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Definition of a Network

Networks are

• A set of nodes         e.g. people

• A set of edges         e.g. friendships

– Edges describe bilateral 

relationships between nodes

Can analyse statistics of these pairs 

using usual statistical methods
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Network Analysis

Network analysis adds new insights 

when large scales are relevant

Whole structure

not just nearest neighbours 
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Field Date

Maths 1930’s

Social Science 1960’s

Computer Science 1960’s

Physics 2000’s



Constraints

Most network analysis considers no 

constraints on the relationships

• ER random graph all edges equally likely

• Barabasi-Albert model (undirected Price 

model) all edges possible

© Imperial College LondonPage 6



Community Detection

Sometimes network 

topology reflects 

constraints clearly



Standard methods

can reveal 

such features

© Imperial College LondonPage 7

Edge partition

of Karate club network
[Evans & Lambiotte, 2009, 2010]

Chief 

Instructor 

Junior 

Instructors 

not allowed 

to interact 

with 

members



Constraints

In reality there are often non-topological 

constraints coming from other data

• Social

– Rigid rules e.g. Zachary Karate Club

• Spatial

– Costs of long distance connections 

• Time

– Short term memory

© Imperial College LondonPage 8

Focus of 

this Talk



Networks and Constraints

Many times key features are hidden if you do 

not understand the constraints



Need to include effects of constraints in

• Models

• Analysis
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AIMS

• My First Question 

• Applications

• Type of Interactions

• Uses for Answers
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My First Question

Given the positions of some sites, what sort of 

interactions can I expect?
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Minoan sites,

Middle Bronze Age 

c2000-1500BC

[Knappett, TSE, Rivers, 

2008-2012]



Some Applications

• Transport

– Traffic flow

• Urban Planning

– Commuting Patterns

• Economics

– Migration

• Communications

• Archaeology
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Type of Interactions

• Zones of Control

– Political power, who controls whom?

– Centralised service provision, 

e.g. Hospitals, shopping malls

• Flows

– Trade

– Commuting patterns

– Migration patterns 

– Information e.g. Potters wheel
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Uses for Answers

• Fill in missing data

– Large gaps in archaeological record

• Predictions

– How does the complex system respond to change?

– Where should we locate a new service?

• Comparison

– As null models, to highlight features in real data
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Missing Data in Archaeology

• Often records limited or plain missing.

• Where records exist for individual sites, hard to 

combine for social and scientific reasons.

Example

• Eruption on Thera (modern Santorini) 
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Example – Theran eruption

• Eruption on Thera

(modern Santorini) 

c1600/1500BC

• Thera at key distance, 

from Cretan coast, 

Knossos being one of 

closest points

• Compare networks before 

and after

© Imperial College LondonPage 16

[Knappett, TSE, Rivers, 

Antiquity 2012]



Transport & Ecology

Cargo Ship Movements and Invasive Species    [Kaluza et al, 2009]
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Vertices = Ports, Edges = Trips From/To



Aims of Spatial Modelling

• Many Contexts

• Many different aims

Discussion here will be very generic

with examples drawn from my experiences
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MODELLING
• Choices common to all models

– Space

– Distance 

• Zone of control models

• Network Models

– Threshold models

– Maximum Entropy Models

– Stochastic Models
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MODELLING - Choices Common to All Models

• Which space do we 

work in? 

• How do we measure 

distance?
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Space

• We will work with two-

dimensional space

• All ideas can be applied 

to artefact spaces

e.g. document similarity 

measured in keyword 

frequency space

• Co-occurrence in text
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Different Distances

• Physical Distances

– As the crow lies

– Shortest route in km

– Quickest time 

– Lowest costs

– ...

• Ranked distances

– Nearest neighbour, 

second nearest 

neighbour, etc
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1st

2nd

3rd



Ranked distances

• Used by Stouffer 1940 in Intervening 

Opportunities model

• Connect to potential targets in the order of 

proximity irrespective of physical distance

– closest first, 

next closest second,

etc

e.g. Will prefer to visit nearest 

hospital in an emergency and 

distance to it or to the next 

nearest is not very relevant
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MODELLING - Zones of Control models

• Common border

• Voronoi Tesselation/Thiessen Polygons 

and Delauney Triangulation

• XTent model
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Clustering/Zone of Control models

Who controls what?

