

Universidad Católica del Norte

lawphysics Latin American Webinars on Physics

Astroparticle physics

Roberto A. Lineros

Departamento de Física, Universidad Católica del Norte

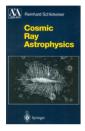
Winter School HEP-PUC 2019 "Topics on Graviticulas"

The Plan

1. Astroparticles

2. Cosmic-rays

- 3. Neutrinos
- 4. Gamma-rays
- 5. Gravitational Waves


The Basics

29 July - 2 August 2019

R. A. Lineros. Winter School HEP 2019 - PUC

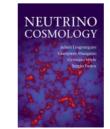
Bibliography

Cosmic ray astrophysics R. Schlickeiser http://link.springer.com/book/10.1007/978-3-662-04814-6

Particle Dark Matter: Observations, Models and Searches G. Bertone

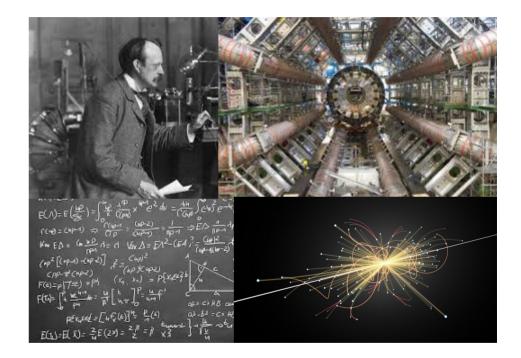
https://www.cambridge.org/cl/academic/subjects/physics/cosmology-relativity-and-gravitation/particle-dark-matter-observations-models-andsearches

Radiative processes in astrophysics G. B. Rybicki, A. P. Lightman http://onlinelibrary.wiley.com/book/10.1002/9783527618170


Dark Matter and Dark Energy: A Challenge for Modern Cosmology Matarrese, S, et al. https://www.springer.com/gp/book/9789048186846

D Springe

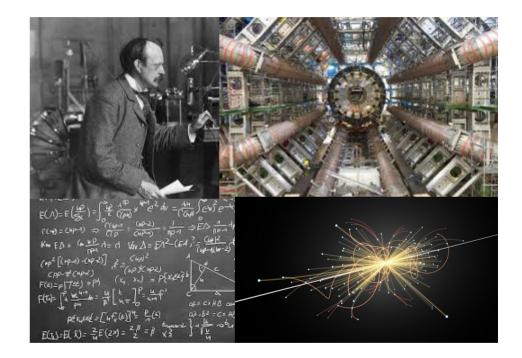
The Interstellar Medium J. Lequeux http://link.springer.com/book/10.1007/b137959



Neutrino Cosmology

Lesgourges et al. https://www.cambridge.org/core/books/neutrino-cosmology/ 44AF52C5F02A1943850F3B239B2F9588

29 July - 2 August 2019



It is an emergent research area at the frontier of many fields

29 July - 2 August 2019

Astrophysics and Astronomy + Cosmology + Particle and Nuclear physics

29 July - 2 August 2019

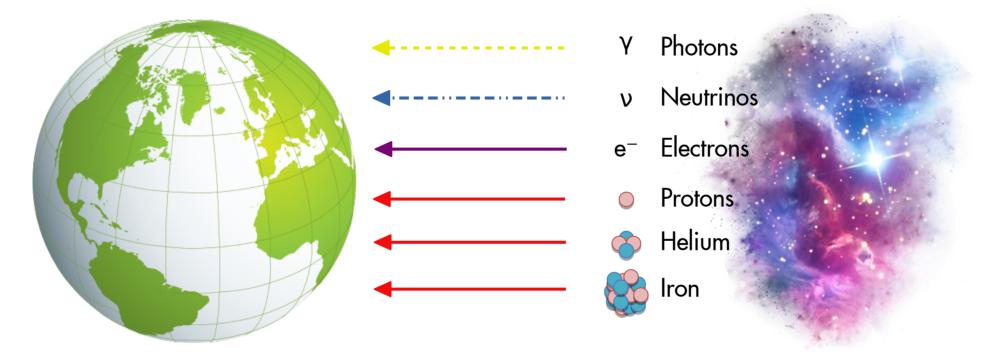
Future scientists with interests in:

- Astronomy and Astrophysics
- Particle physics
- Mathematical physics
- Numerical simulations
- Cosmology and Gravity
- Data Analysis and Statistics
- Data Visualization
- Cosmic ray physics

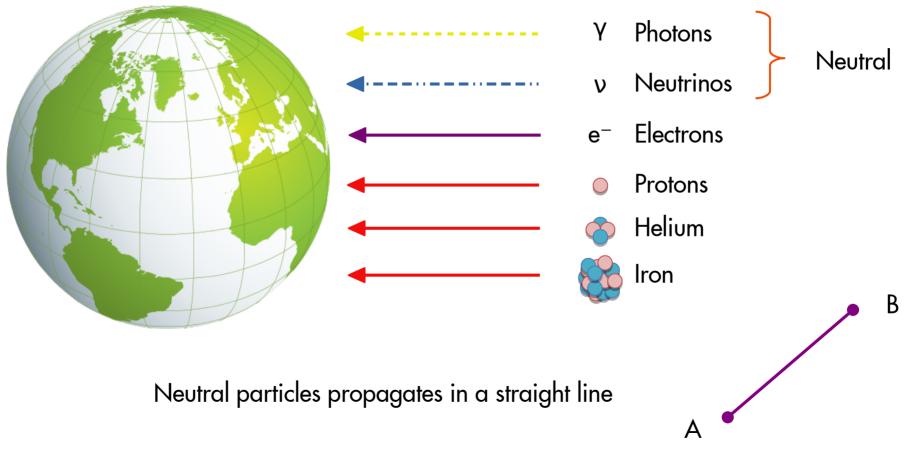
... are welcome

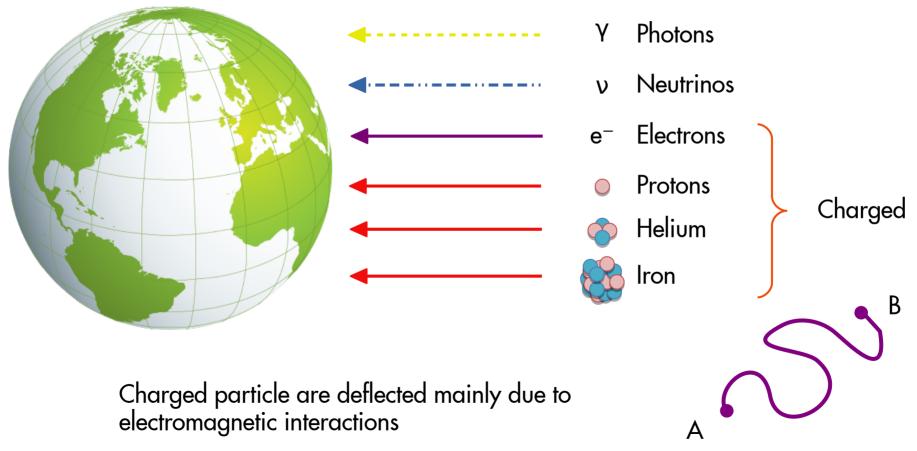
Future scientists with interests in:

