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Exact radiation of a dipole in the presence of a circular

aperture in a ground plane backed by a spheroidal

cavity and covered with an isorefractive diaphragm

M. Valentino
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois, USA

D. Erricolo
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois, USA

An oblate semi-spheroidal cavity with metallic walls flush-mounted under a metallic
ground plane is coupled to the half-space above the ground plane through an aperture
that corresponds to the interfocal disk of the oblate spheroidal system. A diaphragm is
located across the aperture. The diaphragm material, the material filling the cavity, and
the half-space are isorefractive to each other. A new exact solution is obtained for the
radiation of an electric or a magnetic dipole located on the symmetry axis of the structure
and axially oriented. The exact solution is expressed in terms of series containing oblate
spheroidal functions. These series are evaluated to provide a benchmark solution for a
primary source located either inside the cavity below the diaphragm, or outside the cavity
in the unbounded medium.

1. Introduction

The exact solution to a three-dimensional elec-
tromagnetic boundary-value problem involving an
oblate semi-spheroidal cavity with metallic walls
flush-mounted under a metallic ground plane and
coupled to the half-space above the plane via a circu-
lar hole is considered. The material above the ground
plane is separated from the material inside the cav-
ity by a diaphragm. All materials are isorefractive
to each other.

The primary source is an electric or a magnetic
dipole located on the axis of symmetry of the struc-
ture and axially oriented. The analysis is performed
in the frequency domain and the time-dependence
factor exp(−iωt) is omitted throughout. The exact
solution is written in the form of series expansions in-
volving oblate spheroidal wave functions. The expan-
sion coefficients in the series are analytically deter-
mined by imposing the boundary conditions, thereby
leading to a canonical solution of the boundary-value
problem. The notation for the spheroidal wave func-
tions is that of Flammer [1957]. Preliminary results
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were presented in Erricolo et al. [2005d], obtained
with a solution technique that extends the one used
in Berardi et al. [2004]. This technique requires an
isorefractive body (see Uslenghi [1997a]) and rota-
tional symmetry. Rotational symmetry is required
because, in the oblate spheroidal coordinate system,
the only known series expansion of an incident field
is that of a dipole located along the axis of rotation,
with the dipole oriented parallel to the axis (see Bow-
man et al. [1987]). Therefore, another usually simple
form of the incident field, plane wave, is not con-
sidered because an analytical determination of the
modal expansion coefficients cannot be obtained.

This geometry models the penetration of electro-
magnetic radiation into a cavity or the radiation that
escapes from a cavity. The diaphragm represents a
mechanical cover that protects the cavity, similar to
a radome for a radar antenna.

This paper is organized as follows. The geome-
try of the problem is discussed in Section 2. The
analysis for the electric dipole excitation is given in
Section 3, while the analysis for the magnetic dipole
is presented in Section 4. In Section 5, numerical re-
sults based on the evaluation of the series of oblate
spheroidal functions are provided for the fields in-
side the cavity, inside the diaphragm and in the open
space above the structure. Issues such as the evalu-
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2 VALENTINO: EXACT RADIATION OF A DIPOLE

ation of the fields and surface currents near the edge
of the cavity, and the effect of the diaphragm pres-
ence are analyzed in detail. Conclusions are given in
Section 4.

There are two main contributions from this paper.
First, the exact solution of this complicated problem,
which involves a sharp metallic edge, a cavity, and a
curved surface separating different penetrable media
is provided and it enriches the catalog of available
canonical solutions. Second, the evaluation of this
new solution provides a benchmark for the validation
of frequency-domain electromagnetic computational
software.

2. Geometry of the Problem

With reference to the Cartesian coordinates
(x, y, z), the geometry of the problem is symmetric
with respect to the z axis and it is shown in cross
section in Fig. 1.

The various boundaries correspond to coordinate
surfaces of the oblate spheroidal coordinate system,
with foci located at points A and B, whose distance
is the interfocal distance d. The oblate spheroidal co-
ordinates (η, ξ, φ) are a right-handed system related
to Cartesian coordinates by:

x =
d

2

√
(1− η2)(1 + ξ2) cosφ

y =
d

2

√
(1− η2)(1 + ξ2) sinφ

z =
d

2
ξη

(1)

where 0 ≤ ξ < ∞,−1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π. The
inverse transformation is available in Berardi et al.
[2004]. However, it is convenient to notice that, in
the limit when the interfocal distance d is zero, the
oblate spheroidal coordinates reduce to the spherical
coordinates; on the other hand, when d is finite, the
coordinate surface ξ = constant becomes spherical
as ξ approaches infinity:

1

2
dξ → r, η → cos θ, as ξ → ∞, (2)

where r and θ are spherical coordinates.
The surface η = 0 is metallic and corresponds to

the plane z = 0 without the circular focal disk of
diameter d. Below the aperture there is a cavity
that is limited by a metallic boundary located on
an oblate semi-spheroid at ξ= ξ1. Across the aper-
ture is located a diaphragm, which is made of two
different isorefractive materials and limited by the

surfaces ξ= ξ2 and ξ= ξ3 below and above the aper-
ture, respectively. Both the circular aperture and the
diaphragm provide the coupling between the cavity
and the unbounded medium.

In general, the surfaces |η| = constant represent
hyperboloids of revolution with z as the symmetry
axis, η > 0 (η < 0) for z > 0 (z < 0), and asymp-
totic cone of semi-aperture θ= arccos η; in particu-
lar, η= 1 is the positive z-axis, whereas η=−1 repre-
sents the negative z-axis. The surface φ = constant
is a half-plane originating in the z axis.

Four different media are considered in this prob-
lem, as shown in Fig. 1: the unbounded medium
with dielectric permittivity ϵ1 and magnetic perme-
ability µ1; the diaphragm that is made of material
with parameters ϵ3, µ3 for z > 0 and ϵ4, µ4 for z < 0;
and the cavity with parameters ϵ2 and µ2. Since the
media are isorefractive, they have the same propaga-
tion constant

k = ω
√
ϵµ = ω

√
ϵhµh, h = 1, ..., 4; (3)

however, in general, they have different intrinsic
impedances

Zl =
1

Yl
=

√
µl

ϵl
̸= Zm; l,m = 1, ..., 4, l ̸= m.

(4)
The notion of isorefractive material was introduced
by Uslenghi [1997b] and is an extension of the no-
tion of diaphanous material, e.g. Jones [1986].
Isorefractive or diaphanous bodies were considered
to study diffraction from wedges by Knockaert

Figure 1. Cross section of the geometry of the problem.
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et al. [1997], Daniele and Uslenghi [1999], Uslenghi
[2000], Uslenghi [2004b], two dimensional struc-
tures including elliptic and parabolic cylinders by
Uslenghi [1997b] and various semielliptical cavities
by Uslenghi [2004a], Erricolo and Uslenghi [2004],
Erricolo et al. [2005b], Erricolo et al. [2005a], Erri-
colo et al. [2005c], Valentino and Erricolo [2006],
and three dimensional structures, including prolate
and oblate spheroids, paraboloids, circular cones by
Uslenghi and Zich [1998], Roy and Uslenghi [1997],
Erricolo and Uslenghi [2004], Erricolo and Uslenghi
[2005a], Erricolo and Uslenghi [2005b].