• Networks simple, just nearest neighbours

• Classic example Delauney Triangulation
(dual of Voronoi tessellation = Thiessen Polygons)

• Xtent model generalisation 
[Renfrew & Level, 1979; Bevan 2010]
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Nearest Neighbours Clusters
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Wards for 

England 

& Wales

Connect wards if 

• share common border

• both are large

 Spatial Hierarchical Clustering = Bottom-up city definition

[Arcaute et al 2014]



Voronoi Tessellation/Theissen Polygon

12 Etrurian Cities 

[Renfrew 1975]
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XTent Model    [Renfrew & Level, 1979]

• Thiessen polygons for unequal size sites

• Can set influence of site as function of distance to 

any suitable function

A C

A

B
C

Location

(Size)

Region of 

Influence

a

B is smaller than C but 

B is part of A’s domain



© Imperial College LondonPage 29

XTent model examples [Renfrew & Level, 1979]

Neolithic Temples of Malta



Xtent Neopalatial Crete (~1750BC - ~1500BC)

© Imperial College LondonPage 30

[Bevan 2010]



MODELLING - Network Models

• Threshold models

• Maximum Entropy Models

– Gravity Models

– Rhill & Wilson

– Radiation Model

• Stochastic Models
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Threshold models

Connect to all sites within distance D

• Using physical distances get 

Maximum Distance Network model

• Using ranked distances get

Proximal Point Analysis 

• Simple “pencil and paper” models
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Connected 

core

MDN – Maximum Distance Network

Equal sized sites, connect if D or less apart

D
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MDN – Maximum Distance Network

Sites distance  D or less apart are connected

• Theoretically tractable, often used with 

randomly generated site locations 

– Poisson Point Processes

– ad-hoc wireless models [e.g. Srinivasa & Haenggi 2010]

– Random Geometric Graphs [e.g.Penrose 2003]

• Not used much with real sites in archaeology
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PPA - Proximal Point Analysis

• Sites connected to k nearest neighbours

– Maximum Distance Network using Rank distance

• Popular in Archaeology 
– [Terrell 1977; Irwin 1983; Hage & Harary 1991; 

Broodbank 2000; Collar 2007]

• Simplest example of the use of 

Ranked Distance not Physical Distance

(Intervening Opportunities Model)



Strongly 

connected 

core

DPPA Example (Directed PPA)

Connect each site to its k=2 nearest neighbours
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PPA Example

• All edges equal

• Network now simply connected 

Ignore direction
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Terrell (1977)

• Solomon Islands

(east of Papua

New Guinea)

• PPA analysis



A More Sophisticated Network Description

MDN and PPA are very 

simple models

- You can do them with 

paper and pencil

BUT do they capture 

all the nuances of a 

spatial system?
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More Sophisticated

Network Description
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Fij
Variable flow

i

j

Fixed distance dij

Fixed

site size

Sj



More Sophisticated Network Description

• dij Fixed distance from site i to site j

• Si Fixed site size or capacity 

perhaps also representing hinterland

• Fij Variable flow from site i to site j, 

the edge weight in a network
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Si dij, Fiji
j Sj



MODELLING - Network Models 

• Threshold models

• Maximum Entropy Models

– Gravity Models

– Rhill & Wilson

– Radiation Model

• Stochastic Models
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Maximum Entropy Models

• The approach was pioneered in 1967 by 

Alan Wilson

• Described in terms of the flow matrix Fij

number of trips from site i to site j 

• Gives directed weighted 

dense networks

• In practice many edges 

have low weights
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Maximum Entropy

• Number of trips from i to j is flow Fij

• Each trip equally likely

• Maximise entropy S=ln() 

• To fix total flow use  

 complete network, Fij const.
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Site Sizes

• Number of sources/targets for interaction at each 

site i is Si

• If each interaction equally likely, 

 flow will scale with number of interactions SiSj

between sites i and j
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Site Sizes

