, 17.3, 17.5, 18.1, 

22.7, 25.6, 29.6, 31.9, 32.7, 33.2, 77.8. 

 

 

229o-2 was prepared according to the general Method D in 45% yield. Colorless liquid. 

Rf (hexanes): 0.54. 1H NMR (500 MHz, CDCl3): δ ppm 3.48-3.47 (m, 1H), 2.04 (s, 2H), 

1.69-1.68 (m, 1H), 1.40-1.27 (m, 10H), 0.90-0.84 (m, 9H), 0.29 (m, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm -1.9, 14.1, 17.7, 18.4, 22.7, 25.7, 29.5, 31.9, 33.1, 33.5, 78.3. 

 

 

229p was prepared according to the general Method A in 42% yield. Clear and colorless 

liquid. Rf (hexanes): 0.58. 1H NMR (500 MHz, CDCl3): δ ppm 3.85-3.81 (m, 1H), 2.08 

(s, 2H), 1.71-1.65 (m, 1H), 1.23-1.18 (m, 2H), 1.12-1.05 (m, 15H), 0.87 (d, J = 7.0 Hz, 

6H). 13C NMR (126 MHz, CDCl3): δ ppm 12.6, 12.7, 17.4, 17.5, 17.6, 17.8, 17.9, 18.0, 

19.6, 35.3, 73.6. 
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229q was prepared according to the general Method D in 48% yield. Colorless liquid. Rf 

(hexanes): 0.55. 1H NMR (500 MHz, CDCl3): δ ppm 3.17-3.14 (m, 1H), 2.07 (s, 2H), 

1.78-1.72 (m, 2H), 0.86 (dd, J = 6.8 Hz, J = 3.3 Hz, 12H), 0.32 (s, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm -1.8, 17.7, 20.4, 30.9, 84.3. 

 

 

229r was prepared according to the general Method C in 20% yield. Yellow liquid. Rf 

(hexanes:EtOAc = 20:1):  0.40. 1H NMR (500 MHz, CDCl3): δ ppm 4.55 (d, J = 4.0 Hz, 

1H), 4.23 (s, 1H), 4.11 (s, 5H), 4.08 (s, 2H), 4.05 (s, 1H), 2.09 (s, 2H),  1.93-1.86 (m, 

1H), 0.83 (d, J = 8.5 Hz, 3H), 0.77 (d, J = 8.5 Hz, 3H), 0.39 (s, 3H), 0.38 (s, 3H). 13C 

NMR (126 MHz, CDCl3): δ ppm -1.8, -1.6, 17.4, 18.1, 35.5, 66.4, 66.7, 67.2, 67.8, 68.6. 

 

 

229s was prepared according to the general Method C in 31% yield. Clear and colorless 

liquid. Rf (hexanes): 0.70. 1H NMR (500 MHz, CDCl3): δ ppm 2.29 (s, 1H), 2.17 (s, 1H), 

2.09 (s, 2H), 1.80-1.75 (m, 1H), 1.68-1.62 (m, 2H), 1.56-1.51 (m, 1H), 1.40-1.23 (m, 

3H), 1.20-1.09 (m, 2H), 0.92-0.84 (m, 6H), 0.34 (s, 6H). 13C NMR (126 MHz, CDCl3): δ 

ppm 0.0, 17.2, 17.7, 17.8, 23.3, 28.5, 36.9, 37.0, 37.5, 43.7, 45.1, 86.9. 
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229t was prepared according to the general Method C in 45% yield. Clear and colorless 

liquid. Rf (hexanes): 0.56. 1H NMR (500 MHz, CDCl3): δ ppm 2.08-2.03 (m, 2H), 1.64-

1.52 (m, 5H), 1.32-1.25 (m, 4H), 0.92-0.83 (m, 16H), 0.34-0.23 (m, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm 0.1, 0.4, 16.2, 17.7, 22.5, 22.6, 24.1, 27.6, 32.4, 34.0, 37.6, 39.0, 

47.9, 79.1.  

 

 

229u was prepared according to the general Method A in 67% yield. Colorless liquid. Rf 

(hexanes): 0.58. 1H NMR (500 MHz, CDCl3): δ ppm 3.84 (m, 1H), 2.08 (s, 2H), 1.89-

1.81 (m, 2H), 1.71-1.66 (m, 1H), 1.58-1.52 (m, 2H), 1.24-1.18 (m, 2H), 1.09-1.06 (m, 

12H), 0.96-0.94 (d, J = 6.9 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ ppm 12.4, 17.4, 

17.7, 17.8, 18.4, 21.4, 31.1, 34.6, 42.7, 81.3. 

 

 

229v was prepared according to the general Method A in 75% yield. Clear and colorless 

liquid. Rf (hexanes): 0.60. 1H NMR (500 MHz, CDCl3): δ ppm 3.37-3.32 (m, 1H), 2.09 
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(s, 2H), 1.91-1.86 (m, 1H), 1.72-1.67 (m, 2H), 1.59-1.53 (m, 1H), 1.41-1.08 (m, 6H), 

1.11-1.06 (m, 12H), 0.99-0.96 (m, 4H). 13C NMR (126 MHz, CDCl3): δ ppm 12.7, 12.8, 

17.5, 17.6, 17.8, 18.0, 19.2, 25.0, 25.3, 33.3, 35.9, 40.3, 77.7. 