3. Electric Dipole: Analytical Results

As first case, the excitation of the oblate
spheroidal cavity is due to an infinitesimal electric
dipole or Hertz dipole. The source is located on the
axis of symmetry of the structure and it is axially
oriented; its moment is given by ẑ4πϵ/k, which corre-
sponds to an electric superpotential or Hertzian vec-
tor Π(e) = ẑ exp(ikR)/(kR), where R is the distance
of the observation point (η, ξ, φ) from the dipole.
The electric and magnetic fields generated are of the
following form everywhere:

−→
E = Eξ(η, ξ)ξ̂ + Eη(η, ξ)η̂, Eφ = 0; (5)
−→
H = Hφ(η, ξ)φ̂, Hξ = Hη = 0. (6)

It is apparent that all the electric field components
may be determined by applying Maxwell’s equations,
once the φ−component of the magnetic field is known

Eξ = − iZ

c

√
1− η2

ξ2 + η2

(
∂

∂η
− η

1− η2

)
Hφ, (7)

Eη =
iZ

c

√
ξ2 + 1

ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)
Hφ, (8)

where c = kd/2 is the product of the wavenum-
ber and the interfocal radius, and Z is the in-
trinsic impedance of the medium where the source
is located. Furthermore, according to Bowman
et al. [1987], the primary field generated by an elec-
tric dipole can be expanded as a series involving
spheroidal wave functions

Hi
φ =

2k2Y√
ξ20 + 1

∞∑
n=1

(−i)nS1,n(−ic, η)

ρ̃1,nÑ1,n

×

R
(1)
1,n(−ic, iξ<)R

(3)
1,n(−ic, iξ>), (9)

where c is constant throughout the structure (be-
cause the materials are isorefractive), and Y is the
intrinsic admittance of the medium where the field
is evaluated. Using the notation of Flammer [1957],
S1,n is the angular oblate spheroidal function of or-

der 1 and degree n, R
(1),(3)
1,n are the radial oblate

spheroidal functions of order 1, degree n, and of
the first and third kind, and ξ< (ξ>) is the smaller
(larger) between ξ and ξ0.

3.1. Electric Dipole in the Unbounded Medium

When the primary source is a Hertz dipole located
at (1, ξ0) in the unbounded medium, the expression
of the incident magnetic fieldHi

1φ is given by (9) with
the generic intrinsic admittance Y replaced by Y1.
The total magnetic field in the unbounded medium
may be written as sum of three quantities

H1φ = Hi
1φ +Hr

1φ +Hd
1φ, (10)

where Hr
1φ is the field reflected by the ground plane

z = 0 (without the aperture and the diaphragm), and
the term Hd

1φ is the perturbation field introduced by
the presence of the cavity and the isorefractive di-
aphragm. By applying image theory, the effect of
an electric dipole vertically located above a ground
plane is equivalent to the sum of the field of the orig-
inal dipole and the field of another dipole located
symmetrically with respect to the ground plane but
in absence of the ground plane. Therefore, the field
Hr

1φ produced at the observation point (η, ξ) by the
image dipole ends up being identical to the field gen-
erated by the original dipole at (−η, ξ):

Hr
1φ(η, ξ) = Hi

1φ(−η, ξ). (11)

The total geometrical optics field in medium 1 is then
expressed as :

Hi
1φ +Hr

1φ =
−4ik2Y1√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×

R
(1)
1,2l+1(−ic, iξ<)R

(3)
1,2l+1(−ic, iξ>), (12)

where some special values for the angular oblate
functions (see Berardi et al. [2004], Appendix) were
used. The diffracted field Hd

1φ is written as

Hd
1φ =

−4ik2Y1√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
a
(e)
1l R

(3)
1,2l+1(−ic, iξ)

]
, (13)

where the presence of radial function of the third
kind guarantees that the diffracted field satisfies the
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radiation condition, while the modal coefficient a
(e)
1l

is introduced to account for the effect of the presence
of the cavity and the diaphragm.

The general expression for the total magnetic field
in the other media is given by a linear combination
of radial functions of the first and third kind:

Hhφ =
−4ik2Yh√

ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
a
(e)
hl R

(3)
1,2l+1(−ic, iξ)+b

(e)
hl R

(1)
1,2l+1(−ic, iξ)

]
,

(14a)

H2φ =
−4ik2Y2√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×

b
(e)
2l

[
a
(e)
2l R

(3)
1,2l+1(−ic, iξ) +R

(1)
1,2l+1(−ic, iξ)

]
,

(14b)

where h = 3, 4.
The coefficients a

(e)
1l , a

(e)
3l , b

(e)
3l , a

(e)
4l , b

(e)
4l , a

(e)
2l , b

(e)
2l

are determined imposing a vanishing total tangential
electric field on the metallic surfaces, and the conti-
nuity of the total tangential electric and magnetic
field across the surfaces separating different penetra-
ble media. That yields an algebraic linear system of
seven equations, which is solved using Cramer’s rule,
giving
a
(e)
rl =

−R
(3)
1,2l+1(−ic, iξ0)∆a

(e)
rl

∆(e)
, r = 1, . . . , 4;

b
(e)
sl =

−R
(3)
1,2l+1(−ic, iξ0)∆b

(e)
sl

∆(e)
, s = 2, . . . , 4.

(15)
The expressions for the determinants are reported in
Table 1, where the following parameters are used:

ζ13 =
Z1

Z3
, ζ34 =

Z3

Z4
, ζ42 =

Z4

Z2
, (16)

N2l+1(ξ) =
R

(3)
1,2l+1(−ic, iξ)

R
(1)
1,2l+1(−ic, iξ)

, (17)

M2l+1(ξ) =

R
(1)′

1,2l+1(−ic, iξ) +
ξ

ξ2 + 1
R

(1)
1,2l+1(−ic, iξ)

R
(3)′

1,2l+1(−ic, iξ) +
ξ

ξ2 + 1
R

(3)
1,2l+1(−ic, iξ)

.

(18)

In the particular case when the isorefractive di-
aphragm is removed, i.e. ζ13 = ζ42 = 1 and ζ34 = ζ,
the modal coefficients reduce to the ones already

found by Berardi et al. [2004]:

a
(e)
1l = a

(e)
3l = −a

(e)
4l =

−a
(e)
2l R

(1)
1,2l+1(−ic, i0)R

(3)
1,2l+1(−ic, iξ0)

ζR
(1)
1,2l+1(−ic, i0) + (1 + ζ)a

(e)
2l R

(3)
1,2l+1(−ic, i0)

,

(19a)

a
(e)
2l = −M2l+1(ξ1), (19b)

b
(e)
2l = b

(e)
4l =

a
(e)
1l

M2l+1(ξ1)
, (19c)

b
(e)
3l = R

(3)
1,2l+1(−ic, iξ0). (19d)

The diffracted far field can be easily computed recall-
ing the asymptotic form of both the oblate spheroidal
coordinates (2), and the radial spheroidal function of
the third kind for large values of ξ:

Hd
1φ

∣∣
cξ→∞ ∼ eikr

kr

4ik2Y1√
ξ20 + 1

∞∑
l=0

a
(e)
1l S1,2l+1(−ic, cos θ)

ρ̃1,2l+1Ñ1,2l+1

.

(20)
The fundamental relationship between the induced
current density vector J and the tangential magnetic
field on a metallic surface yields:

J|ξ=ξ1
= −ξ̂ × (H2φφ̂)

∣∣∣
ξ=ξ1

= −(H2φη̂)|ξ=ξ1
,

(21a)

J|η=0
ξ2≤ξ≤ξ1

= −η̂ × (H2φφ̂)|η=0 =
(
H2φξ̂

)∣∣∣
η=0

,

(21b)

J|η=0
0<ξ≤ξ2

= −η̂ × (H4φφ̂)|η=0 =
(
H4φξ̂

)∣∣∣
η=0

, (21c)

J|η=0
0<ξ≤ξ3

= η̂ × (H3φφ̂)|η=0 = −
(
H3φξ̂

)∣∣∣
η=0

,

(21d)

J|η=0
ξ3≤ξ<∞= η̂ × (H1φφ̂)|η=0=−

(
H1φξ̂

)∣∣∣
η=0

;

(21e)

where five different metallic regions are identified.
The explicit expression for the induced current den-
sity vector is not reported here; however it is avail-
able in Valentino [2005].

