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 

Abstract— Three extensions to RF Tomography for imaging of 

voids under extended areas of regard are presented.  

These extensions are motivated by three challenges. One 

challenge is the lateral wave, which propagates in proximity of 

the air-earth interface, and represents the predominant radiation 

mechanism for wide area surveillance, sensing of denied terrains, 

or close-in sensing. A second challenge is the direct path coupling 

between Tx and Rx, that affects the measurements. A third 

challenge is the generation of clutter by the unknown distribution 

of anomalies embedded in the ground. 

These challenges are addressed and solved using the following 

strategies: 1) A forward model for RF Tomography that includes 

lateral waves expressed in closed-form (for fast computation); 2) 

a strategy that reduces the direct-path coupling between any Tx-

Rx pair; 3) an improved inversion scheme that is robust with 

respect to noise, clutter, and high attenuation.  

An FDTD simulation of a scenario representing close-in 

sensing of a denied area is performed, and reconstructed images 

obtained using the improved and the classical model of RF 

Tomography are compared. 

 
Index Terms—Ground Penetrating Radar, RF Tomography, 

Tunnel Detection, Lateral Waves, Green’s Functions. 

I. INTRODUCTION 

HE problem of underground void detection is paramount 

to secure borders, sensitive areas, and for search & rescue 

missions.  To date, no underground imaging technique 

emerged as a standard for close-in sensing of wide denied 

areas, where minimal human intervention is required [1].  

A promising strategy is introduced in [1], [7] where one set 

of transmitters (Tx) and one set of receivers (Rx) are placed on 

(or in) the ground at arbitrary positions. The transmitters (Tx) 

radiate a monochromatic signal, which impinges upon a buried 
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dielectric or conductive anomaly, thus generating a scattered 

wave. Multiple receivers collect samples of the scattered 

electric field, and relay this information to a base station. 

Images of the below-ground scene are then reconstructed using 

the principles of RF Tomography. Advantages and 

mathematical derivations of RF Tomography for underground 

imaging are discussed in [1]. The approach is technically valid 

for any sensor disposition and terrain shape, provided that the 

Green’s function characterizing the problem is properly 

selected. In [1] the Green’s function for a homogeneous space 

was applied, due to its simplicity of implementation. This 

choice has been proven to work satisfactorily when the sensors 

and targets are located nearly vertically above the targets, thus 

avoiding artefacts due to the discontinuity at the air-earth 

interface.  

However, practical applications require wide areas of 

investigations (e.g. underground networks and facilities), 

denied areas (e.g. sensing of urban environment) or close-in 

sensing (e.g. covert missions). In these cases, sensors remotely 

probe underground regions at long ranges, and the propagation 

of waves occurs primarily along the air/ground interface; 

hence, the predominant propagation mode is the lateral wave 

[8]-[10]. Therefore, one contribution of this work is the 

introduction of a more accurate forward model by invoking a 

closed form Green’s function that accounts for the air-earth 

discontinuity (see Appendix).  

In addition, RF Tomography is based upon the knowledge 

of the scattered field from targets. In real cases, receivers are 

irradiated by a strong electromagnetic field due to the direct 

link between each Tx and Rx pair (i.e. direct path coupling 

[1]). Hence, as a second contribution, in Section III, an 

efficient technique that mitigates the direct path coupling (by 

joint Tx and Rx null steering) is presented. 

Moreover, distributed anomalies (e.g. weathered soils) also 

generate a bias to the measured scattered field, which may be 

considered as clutter. A third contribution, given in Section 

IV, is an improvement upon the inversion schemes already 

discussed in literature [3]-[5], based on the findings described 

by Zhdanov [2] from the geophysical community; this 

improved method is more robust with respect to perturbations 

(e.g. clutter) of the measured scattered field.  

The combination of these three new strategies improves the 

image reconstruction process, especially for large areas of 

interest, shallow targets, and close-in sensing, as shown in 

Section V.  
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Figure 1: 3D Geometry for the model. 

II. FORWARD MODEL 

The 3D geometry depicted in Figure 1 is considered. Under 

the monochromatic assumption (single work frequency f ), the 

air half-space is modeled as a free space medium, while the 

ground half-space is modeled as a homogeneous medium with 

relative dielectric permittivity D  , conductivity D , and 

magnetic permeability 0 . The targets (i.e. tunnels, caches or 

voids) are assumed to reside in the investigation domain D. 