 

 

229w was prepared according to the general Method A in 75% yield. Colorless liquid. Rf 

(hexanes/EtOAc = 50:1): 0.66. 1H NMR (500 MHz, CDCl3): δ ppm 3.19 (s, 1H), 2.08-

2.04 (m, 3H), 2.03-2.00 (m, 1H), 1.74-1.70 (m, 2H), 1.48-1.44 (m, 1H), 1.38-1.33 (m, 

1H), 1.22-1.15 (m, 4H), 1.10-1.03 (m, 14H), 0.95 (d, J = 7.0 Hz, 3H). 13C NMR (126 

MHz, CDCl3): δ ppm 12.4, 15.3, 17.4, 17.5, 17.7, 17.8, 21.3, 24.7, 36.5, 40.7, 46.0, 46.8, 

83.5. 

 

229x was prepared according to the general Method C in 35% yield. Colorless liquid. 1H 

NMR (500 MHz, CDCl3): δ ppm 4.72-4.68 (m, 2H), 2.06-2.01 (m, 3H), 1.96-1.92 (m, 

1H), 1.80-1.77 (m, 1H), 1.71 (s, 3H), 1.66-1.61 (m, 1H), 1.57-1.48 (m, 3H), 1.49-1.44 

(m, 1H), 1.31-1.25 (m, 1H), 1.20 (s, 3H), 0.95-0.92 (m, 3H), 0.89-0.87 (m, 1H), 0.30 (s, 

6H). 13C NMR (126 MHz, CDCl3): δ ppm 0.2, 16.3, 20.9, 26.9, 28.0, 34.0, 34.7, 37.9, 

38.0, 40.0, 108.4, 150.6. 
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229y was prepared according to the general Method A in 82% yield. Colorless liquid. Rf 

(hexanes): 0.46. 1H NMR (500 MHz, CDCl3): δ ppm 3.71-3.65 (m, 1H), 2.09 (s, 2H), 

1.80-1.74 (m, 1H), 1.54-1.49 (m, 1H), 1.45-1.43 (m, 2H), 1.26-1.18 (m, 4 H), 1.12-1.09 

(m, 12H), 0.92-086 (m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 12.8, 17.2, 17.6, 17.9, 

18.2, 22.6, 22.7, 28.3, 31.2, 32.6, 34.7, 78.0. 

 

 

229z was prepared according to the general Method A in 70% yield. Clear and colorless 

liquid. Rf (hexanes): 0.30. 1H NMR (500 MHz, CDCl3): δ ppm 3.71 (t, J = 6.7 Hz, 2H), 

2.08 (s, 2H), 1.59-1.53 (m, 3H), 1.24-1.18 (m, 4H), 1.08 (m, 12H), 0.88 (d, J = 6.7 Hz, 

6H). 13C NMR (126 MHz, CDCl3): δ ppm 12.3, 17.4, 17.7, 22.6, 27.8, 30.7, 34.9, 84.2. 

 

 

229aa was prepared according to the general Method C in 40% yield. Clear and colorless 

liquid. Rf (hexanes): 0.39. 1H NMR (500 MHz, CDCl3): δ ppm 3.67-3.61 (m, 1H), 2.03 
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(s, 2H), 1.56-1.41 (m, 6H), 1.28-1.10 (m, 4H), 0.90-0.86 (m, 12H), 0.29 (s, 6H). 13C 

NMR (126 MHz, CDCl3): δ ppm -2.0, 22.5, 22.6, 28.1, 34.6, 34.7, 35.0, 35.2, 74.0. 

 

 

229ab was prepared according to the general Method C in 29% yield. Clear and colorless 

liquid. Rf (hexanes): 0.65. 1H NMR (500 MHz, CDCl3): δ ppm 2.02 (s, 2H), 1.50-1.38 

(m, 9H), 1.17-1.10 (m, 6H), 0.89 (d, J = 8.2 Hz, 18H), 0.29 (s, 6H). 13C NMR (126 MHz, 

CDCl3): δ ppm 0.4, 22.8, 28.7, 32.8, 37.4, 79.6. 

 

 

229ac was prepared according to the general Method B in 36% yield. Clear and colorless 

oil. Rf (hexanes): 0.50. 1H NMR (500 MHz, CDCl3): δ ppm 7.18 (d, J = 8.0 Hz, 1H), 7.00 

(d, J = 8.0 Hz, 1H), 6.9 (s, 1H), 3.60 (d, J = 9.5 Hz, 1H), 3.26 (d, J = 9.5 Hz, 1H), 2.86-

2.82 (m, 3H), 2.25 (d, J = 12.5 Hz, 1H), 2.07 (s, 2H), 1.80-1.73 (m, 3H), 1.66-1.50 (m, 

5H), 1.39-1.30 (m, 2H), 1.25-1.20 (m, 9H), 1.08-1.02 (m, 12H), 0.85 (s, 3H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.3, 17.4, 17.5, 17.8, 18.8, 19.0, 24.0, 25.6, 30.5, 33.4, 35.3, 

38.3, 38.4, 43.6, 72.4, 123.7, 124.4, 126.8, 135.0, 147.5. 

O
Si

IMe Me

229ab

O

i-Pr

Si

I

i-Pr
i-Pr

229ac



 

	 	150	

 

 

40% isolated yield. Clear and colorless oil. Rf (hex): 0.38.  1H NMR (500 MHz, C6D6): δ 

ppm 7.33 (d, J= 7.6 Hz, 1H), 7.20 (t, J= 7.3 Hz, 2H), 7.12-7.09 (m, 2H), 7.08 (d, J= 7.0 

Hz, 2H), 6.96 (t, J= 7.6 Hz, 1H), 6.83 (d, J= 7.6 Hz, 1H), 2.88 (dd, J= 7.0, 2.3  Hz, 2H), 

2.00 (s, 2H), 1.51-1.47 (m, 2H), 1.22-1.03 (m, 14H), 0.99-0.89 (m, 2H). LRMS (EI) 

calcd. for C23H31IOSi [M]: 478.49, found: 478.01. 
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7.3.2. Visible Light-Induced Pd-catalyzed Desaturation of Aliphatic Alcohols  

General Procedure A for Desaturation of Alcohols using T1. 