3.2. Electric Dipole in Medium 2

When the excitation of the cavity is provided by
an electric dipole located on the z axis at (−1, ξ2 <
ξ0 < ξ1) in the material filling the spheroidal cavity,
and axially oriented, the solution of the electromag-
netic boundary-value problem is similar to the one
outlined in Section 3.1.
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The total geometrical optics magnetic field in the
medium where the source is located, is still given
by (12), except for the intrinsic admittance Y1 that
now becomes Y2. It is also apparent that the scat-
tered field in medium 2 not only contains the radial
spheroidal function of the third kind, as in the previ-
ous case for Hd

1φ, but also the radial function of the
first kind: the medium where the source is located
is indeed bounded by the metallic cavity described
by the coordinate surface ξ = ξ1, thus requiring a
combination of the two linearly independent radial
functions. Therefore the expression for the total field
in medium 2 is given by:

H2φ =− 4ik2Y2√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
R

(1)
1,2l+1(−ic, iξ<)R

(3)
1,2l+1(−ic, iξ>)+

c
(e)
2l R

(3)
1,2l+1(−ic, iξ) + d

(e)
2l R

(1)
1,2l+1(−ic, iξ)

]
.

(22)

On the other hand, the diffracted field in medium
1 is still given by equation (13), where the modal

coefficient a
(e)
1l becomes c

(e)
1l .

In media 3 and 4 the total field coincides with the
scattered field, as shown in the following equation,
where h = 3, 4:

Hhφ =− 4ik2Yh√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
d
(e)
hl R

(1)
1,2l+1(−ic, iξ) + c

(e)
hl R

(3)
1,2l+1(−ic, iξ)

]
.

(23)

In this case the set of boundary conditions is identi-
cal to the one outlined in Section 3.1 and yields

c
(e)
rl =

∆c
(e)
rl

∆(e)
, r = 1, . . . , 4;

d
(e)
sl =

∆d
(e)
sl

∆(e)
, s = 2, . . . , 4.

(24)

where ∆(e) is given by (59a) and the other determi-
nants are reported in Table 2.

The expression for the magnetic far-field in the un-
bounded medium is obtained by replacing the modal
coefficient a

(e)
1l by c

(e)
1l in (20).

The induced current density on the metallic sur-
faces is still computed by substituting the new ex-
pression for the magnetic field in equations (21a)
through (21e).

3.3. Electric Dipole in Medium 3

For an electric dipole located on the z axis in
medium 3, and axially oriented, the same procedure
yields

H1φ =− 4ik2Y1√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
ã
(e)
1l R

(3)
1,2l+1(−ic, iξ)

]
, (25)

H3φ = − 4ik2Y3√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
R

(1)
1,2l+1(−ic, iξ<)R

(3)
1,2l+1(−ic, iξ>) + b̃

(e)
3l ×

R
(1)
1,2l+1(−ic, iξ) + ã

(e)
3l R

(3)
1,2l+1(−ic, iξ)

]
, (26)

H4φ = − 4ik2Y4√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
b̃
(e)
4l R

(1)
1,2l+1(−ic, iξ) + ã

(e)
4l R

(3)
1,2l+1(−ic, iξ)

]
, (27)

H2φ = − 4ik2Y2√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

b̃
(e)
2l ×[

R
(1)
1,2l+1(−ic, iξ) + ã

(e)
2l R

(3)
1,2l+1(−ic, iξ)

]
. (28)

The application of the boundary condition to the
tangential component of the total electric field on
the metallic boundary of the cavity at ξ = ξ1 requires
that ã

(e)
2l = −M2l+1(ξ1), while the other modal coef-

ficients are obtained by imposing the other boundary
conditions. The resulting linear system of equations
yields 

ã
(e)
rl =

∆ã
(e)
rl

∆(e)
, r = 1, 3, 4;

b̃
(e)
sl =

∆b̃
(e)
sl

∆(e)
, s = 2, . . . , 4.

(29)

where the explicit expressions of each determinant
(except for ∆(e) in equation (59a)) is available in Ta-
ble 3.

3.4. Electric Dipole in Medium 4

When the cavity of Fig. 1 is illuminated by an
infinitesimal electric dipole located at (−1, 0 < ξ0 <
ξ2) in medium 4, the expression for the total mag-
netic field in the unbounded medium and in the ma-
terial filling the cavity are given by (25) and (28),

where the modal coefficients ã
(e)
1l , ã

(e)
2l and b̃

(e)
2l are re-

placed by c̃
(e)
1l , c̃

(e)
2l and d̃

(e)
2l , respectively. Moreover,
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the expressions of the total fields inside the isorefrac-
tive media 3 and 4 that constitute the diaphragm are
given by, respectively:

H3φ = − 4ik2Y3√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
c̃
(e)
3l R

(3)
1,2l+1(−ic, iξ) + d̃

(e)
3l R

(1)
1,2l+1(−ic, iξ)

]
; (30)

H4φ = − 4ik2Y4√
ξ20 + 1

∞∑
l=0

(−1)lS1,2l+1(−ic, η)

ρ̃1,2l+1Ñ1,2l+1

×[
R

(1)
1,2l+1(−ic, iξ<)R

(3)
1,2l+1(−ic, iξ>) + d̃

(e)
4l ×

R
(1)
1,2l+1(−ic, iξ) + c̃

(e)
4l R

(3)
1,2l+1(−ic, iξ)

]
. (31)

The general form of the solution to the linear system
of equations obtained by imposing the boundary con-
ditions is written as

c̃
(e)
rl =

∆c̃
(e)
rl

∆(e)
, r = 1, . . . , 4;

d̃
(e)
sl =

∆d̃
(e)
sl

∆(e)
, s = 2, . . . , 4.

(32)

Since the determinant of the coefficient does not de-
pend upon the location of the source, the expression
for ∆(e) is still equation (59a), whereas the other de-
terminants are presented in Table 4.

4. Magnetic Dipole: Analytical Results

As second case, the oblate semi-spheroidal cavity
is illuminated by an infinitesimal magnetic dipole lo-
cated on the z axis and axially oriented.

The dipole moment of the primary source is ẑ4π/k
corresponding to a magnetic superpotential vector,
or magnetic Hertz vector Π(m) = ẑ exp(ikR)/(kR).
The reason for the magnetic dipole moment not to
depend upon the magnetic permeability µ is simply
due to consistency with the classical definition of the
magnetization vector.

The field components generated by a magnetic
dipole located at (±1, ξ0) in an oblate spheroidal co-
ordinate system are everywhere of the type

−→
E = Eφ(η, ξ)φ̂, Eξ = Eη = 0, (33a)
−→
H = Hξ(η, ξ)ξ̂ +Hη(η, ξ)η̂, Hφ = 0. (33b)

The only magnetic field components of interest are

Hξ = − i
√
1 + ξ2

cZ
√
ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)
Eφ, (34)

Hη =
i
√
1− η2

cZ
√

ξ2 + η2

(
∂

∂η
− η

1− η2

)
Eφ. (35)

The series expansion for the electric field Eφ gener-
ated by a magnetic dipole is given by Bowman et al.
[1987] as

Ei
φ =− 2k2Z√

ξ20 + 1

∞∑
n=1

(−i)nS1,n(−ic, η)

ρ̃1,nÑ1,n

×

R
(1)
1,n(−ic, iξ<)R

(3)
1,n(−ic, iξ>). (36)

Since the procedure needed for solving the electro-
magnetic problem when the source is represented
by an ideal magnetic dipole is very similar to the
one outlined earlier, the analytical details will be
skipped.