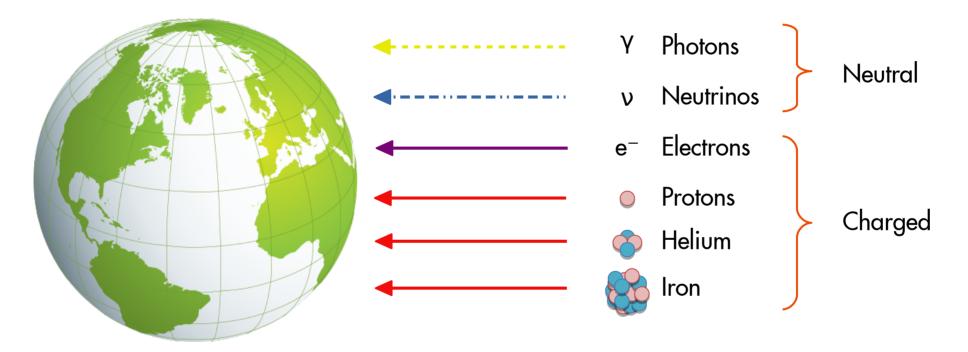
- Astronomy and Astrophysics
- Particle physics
- Mathematical physics
- Numerical simulations
- Cosmology and Gravity
- Data Analysis and Statistics
- Data Visualization
- Cosmic ray physics

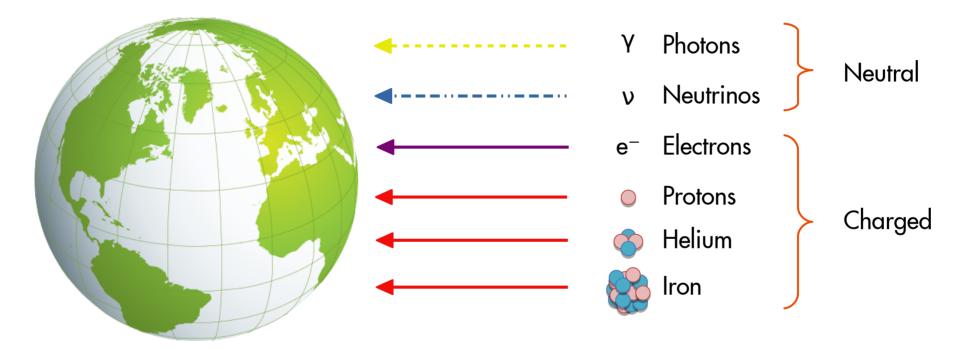

+ soft skills

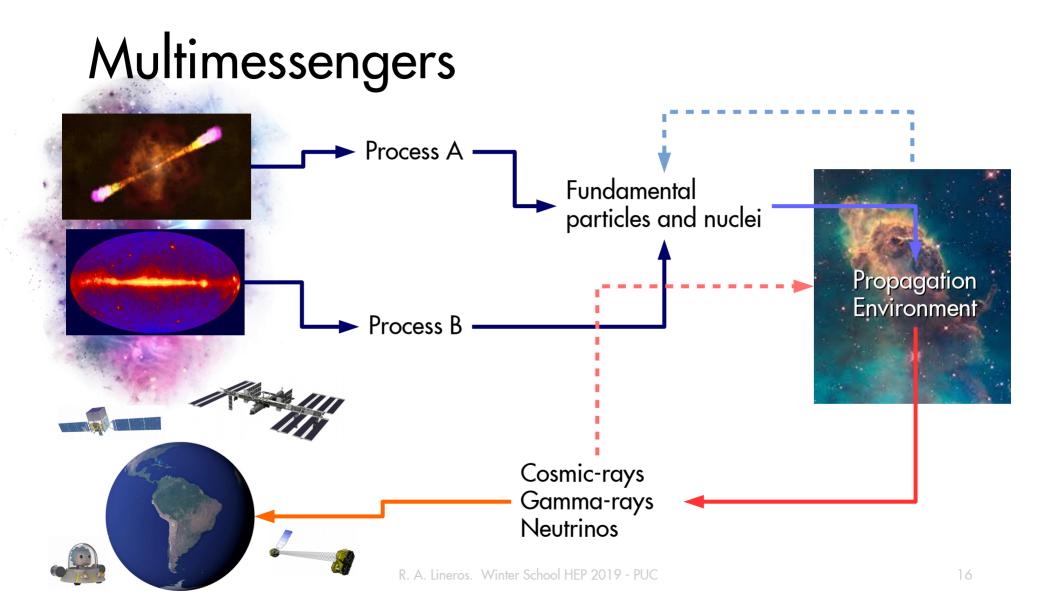
Future scientists with interests in:


- Astronomy and Astrophysics
- Particle physics
- Mathematical physics
- Numerical simulations
- Cosmology and Gravity
- Data Analysis and Statistics
- Data Visualization
- Cosmic ray physics
 29 July 2 August 2019


+ soft skills


The atmosphere is constantly bombarded with particles originated outside the Solar System

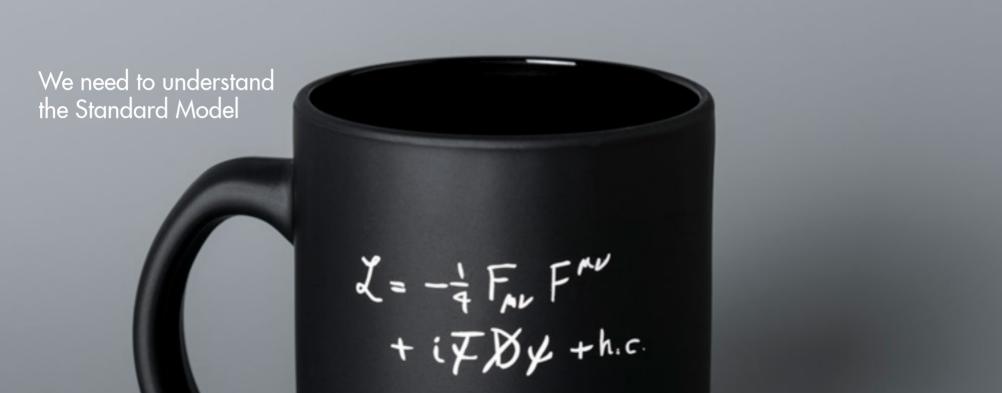



Notice that each type of particles propagate differently

All of these astroparticles help us to study: sources, interstellar medium, (extra) galactic magnetic fields, etc.

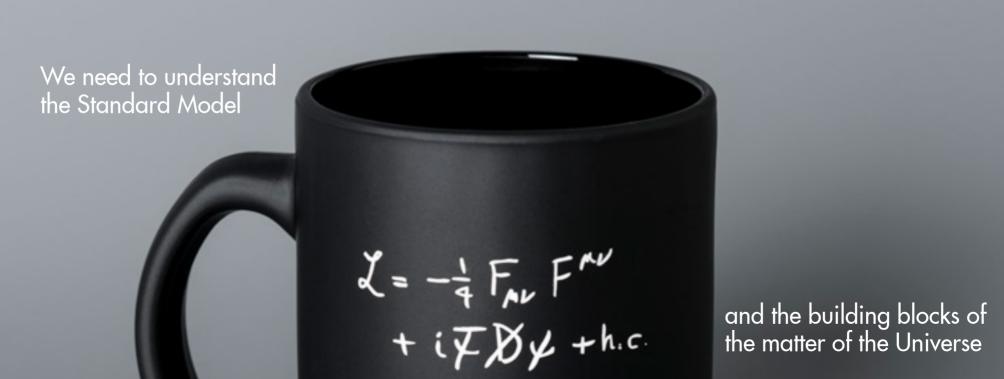
Astroparticles = Multimessenger and Multiwavelength

The Physics

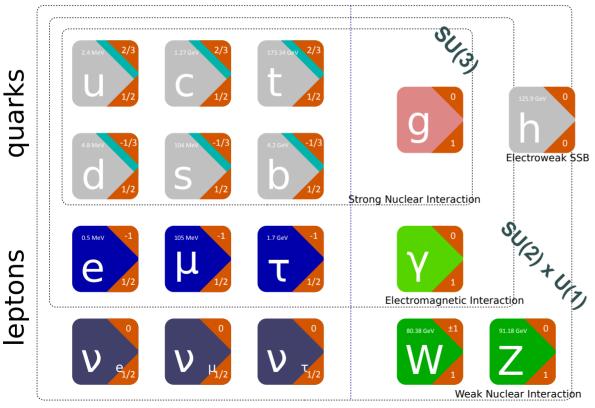


29 July - 2 August 2019

R. A. Lineros. Winter School HEP 2019 - PUC


The building blocks

The physics of production and propagation of astroparticles requires to understand how particles behave.