An oven dried 5 mL Wheaton V-vial containing a stirring bar was charged with silyl 

tethered alcohols 229 (0.2 mmol), Pd(OAc)2 (4.49 mg, 0.02 mmol), ligand L (20.6 mg, 

0.04 mmol) and Cs2CO3 (130 mg, 0.4 mmol) under N2 atmosphere (glovebox). Dry 

degassed benzene (2 mL) was added and the reaction vessel was capped with a 

pressure screw cap. The vial was irradiated with 34 W Blue LED lamp (Kessil 

KSH150B LED Grow Light) for 12-48 h (monitored by GC/MS), with cooling from a 

fan (vial temperature reached 37 °C). The vial distance from the lamp was about 2-3 

cm. After completion, judged by GC/MS analysis, 10 equiv of TBAF (2 mL, 1 M 

THF) was added directly to the reaction mixture. The reaction was stirred for an 

additional 2-12 h (monitored by GC/MS).The resulting mixture was diluted with DCM 

(10 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was 

purified by filtration through silica gel (hexanes:EtOAc = 9:1 to 4:1) affording the 

corresponding desaturated alcohols. 

General Procedure B for Desaturation of Alcohols using T2. 

An oven dried 3 mL Wheaton V-vial containing a stirring bar was charged with silyl 

tethered alcohols 229 (0.2 mmol), Pd(OAc)2 (4.49 mg, 0.02 mmol), ligand L (20.6 mg, 

0.04 mmol) and Cs2CO3 (130 mg, 0.4 mmol) under N2 atmosphere (glovebox). Dry 

degassed benzene (2 mL) was added and the reaction vessel was capped with a 

pressure screw cap. The vial was irradiated with 34 W Blue LED lamp (Kessil 

KSH150B LED Grow Light) for 12-48 h (monitored by GC/MS), with cooling from a 

fan (vial temperature reached 37 °C). The vial distance from the lamp was about 2-3 
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cm. After completion, judged by GC/MS analysis, 5 equiv of TBAF (1 mL, 1 M THF) 

was added directly to the reaction mixture. The reaction was stirred for an additional 2-

12 h (monitored by GC/MS). The resulting mixture was diluted with DCM (10 mL), 

filtered (Celite), and concentrated under a reduced pressure. The residue was purified 

by filtration through silica gel (hexanes:EtOAc = 9:1 to 4:1) affording the 

corresponding desaturated alcohols. 

 

 

230a was prepared according to the general procedure A in 77% yield. Slightly yellow 

oil. Rf (hexanes/EtOAc = 4:1): 0.44. 1H NMR (500 MHz, CDCl3): δ ppm 4.86 (s, 1H), 

4.81 (s, 1H), 3.71 (t, J = 6.3 Hz,  2H), 2.29 (t, J = 6.6 Hz, 2H), 2.01 (t, J = 7.7 Hz,  2H), 

1.57-1.51 (m, 3H), 1.46-1.40 (m, 2H), 1.20-1.13 (s, 2H), 0.90-0.86 (m, 7H). 13C NMR 

(126 MHz, CDCl3): δ ppm 12.7, 17.1, 22.6, 25.5, 27.9, 36.7, 39.1, 62.9, 110.4, 146.9. 

HRMS (EI+) calcd. for C10H20O [M]: 156.1514, found: 155.1512. 

 

 

230b was prepared according to the general procedure A (two-step procedure) in 48% 

yield. Clear and colorless oil. Rf (hexanes/EtOAc = 1:4): 0.25. 1H NMR (500 MHz, 

CDCl3): δ ppm 5.01 (s, 2H), 3.79 (t, J = 6.2 Hz, 4H), 2.36 (t, J = 6.2 Hz, 4H), 1.75 (bs, 

2H). 13C NMR (126 MHz, CDCl3): δ ppm 38.8, 60.6, 114.3, 143.0. LRMS (EI+) calcd. 

for C6H12O2 [M-H2O]: 98.16, found 98.10. 
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230c was prepared according to the general procedure A (two-step procedure) in 47% 

yield. Clear and colorless oil. Rf (hexanes/EtOAc = 1:4): 0.61. 1H NMR (500 MHz, 

CDCl3): δ ppm 5.18 (s, 1H), 4.90 (s, 1H), 3.83 (t, J = 5.8 Hz, 2H), 2.46 (t, J = 5.1 Hz, 

2H), 1.42 (s, 6H), 1.28 (bs, 2H). 13C NMR (126 MHz, CDCl3): δ ppm 29.7, 34.7, 63.1, 

72.7, 110.1, 153.3. HRMS (EI+) calcd. for C7H14O2 [M]: 129.09156, found: 129.09097. 

 

 

230d was prepared according to the general procedure A in calcd. 58% yield. Yellow oil. 

Rf (hexanes/EtOAc = 4:1): 0.40. 1H NMR (500 MHz, CDCl3): δ ppm 5.67 (t, J = 6.6 Hz, 

1H), 3.63 (t, J = 6.2 Hz, 2H), 2.24 (t, J = 5.8 Hz, 2H), 2.13-2.09 (m, 4H), 1.77-1.72 (m, 

2H), 1.51-1.45 (m, 5H). 13C NMR (126 MHz, CDCl3): δ ppm 26.4, 26.9, 27.3, 28.4, 32.5, 

43.3, 59.3, 129.8, 140.7. LRMS (EI+) calcd. for C9H16O [M]: 140.23, found: 140.00. 