4.1. Magnetic Dipole in the Unbounded Medium

For a primary magnetic source located at (1, ξ3 <
ξ0), the total electric field in the unbounded medium
may be expressed by the sum of the following three
components:

E1φ = Ei
1φ + Er

1φ + Ed
1φ. (37)

Ei
1φ is the incident electric field given by (36) with

Z = Z1. Er
1φ is the reflected field due to the z = 0

ground plane, when both the aperture and the di-
aphragm are removed. Application of the image the-
ory yields

Er
1φ(η, ξ) = −Ei

1φ(−η, ξ), (38)

and, recalling some of the properties of the angular
spheroidal functions in Berardi et al. [2004], the total
geometrical optics field Ei

1φ + Er
1φ is:

Ei
1φ+Er

1φ = − 4k2Z1√
ξ20 + 1

∞∑
l=1

(−1)l

ρ̃1,2lÑ1,2l

×

R
(1)
1,2l(−ic, iξ<)R

(3)
1,2l(−ic, iξ>)S1,2l(−ic, η).

(39)

E
(d)
1φ is the perturbation term due to the presence of

both the cavity and the isorefractive diaphragm.
From a mathematical standpoint, the expression

for the geometrical optics electric field in equa-
tion (39) is dual to that one shown in (12) for electric
dipole illumination, since the spheroidal functions of
even degree replace the odd degree functions in the
series expansion of the field. However, it should be
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stressed that the two problems are not dual according
to the electromagnetic theory, since perfect electric
conductors are involved in both cases.

In order to determine the total electric field in the
unbounded medium, it is needed to introduce the
secondary field scattered by the cavity, whose gen-
eral expression may be given by:

Ed
1φ =− 4k2Z1√

ξ20 + 1

∞∑
l=1

(−1)la
(m)
1l

ρ̃1,2lÑ1,2l

×

R
(3)
1,2l(−ic, iξ)S1,2l(−ic, η), (40)

where both the Silver-Müller radiation condition,
and the boundary condition on the metallic surface
η = 0 are satisfied.

The total φ−component of the electric field in the
other media can be written as follows

Ehφ = − 4k2Zh√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[
b
(m)
hl R

(1)
1,2l(−ic, iξ) + a

(m)
hl R

(3)
1,2l(−ic, iξ)

]
, h = 3, 4;

(41a)

E2φ = − 4k2Z2√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

b
(m)
2l ×[

R
(1)
1,2l(−ic, iξ) + a

(m)
2l R

(3)
1,2l(−ic, iξ)

]
. (41b)

The formulation for the electric field in medium 2
given in equation (41b) is aimed at simplifying the
imposition of the boundary condition for the van-
ishing total tangential electric field on the metallic
cavity described by ξ = ξ1. Other six boundary con-
ditions are necessary to determine a unique solution
to the modal coefficients. The coupling mechanism
from one region to the other is cascaded in the sense
that the exterior medium 1 is coupled to medium 2
only through medium 3 and 4. The resulting sys-
tem of linear equations is sparse and could also be
easily solved by hand. Because of the cascaded na-
ture of the coupling mechanism, one could extend
this derivation to consider a more complex geome-
try where, for example, the diaphragm is made of N
isorefractive layers.

When solving the linear system of equations origi-
nated by the imposition of the boundary conditions,
it is convenient to use the same notation as before
for the intrinsic impedance ratios and to introduce
two auxiliary functions by analogy with the electric

dipole case:

F2l(ξ) =

R
(1)′

1,2l(−ic, iξ) +
ξ

ξ2 + 1
R

(1)
1,2l(−ic, iξ)

R
(3)′

1,2l(−ic, iξ) +
ξ

ξ2 + 1
R

(3)
1,2l(−ic, iξ)

;

(42a)

G2l(ξ) =
R

(1)
1,2l(−ic, iξ)

R
(3)
1,2l(−ic, iξ)

. (42b)

The explicit solution can be written in a compact
fashion as follows:

a
(m)
rl = −R

(3)
1,2l(−ic, iξ0)

∆a
(m)
rl

∆(m)
, r = 1, . . . , 4;

b
(m)
sl = −R

(3)
1,2l(−ic, iξ0)

∆b
(m)
sl

∆(m)
, s = 2, . . . , 4.

(43)
where all the determinants are reported in Table 5.

The diffracted far field can be easily computed re-
calling the behavior of the oblate spheroidal coordi-
nates (2), and of the radial spheroidal function of
the third kind for large values of ξ. The diffracted
electric field Ed

1φ in medium 1 becomes:

Hd
1φ

∣∣
cξ→∞ ∼ eikr

kr

4ik2Z1√
ξ20 + 1

∞∑
l=1

a
(m)
1l S1,2l(−ic, cos θ)

ρ̃1,2lÑ1,2l

.

(44)
The analytical expression for the vector current den-
sity J induced on the metallic surfaces is obtained
from Maxwell’s equations according to the following
formulas:

J|ξ=ξ1
= (H2ηφ̂)|ξ=ξ1

, (45a)

J|η=0
ξ2≤ξ≤ξ1

= − (H2ξφ̂)|η=0 , (45b)

J|η=0
0<ξ≤ξ2

= − (H4ξφ̂)|η=0 , (45c)

J|η=0
0<ξ≤ξ3

= (H3ξφ̂)|η=0 , (45d)

J|η=0
ξ3≤ξ<∞ = (H1ξφ̂)|η=0 . (45e)

4.2. Magnetic Dipole in Medium 2

The exact solution for the electromagnetic
boundary-value problem when the excitation is pro-
vided by a magnetic dipole located at (−1, ξ2 < ξ0 <
ξ1) in medium 2 is derived similarly to the proce-
dure outlined in Section 4.1. The geometrical optics
field in the medium where the source is located is
computed assuming that the metallic wall recedes to
infinity (ξ1 → ∞) and that both the circular hole
and the isorefractive diaphragm are removed; the to-
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tal geometrical optics contribution is then given by

Ei
2φ +Er

2φ=−
4k2Z2√
ξ20 + 1

∞∑
l=1

(−1)l

ρ̃1,2lÑ1,2l

R
(1)
1,2l(−ic, iξ<)×

R
(3)
1,2l(−ic, iξ>)S1,2l(−ic, η). (46)

Since the medium where the source is located is
bounded, the scattered field due to the presence of
both the metallic oblate semi-spheroidal cavity and
the coupling aperture covered by the diaphragm may
be written as a series expansion involving a linear
combination of radial spheroidal functions of the first
and third kind. It is also evident that the total elec-
tric field in the materials forming the isorefractive
diaphragm may be written using a similar formula-
tion; therefore

Ehφ = − 4k2Zh√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[
d
(m)
hl R

(1)
1,2l(−ic, iξ) + c

(m)
hl R

(3)
1,2l(−ic, iξ)

]
,

h = 3, 4. (47)

The total electric field in medium 2 is given by the
sum of the geometrical optics field and the scattered
component in (47) for h = 2:

E2φ =− 4k2Z2√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[
R

(1)
1,2l(−ic, iξ<)R

(3)
1,2l(−ic, iξ>) + c

(m)
2l ×

R
(3)
1,2l(−ic, iξ) + d

(m)
2l R

(1)
1,2l(−ic, iξ)

]
. (48)

Similarly to other cases already examined, the total
diffracted field in medium 1 has to satisfy the radia-
tion condition, therefore its series expansion contains
the radial function of the third kind only:

E1φ =− 4k2Z1√
ξ20 + 1

∞∑
l=1

(−1)lc
(m)
1l

ρ̃1,2lÑ1,2l

×

R
(3)
1,2l(−ic, iξ)S1,2l(−ic, η). (49)

The determination of the seven modal coefficients is
obtained by imposing the boundary conditions. The
resulting linear system of equations is not reported
here; however its solution is given by:

c
(m)
rl =

∆c
(m)
rl

∆(m)
, r = 1, . . . , 4;

d
(m)
sl =

∆d
(m)
sl

∆(m)
, s = 2, . . . , 4;

(50)

where ∆(m) is given by (63a), while the other deter-
minants are presented in Table 6.

