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This supplemental paper provides proofs for Theorem 5 in the paper. Some additional simu-

lation results are also presented in Section 2.

1. PROOF OF THEOREM 5

To prove Theorem 5, we define some notations and prove some preliminary lemmas. For l1 < l < l2,

where l1, l2 satisfy the following condition

ki0 ≤ l1 < ki0+1 < · · · < ki0+s < l2 ≤ ki0+s+1 (1.1)

where 0 ≤ i0 ≤ q − s and for some 0 < s ≤ q. Define
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where z2
t = s2t − σ2

t and V is the population version of V̂ . Without loss of generality, assume that∑l2
t=l1+1 σ

2
t = 0. Otherwise, one can define σ̃2

t = σ2
t − (l2 − l1)−1∑l2

t=l1+1 σ
2
t and change the value

of σ2
t to be σ̃2

t , which does not affect the value of Θ̃l
l1,l2

and Z̃ll1,l2 and the location of change-points.

Under the assumption of
∑l2
t=l1+1 σ̃

2
t = 0, we can write Θ̃l

l1,l2
as

Θ̃l
l1,l2 = −V −1

l∑
t=l1+1

σ̃2
t /
{(l − l1)(l2 − l)}1−η

(l2 − l1)3/2−2η
.

The following Lemma 1-4 consider the behavior of function Θ̃l
l1,l2

. Lemma 1 shows that the

maximum of Θ̃l
l1,l2

can be only attained at change-points, whose proof can be found in Venkatraman

(1992).

Lemma 1. Let l1, l2 satisfy condition (1.1) for some s > 0 and |Θ̃l0
l1,l2
| = maxl1≤l≤l2 |Θ̃l

l1,l2
|. Then

l0 = ki0+i for some 0 ≤ i ≤ s.
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The following two conditions are needed for the following Lemmas regarding the function Θ̃l
l1,l2

.

The first condition requires the distance between l1 and l2 are not too close to each other and second

condition requires that the l1 and l2 are close to some change-points.

l1 < ki0+i − cξT,n < ki0+i + cξT,n < l2 for 1 ≤ i ≤ s; (1.2)

min(ki0+1 − l1, l1 − ki0) ∨min(ki0+s+1 − l2, l2 − ki0+s) ≤ εT,n. (1.3)

where ξT,n = T 1−βn−1/8 and εT,n = Tα log(T )n−1/4.

The following Lemma obtains the lower bound and upper bound for maxl1≤l≤l2 |Θ̃l
l1,l2
| for l1, l2

satisfy different conditions.

Lemma 2. Let l1, l2 satisfy condition (1.2) and the conditions (A3)-(A4) hold. Then

max
l1≤l≤l2

|Θ̃l
l1,l2 | ≥ 41/2−ηδcξT,nT

−1/2n1/2 = 41/2−ηcδT 1/2−βn3/8.

If l1 and l2 satisfy condition (1.1) such that min(ki0+1− l1, l2−ki0+1) ≤ εT,n for s = 1 or max(ki0+1−

l1, l2 − ki0+2) ≤ εT,n for s = 2, then

max
l1≤l≤l2

|Θ̃l
l1,l2 | < |n

1/2√εT,n − 3c0
√

log(T )| = |Tα/2
√

log(T )n3/8 − 3c0
√

log(T )|.

Proof. Denote Ql =
∑l
t=1 σ̃

2
t and assume that σ̃2

ki0+i
= θ and σ̃2

ki0+i+1 = θ∗. Because
∑l2
t=l1

σ̃2
t = 0,

we have Ql2 −Ql1 = 0. This implies that

Qki0+i+cξT,n
−Qki0+i−cξT,n

= −(Ql2 −Qki0+i+cξT,n
)− (Qki0+i−cξT,n

−Ql1) = cξT,n(θ∗ + θ).

This further implies that

max{|Ql2 −Qki0+i+cξT,n
|, |Qki0+i−cξT,n

−Ql1 |} >
θ + θ∗

2
cξT,n.

