
Increasing Learning in an Agile Environment:
Lessons Learned in an Agile Team

Mauricio Finavaro Aniche, Guilherme de Azevedo Silveira
Caelum Learning and Innovation

São Paulo - Brazil
{mauricio.aniche, guilherme.silveira}@caelum.com.br

Abstract—Learning is an important part of the software
development process. There are many advantages for devel-
opers willing to learn: increased internal and external quality
of the produced software, and a reduced learning curve as
beginners become high-skilled developers much faster than
usual. However, learning is not taken seriously by many teams.
This paper shows how to build a learning environment by doing
some well-known practices, such as Book Club, Brown Bags,
Dojo sessions, Pair Programming, Open Spaces, etc. It also
presents some adaptations we developed in these techniques in
order to improve their effects in our work environment.

Keywords-agile; learning; learning practices; brown bags;
dojo sessions; pair programming; blogging.

I. INTRODUCTION

Agile is based on evolution and adaptation. Learning is
the basis of these two. Therefore, agile and learning are
highly related. The Agile Manifesto itself says that teams
should have the environment and support they need [1].
In the software development world, where new techniques
and technologies emerge frequently, a work environment
that provides developers a way to keep on learning and
improving their development skills has a technical advantage
upon others.

Building a learning environment is not easy: it requires
time and motivation. However, the benefits are clear, such as
software with higher quality, continuous improvements, new
team members achieve a higher productivity level faster, and
so on.

We work for Caelum Learning and Innovation, a Brazilian
company focused in training, innovation and consultancy.
In the last 3 years, the team’s knowledge increased in
both technical and social aspects. Everyone, from interns
to more experienced co-workers, ended up as highly-skilled
developers, using and understanding the recommended best
practices.

The team practices many techniques to increase learning,
such as Book Club, Brown Bags, Dojo sessions, Pair Pro-
gramming, Open Spaces, etc. All of them have their effects
in the learning process. This paper presents the techniques
used to enhance learning in this work environment, and the
adaptations done in all of them in order to try to maximize

the benefits. Also, researchers conducted interviews with
some members of the team, in order to validate the findings.

II. THE COMPANY AND THE TEAM

Caelum Learning and Innovation is a company currently
focused in the Java, Ruby and Agile environment. It has
trained more than 16000 students in the last 7 years, and
student feedback were always positive. The company also
develops software and give consultancy for external cus-
tomers, but it’s main goal is to improve the development
quality of the industry.

The company has a strong connection with the develop-
ment community, creating and actively taking part in both
Brazilian’s largest architecture and Java forums. At the same
time, it continuously contributes with open source projects,
such as XStream [11], Restfulie [3], VRaptor [2], and dozens
of others.

Caelum has 35 developers, from interns to more expe-
rienced developers. 10 of them are located in our offices
in different cities. They all have different tasks during their
daily work: developing software for internal and external
customers, contributing to open source projects, educating
students, or writing learning material. In average, a devel-
oper will spend 40% of his time teaching, working close to
the students.

Caelum has also been involved with a few important
events on the Brazilian market. It has brought QCon to Brazil
in 2010 and will do the same in 2011. Together with QCon,
Caelum’s other events try to bring some of the best current
speakers on software development from around the world to
share their knowledge with the local community and also
select the most important

Part of each developer’s time is spent studying. It is a
requirement in order to create the training material for a new
course, prepare himself to teach a course for the fist time, or
even to dig deeper into something that might be important
for the market in the near feature. One is free to study in
anyway s/he feels more productive, but its fundamental that
he gain as much real life experience with that technology as
possible.

Due to the training schedule, it is also common to have
some time without any scheduled tasks. The developers are



expected to actively manage their own time, studies, and
growth within the company. No one will complain about the
lack of productivity in one single day, or whether the time
spent on websites today was counter productive. Instead,
they are expected to execute a high quality job with excellent
gradings and approval from the clients. This requires a level
of maturity from the developers that can be easily seen
when asking someone about their following tasks: none and
everything.

It might be dangerous to depend on a developer’s maturity
in order to be productive, as not everyone takes their tasks as
an important job. Since the first day at Caelum, the developer
knows the company will offer the opportunity to make the
difference on teaching or developing every day, and it is up
to him to do it or not - not up to a manager.

