Supplementary material

Morindaquinone, a new bianthraquinone from Morinda coreia roots

Suwadee Chokchaisiri, Yuttana Siriwattanasathien, Chopaka Thongbamrer, Apichart Suksamrarn and Thitima Rukachaisirikul*

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

ABSTRACT

Phytochemical investigation of the roots of *Morinda coreia* led to the isolation of one new bianthraquinone, morindaquinone (1), together with 12 known compounds, soranjidiol (2), rubiadin-1-methyl ether (3), 2-methoxy-1,3,6-trihydroxyanthraquinone (4), 1-hydroxy-2-methylanthraquinone (5), tectoquinone (6), nordamnacanthal (7), damnacanthal **(8)**, 2-formylanthraquinone (9),3-hydroxy-2-hydroxymethylanthraquinone (10), lucidin- ω -methyl ether (11), scopoletin (12) and (+)-mellein (13). The structures of these compounds were determined on the basis of extensive spectroscopic analyses, as well as by comparison with literature reports. Compound 1 was the first example of bianthraquinone found in the genus Morinda, whereas compound 13 was firstly isolated from this genus. Among them, compounds 2, 7, 8 and 10 exhibited moderate to weak cytotoxicity against human cervical (HeLa), human colon (HT 29) and human breast (MCF-7) cell lines, while compounds 6 and 9-11 showed weak anti-acetylcholinesterase activity.

Table of Contents	Page
Figure S1: ¹ H NMR spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	3
Figure S2: Expansion of ¹ H NMR spectrum of morindaquinone (1) in CDCl ₃ +1 drop	
of CD ₃ OD	3
Figure S3: ¹³ C NMR spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	4
Figure S4: Expansion of ¹³ C NMR spectrum of morindaquinone (1) in CDCl ₃ +1 drop	4
of CD ₃ OD	
Figure S5: DEPT135 spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	5
Figure S6: ¹ H, ¹ H-COSY spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	5
Figure S7: Expansion of ¹ H, ¹ H-COSY spectrum of morindaquinone (1) in CDCl ₃	6
+1 drop of CD ₃ OD	
Figure S8: HSQC spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	6
Figure S9: HMBC spectrum of morindaquinone (1) in CDCl ₃ +1 drop of CD ₃ OD	7
Figure S10: Expansion of HMBC spectrum of morindaquinone (1) in CDCl ₃ +1 drop	7
of CD ₃ OD	
Figure S11: HR-ESI-MS spectrum of morindaquinone (1)	8
Figure S12: The key COSY and HMBC correlations for morindaquinone (1)	8
Table S1: Anti-acetylcholinesterase and cytotoxic activities of isolated compounds from <i>M. coreia</i> .	9

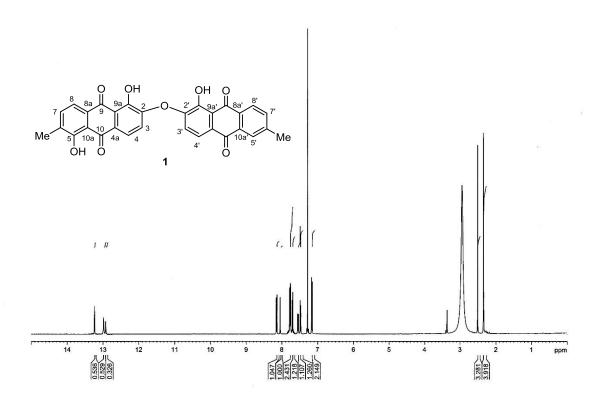
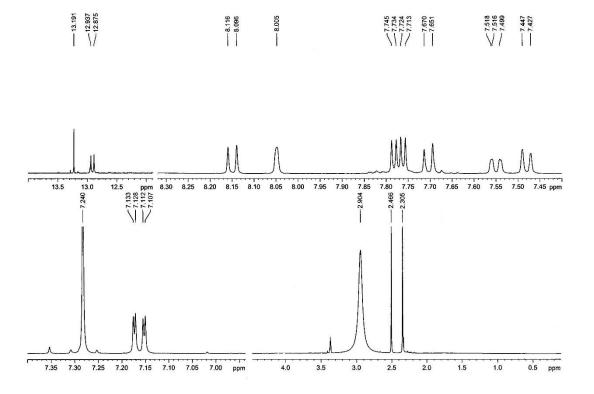



Figure S1. ¹H NMR spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

Figure S2. Expansion of ¹H NMR spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