The building blocks

The physics of production and propagation of astroparticles requires to understand how particles behave.

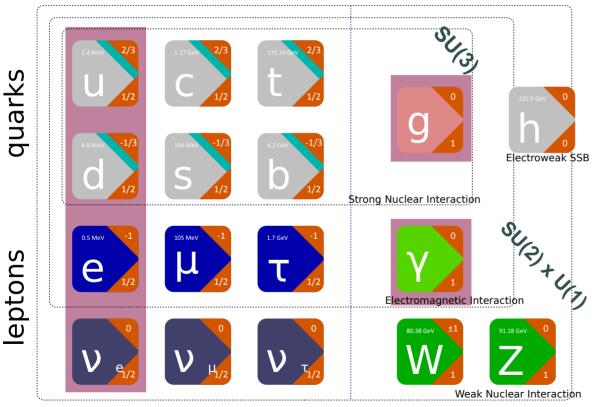
The Standard Model

SM matter families

Symmetries

- CPT
- SU(3)_c: Color
- SU(2)_L: Isospin
- U(1)_y: Hypercharge

Matter content

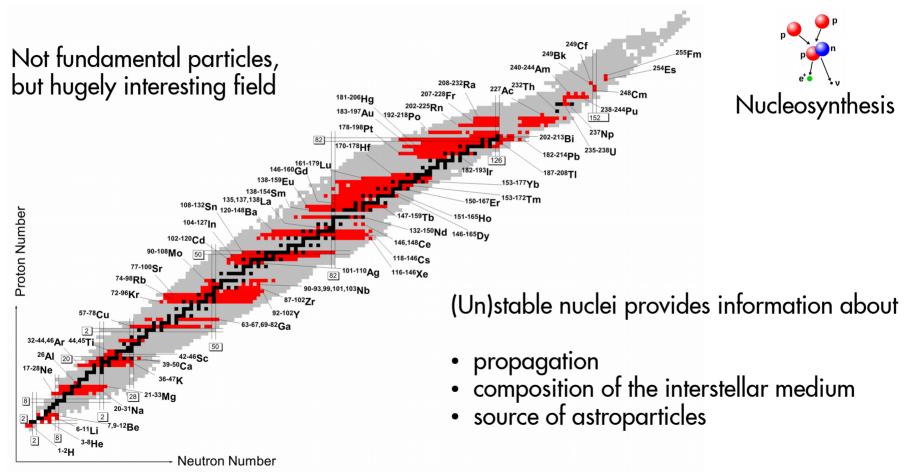

- 3 families quarks
- 3 families leptons

Higgs fields

- ŠU(2)_L×U(1)_y → U(1)_{EM}
- Mass to fundamental particles

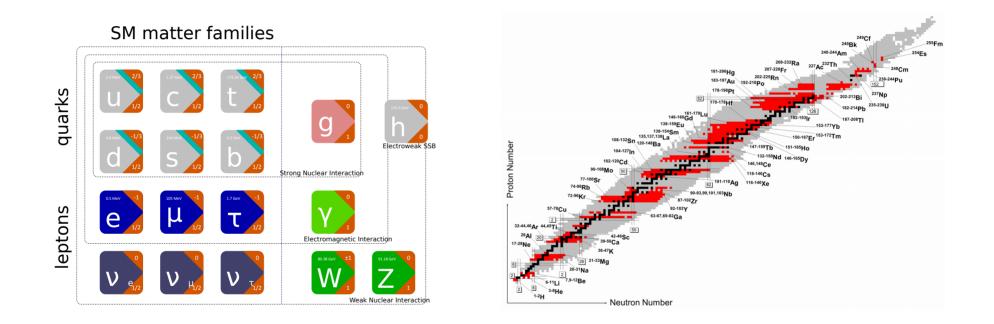
The Standard Model

SM matter families



- Massless neutrinos
- Baryon Number
- Lepton Number

Stable objects:


- Photons
- Electrons, Neutrinos
- Protons (quarks bound states)
- Nuclear matter
- Atoms
- Etc.

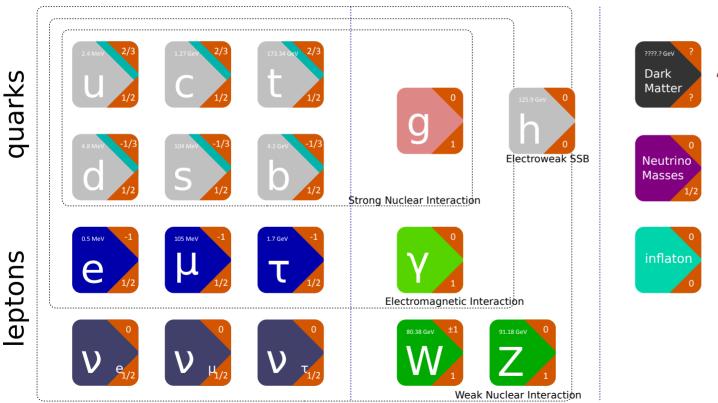
Nuclear physics

29 July - 2 August 2019

Great success!

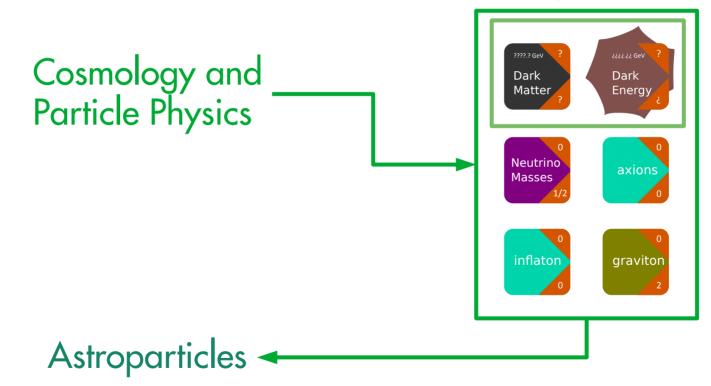
Great description of the smallest components of the Universe and backed up by observations