If |Qki0+i−cξT,n
−Ql1 | > θ+θ∗

2 cξT,n, then

|Qki0+i −Ql1 | = |(Qki0+i −Qki0+i−cξT,n
) + (Qki0+i−cξT,n

−Ql1)|

≥ ||(Qki0+i−cξT,n
−Ql1)| − |(Qki0+i

−Qki0+i−cξT,n
)|| > |θ

∗ − θ|
2

cξT,n

If |Ql2 −Qki0+i+cξT,n
| > θ+θ∗

2 cξT,n, then

|Qki0+i
−Ql1 | = |(Qki0+i

−Qki0+i−cξT,n
)− cξT,n(θ∗ + θ)− (Ql2 −Qki0+i+cξT,n

)|

= |(Ql2 −Qki0+i+cξT,n
)− cξT,nθ∗|

≥ ||(Ql2 −Qki0+i+cξT,n
)| − cξT,nθ∗| >

|θ∗ − θ|
2

cξT,n.
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Therefore, |Ql − Ql1 | is at least cδξT,n/2. Since {(l − l1)(l2 − l)}1−η/{(l2 − l1)}3/2−2η ≤ (l2 −

l1)1/2/41−η ≤
√
T/41−η, we have maxl1≤l≤l2 |Θ̃l

l1,l2
| ≥ 41/2−ηcδξT,nT

−1/2n1/2 if V −1 = n1/2. This

completes the first part of the proof.

If l1 and l2 satisfy condition (1.1) such that min(ki0+1 − l1, l2 − ki0+1) ≤ εT,n for s = 1. Then by

Lemma 1, if ki0+1 − l1 < l2 − ki0+1, then

max
l1≤l≤l2

|Θ̃l
l1,l2 | = |Θ̃

ki0+1

l1,l2
| ≤ V −1(ki0+1 − l1)η(l2 − l1)3/2−2ηB/(l2 − ki0+1)1−η

≤ V −1(ki0+1 − l1)η23/2−2η(l2 − ki0+1)3/2−2ηB/(l2 − ki0+1)1−η ≤ V −1(ki0+1 − l1)1/223/2−2ηB

≤ 23/2−2ηBn1/2√εT,n.

If ki0+1 − l1 > l2 − ki0+1, then using the relation
∑l
t=l1+1 σ̃

2
t = −

∑l2
t=l+1 σ̃

2
t , we have

max
l1≤l≤l2

|Θ̃l
l1,l2 | = |Θ̃

ki0+1

l1,l2
| ≤ V −1(l2 − ki0+1)η(l2 − l1)3/2−2ηB/(ki0+1 − l1)1−η

≤ V −123/2−2η(l2 − ki0+1)η(ki0+1 − l1)3/2−2ηB/(ki0+1 − l1)1−η ≤ 23/2−2ηBn1/2√εT,n.

Similarly, one can obtain the same bound for maxl1≤l≤l2 |Θ̃l
l1,l2
| for l1, l2 satisfies max(ki0+1 − l1, l2 −

ki0+2) ≤ εT,n when s = 2.

Lemma 3. Let l1, l2 satisfy condition (1.2) and (1.3) for α < 1 − 2β. Let ν be a change-point such

that Θ̃ν
l1,l2

> maxl1≤l≤l2 |Θ̃l
l1,l2
| − 6c0

√
log(T ). Then

Θ̃ν
l1,l2 = A(l2 − l1)3/2−2η/{(ν − l1)(l2 − ν)}1−η with A > δcn1/2ξT,n/5 = δcn3/8T 1−β/5.

Proof. Similar to the second part of the proof in Lemma 2, we note that Θ̃ν
l1,l2
≤ 23/2−2ηB

√
min(ν − l1, l2 − ν).

By condition (A3) and (1.3), we know that min(ν − l1, l2 − ν) is either less than εT,n or larger

than 2cξT,n − εT,n. However, if min(ν − l1, l2 − ν) ≤ εT,n, then Θ̃ν
l1,l2
≤
√

2B√εT,n, which implies

that maxl1≤l≤l2 |Θ̃l
l1,l2
| ≤ 23/2−2ηB

√
εT,n + 6

√
log(T ) < cδT 1/2−βn3/8 for large T, n by condition

α < 1− 2β. Therefore, min(ν − l1, l2 − ν) must be greater than 2cξT,n − εT,n.

Without loss of generality, assume 2(ν − l1) ≤ l2 − l1 and assume ν = ki0+i for some 1 ≤ i ≤ s.

Let θ = σ̃2
ν and θ∗ = σ̃2

ν+1. Then by assumption (A4), min(|θ|, |θ∗|) > δ/2.