The most common teaching method for software develop-
ment is still a lecture. At Caelum’s environment and when
with its clients, teaching means educating, helping a student
to develop the ideas on his own. The teacher’s goal is not to
make the student memorize APIs, rules, patterns or practices,
but to be able to understand the problems and construct the
solutions on their own. “It is important that teachers stop
being mere conferencists”, according to Piaget [9]. All these
ideas matters because, besides teaching outside students,
employees teach each other.

III. INTERVIEW

The main goal of the interview was to find out how people
have learned in their work environment. Developers that
started as interns or were beginners at software development
and, in the company’s perception, rapidly evolved, were
interviewed.

Researchers interviewed 7 different developers from the
team. Each interview took between 30 to 40 minutes. The
questions are listed below:

1) What do you like in Caelum?
2) How would you evaluate your own learning here?
3) How does that happen?
4) Do you give classes? What do you like when giving

classes?
5) Do you consider yourself a good developer? What

does a good developer mean for you? How do evaluate
the developer you were before joining the team?

6) Besides the technical stuff, is there anything else that
you learned? How did that happen?

7) Is there anything you did not learn here?
8) Do you like the company’s environment? What would

you improve here?
9) What will you do to keep learning?
The interview was semi-structured. Researchers could ask

more questions according to the participant’s replies. When
asked about how they learned at Caelum, most interviewees
commented about practices, so the researchers provided
deeper questions in that subject.

IV. LEARNING PRACTICES AND LESSONS LEARNED

The most discussed topic during the interviews was clear:
the most efficient way to learn is by doing it with a
peer. They all mentioned that they learn a lot by asking
questions, programming, and discussing with their work
colleagues. The role of Caelum is to encourage and ensure
that developers communicate and learn with each other, and
that knowledge is exchanged most of the time.

This section will explain what practices the team uses
to enhance their learning capabilities. Most of them are
well-known by agile practitioners. This section also presents
lessons learned while executing them, and how the team
improved those practices in order to maximize their gains.

A. Open Spaces
Learning with the peer was by far the most common topic

during the interviews. The open space plays an important
role in this as it allows people to be in close contact all the
time.

Our room is an open space. There are tables with no
partitions and no walls (Figure 1). People can sit wherever
they want, next to anyone else. The developers themselves
chose to have this freedom instead of their own tables or
seat. As all members are together, the development room
encourages making questions anytime. Anyone can answer
and sometimes a debate will arise. If the discussion gets
really interesting, the author of the question is asked to write
a blog post on that topic. For this reason, Caelum’s blog is
a very popular one in Brazil 1. Posts cover a lot of different
subjects, many of which appeared in a casual discussion.
This was mentioned by one of the participants: A discussion
usually happens. And then it becomes a blog post or a topic
in some forum. A simple question will sometimes become
something bigger.

Everyone is encouraged to give his opinion and no one
is criticized because of their ideas. It benefits even the
beginners as they can ask questions or even try to join the
discussion, exposing another point of view.

The problem with the open space is its noise. It has
been reported by the developers and discussed every year.
It was remembered by almost all interviewees during the
interview. Sometimes people will talk too loud, bothering
others. We proposed a Silent Thursday, just like Jason
Fried’s suggested in his TED Talk [6] and Neal Ford in
his Productive Programmer presentation [7]. The idea is to
have people learn how to moderate themselves, talking only
when necessary. This is a new practice for us and we are
still measuring results. Yet, developers feel very productive
on this day.

B. Pair Programming
Pair programming is the technique of using two people

to write code together at a single computer [4]. Almost all

1http://blog.caelum.com.br



Figure 1. Our work environment: an open space.

participants mentioned pair programming as a good way of
learning. When a developer is working with someone more
experienced, there is a tendency of absorbing knowledge
from the experienced one. A participant mentioned: “I like
when a new intern starts to code with you, the same insights
that you had in the beginning start to pop up into his mind.
. . . It is very nice to see people having the same reactions
you have had two years before. It helps you noticing how
much you evolved.”. Not only the knowledge but the capacity
of logical reasoning and questioning the status quo of a
solution are also taught from one to another during pair
programming.

In addition, even experienced developers learn with not
so experienced ones: “When you pair with the interns, they
often have ideas that we may not come up with, or it would
even take too many time to have!”. A positive point in our
environment is that, as teachers, our coworkers will typically
use their teaching skills to teach while pair programming,
facilitating the process.

However, pair programming is not natural, and sometimes
the practice may not be efficient. As an example, developers
sometimes tend to adapt the practice for some special cases.
Practicing it with three or more people, or having two
people working on different tasks and a third person helping
both at the same time are examples of possible variations.
However, we noticed that they are not efficient at Caelum’s
environment. The third one often gets distracted and/or does
not get enough change to interact with the development
process.