 

 

230e was prepared according to the general procedure A in calcd. 56% yield of 2e. White 

solid. Rf (hexanes/EtOAc = 1:1): 0.48. 1H NMR (500 MHz, CDCl3): δ 4.97 (s, 1H), 4.94 

(s, 1H), 4.11 (br, 1H), 3.68 (s, 2H), 1.79 (s, 3H), 1.45 (s, 9H), 1.25 (bs, 1H). 13C NMR 

HO OH
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(126 MHz, CDCl3): δ 20.4, 28.4, 57.4, 63.8, 79.8, 112.3, 142.6, 155.9. HRMS (ESI) 

calcd. for C10H19O3 [M+Na]: 224.1263, found: 224.1260.  

 

 

230f was prepared according to the general procedure B in 79% yield. Clear and colorless 

oil. Rf (hexanes/EtOAc = 4:1): 0.39. 1H NMR (500 MHz, CDCl3): δ ppm 4.90 (s, 1H), 

4.85 (s, 1H), 3.46 (t, J = 5.4 Hz, 1H), 2.05-2.03 (s, J = 12.5 Hz, 1H), 1.90-1.85 (m, 2H), 

1.71 (s, 3H), 1.69-1.66 (m, 1H), 1.50 (bs, 1H), 1.36-1.25 (m, 2H), 0.98-0.92 (m, 6H). 13C 

NMR (126 MHz, CDCl3): δ ppm 19.2, 22.2, 29.6, 31.4, 34.3, 42.6, 55.1, 70.3, 112.9, 

146.6. HRMS (EI+) calcd. for C10H18O [M]: 154.1358, found: 154.1360. 

 

 

230g was prepared according to the general procedure B in calcd. 65% yield of 2g. Clear 

and colorless oil. Rf (hexanes/EtOAc = 4:1): 0.40. 1H NMR (500 MHz, CDCl3): δ ppm 

5.09 (t, J = 6.4 Hz, 1H), 4.89 (s, 1H), 4.85 (s, 1H), 3.93-3.87 (m, 1H), 2.24-2.02 (m, 6H), 

1.75 (bs, 1H), 1.68 (s, 3H), 1.61 (s, 3H), 1.21 (d, J = 6.1 Hz, 2H). 13C NMR (126 MHz, 

CDCl3): δ ppm 17.7, 22.9, 25.6, 26.3, 35.8, 46.5, 65.1, 70.3, 112.3, 123.7, 131.9, 146.6. 

HRMS (ES+) calcd. for C11H20O [M+1]: 169.1592, found: 169.1597. 
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230h was prepared according to the general procedure A (two-steps) in calcd. 69% yield. 

Clear and colorless oil. Rf (hexanes): 0.62. 1H NMR (500 MHz, CDCl3): δ ppm 4.75 (s, 

1H), 4.72 (s, 1H), 3.74-3.71 (m, 1H), 2.20-2.10 (m, 2H), 1.72 (s, 3H), 1.00 (d, 14H), 

0.91-0.88 (m, 8H), 0.84 (d, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3): δ ppm -7.3, 

13.6, 16.1, 17.5, 17.6, 18.8, 22.8, 32.2, 42.6, 74.9, 112.6, 143.2. LRMS (ES+) calcd. for 

C15H32OSi [M]: 256.49, found: 255.20. 

 

 

230i was prepared according to the general procedure B in 80% yield. Clear and colorless 

oil. Rf (hexanes/EtOAc = 4:1): 0.55. 1H NMR (500 MHz, CDCl3): δ ppm 4.88 (s, 1H), 

4.80 (s, 1H), 3.68 (m, 1H), 2.23 (dd, J = 13.6, 2.9 Hz, 1H), 2.08 (dd, J = 13.6, 9.5 Hz, 

1H), 1.76 (s, 3H), 1.47-1.34 (m, 4H), 1.28-1.24 (m, 10H), 0.93-0.83 (m, 6H). 13C NMR 

(126 MHz, CDCl3): δ ppm 10.8, 14.1, 22.4, 24.6, 25.7, 28.9, 29.1, 32.7, 34.3, 38.9, 46.2, 

69.1, 113.4, 142.9. HRMS (EI+) calcd. For C14H28O [M]: 212.2140, found 212.2140.  
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230j was prepared according to the general procedure B in 73% yield. Clear and colorless 

oil. Rf (hexanes/EtOAc = 4:1): 0.61. 1H NMR (500 MHz, CDCl3): δ ppm 4.93 (s, 1H), 

4.75 (s, 1H), 2.2 (s, 1H), 1.84-1.78 (m, 5H), 1.44-1.36 (m, 5H), 0.97-0.95 (m, 14H). 13C 

NMR (126 MHz, CDCl3): δ ppm 24.0, 24.7, 24.9, 24.6, 48.3, 48.6, 75.3, 114.9, 143.0. 

LRMS (ES+) calcd. for C13H26O [M]: 198.35, found: 198.20.   