Not everything is explained


SM matter families

Beyond SM

Dark


Energy

graviton

Not everything is explained

Beyond SM

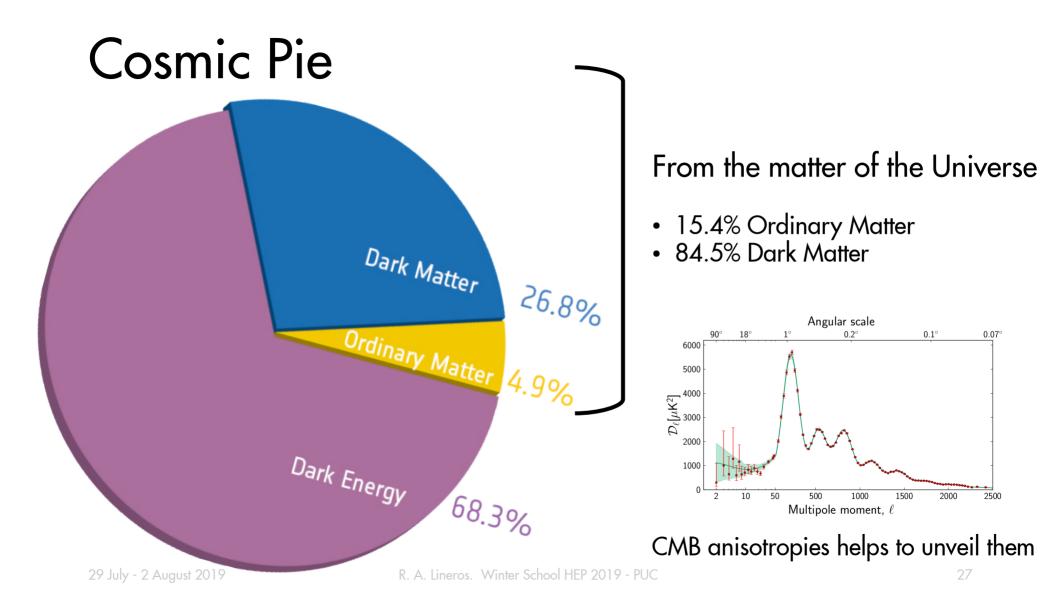
Dark Matter and Dark Energy are present and they shape the Universe since the beginning