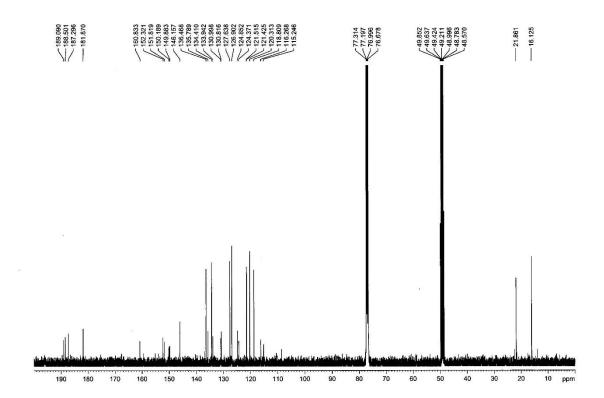
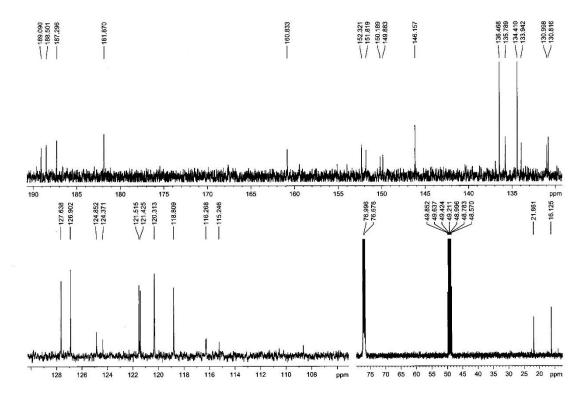



Figure S3. ¹³C NMR spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

Figure S4. Expansion of ¹³C NMR spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

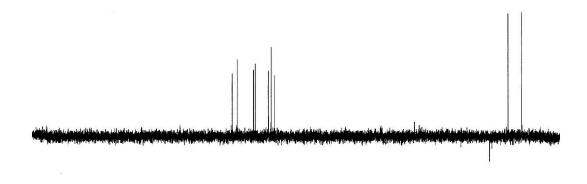


Figure S5. DEPT135 spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

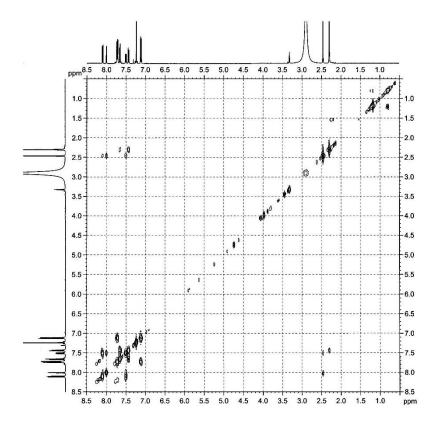
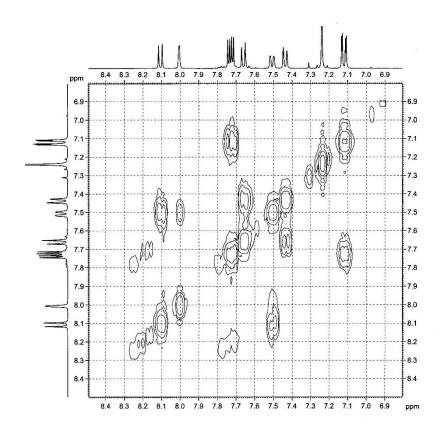



Figure S6. ¹H, ¹H-COSY spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

Figure S7. Expansion of ¹H, ¹H-COSY spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