 

 

230k was prepared according to the general procedure B in calcd. 52% yield. Clear and 

colorless oil. Rf (hexanes/EtOAc = 4:1): 0.62. 1H NMR (500 MHz, CDCl3): δ ppm 5.88-

5.80 (m, 1H), 5.14-5.08 (m, 2H), 2.20 (d, J = 6.6 Hz, 2H), 1.49-1.25 (m, 8H), 0.93-0.88 

(m, 6H). 13C NMR (126 MHz, CDCl3): δ ppm 14.6, 16.7, 41.5, 43.4, 43.9, 74.9, 118.4, 

134.0. HRMS (EI+) calcd. for C10H19O [M-1]: 155.1436, found 155.1431.  

2k’ 1H NMR (500 MHz, CDCl3): δ ppm 5.61-5.57 (m, 1H), 5.44 (dd, J = 15.4, 1.5 Hz, 

1H), 1.70 (dd, J = 7.7, 1.5 Hz, 2H), 1.49-1.25 (m, 8H), 0.93-0.88 (m, 6H). 13C NMR (126 

MHz, CDCl3): δ ppm 14.7, 16.8, 17.7, 41.7, 74.9, 122.7, 137.2. HRMS (EI+) calcd. for 

C10H19O [M]: 155.1436, found 155.1431.  
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230l was prepared according to the general procedure A (two-steps) in 53% yield. White 

solid. Rf (hexanes/EtOAc = 4:1): 0.39. 1H NMR (500 MHz, CDCl3): δ ppm 5.95 (s, 1H), 

5.91 (d, J = 5.5 Hz, 1H), 5.69 (s,1H), 3.78 (d, J = 11.3 Hz, 1H), 3.16 (d, J = 11.0 Hz, 1H), 

2.30-2.22 (m, 2H), 2.13-2.01 (m, 2H), 1.88-1.17 (m, 6H), 1.07-0.98 (m, 12H), 0.89 (s, 

3H).  13C NMR (126 MHz, CDCl3): δ ppm 17.1, 17.4, 17.8, 20.1, 21.3, 22.3, 27.9, 28.2, 

33.8, 35.3, 38.2, 40.9, 47.7, 70.5, 117.3, 119.5, 121.7, 136.2, 148.3, 148.6. HRMS (ES+) 

calcd. For C20H30O [M+1]: 287.2375, found: 287.2367.   

 

 

2m was prepared according to the general procedure A in calcd. 40% yield of 2m. White 

solid. Rf (hexanes/EtOAc = 1:1): 0.59. 1H NMR (500 MHz, CDCl3): δ ppm 5.44 (m, 1H), 

4.03 (m, 1H), 2.78 (d, J = 15.5 Hz, 1H), 2.46 (dd, J = 19.1, 8.8 Hz, 1H), 2.13-1.15 (m, 

18H), 1.04 (s, 3H), 0.89 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 13.5, 18.7, 20.1, 

21.9, 28.9, 30.9, 31.4, 33.1, 35.8, 37.8, 39.8, 47.5, 50.4, 51.8, 66.9, 132.0, 138.9, 221.2. 

HRMS (ES+) calcd. for C19H28O2 [M+1]: 289.2168, found: 289.2161.  
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230n was prepared according to the general procedure B in 65% yield. White solid. Rf 

(hexanes/EtOAc = 9:1): 0.62. 1H NMR (500 MHz, CDCl3): δ ppm 5.40-5.39 (d, J = 5.4 

Hz, 1H), 2.38 (dd, J = 14.3, 2.2 Hz, 1H), 2.03-0.85 (m, 51H), 0.68 (s, 3H).  13C NMR 

(126 MHz, CDCl3): δ ppm 11.8, 18.6, 18.7, 20.9, 22.5, 22.6, 22.7, 22.8, 23.8, 24.9, 28.0, 

28.2, 28.6, 31.9, 32.0, 32.2, 33.0, 35.1, 35.8, 36.2, 37.0, 39.5, 39.8, 40.6, 42.3, 44.1, 50.4, 

56.1, 56.7, 71.9, 123.9, 139.9. HRMS (ES+) calcd. For C32H56O [M]: 456.4331, found 

456.4331. 

 

230o-1 was prepared according to the general procedure A in calcd. 56% yield (80% 

yield, r.r. = 3.1:1). Clear and colorless oil. Rf (hexanes/EtOAc = 4:1): 0.47. 1H NMR (500 

MHz, CDCl3): δ ppm 4.93 (s, 1H), 4.83 (s, 1H), 4.05 (s, 1H), 1.72 (s, 3H), 1.55-1.51 (m, 

2H), 1.44 (bs, 1H), 1.34-1.26 (m, 8H), 0.88 (t, J = 5.4 Hz, 3H). 13C NMR (500 MHz, 

CDCl3): δ ppm 14.1, 17.5, 22.6, 25.5, 29.2, 31.8, 34.9, 76.0, 110.9, 147.7. HRMS (EI+) 

calcd. for C10H20O [M]: 140.1201, found: 140.1197.  
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230o-2 was prepared according to the general procedure B in calcd. 38% yield (93%, r.r. 

= 1:1.5). Slightly yellow oil. Rf (hexanes/EtOAc = 4:1): 0.53. 1H NMR (500 MHz, 

CDCl3): δ ppm 5.56-5.52 (m, 1H), 5.43-5.39 (m, 1H), 3.33 (m, 1H), 2.27 (m, 1H), 2.07-

1.98 (m, 2H), 1.71-1.64 (m, 1H), 1.59 (d, J = 11.4 Hz, 1H), 1.42-1.35 (m, 2H), 1.29-1.25 

(m, 1H), 0.94-0.87 (m, 9H). 13C NMR (500 MHz, CDCl3): δ ppm 13.6, 17.6, 18.7, 22.6, 

32.9, 34.8, 37.6, 75.5, 126.5, 134.4. HRMS (EI+) calcd. for C10H20O [M]: 140.1201, 

found: 140.1197. 