200 million years

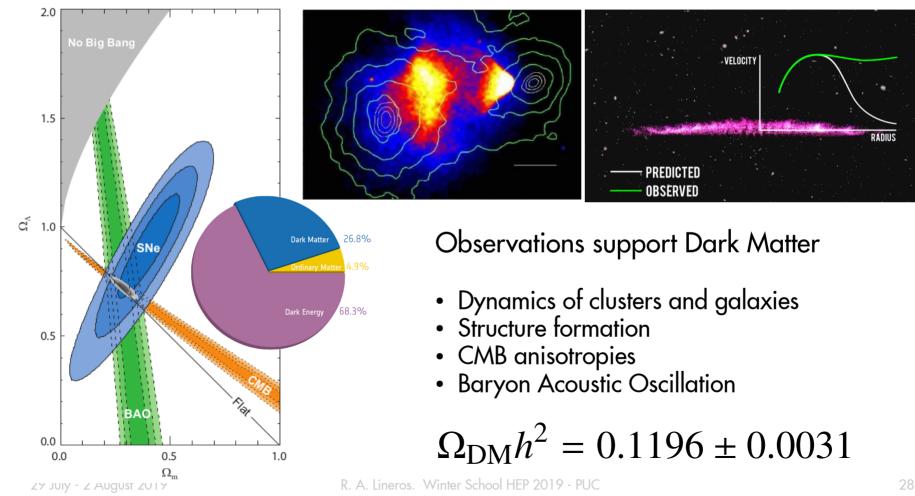
1 billion years

10 billion years

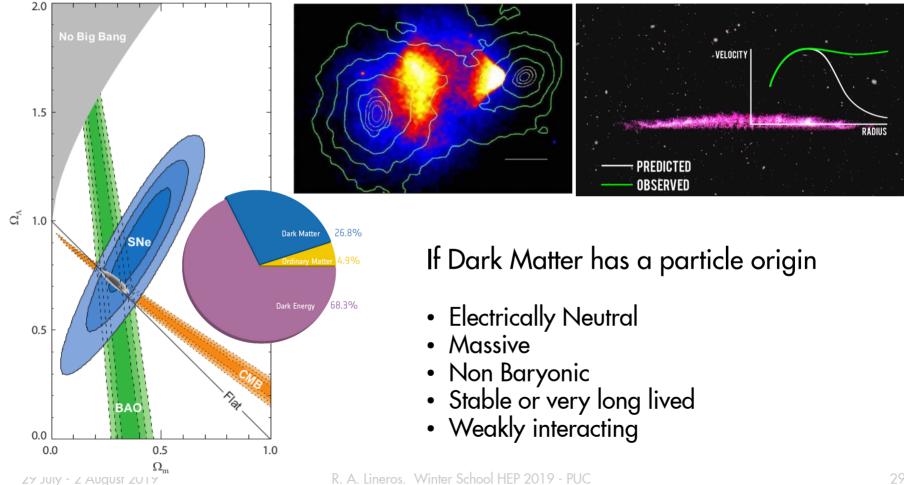
conds seconds and second years

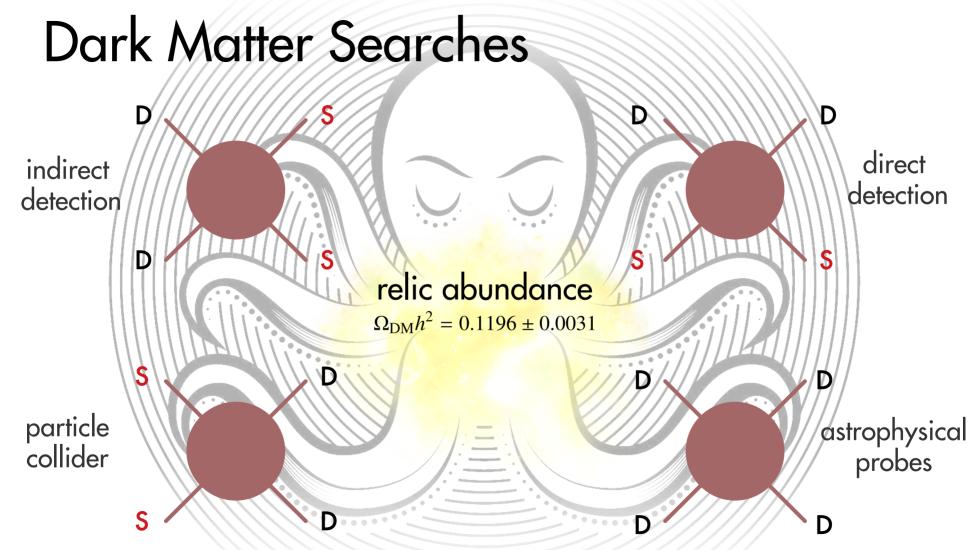

10³² seconds

380,000 years

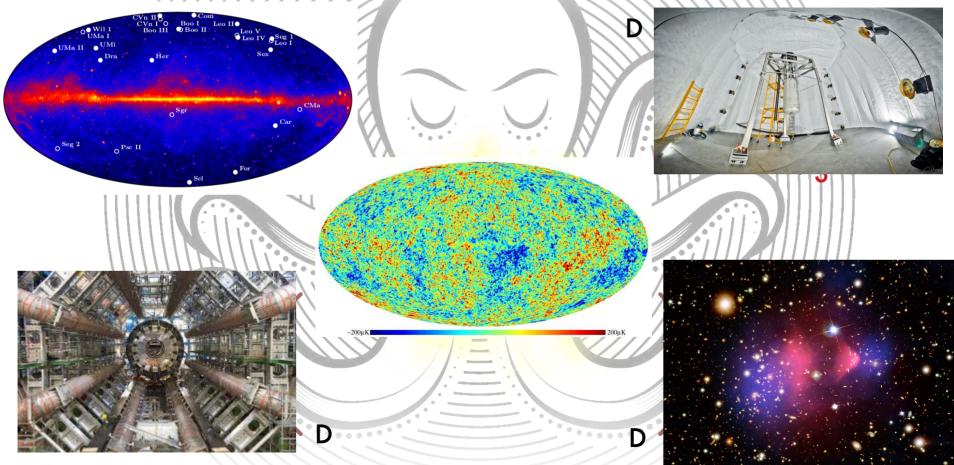


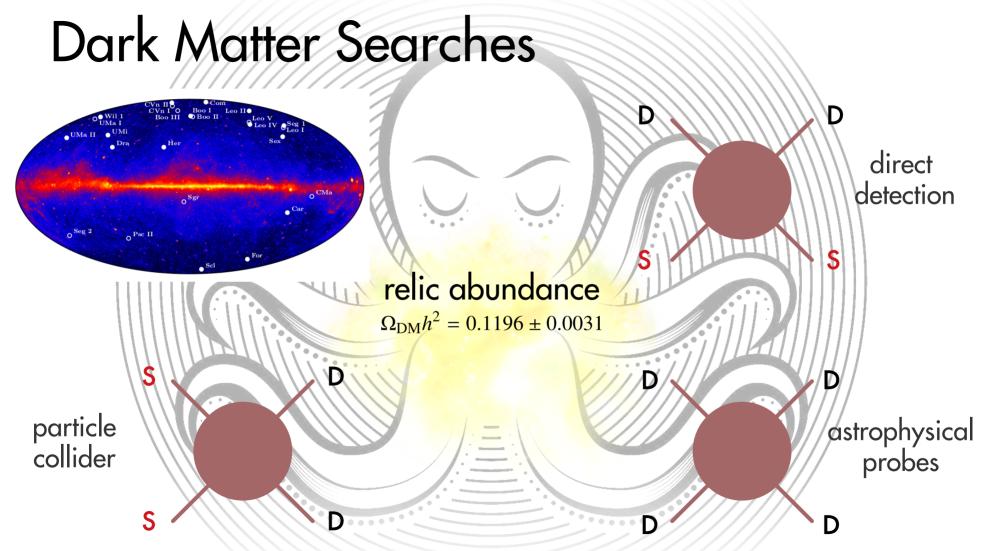
Today

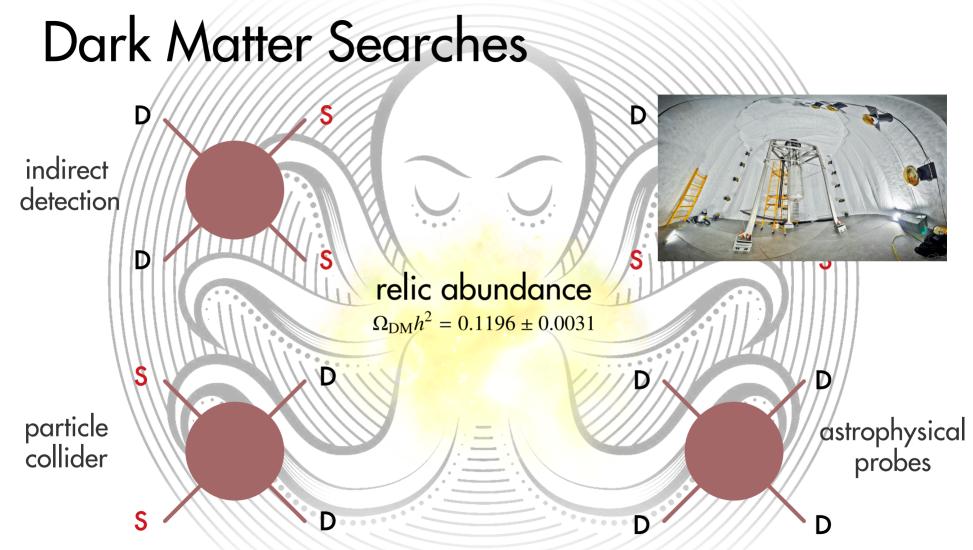

13.82 billion years

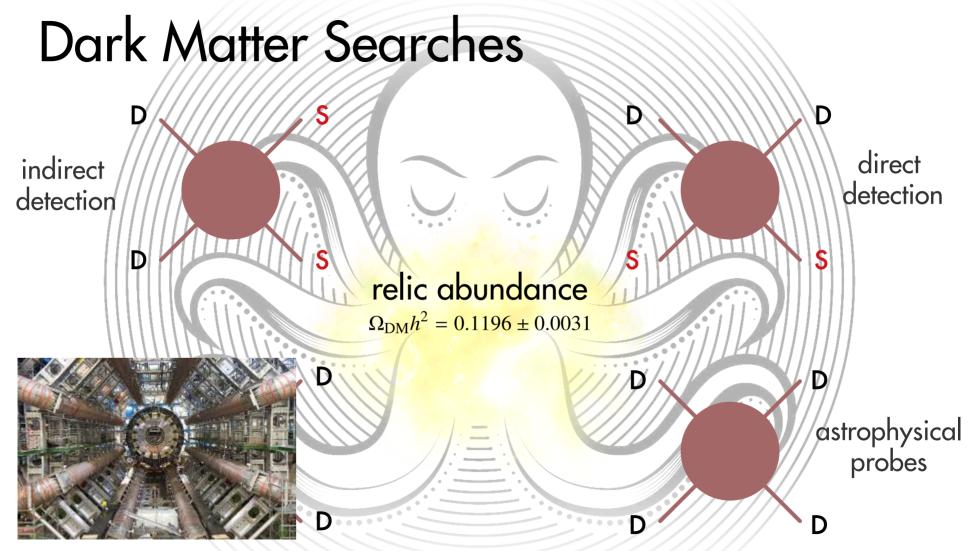


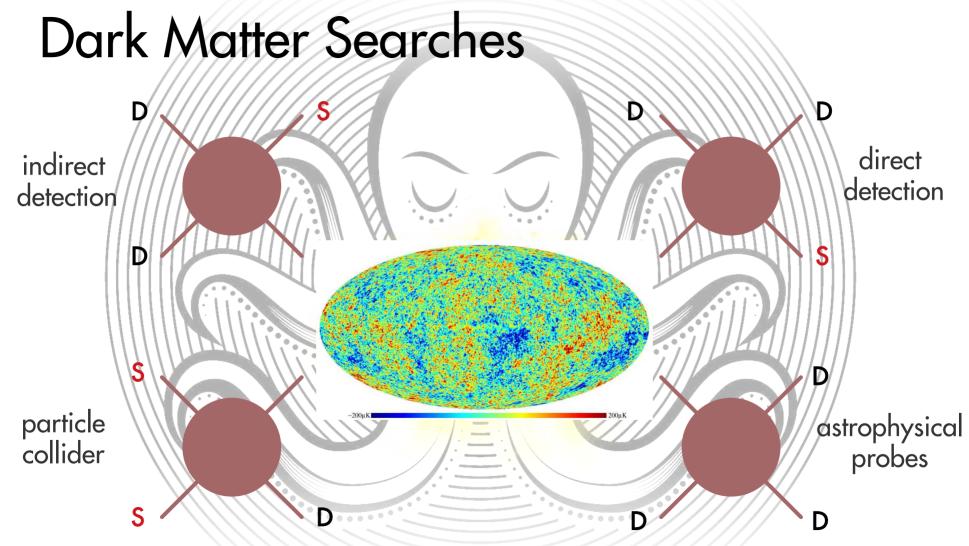
Dark Matter

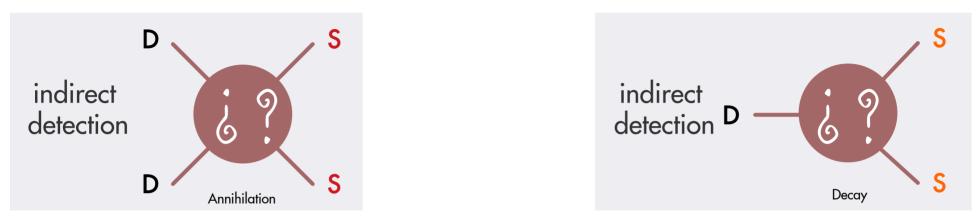


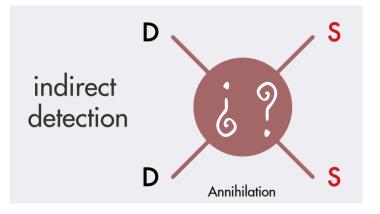

Dark Matter

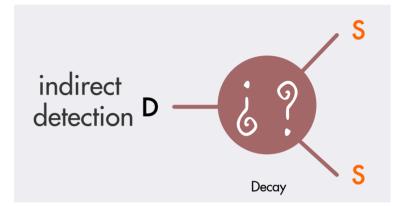




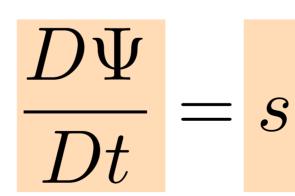

Dark Matter Searches






Astroparticle searches of Dark Matter

The production of SM particles from DM are excellent examples to learn about astroparticles


Indeed, the search with astroparticles has been one of the main drives of the field!

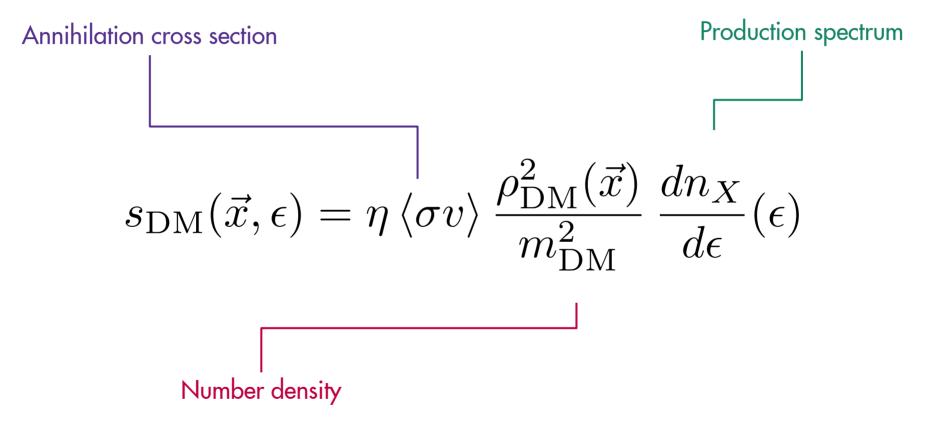
Astroparticle's transport equation

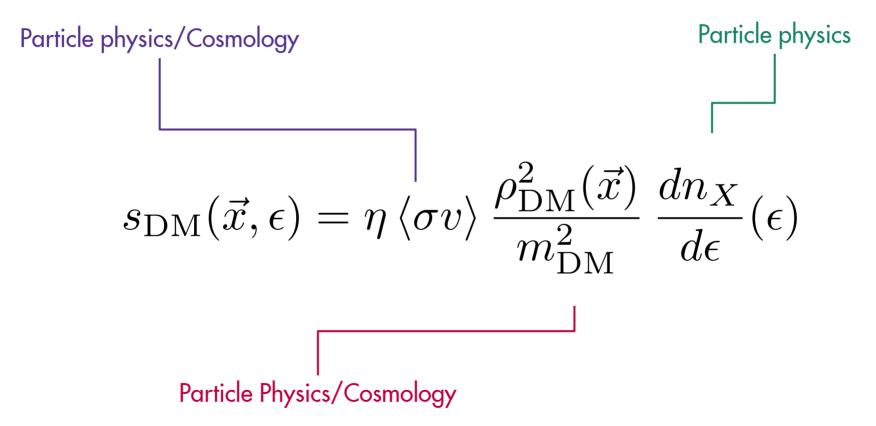
(Tomorrow)

Source term due to

- Dark Matter
- Astrophysical source
- Astroparticle interactions

Depending of the way how DM produces SM particles, the source term follows:


$$s_{\rm DM}(\vec{x},\epsilon) = \eta \langle \sigma v \rangle \frac{\rho_{\rm DM}^2(\vec{x})}{m_{\rm DM}^2} \frac{dn_X}{d\epsilon}(\epsilon) \qquad \qquad s_{\rm DM}(\vec{x},\epsilon) = \frac{1}{\tau_{\rm DM}} \frac{\rho_{\rm DM}(\vec{x})}{m_{\rm DM}} \frac{dn_X}{d\epsilon}(\epsilon)$$


Annihilation

29 July - 2 August 2019

R. A. Lineros. Winter School HEP 2019 - PUC

Decay

x(+)= x ~ e 20 cos(w++ 1) w= k(1)= 1 mv A Sin Of = n2 Sin O2 m V2 (Double SI.4) F, =-br critical angle dsing= mil (0,1,2) maxima IPE=msh AL=d Sint E(+)~ 1 Kx e Phose shift off, Q= sin nz 4.2 dsing=(m+2))((0,5) minimo $T=4J_{100}^{2}\left(\frac{1}{2}0\right)$ $N=\frac{2\pi d}{2}\sin\theta$ 6-4K higher n entical damp T=2 IT 7 = simple pend W. : W roome 5- 14km Bowsters ande OB = ton 12 W under samped P= 211 JI physical pad