Nowadays, when programming, we try to avoid having
more than two people tackling the same problem. The third
one does something else - some task that one can do alone.
If there is no task available, one is free to join another group
to pair program for a while.

Developers also tend to pair program with the same
person quite often. That reduces the learning propagation as
knowledge can be kept within that pair. The team proposed

a Pair Programming Matrix on the wall and, after pairing,
people stand up and put a mark on that board. This way, the
whole company can see whether they are rotating pairs and
who still did not pair with whom. The figure 2 exemplifies
this matrix.

At Caelum, pair programming is not only done within
the same project. Someone from one project might join
another team for a couple of hours for any reason he
judges necessary. Open spaces help, as developers are free to
move around. It is common to see such movement to help,
for example, on a field where one’s knowledge is highly
valuable and will save a lot of work from the team. In other
situations, someone just want to escape from his current task
for a short period of time. Because everyone is responsible
for his own productivity results and time control, again,
this freedom requires some maturity from the developers.
Even interns realize soon the value of that freedom and the
responsibility that it takes, usually adapting themselves fast
to such environment.

For the same reason, changing projects happens very
often, even if the project continues to be developed. Class
schedule, traveling, events, blog posts, and any tasks with a
fixed date might require a project change. This has become
natural and it is unexpected to stay for a long time in the
same project, but enough to mature, learn its technologies,
design, architecture, domain and help improving it. In a
world with constant change, it becomes harder and harder to
keep developers motivated with one single task. Therefore
there is no fear to move anyone in or out of a project; no
project should have a truck factor of one [4].

Even though people know that, when pair programming,
pilot and co-pilot should communicate all the time, some-
times the most experienced developers leads the session and
ignores the co-pilot. What we frequently do is to talk to the
more experienced developers in the team, and remind them
to always give feedback to co-pilots. Experienced developers
have a huge role in the beginners’ learning process.

Although participants said that experienced developers
also benefit from learning from any other developer, the
team noticed that if the developers have a totally different
level of experience (e.g. a very experienced with a novice),
pairing might not be effective. It depends on the teaching
abilities of the experienced one and how much space he
leaves for the less experienced to exercise his logical and
inventing process: two skills that Caelum values in its
teachers. Currently, the team is putting together developers
with similar levels of experience, such as an advanced with
an intermediate, or an intermediate with a beginner. This
way, information exchange happens more naturally and both
learn faster.

C. Programming Sunday

Although not explicitly commented during the interviews,
another way to encourage programming is to organize a



Figure 2. Pair Programming Matrix

“Programming Sunday”. The main idea is to schedule a
sunday when developers get together and implement dif-
ferent code for internal or open source projects. In order
to incentivate this knowledge sharing opportunity which
also produces code, the company pays the lunch for all
participants.

Also, developers should take turns in each project. This
way, developers learn with other ones (as they are rotating
pairs all day long), and learn about the projects they are
working on.

However, as it happens on sunday, organizers try to do
it once every two or three months, and to schedule it in
advance, making everything that is possible to create a fun
environment. Thus, people can go and they treat it as a
moment to meet friends and do what they love: code.

During the last few experiences, several projects and
intentions were written on the board prior to beginning.
The group then vote on which ones they want to implement
during that day. Pais are formed and the work starts. After
every half an hour, the group does a small retrospective on
what they did and pairs change.

In our last experience, three different programming lan-
guages were used for four pairs, and it was important that
there was at least one person who fully understands the
language. To be productive, not just learn, it is also important
that someone in the starting pairs know the code or problem
they are dealing with. As pairs rotate, it seems possible to
work with a pair that are not experts on the problem or
the language, but those two should not be impediments for
productivity.

D. Dojo Sessions

A Coding Dojo is a periodic meeting (usually weekly)
organized around a programming challenge where people are

encouraged to participate and share their coding skills with
the audience while solving a problem. The most common
Dojo format is the Randori. In this format, the participants
try to solve a problem together, following TDD and Pair
Programming in time-boxed rounds (usually between 5 and
7 minutes). The problems are usually simple ones, and the
goal is not to solve it, but to share their knowledge, practice
and learn.

At the start of a turn, the pilot writes code, while the
co-pilot discusses the current and next steps. At the end
of each turn, the pilot goes back to the audience, the co-
pilot becomes pilot, and a new co-pilot taken from the
audience joins the pair. An extra rule is that discussions and
suggestions should only be given when the tests are passing
[5].