 

 

230p was prepared according to the general procedure B in 76% yield (NMR).1H NMR 

(500 MHz, C6D6): δ ppm 5.09 (s, 1H), 4.83 (s, 1H), 4.31-4.26 (m, 1H), 1.77 (s, 3H), 1.31 

(d, J = 6.4 Hz, 1H), 1.19-1.11 (m, 14H), 0.12 (s, 3H). LRMS (EI+) calcd. for C12H26OSi 

[M+1]: 214.42, found: 214.10.    
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230q was prepared according to the general procedure B in 87% yield (NMR). 1H NMR 

(500 MHz, C6D6): δ ppm 4.97 (s, 1H), 4.89 (s, 1H), 3.70 (d, J = 7.3 Hz, 1H), 1.83-1.79 

(m, 3H), 1.73 (s, 3H), 1.10 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H), 0.24 (s, 9H). 

HRMS (ES+) calcd. for C10H22OSi [M+1]: 186.37, found: 186.10.  

 

 

230r was prepared according to the general procedure B in 48% yield. Rf 

(hexanes/EtOAc = 9:1): 0.38. 1H NMR (500 MHz, CDCl3): δ ppm 5.02 (s, 1H), 4.80 (s, 

2H), 4.27-4.17 (m, 9H), 2.20 (bs, 1H), 1.69 (s, 3H).  13C NMR (126 MHz, CDCl3): δ ppm 

18.2, 65.2, 67.8, 67.9, 68.4, 73.6, 92.9, 110.9, 146.6. HRMS (ES+) calcd. for C14H16OFe 

[M+1]: 257.029, found: 257.0638. 

 

 

230s was prepared according to the general procedure B in 82% yield. Rf 

(hexanes/EtOAc = 4:1): 0.60. 1H NMR (500 MHz, CDCl3): δ ppm 4.91 (s, 1H), 4.78 (s, 

2H), 2.40 (bs, 1H), 2.20 (bs, 1H), 2.04-1.94 (m, 2H), 1.82 (s, 3H), 1.59-0.89 (m, 7H). 13C 

NMR (126 MHz, CDCl3): δ ppm 18.7, 22.1, 28.8, 37.0, 38.9, 44.1, 44.8, 81.2, 109.4, 

149.8. HRMS (EI+) calcd. for C10H16O [M]: 152.12012, found: 152.11963. 
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230t was prepared according to the general procedure B 66% yield. Rf (hexanes/EtOAc = 

4:1): 0.60. 1H NMR (500 MHz, CDCl3): δ ppm 5.01 (s, 1H), 4.79 (s, 1H), 1.80 (s, 3H), 

1.68-1.57 (m, 6H), 1.45-1.40 (m, 2H), 0.97-0.90 (m, 1H), 0.87 (s, 9H). 13C NMR (126 

MHz, CDCl3): δ ppm 16.8, 9.0, 22.5, 27.5, 29.1, 32.3, 36.2, 46.6, 73.2, 108.7, 152.5. 

HRMS (ES+) calcd. for C13H24O [M]: 196.18272, found: 196.18239. 

 

 

230u was prepared according to the general procedure A (without TBAF) 49% yield. Rf 

(hexanes): 0.24. 1H NMR (500 MHz, CDCl3): δ ppm 5.46 (s, 1H), 4.86 (s, 1H), 2.36-2.15 

(m, 4H), 1.73 (s, 3H), 1.04-0.92 (m, 14H), 0.60 (s, 1H). 13C NMR (126 MHz, CDCl3): δ 

ppm -7.7, 13.2, 17.4, 29.6, 34.5, 39.3, 80.1, 126.8, 142.2. HRMS (EI+) calcd. for 

C13H26OSi [M]: 226.17530, found: 226.17480. 

 

 

230v was prepared according to the general procedure A (without TBAF) 50% yield. Rf 

(hexanes): 0.42. 1H NMR (500 MHz, CDCl3): δ ppm 4.91 (s, 1H), 4.69 (s, 1H), 4.06 (s, 

1H), 2.40-2.38 (m, 1H), 1.99-1.94 (m, 1H), 1.84-1.79 (m, 2H), 1.60-1.56 (m, 1H), 1.46-

1.38 (m, 3H), 1.02-0.90 (m, 14H), 0.02 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm -

t-Bu

OH
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8.1, 13.2, 17.5, 23.8, 27.9, 33.6, 37.6, 73.2, 105.4, 151.5. HRMS (EI+) calcd. for 

C14H28OSi [M]: 240.19095, found: 240.19050. 

 

 

230w was prepared according to the general procedure A (without the TBAF step) in 

42% yield. Slightly yellow oil. Rf (hexanes/EtOAc = 50:1): 0.61. 1H NMR (500 MHz, 

CDCl3): δ ppm 5.01 (s, 1H), 4.92 (s, 1H), 3.89 (s, 1H), 2.69 (s, 1H), 2.17 (s, 1H), 1.82-

1.79 (m, 1H), 1.55 (s, 2H), 1.27-1.26 (m, 1H), 1.21-1.16 (m, 2H), 1.02-0.95 (m, 12H), 

0.95-0.91 (m, 2H), 0.07 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm -7.9, 13.2, 13.4, 

17.4, 17.5, 23.9, 29.2, 35.4, 43.9, 44.9, 106.2, 159.2. LRMS (ES+) calcd. for C15H28OSi 

[M]: 252.1, found: 252.1. 

 

230x was prepared according to the general procedure B 70% yield. Rf (hexanes/EtOAc = 

9:1): 0.42. 1H NMR (500 MHz, CDCl3): δ ppm 4.88 (s, 1H), 4.78 (s, 1H), 4.74 (s, 1H), 

4.71 (m, 1H), 2.46 (t, J = 12.1 Hz, 1H), 2.20 (d, J = 12.4 Hz, 2H), 1.98 (t, J = 11.4 Hz, 

1H), 1.89-1.84 (m, 1H), 1.74 (m, 3H), 1.62-1.60 (m, 1H), 1.47-1.43 (m, 1H), 1.40 (s, 3H), 

1.36 (bs, 1H). 13C NMR (126 MHz, CDCl3): δ ppm 20.8, 26.9, 27.5, 37.5, 40.2, 46.7, 

70.8, 107.5, 108.3, 149.5, 152.4. LRMS (EI+) calcd. for C11H18O [M]: 166.26, found: 

166.10. 
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230y was prepared according to the general Method D in 73% yield. 85% purity (GC). 