If |θ| > δ/2, we consider two cases. (a) if i = 1, then A = V −1(ν − l1)θ, which is greater than

cξT,nV
−1 = cδT 1−βn3/8/2; (b) if i > 1 and A < δcn3/8T 1−β/3. Let ν′ = ki0+i−1 be another change-

point before ν. Since (x− l1)(l2−x) is increasing function for x < (l2− l1)/2 and (ν− l1) ≤ (l2− l1)/2,
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we have (ν′ − l1)(l2 − ν′) ≤ (ν − l1)(l2 − ν) and

|Θ̃ν′

l1,l2 | =
|A− θ(ν′ − ν)V −1|

{(ν′ − l1)(l2 − ν′)}1−η/(l2 − l1)3/2−2η
≥ 2δcn3/8T 1−β/3
{(ν − l1)(l2 − ν)}1−η/(l2 − l1)3/2−2η

> 2|Θν
l1,l2 |

which implies that |Θ̃ν
l1,l2
| ≤ |Θ̃ν′

l1,l2
|/2 ≤ maxl1≤l≤l2 |Θ̃l

l1,l2
|/2 < maxl1≤l≤l2 |Θ̃l

l1,l2
| − 6c0

√
log(T )

for large T, n. This is a contradiction to the condition Θ̃ν
l1,l2

> maxl1≤l≤l2 |Θ̃l
l1,l2
| − 6c0

√
log(T ).

Therefore, A > δcn3/8T 1−β/3. Using similar ideas, it can be shown that the results of this Lemma

are still true under the case of |θ∗| > δ/2. This finishes the proof of this Lemma.

Lemma 4. Let l1, l2 satisfy conditions (1.2) and (1.3) for some α < 1 − 2β with β < 1/8. Let ν

be a change-point such that Θ̃ν
l1,l2

> maxl1≤l≤l2 |Θ̃l
l1,l2
| − 6c0

√
log(T ). Then under the conditions

(A3)-(A4), for some 0 < r < εT,n, Then Θ̃ν
l1,l2

> Θ̃ν+r
l1,l2

+ 6c0
√

log(T ).

Proof. From the proof of Lemma 3, we had min(ν − l1, l2 − ν) > 2cT 1−βn−1/8 − Tα log(T )n−1/4. Let

ν′ > ν be another change-point next to ν. There are two possible cases (a): ν′ = l2 and (b) ν′ < l2.

(a) ν′ = l2. Let i = ν − l1 and h = l2 − ν. Similar to Venkatraman (1992), we can show that

Θ̃ν
l1,l2 − Θ̃ν+r

l1,l2
≥ rA(i+ h)3/2−2η

(ih)1−η(i+ r)
≥ crA

min(i, h)3/2
.

for a constant c. Taking r = Tα log(T )n−1/4, we have, if α ≥ 1/2 + β,

Θ̃ν
l1,l2 − Θ̃ν+r

l1,l2
≥ cTα log(T )n−1/4T 1−βn3/8T−3/2 ≥ c log(T )n1/8.

(b) ν′ < l2. Let i = ν− l1, h = cT 1−βn−1/8 and j = l2−ν−h. Note that j ≥ h and h < i. Similar

to Venkatraman (1992), we can show that

Θ̃ν
l1,l2 − Θ̃ν+r

l1,l2
≥ ∆1r + ∆2r.

where

∆1r =
Arh(i+ j + h)3/2−2η

{i(j + h)}{(i+ r)(j + h− r)}1−η
; and ∆2r = −br

h

{(i+ h)j}1−η

(i+ r)1−η(j + h− r)1−η
.

Here b = Θ̃ν+h
l1,l2
− Θ̃ν

l1,l2
. Similar to Venkatraman (1992), we have, if α ≥ 1/2 + 2β,

∆1r ≥
cAr(h− r)

[max(i, j + h)]3/2[min(i, j + h)]
≥ cT 1−βn3/8Tα log(T )n−1/4cT 1−βn−1/8T−5/2 ≥ c log(T )

for any constant c. Following the proof in Venkatraman (1992), we can also show that ∆1r ≥ −1/2

and ∆3r ≥ 0. This completes the proof of this Lemma.
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The next Lemma 5 establishes the upper bound of max0≤l1<l<l2≤T |Z̃ll1,l2 | and provides the con-

vergence rate of estimated change-point. The proof is omitted because it is very similar to the proof

in Venkatraman (1992).