Y(x,t)= Ym sh (kx-wt) pos vore in 21= m/ (m=0, 52) minime) This film $v(t) = -t\omega \chi_{A_1} Sin(\omega t + g)$ over damped b2 direction 2L=(m+1)/2 (n=0,1)2) maxima Single slif Anothe AX=LA $x(+) = X_{m} \cos(\omega + \omega) = -\omega^{2} x(+)$ k= 21 V= w= A= AF Pore= 2 Vrw2ym Tangth 0= 1.22 A royleigh Sapartisa circola Diffredton V= VE - Bulk modulus a SIND=min (m=1,2,3) minima Pipe 2 oppa ends カニュニレ ハンシシシ DP= = Vpw Sm - displanat between tringer -Crannes criterion . f= v= NV 1=33 septement adjude I In (sint) Sin 0= 1.22 A First Minimum A= 2 B= Tra sin 0 is or or it is resolved, f= V = AV pressure node P_= 2PVI Pressure fet fifz Plone Mirrors lipe lopen end certure Diffraction grating PA=VpwSm f= 1/ (n= 12,3) displace not ontinodo Interference diameta 1=-P atopen, note at closed holf width d sint = min (me o, 1,2) mor ino lings Dol > D S! 0=-06; - Sispos it on some side as Q= 332 fully constructive Q= 1-21 No cost I= 2 pvw25 hit separation R=Nm resolving pours I= lro incoming light destructive Q=CAT B = (10) log = 44=0,5, 1.5, 2,5 fully D= m dispassion Img-S' is pas if on some side of B=30 Host Copacity V± Va AL= LX AT d cos O -+== spherico mirror outgoing light TE= 976 +32 Q= CMAT AV= VBA W= Stpor radius of currenture L. T+-Te DE = Q-W specific heat rticle m n= notecules 6.02×1023 Pals = OEATenv 56750 8 W 4 Adiobotic AE=-W R= 8.31 len Vol innver 3 closed LYC In Ve (isothermol) -1-12 r is near object ALEM IM 3RT $\frac{1}{r} = (n-1)(\frac{1}{r})$ 1745-Free end DE=0 AT=0 1.38 x102 R= n (p AT (ion press) converging real Elat = 2 nRT vielent Q= 14, 4T (constant) W= PAV=ARDT 7= 4P (un press) changer TiV = To Ker (adiabatic) Ly= Lp-R 4= 2R Pivi = PEV DE= ZARDT chonges of freedom changer Traslation 5hR DE= n C DT roblin Tot AS= Qui ler Amotorio Free exp piv:= PEVE RR TH Pionic Polyotenic 3R AS= ensia ay lach Seo'l DT E= Two every we set w= la= - [QL] TH TL lay every we pay for E= 10+1-10-1 AS= AR h (V:)+ ASh IF Tefriserator = 1- 04 K= QL | what we want IWI , what we pay for K2= IQL) E= 1-Te