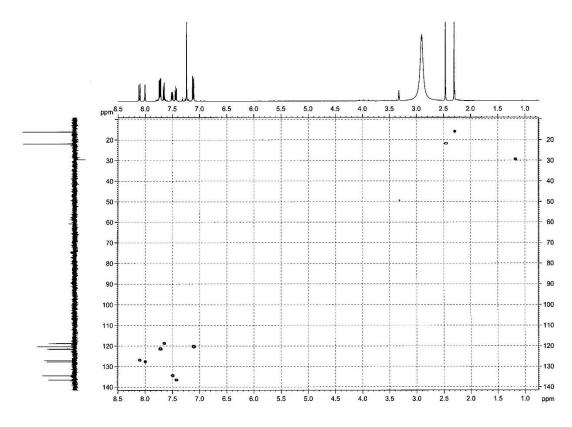


Figure S8. HSQC spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

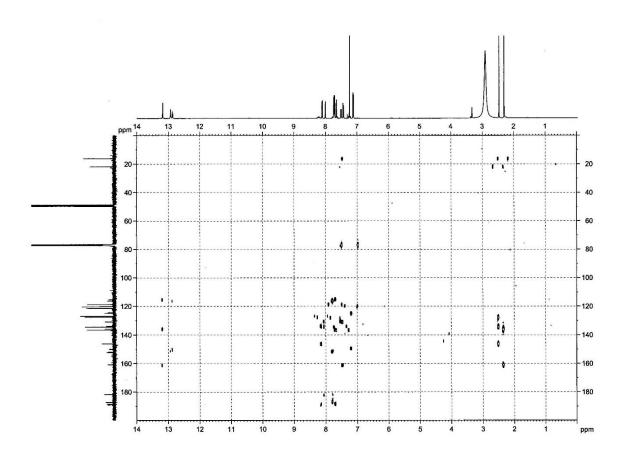
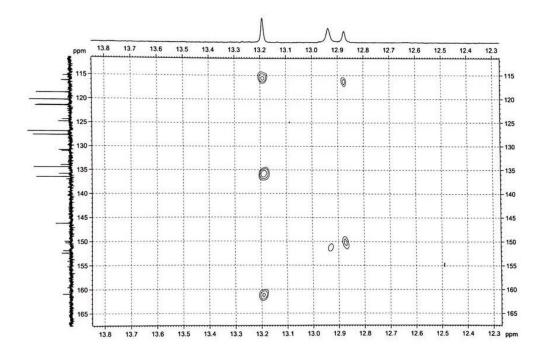



Figure S9. HMBC spectrum of morindaquinone (1) in CDCl₃+1 drop of CD₃OD

 $\label{eq:Figure S10} \textbf{Figure S10}. \ Expansion of HMBC spectrum of morindaquinone \textbf{(1)} in CDCl_3+1 \ drop \ of \\ CD_3OD$

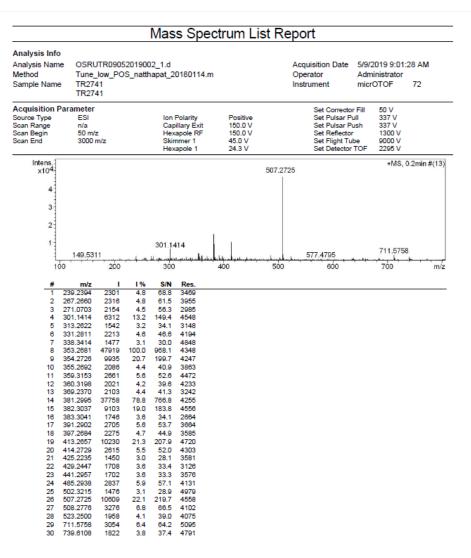


Figure S11. HR-ESI-MS spectrum of morindaquinone (1)

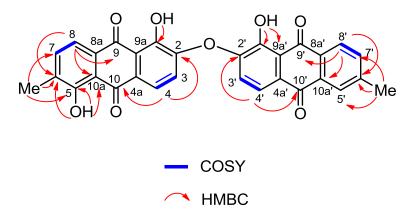


Figure S12. The key COSY and HMBC correlations for morindaquinone (1)

Table S1. Anti-acetylcholinesterase and cytotoxic activities of isolated compounds from M. coreia.

Compound	Anti-acetylcholinesterase	Cytotoxicity (IC ₅₀ , μM)		
	Activity IC_{50} (μM)	HeLa ^c	HT 29 ^d	MCF-7 ^e
1	Inactive ^b	Inactive ^f	Inactive ^f	Inactive ^f
2	Inactive ^b	35.40	40.92	25.96
4	Inactive ^b	Inactive ^f	Inactive ^f	Inactive ^f
6	205.46 ± 1.72	-	-	-
7	Inactive ^b	25.78	21.17	35.67
8	Inactive ^b	30.56	37.01	40.63
9	216.00 ± 4.13	-	-	-
10	195.11 ± 3.34	7.89	56.74	10.88
11	304.90 ± 7.02	Inactive ^f	Inactive ^f	Inactive ^f
12	-	Inactive ^f	Inactive ^f	Inactive ^f
Galanthamine ^a	1.01 ± 0.09	-	-	-
Doxorubicin ^a	-	0.68	1.65	0.31

^aReference drug ^bInactive at 0.1 mg/ml ^cHuman cervical cancer cells

^dHuman colon cancer cells

^eHuman breast cancer cells

^fInactive at 50 μ g/ml