Recalling the asymptotic expansion for the radial
oblate function of third kind, first order and even
degree, the far field in medium 1 is:

Ed
1φ

∣∣
cξ→∞ ∼ eikr

kr

2ik2Z1√
ξ20 + 1

∞∑
l=1

c
(m)
1l S1,2l(−ic, cos θ)

ρ̃1,2lÑ1,2l

.

(51)
The induced current densities per unit surface may
be easily computed replacing the analytical expres-
sions for the magnetic fields in (45a) through (45e).

4.3. Magnetic Dipole in Medium 3

For a magnetic dipole located on the z axis in
medium 3, and axially oriented, the expression for
the total electric field inside the isorefractive di-
aphragm is given by:

E3φ =− 4k2Z3√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[
R

(1)
1,2l(−ic, iξ<)R

(3)
1,2l(−ic, iξ>)+

b̃
(m)
3l R

(1)
1,2l(−ic, iξ) + ã

(m)
3l R

(3)
1,2l(−ic, iξ)

]
,

(52a)

E4φ =− 4k2Z4√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l[
b̃
(m)
4l R

(1)
1,2l+1(−ic, iξ) + ã

(m)
4l R

(3)
1,2l(−ic, iξ)

]
,

(52b)

in the unbounded medium by:

E1φ=−
4k2Z1√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

ã
(m)
1l R

(3)
1,2l(−ic, iξ),

(53)

and inside the cavity by

E2φ =− 4k2Z2√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

b̃
(m)
2l ×[

R
(1)
1,2l(−ic, iξ) + ã

(m)
2l R

(3)
1,2l(−ic, iξ)

]
. (54)

The modal coefficients are given by:
ã
(m)
rl =

∆ã
(m)
rl

∆(m)
, r = 1, 3, 4;

b̃
(m)
sl =

∆b̃
(m)
sl

∆(m)
, s = 2, . . . , 4;

(55)

where ã
(m)
2l =−G2l(ξ1), ∆

(m) is given by (63a), and
the other determinants are in Table 7.
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4.4. Magnetic Dipole in Medium 4

When the cavity in Fig. 1 is illuminated by an
infinitesimal magnetic dipole located in medium 4 at
(0 < ξ0 < ξ2,−1), the expression for the total elec-
tric field in both the unbounded medium and in the
material filling the cavity are given by (53) and (54),

Figure 2. Oblate spheroidal cavity. The dashed hy-
perbolic curves represent trajectories where the fields are
evaluated.

−2 −1 0 1 2 3 4 5 6 7 8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

|H
φto

t |

2z/|dη|

c=1
c=3.5
c=7

Figure 3. Electric dipole in medium 1, located at
(η0 = 1, ξ0 = 1.5). Total magnetic field |Hφ| evaluated
along the surface |η| = 0.7 using equations (10), (14a)
and (14b) for three different values of c, when Z1 = Z2 =
Z3 = Z4 = 120π.

where the modal coefficients ã
(m)
1l , ã

(m)
2l and b̃

(m)
2l are

replaced by c̃
(m)
1l , c̃

(m)
2l and d̃

(m)
2l , respectively. The

total field in the other two media is:

E3φ=− 4k2Z3√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

[
c̃
(m)
3l ×

R
(3)
1,2l(−ic, iξ) + d̃

(m)
3l R

(1)
1,2l(−ic, iξ)

]
, (56a)

E4φ =− 4k2Z4√
ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[
R

(1)
1,2l(−ic, iξ<)R

(3)
1,2l(−ic, iξ>) + d̃

(m)
4l ×

R
(1)
1,2l(−ic, iξ) + c̃

(m)
4l R

(3)
1,2l(−ic, iξ)

]
. (56b)

The general form of the solution to the linear system
of equations obtained by imposing the boundary con-
ditions is:

c̃
(m)
rl =

∆c̃
(m)
rl

∆(m)
, r = 1, 3, 4;

d̃
(m)
sl =

∆d̃
(m)
sl

∆(m)
, s = 2, . . . , 4;

(57)

where c̃
(m)
2l = −G2l(ξ1) and the determinant of the

coefficients ∆(m) is still given by (63a). The other
determinants are reported in Table 8.
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Figure 4. Electric dipole in medium 2, located at
(η0 = −1, ξ0 = 1.5). Total magnetic field |Hφ| evaluated
along the surface |η| = 0.01 taking equations (22), (23)

and (13) with c
(e)
1l replacing a

(e)
1l , when c = 6. Three

different sets of intrinsic impedances for the media have
been considered.
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5. Numerical Results

The numerical evaluation of the fields was per-
formed using some of the Fortran routines that im-
plement oblate spheroidal radial and angular func-
tions published in Zhang and Jin [1996], and, in order
to achieve convergence, the acceleration technique re-
ported in Erricolo [2003].

The quantities of interest that need to be com-
puted are Eφ or Hφ, when either a magnetic or elec-
tric source is considered, respectively. The fields are
evaluated along the coordinate lines |η| = constant
as shown in Fig. 2. Several values of the parameter
c = kd/2 are considered because c has the physi-
cal meaning of the ratio of the aperture size to the
wavelength. In all the numerical results, the curved
metallic cavity corresponds to the semi-spheroidal
coordinate surface ξ1 = 2, whereas the lower and
the upper faces of the diaphragm are given by ξ2 = 1
and ξ3 = 1.25 respectively. Also, the dipole sources
in medium 1 and 2 are located along the z axis at
(η0 = ±1, ξ0 = 1.5), thus preventing the numerical
computation of the field at the location of the source.
All the diagrams show the field quantities as a func-
tion of the dimensionless variable 2z/(d|η|) since this
quantity corresponds to ξ when z ≥ 0, and to −ξ
when z < 0. In fact, by looking at (1), it is apparent
that η changes sign across the plane z = 0, so that

−2 −1 0 1 2 3 4 5 6 7 8
0
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2000

2500
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3500

4000

4500

|E
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t |

2z/|dη|

|η|=0.7
|η|=0.1
|η|=0.4

Figure 5. Magnetic dipole in medium 2, located at
(η0 = −1, ξ0 = 1.5). Total electric field |Eφ| evaluated
along three different surfaces |η| = constant using equa-
tions (47) through (49) , when Z1 = 120π, Z2 = 100π,
Z3 = Z4 = 80π, and c = 4.