Colorless liquid. Rf (hexanes/EtOAc 9:1): 0.40. For major isomer 2y, 1H NMR (500 

MHz, CDCl3): δ ppm 4.94 (s, 1H), 4.84 (s, 1H) 4.06-4.03 (m, 1H), 1.74 (s, 3H), 1.57-1.53 

(m, 2H), 1.27-1.25 (m, 1H), 1.04-0.99 (m, 2H), 0.93-0.89 (m, 6 H). 13C NMR (126 MHz, 

CDCl3): δ ppm 17.2, 17.4, 22.6, 32.7, 34.6, 76.3, 111.1, 147.6. LRMS (EI+) calcd. for 

C9H18O [M]: 142.1, found: 142.1. 

 

 

230z was prepared according to the general procedure A (without the TBAF step) in 

calcd. 57% yield. Yellow oil. Rf (hexanes/EtOAc = 20:1): 0.41. 1H NMR (500 MHz, 

CDCl3): δ ppm 4.69 (d, J = 11.6 Hz, 2H), 3.64-3.56 (m, 2H), 2.07-1.99 (m, 2H), 1.72 (s, 

3H), 1.69-1.64 (s, 2H), 1.03-0.99 (m, 14H), 0.01 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 

ppm -8.7, 12.9, 17.4, 22.4, 30.9, 33.9, 63.0, 109.7, 127.2. LRMS (EI+) calcd. for 

C13H28OSi [M]: 228.45, found: 229.10. 
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230aa was prepared according to the general procedure B in calcd. 77% yield. Clear and 

colorless oil. Rf (hexanes/EtOAc = 4:1): 0.54. 1H NMR (500 MHz, CDCl3): δ ppm 4.72 

(s, 2H), 3.60-3.54 (m, 1H), 2.17-2.08 (m, 2H), 1.74 (s, 3H), 1.65-1.16 (m, 8H), 0.99-0.88 

(m, 6H). 13C NMR (126 MHz, CDCl3): δ ppm 22.4, 22.5, 22.7, 28.1, 34.1, 35.2, 35.3, 

72.1, 110.0, 145.9. HRMS (EI+) calcd. for C11H22O [M]: 170.16707, found: 170.16688. 

 

 

230ab was prepared according to the general procedure B in 89 % yield .Clear and 

colorless oil. Rf (hexanes/EtOAc = 4:1): 0.63. 1H NMR (500 MHz, CDCl3): δ ppm 4.70 

(s, 2H), 2.03-2.00 (m, 2H), 1.54 (s, 3H), 1.49-1.38 (m, 9H), 1.19-1.14 (m, 4H), 0.90-0.89 

(m, 12H). 13C NMR (126 MHz, CDCl3): δ ppm 22.7, 28.6, 31.7, 32.4, 36.8, 37.2, 74.3, 

109.7, 146.4. HRMS (ESI+) calcd. for C16H32O [M]+Na: 263.2351, found: 263.2359. 

 

 

230ac was prepared according to the general procedure A (two-steps) in 40% yield. Clear 

and colorless oil. Rf (hexanes/EtOAc = 4:1): 0.28. 1H NMR (500 MHz, CDCl3): δ ppm 

OH
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7.10 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 8.1 Hz, 1H), 6.90 (s, 1H), 6.55 (dd, J = 9.5, 2.9 Hz, 

1H), 5.97 (d, J = 9.2, 2.2 Hz, 1H), 3.49 (d, J = 11.0 Hz, 1H), 3.27 (d, J = 11.0 Hz, 1H), 

2.89-2.82 (m, 1H), 2.40 (bs, 1H), 2.18 (d, 12.8 Hz, 1H), 1.83-1.74 (m, 2H), 1.64-1.41 (m, 

4H), 1.28-1.23 (m, 6H), 1.08 (s, 3H), 1.02 (s, 3H). 13C NMR (126 MHz, CDCl3): δ ppm 

18.2, 18.3, 20.8, 24.0, 33.5, 29.7, 33.7, 34.4, 35.7, 37.2, 45.1, 71.6, 121.8, 124.6, 125.7, 

128.5, 128.7, 132.6, 145.6, 146.2. HRMS (ES+) calcd. for C20H28O [M+1]: 285.2218, 

found: 285.2224. 

 

 

237 was prepared according to the general procedure in 83% NMR yield. 1H NMR (500 

MHz, C6D6): δ ppm 7.62 (dd, J= 7.7, 1.5 Hz, 1H), 7.36 (d, J= 10.3 Hz, 2H), 7.21 (t, J= 

7.7 Hz, 2H), 7.14-7.06 (m, 5H), 6.98 (t, J= 7.3 Hz, 1H), 6.94 (d, J= 8, 1H), 6.66 (d, 

J=15.04, 1H), 1.22-1.11 (m, 14H), 0.25 (s, 3H). 13C-dept displayed no CH2 signals in the 

olefin region. LRMS (EI) calcd. for C23H30OSi [M]: 350.58, found: 350.20.	
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APPENDICES 
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1H Spectrum of 75a 

	
13C Spectrum of 74a 

	
13C DEPT Spectrum of 74a 
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1H Spectrum of 75b 