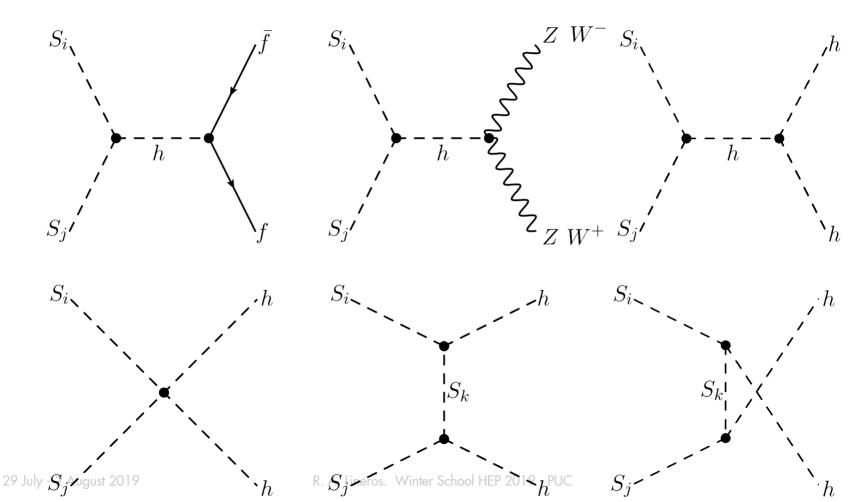
The simplest DM model.

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu}\phi\right)^2 - \frac{m_{\phi}}{2}\phi^2 - \frac{\lambda_{\phi}}{4}\phi^4 - \frac{\lambda_{\phi h}}{2}\phi^2 H^{\dagger}H + \mathcal{L}_{SM}$$

Features:

DM is a real scalar charged with a Z2 symmetry The interaction with the SM is via Higgs particle

The relevant parameter are mass and coupling to the Higgs


The simplest DM model.

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu}\phi\right)^2 - \frac{m_{\phi}}{2}\phi^2 - \frac{\lambda_{\phi}}{4}\phi^4 - \frac{\lambda_{\phi h}}{2}\phi^2 H^{\dagger}H + \mathcal{L}_{SM}$$

Small exercise:

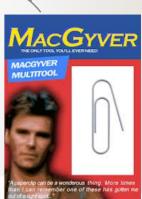
Draw diagrams relevant for the relic abundance

29 July - 2 August 2019

45

Each channel has different weights that would change the injection spectra of astroparticle

 $s_{\rm DM}(\vec{x},\epsilon) = \sum_{i} \eta \langle \sigma v \rangle_{i} \frac{\rho_{\rm DM}^{2}(\vec{x})}{m_{\rm DM}^{2}} \frac{dn_{X_{i}}}{d\epsilon}(\epsilon)$


Why tools?

Research on Astroparticles could be hard without a good set tools

disclaimer: I don't know who is this guy

Why tools?

We hope for a unique tool that solves all our problems (in physics)

Why tools?

... but most of the tools are made by physicists to solve their own problems

The minimum setup for astroparticles

laptop

internet access

Data Visualization

The visual presentation of results in plots and slides is VERY important

Sometimes results passed unnoticed because people cannot visualize them

These are some free/open source tools to help on these issues

Collaborative work

We must work with experimental results, because physics is an experimental science.

A problem, a collaboration released results but only in the form of a plot.

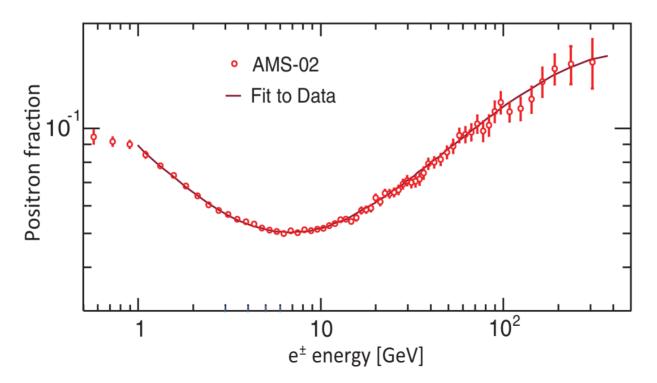
WebPlotDigitizer

Web based tool to extract data from plots, images, and maps

https://automeris.io/WebPlotDigitizer/

http://dx.doi.org/10.1103/PhysRevLett.110.141102

PRL 110, 141102 (2013)PHYSICAL REVIEW LETTERSwee
5 AP


week ending 5 APRIL 2013

Ş

First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV

M. Aguilar, ^{32,20} G. Alberti, ^{42,43} B. Alpat, ⁴² A. Alvino, ^{42,43} G. Ambrosi, ⁴² K. Andeen, ²⁸ H. Anderhub, ⁵⁴ L. Arruda, ³⁰ P. Azzarello, ^{42,21,*} A. Bachlechner, ¹ F. Barao, ³⁰ B. Baret, ²² A. Barrau, ²² L. Barrin, ²⁰ A. Bartoloni, ⁴⁷ L. Basara, ⁵ A. Basili, ¹¹ L. Batalha, ³⁰ J. Bates, ²⁵ R. Battiston, ^{42,43,46} J. Bazo, ⁴² R. Becker, ¹¹ U. Becker, ¹¹ M. Behlmann, ¹¹ B. Beischer, ¹ J. Berdugo, ³² P. Berges, ¹¹ B. Bertucci, ^{42,43} G. Bigongiari, ^{44,45} A. Biland, ⁵⁴ V. Bindi, ²⁴ S. Bizzaglia, ⁴² G. Boella, ^{36,37} W. de Boer, ²⁸ K. Bollweg, ²⁵ J. Bolmont, ³⁸ B. Borgia, ^{47,48} S. Borsini, ^{42,43} M. J. Boschini, ³⁶ G. Boudoul, ²² M. Bourquin, ²¹ P. Brun, ⁵ M. Buénerd, ²² J. Burger, ¹¹ W. Burger, ⁴³ F. Cadoux, ^{5,21} X. D. Cai, ¹¹ M. Capell, ¹¹ D. Casadei, ^{9,10} J. Casaus, ³² V. Cascioli, ^{42,43} G. Castellini, ¹⁸ I. Cernuda, ³² F. Cervelli, ⁴⁴ M. J. Chae, ⁴⁹ Y. H. Chang, ¹² A. I. Chen, ¹¹ C. R. Chen, ²⁶ H. Chen, ¹¹ G. M. Cheng, ⁸ H. S. Chen, ⁸ L. Cheng, ⁵⁰ N. Chernoplyiokov, ³⁹ A. Chikanian, ⁴¹ E. Choumilov, ¹¹ V. Choutko, ¹¹ C. H. Chung, ¹ C. Clark, ²⁵ R. Clavero, ²⁹ G. Coignet, ⁵ V. Commichau, ⁵⁴ C. Consolandi, ^{36,24} A. Contin, ^{9,10} C. Corti, ²⁴ M. T. Costado Dios, ²⁹ B. Coste, ²² D. Crespo, ³² Z. Cui, ⁵⁰ M. Dai, ⁷ C. Delgado, ³² S. Della Torre, ^{36,37} B. Demirkoz, ⁴ P. Dennett, ¹¹ L. Derome, ²² S. Di Falco, ⁴⁴ X. H. Diao, ²³ A. Diago, ²⁹ L. Djambazov, ⁵⁴ C. Díaz, ³² P. von Doetinchem, ¹ W. L. Du, ⁵⁰ L. M. Dublai, ⁵ D. Duracut, ^{42,43} D. Duller, ^{42,43} D. Duller, ^{42,20} A. Exacute 11 A. Elize, ¹¹ E. Errelize, ¹¹