2z/(d|η|) is positive outside the cavity and negative
inside the cavity. Furthermore, the field radiated by
the dipoles has been computed directly using the ex-
act expression in spherical coordinates.
In Fig. 3 it is shown the total magnetic field |Hφ|
given by (10), (14a) and (14b) due to an electric
dipole located in the unbounded medium. The mag-
nitude of the total magnetic field |Hφ| when the
source is an electric dipole located in medium 2 is
presented in Fig.4; in particular the behavior of the
field in the media 2, 3 and 4 is computed with equa-
tions (22), and (23) for h = 3, 4, and, in the un-
bounded medium, equation (13) with the modal co-

efficient a
(e)
1l replaced by c

(e)
1l . The plots of Figs. 3

and 4 show that |Hφ| has a zero derivative in the
neighborhood of the conducting wall at the bottom
of the cavity. This behavior suggests that the normal
derivative of |Hφ| is zero at the wall, thus satisfying
the boundary condition at the conducting interface.
In Fig.5, it is plotted the total electric field |Eφ| when
the source is a magnetic dipole in medium 2. In this
case, the total electric field is evaluated along three
different surfaces |η|= constant using equations (47)
through (49). The contour plot of the magnitude of
the electric field due to a magnetic dipole located in
medium 1 is shown in Fig. 6. The equations used to
evaluate the magnitude of the total electric field in
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Figure 6. Magnetic dipole in medium 1, located at
(η0 = 1, ξ0 = 1.5). Contour plot of the electric field |Eφ|
evaluated using equations (41b) and (41a) with h = 4 for
z < 0, while using (40) and (58) for z > 0. Also c = 3,
Z1 = Z3 = 120π, Z2 = 100π, and Z4 = 80π.
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medium 2 and 4 are (41b) and (41a) with h = 4, re-
spectively. Since the magnitude of the scattered field
in media 1 and 3 is smaller than the geometrical op-
tics field, only equation (40) for the diffracted field
was computed in the unbounded medium, while, for
medium 3, the following expression was evaluated,
with Z1 = Z3:

Es
3φ = − 4k2Z3√

ξ20 + 1

∞∑
l=1

(−1)lS1,2l(−ic, η)

ρ̃1,2lÑ1,2l

×[(
b
(m)
3l −R

(3)
1,2l(−ic, iξ0)

)
R

(1)
1,2l(−ic, iξ)+

a
(m)
3l R

(3)
1,2l(−ic, iξ)

]
. (58)

All the computations regarding the series expansions
for the fields were carried out by applying Shanks
transform (see Singh et al. [1990]) to both the
real and imaginary part. Convergence was achieved
within the first 40 terms. Each curve representing an
electric or magnetic field was evaluated in 150 points
along the coordinate lines |η| = constant; in partic-
ular, the variable 2z/|ηd| takes the values from −ξ0
to 3ξ0. The computation time for each of the follow-
ing figure, except for the contour plot, has been less
than 1min. All simulations were run on a personal
computer at 3.06 GHz.

6. Conclusion

Exact analytical and numerical results for an
electromagnetic boundary-value problem involving a
cavity, sharp curved edges, a diaphragm and four
isorefractive media were presented.

These results represent the solution of a new
canonical problem and, therefore, are important be-
cause they enrich the list of geometries for which a
frequency-domain exact solutions are known.

Additionally, these results are important to val-
idate computational electromagnetic software. For
example, one may consider to use these new analyti-
cal results to check the behavior of a purely numerical
solution in proximity of the metallic sharp edge.

The analysis performed in this paper could be ex-
tended to a primary source that is a uniform (electric
or magnetic) current loop located on the symmetry
axis and axially oriented.
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Table 1. Electric dipole in the unbounded medium: determinants.
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(e)
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(1−M2l+1(ξ1)N2l+1(ξ2))]− ζ34[N2l+1(ξ2)(M(ξ2)−M2l+1(ξ1))− ζ42(1−N2l+1(ξ2)M2l+1(ξ1))]};
(59f)

∆b
(e)
4l =[1−M2l+1(ξ3)N2l+1(ξ3)][ζ42(1−N2l+1(ξ2)M2l+1(ξ1)) +N2l+1(ξ2)(M2l+1(ξ1)−M2l+1(ξ2))];

(59g)

(59h)

Singh, S., W. F. Richards, J. R. Zinecker, and D. R.
Wilton (1990), Accelerating the convergence of series
representing the free space periodic green’s function,
IEEE Trans. Antennas Propagat., 38 (12), 1958–1962.

Uslenghi, P. (1997a), Exact solution for a penetrable
wedge structure, IEEE Trans. Antennas Propagat.,
45 (1), 179.

Uslenghi, P. (1997b), Exact scattering by isorefrac-
tive bodies, IEEE Trans. Antennas Propagat., 45 (9),
1382–1385.

Uslenghi, P. (2000), Exact geometrical optics solution for
an isorefractive wedge structure, IEEE Trans. Anten-
nas Propagat., 48 (2), 335–336.

Uslenghi, P. (2004a), Exact penetration, radiation and
scattering for a slotted semielliptical channel filled
with isorefractive material, IEEE Trans. Antennas
Propagat., 52 (6), 1473–1480.

Uslenghi, P. (2004b), Exact geometrical optics scattering
from a tri-sector isorefractive wedge structure, IEEE
Antennas Wireless Propagat. Lett., 3, 94–95.

Uslenghi, P., and R. Zich (1998), Radiation and scat-
tering from isorefractive bodies of revolution, IEEE
Trans. Antennas Propagat., 46 (11), 1606–1611.

Valentino, M. (2005), Elliptic and spheroidal shapes with
a cavity, a lens and isorefractive media: EM analysis
and evaluation, Master’s thesis, University of Illinois
at Chicago, USA.

Valentino, M., and D. Erricolo (2006), Exact 2D scatter-
ing from a slot in a ground plane backed by a semiel-
liptical cavity and covered with an isorefractive di-
aphragm, Radio Sci., this issue.

Zhang, S., and J.-M. Jin (1996), Computation of Special
Functions, Wiley, New York.

M. Valentino, Department of Electrical and Computer
Engineering, University of Illinois at Chicago, 851 S. Mor-
gan Street, Chicago, IL, USA. (marval83@libero.it)

(Received .)



VALENTINO: EXACT RADIATION OF A DIPOLE 13

Table 2. Electric dipole in the material filling the cavity.

∆c
(e)
1l = ζ13ζ34ζ42 [1−M2l+1(ξ3)N2l+1(ξ3)]

[
(M2l+1(ξ2)−M2l+1(ξ1))

(
N2l+1(ξ2)R

(1)
1,2l+1(−ic, iξ0)−R

(3)
1,2l+1(−ic, iξ0)

)
+

(1−M2l+1(ξ1)N2l+1(ξ2))
(
M2l+1(ξ2)R

(3)
1,2l+1(−ic, iξ0)−R

(1)
1,2l+1(−ic, iξ0)

)]
; (60a)

∆c
(e)
2l = −

[
∆d

(e)
2l +R

(1)
1,2l+1(−ic, iξ0)

]
M2l+1(ξ1)

; (60b)

∆c
(e)
3l =−∆c

(e)
4l = ζ34ζ42 [ζ13 −M2l+1(ξ3)N2l+1(ξ3)]

[
(M2l+1(ξ2)−M2l+1(ξ1))

(
N2l+1(ξ2)R

(1)
1,2l+1(−ic, iξ0)−

R
(3)
1,2l+1(−ic, iξ0)

)
+ (1−M2l+1(ξ1)N2l+1(ξ2))

(
M2l+1(ξ2)R

(3)
1,2l+1(−ic, iξ0)−R

(1)
1,2l+1(−ic, iξ0)

)]
;

(60c)

∆d
(e)
2l = [N2l+1(ξ3)(ζ13 − 1) +N(0)(1 + ζ34) (M2l+1(ξ3)N2l+1(ξ3)−

ζ13)]
[
R

(1)
1,2l+1(−ic, iξ0)−M2l+1(ξ2)R

(3)
1,2l+1(−ic, iξ0) + ζ42M2l+1(ξ2)

(
R

(3)
1,2l+1(−ic, iξ0)−N2l+1(ξ2)×

R
(1)
1,2l+1(−ic, iξ0)

)]
+ ζ34 [ζ13 −M2l+1(ξ3)N2l+1(ξ3)]

[
N2l+1(ξ2)

(
R

(1)
1,2l+1(−ic, iξ0)−M2l+1(ξ2)×

R
(3)
1,2l+1(−ic, iξ0)

)
+ ζ42(R

(3)
1,2l+1(−ic, iξ0)−N2l+1(ξ2)R

(1)
1,2l+1(−ic, iξ0))