The team was used to do a lot of Randori sessions.
However, there were many dropouts in some sessions. Par-
ticipants also mentioned that during the interviews and also
as a feedback from the last meetings.

During our retrospectives, people mentioned that they do
not feel like they were evolving, because steps were too
small. One of the possible causes is that the group is used
to learn in a faster pace, and sticking to such small baby
steps that most dojo practices insists on, will soon become
bore-some.

What is currently working for the team is a Kata format,
in which a developer prepare a problem and solution in
advance (or a new practice, a new technology and so on), and
presents the same steps he took to get to his final solution -
showing every thought that came through his mind, exposing
his thinking process. The discussion over it tends to be
much more useful. Also, in the last retrospective, the team
suggested to define a “goal” to the Dojo session: learning the
language, improving OO design, etc. This way, if the goal
is to learn the language, people will not focus on TDD, for
example.

In the last couple of Dojo sessions, the language used was
Python, and the problem solved was somehow more complex
than the usual trivial problems chosen for Randori sessions.
As most of the developers are already fast learners, they may
got bored if the baby steps are too small, and therefore the
steps taken were a little more fast paced.

As usual, the red time, when no one but the pair is
supposed to talk, was considered boring as most developers
will know how to proceed and want to share their thoughts.

There is another dojo format called Kake. In this format,
there are two or more pairs working on the same problem,
but using a different language. developers work on all of
them. The benefits of the Kake format in our team is still
a mystery. Sometimes it goes well, sometimes it does not.
Although it is fun, people still have the feeling that they did
not learn much.



E. Brown Bag

Brown Bags 2 are trainings or seminars that may occur
during lunch time. Its name comes from those bags that
food is generally delivered. The idea of this practice is
to get the team together during 1 hour or so, and use it
to exchange information. While some member of team is
presenting something, the others are eating and discussing
about it. Figures 3 and 4 show our team during one brown
bag.

The practice appeared to be very useful. People are very
motivated to talk during lunch. However, the session was not
taking more than 15 minutes. What we are currently doing is
to encourage questions during the presentation. All subjects
presented at the session are deeply debated by everyone. In
our experience, the presentation may take few minutes (5 or
10 minutes) and the discussion will always flow for almost
an hour.

In the retrospective, people mentioned that one advantage
is that all team members participate in the discussion.
Everyone can ask questions or raise another discussion point.

We are also avoiding doing it in our work place as it is
easy to get distracted; if some discussion may not be inter-
esting for a specific developer, s/he opens the notebook and
start working. Food may also distract developers. If people
starts eating from the very beginning of the presentation,
the noise may bother the presenter. We start eating after the
presenter is finishing his presentation, and people are free
to ask.

Brown bags were mentioned by the team during the
interviews and the year retrospective. Because of that, the
team increased the frequency of brown bags: they are doing
2 per month.

Figure 3. Team members eating
and discussing.

Figure 4. Team member present-
ing some idea to the team.

In our last brown bag, the developers chose one of
their current projects, one that historically had no tests and
involved smelly code, and did a one-hour refactoring of the
code. Although no tests were developed, several refactoring

2http://en.wikipedia.org/wiki/Brown bag seminars

practices came up, and many developers gave suggestions on
what to do at the same time. The resulting code was amazing
and a lot of developers get to know deeper the code and the
domain of a new project. This shows that brown bags can
be done in any format, depending only on the presenter’s
creativity.

F. Internal Discussion List

Caelum has as internal discussion list which allows any-
one to research and share any idea even when not physically
present. All interviewees mentioned that the level of the
discussions that happen in there are high. Some of them even
said that, when an intern, they did not understand most part
of the discussions and they knew they evolved because they
started to participate on the discussions.

A discussion list via e-mail turned out to be useful as
people can research and think before writing their opinion.
It is common to see academic papers or books being refer-
enced during these discussion. A participant of the interview
mentioned that these references are useful, and he reads all
of them.

The other big advantage that a mailing list has is that it
allows developers who are currently out on clients to take
part of the discussions or get help.

Moreover, important developers outside the company are
invited to be part of it. It makes the discussion even richer
because it may help reducing the discussion bias that may
appear. With Twitter’s revolution in daily life, some of those
discussion where commented more and more often on it,
therefore we started an online forum 3 where discussions
that can be shared are post and open for the public to talk.