The sources are N electrically small dipoles (of length l ) fed 

with current I . For each transmitting sensor, the total field E  

is collected by M receivers. Both transmitters and receivers 

reside inside the ground but outside the investigation domain 

D. The relative dielectric permittivity  'r r  and the 

conductivity  ' r  inside D are the unknowns of this 

problem. The contrast function is defined as [1] 

 

        0' ' ' / 2r D Dj f         r r r . (1) 

 

However, other definitions may be used [3]-[5], [8]. By 

pointing out the first order Born approximation [2]-[5], [8] the 

field received by a dipole oriented along the direction 
r

ma  , 

positioned at 
r

mr  due to a transmitting dipole oriented along 

the direction 
t

na , positioned at 
t

nr , can be written as [1]: 

 

     

     2

0

, , ,

, ' ', ' '

t r r r t t t r

n m m m n n n m

r r t t

m m n n

D

E Q H T

Qk d

     

     
   

r r a G r r a r r

a G r r G r r a r r
(2) 

 

where 
0Q j lI  for an electrically small dipole [3], the 

quantities H  (multiple scattering) and T  (random noise) 

represent unpredictable perturbations to the total field. G is 

the Green’s dyad, to be chosen according to the adopted 

formulation. The first term in eq. (2), i.e.  

 

  ,r r t t

m m n nQ  a G r r a  (3) 

  
describes the direct path coupling between a particular Tx and 

Rx pair. The cancellation of this coupling from the measured 

field is a critical problem in RF Tomography: although it can 

be analytically predicted (and cancelled) using (3), in practical 

cases its magnitude may be up to 50-60 dB higher than the 

scattered signal. In these conditions, the dynamic range of the 

receiver’s amplifiers may not be large enough, or the 

quantization steps may not be as fine as required to sample 

both scattered and direct-path coupling fields accordingly. 

Clearly, the best solution is to cancel the direct-path 

contribution before it reaches the receiver. 

III. DIRECT PATH COUPLING MITIGATION 

In this section, a direct-path coupling mitigation technique is 

introduced. The key factor is the possibility to steer the Tx and 

Rx dipoles toward desired directions. Rotation of dipoles may 

be performed using mechanical devices, or by properly feeding 

a set of co-located orthogonal dipoles (see [1]). The proposed 

strategy properly steers the Tx dipole in order to minimize the 

field at receiver side, and then turns the Rx dipole in order to 

be orthogonal to the expected direct path electric field. 

Mathematically, these rotations are computed by solving a 

series of constrained minimization problems, for each Tx and 

Rx pair: 

 

    
2

2
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T
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In Lagrangian form it becomes: 
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where 
H

G denotes the Hermitian of G . By imposing 

, 0n m   we obtain: 

 

    , ,H r t r t t t

m n m n n n  r r r rG G a a  (6) 

 

 Therefore, the 
t

na direction that minimizes the power at a 

desired location is the eigenvector associated with the smallest 

eigenvalue of the matrix 
H

G G . Similarly, this minimization 

can be applied at the receiver side. Defining the vector 

 

  min ,r t t

m n nE  G r r a  (7) 

 

as the electric field obtained when 
t

na is chosen according to 

(4), a second minimization problem can be formulated as 
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    
2

min
2

minimize subject to 1  
T T

r r r

m m mE  a a a . (8) 

 

The minimization is achieved when 
r

ma  is chosen to be the 

eigenvector corresponding to the smallest eigenvalue of the 

matrix  min min

T

E E . If the dipole can be steered only over a 

horizontal plane (e.g. by using two crossed dipoles), the 

steering directions are easily obtained by setting to zero the z-

component of each vector a . 

As tested via numerical analysis, the application of these 

strategies guarantees an acceptable minimization of the 

received signal due to direct-path coupling. Therefore, the 

total electric field can be reasonably approximated only with 

the scattered contribution from targets inside the region D, i.e. 

[3]:   
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IV. INVERSION 

Assuming that the clutter contribution has been completely 

mitigated, and the field received by the sensors is given by the 

forward model in eq. (9), the sampled field at each Tx and Rx 

pair can be collected in a vector   ,t r

n mE E r r , and the 

investigation region D  can be discretized in K voxels, each 

one located at position 'kr : the contrast function can be 

represented in a column vector   'k   r . After this 

discretization, eq. (9) can be reformulated in matrix form: 

 

 E L , (10) 

 

where L  is generally a ill-conditioned matrix. 

Several methods have been proposed to solve (10), such as 

back-propagation [1], truncated  singular value decomposition 

[4], [11], and Tikhonov regularization [2], [11]. In this work, 

we introduce a refined version of Tikhonov regularization that 

equalizes the sensitivity of each Tx and Rx pair by selecting a 

proper weighting factor, and introduces a term able to exploit 

the a priori information on the values of the dielectric 

anomalies. Accordingly, the contrast function (as a function of 

the regularization parameter  ) can be estimated [2]: 

 

     
1

2 2 2 2 0ˆ H H

E E E       


  L W L W L W W (11) 

 

where 
0

  represents the known dielectric anomalies 

embedded in region D , and 
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are (diagonal) weighting matrices opportunely defined  in 

order to minimize the sensitivity of the system [2]. 