]
; (60d)

∆d
(e)
3l =ζ34ζ42N2l+1(ξ3) [ζ13 − 1]

[
(M2l+1(ξ2)−M2l+1(ξ1))

(
N2l+1(ξ2)R

(1)
1,2l+1(−ic, iξ0)−R

(3)
1,2l+1(−ic, iξ0)

)
+

(1−M2l+1(ξ1)N2l+1(ξ2))
(
M2l+1(ξ2)R

(3)
1,2l+1(−ic, iξ0)−R

(1)
1,2l+1(−ic, iξ0)

)]
; (60e)

∆d
(e)
4l =ζ42 [N2l+1(ξ3)(ζ13 − 1) +N(0)(1 + ζ34)(M2l+1(ξ3)N2l+1(ξ3)− ζ13)] [(M2l+1(ξ2)−M2l+1(ξ1)) (N2l+1(ξ2)×

R
(1)
1,2l+1(−ic, iξ0)−R

(3)
1,2l+1(−ic, iξ0)

)
+ (1−M2l+1(ξ1)N2l+1(ξ2))

(
M2l+1(ξ2)R

(3)
1,2l+1(−ic, iξ0)−

R
(1)
1,2l+1(−ic, iξ0)

)]
. (60f)
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Table 3. Electric dipole in medium 3.

∆ã
(e)
1l =ζ13 [M2l+1(ξ3)N2l+1(ξ3)− 1]

{[
(1 + ζ34)N(0)R

(1)
1,2l+1(−ic, iξ0)−R

(3)
1,2l+1(−ic, iξ0)

]
×

[M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2) (1−M2l+1(ξ1)N2l+1(ξ2))]− ζ34R
(1)
1,2l+1(−ic, iξ0)

[(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]} ; (61a)

∆ã
(e)
3l =−∆ã

(e)
4l =

[
R

(1)
1,2l+1(−ic, iξ0)N2l+1(ξ3)(1− ζ13) +R

(3)
1,2l+1(−ic, iξ0) (ζ13 −M2l+1(ξ3)N2l+1(ξ3))

]
×

[M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2) (1−M2l+1(ξ1)N2l+1(ξ2))] ; (61b)

∆b̃
(e)
2l =

[
R

(1)
1,2l+1(−ic, iξ0)N2l+1(ξ3)(ζ13 − 1) +R

(3)
1,2l+1(−ic, iξ0) (M2l+1(ξ3)N2l+1(ξ3))− ζ13

]
×

[1−M2l+1(ξ2)N2l+1(ξ2)] ; (61c)

∆b̃
(e)
3l = [ζ13 − 1]

{[
R

(1)
1,2l+1(−ic, iξ0)N2l+1(ξ3)N2l+1(ξ0)(1 + ζ34)−R

(3)
1,2l+1(−ic, iξ0)N2l+1(ξ3)

]
×

[M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2) (1−M2l+1(ξ1)N2l+1(ξ2))]− ζ34N2l+1(ξ3)R
(1)
1,2l+1(−ic, iξ0)×

[(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]} ; (61d)

∆b̃
(e)
4l =

[
R

(1)
1,2l+1(−ic, iξ0)N2l+1(ξ3)(ζ13 − 1) +R

(3)
1,2l+1(−ic, iξ0) (M2l+1(ξ3)N2l+1(ξ3))− ζ13

]
×

[(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))] . (61e)

Table 4. Electric dipole in medium 4.

∆c̃
(e)
1l =ζ13ζ34 [M2l+1(ξ3)N2l+1(ξ3)− 1]

{
R

(3)
1,2l+1(−ic, iξ0) [M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2) (1−M2l+1(ξ1)N2l+1(ξ2))]−

R
(1)
1,2l+1(−ic, iξ0) [(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]

}
; (62a)

∆c̃
(e)
2l =−M2l+1(ξ1)∆

(e); (62b)

∆c̃
(e)
3l =−∆c̃

(e)
4l = ζ34 [M2l+1(ξ3)N2l+1(ξ3)− ζ13]

{
R

(3)
1,2l+1(−ic, iξ0) [M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2)×

(1−M2l+1(ξ1)N2l+1(ξ2))]−R
(1)
1,2l+1(−ic, iξ0) [(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]

}
;

(62c)

∆d̃
(e)
2l = [1−M2l+1(ξ2)N2l+1(ξ2)]

{
(ζ13 − 1)N2l+1(ξ3)R

(1)
1,2l+1(−ic, iξ0) + [M2l+1(ξ3)N2l+1(ξ3)− 1]×[

N(0)(1 + ζ34)R
(1)
1,2l+1(−ic, iξ0)− ζ34R

(3)
1,2l+1(−ic, iξ0)

]}
; (62d)

∆d̃
(e)
3l =ζ34N2l+1(ξ3) [ζ13 − 1]

{
R

(3)
1,2l+1(−ic, iξ0) [M2l+1(ξ2)−M2l+1(ξ1)− ζ42M2l+1(ξ2) (1−M2l+1(ξ1)N2l+1(ξ2))]−

R
(1)
1,2l+1(−ic, iξ0) [(M2l+1(ξ2)−M2l+1(ξ1))N2l+1(ξ2)− ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]

}
; (62e)

∆d̃
(e)
4l = [(M2l+1(ξ1)−M2l+1(ξ2))N2l+1(ξ2) + ζ42(1−M2l+1(ξ1)N2l+1(ξ2))]

{
R

(1)
1,2l+1(−ic, iξ0) [N2l+1(ξ3)(ζ13 − 1)+

N(0)(1 + ζ34) (M2l+1(ξ3)N2l+1(ξ3))− ζ13]− ζ34R
(3)
1,2l+1(−ic, iξ0) [M2l+1(ξ3)N2l+1(ξ3)− ζ13]

}
.

(62f)
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Table 5. Magnetic dipole in the unbounded medium: determinants.

∆(m) = [F (0)(1− ζ13) + (1 + ζ34)(ζ13F2l(ξ3)−G2l(ξ3))] [ζ42F2l(ξ2)(F2l(ξ1)−G2l(ξ2)) + F2l(ξ2)×
(G2l(ξ2)−G2l(ξ1))] + ζ34F (0) [G2l(ξ3)− ζ13F2l(ξ3)] [ζ42(F2l(ξ1)−G2l(ξ2)) +G2l(ξ2)−G2l(ξ1)] ;

(63a)

∆a
(m)
1l = [F (0)(F2l(ξ3)− ζ13G2l(ξ3)) + F2l(ξ3)G2l(ξ3)(1 + ζ34)(ζ13 − 1)] [ζ42F2l(ξ2)(F2l(ξ1)−G2l(ξ2))+

F2l(ξ2)(G2l(ξ2)−G2l(ξ1))] + ζ34F (0)F2l(ξ3)G2l(ξ3)(1− ζ13) [ζ42(F2l(ξ1)−G2l(ξ2)) +G2l(ξ2)−G2l(ξ1)] ;
(63b)

∆a
(m)
2l =G2l(ξ1)∆

(m)/R
(3)
1,2l(−ic, iξ0); (63c)

∆a
(m)
3l =− ζ−1

34 ∆a
(m)
4l = ζ13F (0)(F2l(ξ3)−G2l(ξ3)) [ζ42F2l(ξ2)(F2l(ξ1)−G2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))] ;

(63d)

∆b
(m)
2l =ζ13ζ34ζ42F (0) [G2l(ξ3)− F2l(ξ3)] [F2l(ξ2)−G2l(ξ2)] ; (63e)

∆b
(m)
3l =ζ13(1 + ζ34)(G2l(ξ3)− F2l(ξ3)) [ζ42F2l(ξ2)(F2l(ξ1)−G2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))]+

ζ34ζ13F (0)(F2l(ξ3)−G2l(ξ3)) [ζ42(F2l(ξ1)−G2l(ξ2)) +G2l(ξ2)−G2l(ξ1)] ; (63f)

∆b
(m)
4l =ζ13ζ34F (0) [G2l(ξ3)− F2l(ξ3)] [G2l(ξ1)−G2l(ξ2)− ζ42(G2l(ξ1)− F2l(ξ2))] . (63g)

Table 6. Magnetic dipole in the material filling the cavity: determinants.