We use Fig 6.

In this case, they provide the data. Sometimes not

PRL 110, 141102 (2013)	PHYSICAL	REVIEW	LETTERS	week ending 5 APRIL 2013
------------------------	----------	--------	---------	-----------------------------

TABLE I. Representative bins of the positron fraction as a function of energy. Errors due to *stat.*, statistical error; *acc.*, acceptance asymmetry; *sel.*, event selection; *mig.*, bin-to-bin migration; *ref.*, reference spectra; *c.c.*, charge confusion; and *syst.*, total systematic error. For the complete table, see [13].

Energy[GeV]	N_{e^+}	Fraction	$\sigma_{ m stat}$	$\sigma_{ m acc}$	$\sigma_{ m sel}$	$\sigma_{ m mig}$	$\sigma_{ m ref}$	$\sigma_{c.c.}$	$\sigma_{ m syst}$
1.00-1.21	9335	0.0842	0.0008	0.0005	0.0009	0.0008	0.0001	0.0005	0.0014
1.97-2.28	23 893	0.0642	0.0004	0.0002	0.0005	0.0002	0.0001	0.0002	0.0006
3.30-3.70	20 707	0.0550	0.0004	0.0001	0.0003	0.0000	0.0001	0.0002	0.0004
6.56-7.16	13 153	0.0510	0.0004	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
09.95-10.73	7161	0.0519	0.0006	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
19.37-20.54	2322	0.0634	0.0013	0.0001	0.0001	0.0000	0.0001	0.0002	0.0003
30.45-32.10	1094	0.0701	0.0022	0.0001	0.0002	0.0000	0.0001	0.0003	0.0004
40.00-43.39	976	0.0802	0.0026	0.0002	0.0005	0.0000	0.0001	0.0004	0.0007
50.87-54.98	605	0.0891	0.0038	0.0002	0.0006	0.0000	0.0001	0.0004	0.0008
64.03-69.00	392	0.0978	0.0050	0.0002	0.0010	0.0000	0.0002	0.0007	0.0013
74.30-80.00	276	0.0985	0.0062	0.0002	0.0010	0.0000	0.0002	0.0010	0.0014
86.00-92.50	240	0.1120	0.0075	0.0002	0.0010	0.0000	0.0003	0.0011	0.0015
100.0-115.1	304	0.1118	0.0066	0.0002	0.0015	0.0000	0.0003	0.0015	0.0022
115.1–132.1	223	0.1142	0.0080	0.0002	0.0019	0.0000	0.0004	0.0019	0.0027
132.1-151.5	156	0.1215	0.0100	0.0002	0.0021	0.0000	0.0005	0.0024	0.0032
151.5-173.5	144	0.1364	0.0121	0.0002	0.0026	0.0000	0.0006	0.0045	0.0052
173.5-206.0	134	0.1485	0.0133	0.0002	0.0031	0.0000	0.0009	0.0050	0.0060
206.0-260.0	101	0.1530	0.0160	0.0003	0.0031	0.0000	0.0013	0.0095	0.0101
29 July - 2 Au 260.0–350.0	72	0.1550	0.0200	0.0003	0.0056	0.0000	0.0018	0.0140	0.0152

57

rlineros@dm1: ~

File Edit View Search Terminal Help

rlineros@dm1:~\$ python
Python 3.6.3 |Anaconda custom (64-bit)| (default, Nov 3 2017, 19:19:16)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hola mundo")
Hola mundo
>>> a = 1
>>> b = 2
>>> print(a+b)
3
>>>

Python is currently one of the most used languages. It is oriented to do "almost everything".

But you can work in any language: Fortran, C/C++, etc.

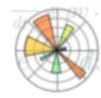
29 July - 2 August 2019

Jupyter

In [8]:	print("hola mundo")
	hola mundo
In [11]:	<pre>a = 0 for i in range(0,37): a +=i</pre>
In [12]:	print(a)
	666
In []:	

if you have anacoda in your system. Run in a terminal: jupyter notebook or enter to https://try.jupyter.org

Science Tools in Anaconda


https://www.scipy.org

NumPy Base N-dimensional array package

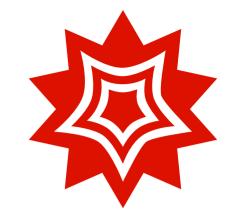
SciPy library Fundamental library for scientific computing

Matplotlib Comprehensive 2D Plotting

IPython Enhanced Interactive Console

Sympy Symbolic mathematics

pandas Data structures & analysis


Mathematica

Very useful to deal with symbolic calculation, etc.

but it is **not** free.


Many tools for High Energy Physics use Mathematica as a basis:

- Feynrules
- Feyncalc
- Sarah
- Etc.

FeynCalc

https://github.com/FeynCalc/feyncalc/wiki/Installation#st_automatic_installation

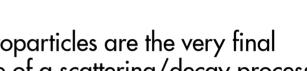
Symbolic calculation for amplitudes!

$$\sum_{a} \sum \cdots \sum_{a} = ig \,\overline{u}_4 v_3 \times \frac{-i}{(p_1 + p_2)^2} \times ig \,\overline{u}_2 v_1$$

To install run in a Mathematica notebook:

Import["https://raw.githubusercontent.com/FeynCalc/feyncalc/master/install.m"] InstallFeynCalc[]

29 July - 2 August 2019


Montecarlo event generator for high energy physics.

PDF ME MPI **ISR** FSR Dogo BR 100000000 Hadr. Decays **Unknown?**

Astroparticles are the very final state of a scattering/decay process

Calculate this analytically is **MADNESS!**

Pythia8 is a C++ program

Pythia

Tools for Dark Matter

There are so many tools, that is very easy to get confuse when one tools is good or not

The tools to learn are:

- Lanhep: to write the particle model's lagrangian
- Calchep: to calculate cross sections, amplitudes, etc.
- Micromegas: to calculate WIMP DM observables.
- MadGraph, MadEvent: Calculate and simulate events.
- SARAH: a toolbox for implementing BSM models.

PROGRAMMING FOR NON-PROGRAMMERS

Tomorrow we continue...

Gravitational Waves

Neutrinos

Gamma-rays

Cosmic-rays