 In most cases, the weighting matrices have a small dynamic 

range. Therefore, we can approximate  W I in eq. (11). If 

we perform the singular value decomposition [11] of a 

properly defined weighed matrix 
H

w E L W L USV , eq. 

(11) becomes 
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where is represent the i-th singular value of wL . The 

advantage obtained in applying eq. (13) is that the contrast 

function as function of   can be computed via (fast) matrix 

multiplications.  

V. SIMULATIONS AND CONCLUSIONS 

A simulation is presented in order to demonstrate the 

improvements achieved by using 1) lateral waves in the 

forward model, 2) direct-path mitigation, 3) weighted 

Tikhonov regularization. The test scene represents a situation 

where sensors are surrounding the wide (denied) area of 

interest (close-in sensing), and probe the region D mostly via 

lateral waves (see Fig. 2 for details). 

The targets are two hollow cylinders emulating two tunnels, 

located with their axes parallel to the surface and at a depth 

' 5md   below the ground (with respect to their center) 

having 9D  , and 
45 10  S/mD
  . No a priori 

information about dielectric anomalies in the scene is 

considered, thus 
0 0  . The work frequency is 5 MHz. 12 

transmitters and 20 receivers are placed along a circle 

encompassing the two tunnels, as illustrated in Fig. 2. Each 

sensor is emplaced at depth 0.25md  beneath the surface. 

The received electric field has been synthesized using the 

FDTD simulator GPRMAX [6] for each Tx and Rx pair. 

In the first simulation, 1) the homogeneous Green’s function 

[8-9] having the properties of the soil is inserted in the forward 

model; 2) the Truncated SVD method [1], [4] is used for the 

inversion; and, 3) the direct-path coupling assumed completely 

cancelled. The reconstruction result is shown in Fig. 3. 

  In the second simulation, 1) the closed-form Green’s 

function that accounts for the lateral wave (see Appendix) was 

used; 2) the weighted Tikhonov method proposed in Section 

IV was implemented; and, 3) the direct-path mitigation 

algorithm (Section III) was used to choose the direction of 

each sensor. The reconstruction result is shown in Fig. 4. 
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Figure 2: Geometry for the simulation: transmitters and receivers are 

indicated with stars and diamonds respectively, and the two tunnels are 

located at the center of the scene. 

 
Figure 3: Reconstructed image using homogeneous Green’s function.  

Depth slice: 5m. 

 
Figure 4: Reconstructed image using half-space Green’s function.  

Depth slice: 5m. 

 

As expected, the shallow targets are mainly irradiated by the 

lateral wave excited at the air-earth interface, and the classical 

Green’s function for the homogeneous space cannot accurately 

predict the field value. Conversely, the half-space Green’s 

function generates highly resolved images, especially for 

shallow targets, since it accounts for the effects of lateral wave 

(see Fig. 4). Therefore, we conclude that when RF tomography 

is applied in wide areas, denied terrains, or when targets are in 

shallow regions, the discussed improvements (i.e. the inclusion 

of the lateral waves propagation within the realm of RF 

tomography and its fast numerical computation, the direct-path 

coupling suppression using steerable radiators, the improved 

inversion scheme for better handling the clutter) are a suitable 

choice to obtain high quality reconstructions.  

APPENDIX: HALF SPACE GREEN’S FUNCTION 

Half-space Green’s functions have been proposed in the 

literature [3], [5], [9], [11], but they are generally expressed as 

asymptotic expansions, or in spectral form. Nevertheless, King 

[10] derived explicit closed form expressions for the electric 

field generated by horizontal and vertical dipoles buried in a 

lossy medium (under assumption reported in (15)). From 

King’s formulas, a closed form expression for the half space 

Green’s function is derived (valid only when antennas and 

targets are embedded in the soil). 

A dyadic Green’s function can be expressed as follows: 
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In this case, r  represents the observation point, and 

'r represent the current (physical or equivalent) source 

position. The coefficients in (14) are given: 
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Using the following symbols (see Fig. 1) and conditions: 
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the Green’s function coefficients are expressed as follows: 
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Although eq. (16) is expressed in integral form, its range is 

limited by the maximum and minimum values of  so that 

(16) can be easily approximated via a polynomial 

interpolation, or tabulated. 

The advantage of using this formulation rather than the 

spectral representations [8-9] is that the Green’s function 

computation time for each  , 'r r pair is comparable with the 

case of free space, since the expressions, although lengthy, are 

still in closed form. 
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