∆c
(m)
1l =F (0) [F2l(ξ3)−G2l(ξ3)]

[
(G2l(ξ1)− F2l(ξ2))

(
R

(3)
1,2l(−ic, iξ0)G2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)
+

(G2l(ξ2)−G2l(ξ1))
(
R

(3)
1,2l(−ic, iξ0)F2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)]
; (64a)

∆c
(m)
2l =−

[
G2l(ξ1)∆d

(m)
2l +R

(1)
1,2l(−ic, iξ0)

]
; (64b)

∆c
(m)
3l =− ζ−1

34 ∆c
(m)
4l = F (0) [ζ13F2l(ξ3)−G2l(ξ3)]

[
(G2l(ξ1)− F2l(ξ2))

(
R

(3)
1,2l(−ic, iξ0)G2l(ξ2)−

R
(1)
1,2l(−ic, iξ0)

)
+ (G2l(ξ2)−G(ξ1))

(
R

(3)
1,2l(−ic, iξ0)F2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)]
; (64c)

∆d
(m)
2l = [F (0)(1− ζ13) + (1 + ζ34) (ζ13F2l(ξ3)−G2l(ξ3))]×[

ζ42G2l(ξ2)
(
F2l(ξ2)R

(3)
1,2l(−ic, iξ0)−R

(1)
1,2l(−ic, iξ0)

)
+ F2l(ξ2)

(
R

(1)
1,2l(−ic, iξ0)−G2l(ξ2)×

R
(3)
1,2l(−ic, iξ0)

)]
+ ζ34F (0) [G2l(ξ3)− ζ13F2l(ξ3)]

[
ζ42

(
F2l(ξ2)R

(3)
1,2l(−ic, iξ0)−R

(1)
1,2l(−ic, iξ0)

)
+(

R
(1)
1,2l(−ic, iξ0)−G2l(ξ2)R

(3)
1,2l(−ic, iξ0)

)]
; (64d)

∆d
(m)
3l =F (0) [1− ζ13]

[
(G2l(ξ1)− F2l(ξ2))

(
R

(3)
1,2l(−ic, iξ0)G2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)
+

(G2l(ξ2)−G2l(ξ1))
(
R

(3)
1,2l(−ic, iξ0)F2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)]
; (64e)

∆d
(m)
4l = [F (0)(1− ζ13) + (1 + ζ34) (ζ13F2l(ξ3)−G2l(ξ3))]

[
(G2l(ξ1)− F2l(ξ2))

(
R

(3)
1,2l(−ic, iξ0)G2l(ξ2)−

R
(1)
1,2l(−ic, iξ0)

)
+ (G2l(ξ2)−G(ξ1))

(
R

(3)
1,2l(−ic, iξ0)F2l(ξ2)−R

(1)
1,2l(−ic, iξ0)

)]
. (64f)
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Table 7. Magnetic dipole in medium 3: determinants.

∆ã
(m)
1l = [G2l(ξ3)− F2l(ξ3)]

{[
R

(3)
1,2l(−ic, iξ0)F (0)− (1 + ζ34)R

(1)
1,2l(−ic, iξ0)

]
×

[ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))] + ζ34R
(1)
1,2l(−ic, iξ0)F (0)×

[ζ42(G2l(ξ1)− F2l(ξ2) +G2l(ξ2)−G2l(ξ1))]} ; (65a)

∆ã
(m)
3l =− ζ−1

34 ∆ã
(m)
4l = F (0) [ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))]×[

R
(1)
1,2l(−ic, iξ0)(ζ13 − 1) +R

(3)
1,2l(−ic, iξ0) (G2l(ξ3)− ζ13F2l(ξ3))

]
; (65b)

∆b̃
(m)
2l = ζ34ζ42F (0)

[
R

(1)
1,2l(−ic, iξ0)(1− ζ13) +R

(3)
1,2l(−ic, iξ0)(ζ13P (ξ3)−Q(ξ3))

]
×

[F2l(ξ2)−G2l(ξ2)] ; (65c)

∆b̃
(m)
3l =(ζ13 − 1)

{[
F (0)R

(3)
1,2l(−ic, iξ0)− (1 + ζ34)

]
[ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2)) + F2l(ξ2)×

(G2l(ξ2)−G2l(ξ1))] + ζ34F (0)R
(1)
1,2l(−ic, iξ0) [ζ42(G2l(ξ1)− F2l(ξ2) +G2l(ξ2)−G2l(ξ1))]

}
;

(65d)

∆b̃
(m)
4l =P (0)ζ34 [ζ42(G2l(ξ1)− F2l(ξ2) +G2l(ξ2)−G2l(ξ1))]×[

R
(3)
1,2l(−ic, iξ0)(Q(ξ3)− ζ13P (ξ3)) +R

(1)
1,2l(−ic, iξ0)(1− ζ13)

]
. (65e)

Table 8. Magnetic dipole in medium 4: determinants.

∆c̃
(m)
1l =F (0) [F2l(ξ3)−G2l(ξ3)]

{
R

(3)
1,2l(−ic, iξ0) [ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))]×

R
(3)
1,2l(−ic, iξ0) [ζ42(F2l(ξ2)−G2l(ξ1)) +G2l(ξ1)−G2l(ξ2)]

}
; (66a)

∆c̃
(m)
3l =− ζ−1

34 ∆c̃
(m)
4l = F (0) [ζ13F2l(ξ3)−G2l(ξ3)]

{
R

(3)
1,2l(−ic, iξ0) [ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2))+

F2l(ξ2)(G2l(ξ2)−G2l(ξ1))] +R
(3)
1,2l(−ic, iξ0) [ζ42(F2l(ξ2)−G2l(ξ1)) +G2l(ξ1)−G2l(ξ2)]

}
; (66b)

∆d̃
(m)
2l =F (0)ζ42R

(1)
1,2l(−ic, iξ0)(F2l(ξ2)−G2l(ξ2)) + ζ42 [ζ13F2l(ξ3)−G2l(ξ3)] [F2l(ξ2)−G2l(ξ2)]×[

(1 + ζ34)R
(1)
1,2l(−ic, iξ0)− ζ34F (0)R

(3)
1,2l(−ic, iξ0)

]
; (66c)

∆d̃
(m)
3l =F (0)(1− ζ13)

{
R

(3)
1,2l(−ic, iξ0) [ζ42G2l(ξ2)(G2l(ξ1)− F2l(ξ2)) + F2l(ξ2)(G2l(ξ2)−G2l(ξ1))]+

R
(3)
1,2l(−ic, iξ0) [ζ42(F2l(ξ2)−G2l(ξ1)) +G2l(ξ1)−G2l(ξ2)]

}
; (66d)

∆d̃
(m)
4l = [ζ42(F2l(ξ2)−G2l(ξ1)) +G2l(ξ1)−G2l(ξ2)]

{
R

(1)
1,2l(−ic, iξ0) [F (0)(1− ζ13)+

(1 + ζ34)(ζ13F2l(ξ3)−G2l(ξ3))]− ζ34F (0)R
(3)
1,2l(−ic, iξ0)(ζ13F2l(ξ3)−G2l(ξ3))

}
. (66e)