Lemma 5. Let Bn = {max1≤l1<l<l2≤T |Z̃ll1,l2 | ≤ 3c0
√

log(T )} for any l1 < l2 and some constant c0

as n, T → ∞. Then limn→∞ P (Bn) = 1. Let l1, l2 satisfy conditions (1.2) and (1.3). Let l0 be the

estimated change-points such that Ũ l0l1,l2 = max0≤l1<l<l2≤T |Ũ ll1,l2 |. Then in the event of Bn, for some

1 ≤ i ≤ s, |ki0+i − l0| ≤ εT,n.

Proof of Theorem 5. At the beginning of the ISWDA algorithm, l1 = k0 = 1 and l2 = kq+1 = T

satisfy condition (1.3) for any α ≥ 0 and i0 = 0, s = q, and satisfy condition (1.2) for any 1 ≤

i ≤ s by condition (A3). Then by Lemma 1, maxl1≤l≤l2 |Θ̃l
l1,l2
| ≥ δcδT 3/8n3/8, which implies that

maxl1≤l≤l2 |Ũ ll1,l2 | ≥ δcδT
3/8n3/8 − 3c0

√
log(T ) > U∗T,αn

in the event Bn defined in Lemma 5. There-

fore, one change-point l0 will be detected and by Lemma 5, l0 will close to one of the change-points

satisfy the condition (1.3). Thus each subsequence satisfy conditions (1.2) and (1.3) and hence the

detection continues.

Suppose we have detected less than q change-points, then there exists a segment {l1+1, · · · , l2} such

that (1.2) holds. Therefore, by Lemma 2, maxl1≤l≤l2 |Ũ ll1,l2 | > U∗T,αn
. Hence, a change-point will be

detected in the segment. Thus q̂ ≥ q. Once q̂ = q, all the subsequent segments have end points satisfy

condition min(ki0+1−l1, l2−ki0+1) ≤ εT,n for s = 1 or max(ki0+1−l1, l2−ki0+2) ≤ εT,n for s = 2. Then,

by Lemma 2, maxl1≤l≤l2 |Ũ ll1,l2 | < U∗T,αn
, which implies that no change-points will be detected further

and all the detected change-points satisfy |k̂i − ki| ≤ εT,n. In addition, by Lemma 5, the event Bn

happens with probability 1. This implies that limn→∞ P (q̂ = q; |k̂j−kj | ≤ T 3/4n−1/4, 1 ≤ j ≤ q) = 1.

The proof of this theorem is complete.

2. SIMULATION RESULTS

2.1 Empirical Sizes

To illustrate that the asymptotic null distribution of the SWDA based test and compare it with Inclán

and Tiao’s and Chen and Gupta’s methods in finite sample case, we simulated dependent samples
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from the following model

Yit = Zit where Zit = ρZi(t−1) +
√
σ2
t − ρ2σ2

t−1εit, (2.1)

where ρ = 0.3, εit and Zi1 were independent standard normal, t5 or χ2
3 distributed, and εit were

independent of Zi(t−1), for i = 1, · · ·n, and t = 2, · · · , T . Here all the σ2
t were equal, that is,

σ2
t = σ2

1 = Var(Zi1), for t = 1, 2, ..., T . We ran simulations with n = 100, T = 100, 300, 500,

εT = log log(T ) and 10,000 replications to calculate the empirical size. The sizes of the proposed

test were calculated as the proportions of test statistics maxεT≤k≤T−εT
|
√
TU0

k | that are larger than

U∗T,α among 10,000 replicates under different significance levels α=0.01, 0.05, and 0.1. The values of

empirical sizes are listed in Table 1. From the table, we can see that no matter for Gaussian or non-

Gaussian distributions, the sizes from the SWDA based test are close to the specified nominal levels

α’s, while the sizes from Inclán and Tiao’s and Chen and Gupta’s methods are not well controlled for

non-Gaussian distributions.

Table 1. Empirical Sizes of the SWDA test, Inclán-Tiao’s test and Chen-Gupta’s test in model (2.1).