• Number of sources/targets for interaction at each 

site i is Si    e.g. equals population of site

• If each interaction equally likely then expect flow 

to scale with number of interactions between 

sites i and j is equal to SiSj

• So maximise entropy 

• Total flow fixed  Fij  Si Sj
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Cost constraint – Simple Gravity Models

• Each trip from i to j costs cij typically function of 

distance dij

• Total costs constrained to be C

• Parameter g is Lagrange multiplier to enforce 

cost constraint
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Deterrence function vs Cost function

Solutions given in terms of function of distance,

the deterrence function f(dij)

Choosing deterrence function is equivalent to 

specifying total cost C, Lagrange multiplier g, 
and actual cost function cij in entropy function.

(Ignoring overall normalisation for simplicity)
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 
ijjiij dfSSF 
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Cost constraint – Simple Gravity Models

• Cost cij = dij

 exponential 

fall off

• Cost cij = ln(dij)

 power law fall off

• Cost cij = 0   dij<D

cij = - dij>D

= Threshold, Maximum Distance Network model
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Input and Output Constraints

Common to know about output Ai and/or 

input Bi for each site i
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Constraints:-

The Doubly Constrained Gravity Model

Flow Fij from site i size Si to site  j size Sj is 
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Intervening Opportunities Models

Actual physical distance is not important
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Intervening Opportunities

Define Dij

as number 

of  all 

opportunities 

within circle 

radius dij
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source i

target j

S=3
S=1

S=5

S=3

Dij = 16
S=4



Intervening Opportunities as Entropy Maxima

• Just measure distances in terms of rank

Example:

• Number of opportunities at site i is Si

• Cost from i to j is cij = Dij

= number of  opportunities between i to j

when starting from i

exactly as in simple gravity model 
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Radiation Model as Maximum Entropy 

• Si = opportunities at site i

Dij = number of  opportunities closer to or as

close to i as j is 

• Cost from i to j is cij = ln(DijDij-1 / Si )



exactly as in output constrained gravity model 
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Original Radiation model interpretation 

• Original presentation of model used 

ranked distances with record statistics

• Set g=1 (fixes total cost C) and there are 

special algebraic properties leading to
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[Simini et al. 

2012]
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MODELLING - Network Models 

• Threshold models

• Maximum Entropy Models

– Gravity Models

– Rhill & Wilson

– Radiation Model

• Stochastic Models
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Stochastic Models

All previous models are deterministic

- one set of input values, one output model

Feature or Drawback?

Consider stochastic models

• ERGM (Exponential Random Graph 

Models) – usually network topology based

• ariadne [Evans, Knappett, Rivers 2008+]
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Stochastic Model – ariadne

[Evans, Knappett and Rivers 2008+]

• Has intrinsic volatility set by `temperature’ 

parameter

• Allows sites to vary in size in response to 

network connections

• Network will give an low value of a `cost’ 

function 

– includes costs for sites and edges sizes and  

ascribes benefits to interactions
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COMPARING NETWORKS
So many models, which do I use?

• Model vs Model

• Model vs Data

• Models from Data
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Comparing Network Models

• Same arrangement of sites 

gives different networks

• How can we classify them?

• How can we compare 

them?
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Geography and Interactions

Models of interaction (rather than control) 

can be classified by the way they treat 

different aspects:-

• Distance

• Costs of Travel

• Input/Output constraints
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Network Models

Model Distance Input

Output 

Constr.

Site Size Deterence

Func

Network 

Type

MDN Physical No Equal Threshold Simple

SGM Physical No Fixed Any W,Dir,Dns

DCGM Physical Both Fixed Any W,Dir,Dns

Rihll & 

Wilson GM

Physical Both Variable Any W,Dir,Dns

Alonso Physical Both Variable Any W,Dir,Dns

PPA Ranked Output Equal Threshold Simple

Radiation Ranked Output Fixed Power Law W,Dir,Dns

Int. Opp. 