Because of this forum and the decreasing focus on out-
sourcing - increase on education and teaching - the number
of emails on the list has decreased, although every discussion
usually goes on for a week or more.

In 2002, there was no major online forum on the Java
language, so the founders of Caelum decided to create a site
called GUJ (Grupo de Usuários Java or, in a free translation,
Group of Java Users) 4, which during a couple of weeks
was basically a place for them and their friends share their
questions in Java and help each other. GUJ is currently the
biggest portuguese website on Java with over 126.000 users,
1 million messages, 10.000 new messages per month and
597 thousand pages indexed by google. Java ranch’s English
forum has 695. Oracle’s forum in all languages are only 24
times bigger using the same measurement.

Some of the early developers who joined the forum are,
nowadays, big names in the software industry in Brazil.
Some of them even became Caelum’s teachers. Throughout
the forum, one can easily see the questions and answers that
those teachers did over the time and compare the amount

3http://www.tectura.com.br/
4http://www.guj.com.br



of knowledge acquired in, for example, one year. All the
knowledge exchanged that those forums and mailing lists
provides is also used by Caelum when teaching new trainees
or developers, as they are asked to answer questions on GUJ
so they practice their teaching skills.

G. Open Source Development

Paulo Silveira, Caelum’s co-founder, started contributing
to open source with Java frameworks while attending uni-
versity. In 2003, VRaptor [2] was released, which became
the first and most well known Java framework in Brazil, a
local approach that has been even referenced as innovative
by the members responsible for the Java EE specifications
[8].

During those years, Caelum has realized the importance of
open source in its environment, the developer’s knowledge,
learning and teaching abilities. Good open source code also
works as a marketing feature. For all those reasons, Caelum
has invested its developers time into developing for projects
that do not have direct financial value.

Going through the code of other developers is a good
way of learning, and open source allows one to do it. With
XStream [11], for example, one of Caelum’s developer has
had its inflection point of productivity and software quality,
also being his first real contact with good testing practices.
Learning from code that others developed has been greatly
boosted with the raise of GitHub 5, and nowadays it is easier
than ever to share code, contribute and learn from others.

Stella [10] is an attempt to bring local issues from Brazil
into programing code, such as zip code and Brazilian social
security number handlers. With Restfulie [3], a hypermedia
aware REST framework, Caelum’s open source got inter-
national recognition. Restfulie is a good example where
the company was able to get a better understanding of
comparing implementations of the same framework and
ideas in several different languages, always with aid from
external developers.

Because all of that, developers are encourage to create or
to be become part of an open source project. Open source
was and will still be the catalyzer of learning and exchanging
ideas with external developers, without any limits due to
political decisions that a company might have, allowing the
teachers to have a better, non-biased, understanding of every
possible approach to a problem.

H. Blogging

The act of writing a technical article makes developers
think more about a specific subject. Because of that, our
team is encouraged to write about any topic they have
studied. Team members sometimes even write it in pairs.
The final article can be published it in his personal blog or
even it the company’s technical blog.

5http://www.github.com/

After it get published, the all team is invited to read and
make comments about the findings. As it can be read by
anyone outside the company too, a simple post blog becomes
in a huge discussion. Because of this initiative, our blog has
more than 220 posts, 3500 comments, and had 500.000 visits
in 2010.

An English blog was also started in late 2009 to discuss
some more advanced topics related to Caelum’s research and
innovation, allowing the outside developers to learn and also
share ideas with the team. Currently, our blog has 65 posts
and 136 comments.

Also, our team members are invited to write to Brazilian
technical magazines very often. It allows the developer
to have even more feedback about what he is currently
studying. The founders of Caelum are also technical editors
of the largest Brazilian Java magazine, while the company
employees writes for both Brazilian magazines.

I. Conferences

Conferences are a good way to get in touch with cutting-
edge technologies and practices. Developers are encouraged
to frequent conferences. As our focus in mainly Java and
Agile, conferences such as Agile, Agile Brazil, QCon and
JavaOne are the targeted ones. Although the content of
all presentations may not be advanced, they serve as an
incentive for developers to study about that topic.

Also, all these learning techniques makes the team mem-
bers to researches about different topics. Sometimes they
find interesting results and, because of that, developers are
also encouraged to submit presentations. As mentioned in
the interviews, conferences are also used to validate ideas
and receive feedback about them.

The networking during the conference is also important.
Team members can find other people that are currently
researching or studying the same topic. This is important
to the developer and to the company: the developer finds a
way to learn even more about the subject, and the company
get to know a new developer that may join the team in the
future.