SWDA Inclán-Tiao Chen-Gupta

α α α

Length 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T=100 0.002 0.017 0.038 0.035 0.079 0.186 0.000 0.018 0.051

Normal T=300 0.002 0.026 0.075 0.027 0.105 0.163 0.001 0.021 0.086

T=500 0.002 0.023 0.079 0.020 0.089 0.159 0.001 0.026 0.091

T=100 0.012 0.046 0.079 0.395 0.625 0.708 0.230 0.497 0.612

t5 T=300 0.021 0.053 0.099 0.417 0.649 0.746 0.313 0.600 0.756

T=500 0.020 0.063 0.106 0.420 0.658 0.739 0.311 0.646 0.810

T=100 0.002 0.027 0.065 0.349 0.577 0.696 0.140 0.459 0.612

χ2
3 T=300 0.004 0.034 0.071 0.362 0.568 0.694 0.216 0.559 0.691

T=500 0.004 0.042 0.096 0.384 0.583 0.682 0.239 0.601 0.758

We also simulated dependent samples from the following regression model with predictor Xit,

Yit = 1 + 2Xit + Zit, (2.2)

where Zit were generated by (2.1) and Xit were generated from standard normal distribution inde-
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pendent with Zit for i = 1, · · ·n, and t = 2, · · · , T . The values of empirical sizes are listed in Table

2. We can observe similar phenomena as those in Table 1.

Table 2. Empirical Sizes of the SWDA test, Inclán-Tiao’s test and Chen-Gupta’s test in model (2.2).

SWDA Inclán-Tiao Chen-Gupta

α α α

Length 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T=100 0.002 0.017 0.042 0.031 0.094 0.197 0.001 0.016 0.048

Normal T=300 0.002 0.028 0.074 0.034 0.099 0.178 0.001 0.029 0.086

T=500 0.005 0.030 0.068 0.020 0.107 0.165 0.001 0.028 0.092

T=100 0.010 0.039 0.066 0.429 0.633 0.709 0.192 0.478 0.625

t5 T=300 0.014 0.063 0.095 0.437 0.690 0.726 0.294 0.613 0.741

T=500 0.024 0.057 0.104 0.439 0.641 0.759 0.316 0.633 0.791

T=100 0.002 0.022 0.060 0.373 0.569 0.718 0.144 0.462 0.628

χ2
3 T=300 0.006 0.032 0.092 0.356 0.577 0.699 0.232 0.517 0.732

T=500 0.003 0.040 0.085 0.368 0.554 0.706 0.247 0.582 0.737

2.2 Empirical Power

The simulation studies are designed to evaluate the performance of the proposed ISWDA (Iterated

Standardized Weighted Differences of Averages) method and compare it with Inclán and Tiao’s

CUSUM method and Chen and Gupta’s SIC method. We conducted simulations for two variance

change patterns under normal, t5 and χ2
3 distributions.

First, we generated data Zit from an AR(1) model specified in (2.1) without predictors. We

generated sequences of data with length T = 120 and sample size n = 100. The average number of

wrong rejections and the empirical power for each change-point are reported based on nominal level

α = .05 and 10,000 simulation iterations.

In Table 3, ρ = 0.30, εit and Zi1 were independently standard normal, t5 or χ2
3 distributed, and εit

were independent of Zi(t−1), for i = 1, · · ·n, and t = 2, · · · , T . This table studied the cases of multiple

abrupt variance changes. Specifically, each row corresponds to the true variances with pattern (σ2,
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..., σ2, 2σ2, ..., 2σ2, 4σ2, ..., 4σ2, 2σ2, ..., 2σ2), where the variance σ2 is the variance of Zi1, and the

variance σ2 jumps to 2σ2 and 4σ2 at time positions 30 and 60, then drops to 2σ2 at time position 100.

From the table, we can see that ISWDA procedure has good detection power for the normal cases.

For the non-normal cases, Inclán-Tiao’s and Chen-Gupta’s methods make many wrong rejections, and

even in such cases, our method performs no worse in power, suggesting that the method is valid to

apply to both Gaussian and non-Gaussian sequences.

In Table 4, we explored the performances of the three methods for the cases of gradual variance

changes using the same model as in Table 3. Each row in this table shows the simulation result for

the case that the variance σ2 changes to 2σ2, 3σ2, 4σ2, 5σ2 and 6σ2 at time positions 100, 101, 102,

103 and 104, then stays at 6σ2. From the table, we can conclude that, first, when the distribution

shape departs away from normal distribution, Inclán-Tiao’s and Chen-Gupta’s methods make many

wrong rejections, again indicating that these procedures are not suitable for non-Gaussian sequences.