	
13C Spectrum of 75b	

	
13C DEPT Spectrum of 75b 
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1H Spectrum of 75c 

	
13C Spectrum of 2c 

	
13C DEPT Spectrum of 2c 
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1H Spectrum of 75d 

	
13C Spectrum of 75d 

	
13C DEPT Spectrum of 75d	
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1H Spectrum of 75e  

	
13C Spectrum of 75e 

	
13C DEPT Spectrum of 75e 
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1H Spectrum of 75f 

	
13C Spectrum of 75f 

	
13C DEPT Spectrum of 75f 
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1H Spectrum of 75g 

	
13C Spectrum of 75g 

	
13C DEPT Spectrum of 75g 
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1H Spectrum of 2h  

	
13C Spectrum of 2h 
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1H Spectrum of 75i  

	
13C Spectrum of 75i 

	
13C DEPT Spectrum of 75i 
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1H Spectrum of 75j and 75j’  
 

	
	
13C Spectrum of 75j and 2j’ 
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1H Spectrum of 75l  

	
13C Spectrum of 75l 
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1H Spectrum of 75m  

	
13C Spectrum of 75m 

	
13C DEPT Spectrum of 75m 
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1H Spectrum of 75o 
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1H Spectrum of 75p 
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1H Spectrum of 77a  

	
	
13C Spectrum of 77a 

	
	
13C DEPT Spectrum of 77a 
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1H Spectrum of 77c 
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13C Spectrum of 97 
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1H Spectrum of 106  
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1H Spectrum of 78 

 
13C Spectrum of 78 
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1H Spectrum of 79 
 

	
13C Spectrum of 79 
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1H Spectrum of 80  
 

 
13C Spectrum of 80 
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1H Spectrum of 83 
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CH2

CH3 OH

CH3

OH

MP1411.001.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N
or

m
al

iz
ed

 In
te

ns
ity

7.151.741.301.121.191.021.002.141.89

1.
24

1.
26

1.
32

1.
59

1.
60

1.
62

1.
62

1.
63

1.
63

2.
00

2.
01

2.
02

2.
03

2.
04

3.
32

3.
34

3.
34

3.
36

3.
36

3.
54

3.
54

3.
56

3.
57

3.
58

4.
94

5.
30

5.
55

7.
26

7.
28

7.
29

7.
30

7.
32

7.
42

7.
44

7.
45

7.
46

8

CH2

CH3 OH

CH3

OH

MP1411.002.esp

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

21
.9

0

26
.9

6

41
.6

6

59
.2

5

76
.7

7
77

.0
2

77
.2

7
81

.7
7

10
3.

42

12
0.

20
12

2.
89

12
8.

11
12

9.
14

15
0.

58

15
4.

91

8

13	

13	

OHMe

Me

OH



 

	 	201	

1H Spectrum of 86  
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1H Spectrum of 112b 
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13C DEPT Spectrum of 112b  
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1H Spectrum of 117a 
MP1337RD.001.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

6.902.191.001.021.011.061.071.01

7.
60

7.
60 7.
59 7.
44

7.
44

7.
42

7.
42

7.
34 7.

32
7.

20
7.

18
6.

53 6.
52

6.
50 6.
49

6.
19 6.

18
6.

16
6.

15

2.
04 1.

72
1.

71
1.

70
1.

70
1.

69

0.
55

0.
46 0.

45
0.

42
0.

41
0.

40
0.

25

	
13C Spectrum of 117a 

MP1337RD.002.esp

168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 -16
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

14
1.

98

13
3.

44
13

2.
94

13
0.

74
12

9.
79

12
7.

07
12

6.
61

13
.2

0

-2
.1

9

	
13C Dept Spectrum of 117a 

MP1337RD.003.esp

168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 -16
Chemical Shift (ppm)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

13
2.

96
13

0.
74

12
9.

81
12

7.
07

12
6.

61

-2
.1

9

	
	

Si
Me Me



 

	 	205	

1H Spectrum of 119a’ 
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1H Spectrum of 196a 
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1H Spectrum of 196e 
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1H Spectrum of 196a-d  
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Crude 1H Spectrum of 210  
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1H Spectrum of T2-Cl (232) 
MP3833.001.esp
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1H Spectrum of 230a 
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13C Spectrum of 230a 
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1H Spectrum of 230b 	
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PCmp4145.002.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8
Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 In
te

ns
ity

38
.8

6

60
.6

5
60

.9
5

76
.7

7
77

.0
2

77
.2

9

11
4.

32

14
3.

01

 
 

 

HO OH



 

	 	213	

1H Spectrum of 230c  
MP3841F1.001.esp
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13CSpectrum of 230c	
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1H Spectrum of 220d, 230d’, and 230d’’ 
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1H Spectrum of 230e and 230e’  
MP4146RDA1.001.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5
Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 In
te

ns
ity

2.300.7711.723.272.000.750.981.20

0.
93

0.
93

0.
94

0.
94

0.
95

0.
96

0.
96

1.
45

1.
45

1.
79

3.
69

4.
11

4.
95

4.
99

7.
26

7.
26

	
13C Spectrum of 230e  
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1H Spectrum of 230f  
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13C Spectrum of 230f 
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1H Spectrum of 230g 
MP3639A.001.esp
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13C Spectrum of 230g 
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1H Spectrum of 230h 
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1H Spectrum of 230o-1  
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1H Spectrum of 230o-2 
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1H Spectrum of 2y and 2y’  
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1H Spectrum of 230aa, 230aa’, and 230aa’’  
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1H Spectrum of 230ab  
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1H Spectrum of 230ac   
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1H Spectrum of 237  
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1H Spectrum of 233 (NMR Yield) 
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