Caelum’s employees are incentivated to do talks in events
all over Brazil. In 2010 there were more than 40 events
where Caelum sent someone from São Paulo to present.
Since 2010, Caelum also started sharing its experiences and
results in international events. Those are great opportuni-
ties to seed interest in the attendees on new technologies,
methodologies or practices. For Caelum, this helps spreading
its image within and outside the country, while it helps the
developers to become more famous within the communities.

J. Life and Work

Our society has changed and the dynamics of work and
personal life too. While previous generations experienced
clear separation between social life with co-workers from
the one with friends, work is now an extension of one’s



personal life. One’s experiences out of the workplace is also
an extension of work life.

Because of that, encouraging cultural experiences and any
other social activities amongst co-workers helps creating a
stronger team feeling where everyone feels more comfort-
able talking to each other. This freedom helps co-workers
feel free on being critic during pair programming, not to feel
shy while showing code they are not that proud of, or ask
maybe foolish questions to the team.

V. CONCLUSION

The most mentioned way to learn was, by far, learning
with a peer. Based on that, what we are currently doing is
trying to maximize the opportunities in which the team get
together. Also, most of interviewees commented that high-
skilled developers raise high-leveled discussions. However,
hiring only advanced developers is not easy. We argue that,
if the learning is effective, developers will evolve in much
less time than the average, and they will be able to discuss
advanced topics that they were not able to.

Maximizing the possibilities a developer has to show its
study is also a good idea. If a team member is researching
about something, he has many opportunities to have feed-
back about it: a blog post or an article in some magazine,
a presentation in a brown bag, a discussion in some list, a
conference, and etc. We encourage them to be part of all of
it.

One of the open questions in this environment is how to
deal with the growing expectations from a few developers
that learning is something that must be done only during
work hours. If not incentivated by the company during this
time, the developer might not try to improve its knowledge
off work. Neither this nor the opposite are the best solutions.

Also, some practices sometimes work better for a period
of time and, after that, their outcomes become less than
enough for their costs. When that happens, the team should
stop practicing that for a period of time. Even with those
practices help developers to share learning, it is up to them
to make it happen. If a practice is not being efficient enough,
the team should stop doing it. A team should only use
practices that work for them.

We do not claim that the discussed practices will work
in all environments, neither all the time, nor with every
kind of developer’s group. The effectiveness of any kind
of practice depends on time, environment, and the people
involved. Choosing good ones and dropping the ones that are
not working is what seems important in order to not simply

waste time. However, all of those practices have the same
principle behind: increasing the learning process with peers.
This research also suggests that companies that use learning
practices may repeat the experiment and do the proposed
interview. That may help validate the findings in this paper.

ACKNOWLEDGMENT

The authors would like to thank Caelum’s team members
which allowed us to ask questions and interview them about
their learning process.

REFERENCES

[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cock-
burn, Ward Cunningham, Martin Fowler, James Grenning,
Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland Dave Thomas. Manifesto for agile software
development. http://agilemanifesto.org/, 02 2001. Last access
in February, the 22th, 2011.

[2] VRaptor. http://vraptor.caelum.com.br/en. Last access in
March, the 21rd, 2011.

[3] Restfulie. http://restfulie.caelum.com.br/. Last access in
March, the 21rd, 2011.

[4] Beck, K. Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, 2nd edition, 2004.

[5] Sato, Danilo Toshiaki; Corbucci, Hugo; Bravo, Mariana Vi-
vian. Coding Dojo: An Environment for Learning and Sharing
Agile Practices. AGILE Conference, pp. 459-464, Agile 2008,
2008.

[6] Fried, Jason. Why work doesn’t happen at work.
http://www.ted.com/talks/jason fried why work doesn t
happen at work.html TEDxMideast. 2010. Last access in
March, 20th, 2011.

[7] Ford, Neal. Productive Programmer.
http://www.parleys.com/#st=5&id=2217 Devoxx. 2010.
Last access in March, 20th, 2011.

[8] Sandoz, Paul. JAX-RS, Java EE 6 and the Future.
http://parleys.com/#id=2096&st=5 Devoxx. 2010. Last access
in March, 20th, 2011.

[9] Piaget, Jean. Où va l’éducation. Gallimard, 1988.

[10] Caelum Stella. http://stella.caelum.com.br/. Last access in
March, the 3rd, 2011.

[11] XStream. http://xstream.codehaus.org/. Last access in March,
the 3rd, 2011.