Second, our procedure not only makes less number of type I errors, but also makes less number of

type II errors than the other two methods.

Table 3. Number of wrong detections and empirical powers for abrupt change-points in model (2.1).

No. of wrong Empirical power

Distribution Test detections change1 change2 change3

ISWDA 0.20 0.97 0.91 0.97

Normal Inclán-Tiao 0.54 0.96 0.93 0.87

Chen-Gupta 0.22 0.93 0.96 0.98

ISWDA 0.67 0.82 0.72 0.81

t5 Inclán-Tiao 4.11 0.78 0.76 0.74

Chen-Gupta 2.39 0.81 0.85 0.88

ISWDA 0.67 0.82 0.71 0.81

χ2
3 Inclán-Tiao 3.89 0.77 0.75 0.73

Chen-Gupta 2.12 0.81 0.83 0.86

Second, we generated data Yit from the regression model specified in (2.2) with predictor Xit,

which were generated from standard normal distribution independent with Zit for i = 1, · · ·n, and
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Table 4. Number of wrong detections and empirical powers for gradual change-points in model (2.1)

No. of wrong Empirical power

Distribution Test detections change1 change2 change3 change4 change5

ISWDA 0.03 0.81 1.00 0.84 0.17 0.01

Normal Inclán-Tiao 0.92 0.37 0.15 0.16 0.23 0.28

Chen-Gupta 0.09 0.90 0.65 0.26 0.47 0.20

ISWDA 0.11 0.57 0.95 0.80 0.30 0.04

t5 Inclán-Tiao 3.34 0.50 0.24 0.14 0.15 0.20

Chen-Gupta 1.65 0.72 0.65 0.27 0.37 0.23

ISWDA 0.06 0.57 0.96 0.78 0.30 0.04

χ2
3 Inclán-Tiao 3.04 0.49 0.23 0.14 0.15 0.19

Chen-Gupta 1.33 0.72 0.61 0.28 0.35 0.22

t = 2, · · · , T . Zit were generated from the AR(1) model specified in (2.1), in which ρ = 0.30, εit and

Zi1 were independently standard normal, t5 or χ2
3 distributed, and εit were independent of Zi(t−1),

for i = 1, · · · 100, and t = 2, · · · , 120.

Table 5 studied the cases of multiple abrupt variance changes with the same change pattern of

Table 3, while Table 6 explored the performances of the three methods for the cases of gradual variance

changes using the same change pattern of Table 4. Results in these two tables show similar phenomena

as those in Table 3 and Table 4.
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Table 5. Number of wrong detections and empirical powers for abrupt change-points in model (2.2).

No. of wrong Empirical power

Distribution Test detections change1 change2 change3

ISWDA 0.20 0.97 0.91 0.96

Normal Inclán-Tiao 0.57 0.96 0.93 0.86

Chen-Gupta 0.23 0.93 0.96 0.98

ISWDA 0.66 0.83 0.73 0.80

t5 Inclán-Tiao 4.18 0.78 0.75 0.72

Chen-Gupta 2.39 0.82 0.84 0.88

ISWDA 0.68 0.82 0.71 0.81

χ2
3 Inclán-Tiao 3.95 0.77 0.75 0.73

Chen-Gupta 2.14 0.81 0.83 0.86

Table 6. Number of wrong detections and empirical powers for gradual change-points in model (2.2).

No. of wrong Empirical power

Distribution Test detections change1 change2 change3 change4 change5

ISWDA 0.87 0.94 1.00 0.98 0.57 0.31

Normal Inclán-Tiao 0.72 0.60 0.31 0.02 0.04 0.15

Chen-Gupta 0.60 0.96 0.77 0.38 0.50 0.26

ISWDA 0.11 0.57 0.95 0.80 0.30 0.04

t5 Inclán-Tiao 3.36 0.50 0.24 0.14 0.15 0.20

Chen-Gupta 1.66 0.72 0.64 0.27 0.37 0.22

ISWDA 0.17 0.56 0.96 0.77 0.29 0.04

χ2
3 Inclán-Tiao 3.39 0.49 0.23 0.14 0.16 0.19

Chen-Gupta 2.33 0.72 0.61 0.28 0.35 0.22
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