Model

Ranked Output Fixed Any W,Dir,Dns

ariadne Physical Output Variable Any W,Dir,Dns
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W,Dir,Dns = 

Weighted, Directed, Dense

[Evans 2014]



Recipe for Comparing Networks Quantitatively

Look for networks which function in similar way

1. Measure a quantity associated with vertices

– Avoid integer valued quantities or ones defined only for 

simple networks e.g. average shortest path

2. Measure similarity of each pair of vectors

– Pearson correlation coefficient

– Rank values Kendal’s tau or Spearman if have outliers

3. Study with Multivariate Analysis methods

– PCA (Principal Component Analysis), 

Hierarchical Clustering Methods
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Average Weighted Distance

Suggest we compare networks with the same 

average weighted distance

i.e. the distance between each pair of sites

multiplied by the fraction of the flow between

those sites
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Hierarchical 

Clustering 

Dendrogram
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• aegean39S1L3a 

• AWD=70km 

(GCC just formed)

• PageRank and 

Weighted 

Betweenness

• Pearson correlation 

matrix

• Complete clustering

Rhill & 

Wilson

1 PPA k=2

2 DPPA k=3

3 DCGM D=40km

4 RWGM D=60 a=1.03

5 RWGM D=55 a=1.18

6 SGM D=75

PPA DCGM SGMDPPA



Principal Component Analysis

Scatter Plot

© Imperial College LondonPage 68

1 PPA k=2

2 DPPA k=3

3 DCGM D=40km

4 RWGM D=60 a=1.03

5 RWGM D=55 a=1.18

6 SGM D=75

• aegean39S1L3a 

• AWD=70km 

(GCC just formed)

• PageRank and 

Weighted 

Betweenness

• Pearson correlation 

matrix

• Complete clustering

PPA

DPPA

DCGM

Rhill &

Wilson

SGM



Robustness of Spatial Network Modelling

• Set up sites and distances

• Compare models with same 

average weighted distance

• Measure function of each network 

via vertex properties in each model

• Choose similar models using correlation 

matrix analysis

• Use resulting similar models to test ideas
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Model vs. Data

May have data on flows

If actual edge values central

• Model statistical fluctuations in flow values

• Use log liklihood to find best fit parameters 

for model

• Measure quality of fit using R^2, Akaike

Information Criterion, etc
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Negative Binomial on NY State commuting data

• Statistical model

– Flow data Wij is measurement of random variable, 

with negative binomial distribution of mean given 

by model Fij () value, variance Fij (1+fFij )

• Choose model parameters,  and f ,to 

maximise log likelihood ln(L)
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Negative Binomial Statistical Model Results
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[Bamis, 2012]



Negative Binomial Statistical Model Results

• Adding constraints to models improves 

measures of fits to data 

– even after taking account of extra parameters

• Radiation model fits flows consistently 

worse than gravity model with similar 

constraints (say 5-10%)
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Null Model from Data

Can use data to provide a 

realistic deterrence function 

for Gravity models
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 ijjiij dfSSF 

e.g. Set f(d) to match average flow <F>

between sites distance (d  D) apart
[Expert et al, 2011]



Null model to reveal hidden features

e.g. modularity finds clusters

in data by comparing 

1) expected number of links 

between sites within a 

community 

2) expected number of links 

between same sites in a 

null model

[Girvan & Newman 2002]
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Modularity and Null Models

𝑄 = 

𝐶

 

𝑖,𝑗∈𝐶

𝐹𝑖𝑗

𝑊
−
𝑆𝑖𝑆𝑗

𝑊𝑊
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𝐶
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All connections

equally likely

given site size

All connections 

equally likely given 

site sizes and separation

𝑾 = 

𝒊,𝒋
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Null model to reveal hidden features

e.g if search for cluster in Belgian mobile 

phone data find most calls are local, 

clusters centred on main cities.
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[Expert et al, 

2011]



Null model to reveal hidden features

If compare call frequency against 

expectations from spatial model, clusters 

found match language divide
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[Expert et al, 

2011]



SUMMARY
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Summary

• A few key choices and features common 

to all models

• Maximum entropy provides unifying if not 

always best description

• Wide range of models – choose to fit 

needs

• There are quantitative ways to compare 

different models 
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THANKS
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