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Abstract

In this article, we describe our efforts in contact prediction in the CASP13

experiment. We employed a new deep learning-based contact prediction tool,

DeepMetaPSICOV (or DMP for short), together with new methods and data sources

for alignment generation. DMP evolved from MetaPSICOV and DeepCov and com-

bines the input feature sets used by these methods as input to a deep, fully con-

volutional residual neural network. We also improved our method for multiple

sequence alignment generation and included metagenomic sequences in the search.

We discuss successes and failures of our approach and identify areas where further

improvements may be possible. DMP is freely available at: https://github.com/

psipred/DeepMetaPSICOV.
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1 | INTRODUCTION

The value of accurate interresidue contact predictions in protein

tertiary structure prediction is now well established. Recent years

have seen marked improvements in accurate prediction of contacts,

driven by improvements in methodology, most recently using meta-

predictors and deep learning.1-7 For our contact prediction effort

in CASP13, we developed DeepMetaPSICOV (abbreviated DMP),

a contact predictor based on a deep, fully convolutional residual

network and a large input feature set. DMP is a logical extension

and combination of our previous methods MetaPSICOV5,7 and

DeepCov.6 The method is capable of precise predictions for a

variety of proteins, including membrane proteins and those with rela-

tively shallow sequence alignments. We also employed expanded

sequence data banks for multiple sequence alignment (MSA) genera-

tion during the prediction season, which led to an overall enhance-

ment in contact precision. In this article, we will describe the method,

its performance in CASP13, and successes and failures of our

approach.

2 | METHODS

2.1 | Feature sets

The input features to DMP comprise the sequence profile, predicted sec-

ondary structure, solvent accessibility, and other features used in

MetaPSICOV (see Supplementary Information for complete details). Fea-

tures defined on single residues are converted into 2D maps by striping

them horizontally and vertically. Other features such as the outputs from

PSICOV,8 CCMpred9 and FreeContact10 are used without modification,

since they are defined on residue pairs. The 58-channel MetaPSICOV

inputs are combined with the 441-channel DeepCov covariance matrices,

which contain raw covariance values calculated for each pair of positions

in the sequence alignment, for each pair of residue types.6 Two additional

channels encode sequence separation between residue pairs and the

sequence bounds; the latter is simply a channel where all input values are

set to 1. The sequence bounds channel allows the first layer in the

network to differentiate between zeros in the input and those added by

padding; zero padding is a necessary consequence of using a fully
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convolutional network architecture. Similar approaches have been used in

otherwork.11,12

2.2 | Model architecture

The DMP model is a deep, fully convolutional residual neural network

(ResNet; Figure 1). This type of model is known to be highly

performant in image recognition tasks,13 as well as in contact

prediction.1,2 In our model, the 501-channel inputs are fed to a con-

volutional Maxout layer,14 which reduces the input dimensionality from

501 to 64. Instance normalization15 is applied to the output of this

layer, and the output is fed to a series of residual blocks. Each residual

block (right-hand panel of Figure 1) is a set of two dilated 2D con-

volutional layers, each with 5 × 5 filters, 64 output feature maps and

Rectified Linear Unit (ReLU) activation functions, together with a resid-

ual or skip-connection that adds the input of the block to its output,

before passing the result through a final ReLU nonlinearity. A total of

18 residual blocks are used. Each residual block alternates between

using regular and dilated 5 × 5 filters, with the dilation rates increasing

in later residual blocks. Dilations are applied as a means to rapidly grow

the receptive field of the network to encompass the whole protein

input. The dilation rates used are 1, 2, 4, 8, 16, 32, and 64. After the last

residual block employing dilated convolutions, a few additional blocks

comprising regular (nondilated) convolutions are used; the dilation rates

used for each residual block are given in Supplementary Table S2.

Following the residual blocks, the output layer of the model com-

prises a 2D convolutional layer with a single 1 × 1 filter and a sigmoid

nonlinearity, with instance normalization applied before the

nonlinearity. To get the predicted scores for each residue pair, we

average the values predicted for residue pairs (i,j) and (j,i) as in

DeepCov. The final predicted score is the average of predictions from

five versions of the DMP model, trained on the same input data inde-

pendently using different random number seeds.

2.3 | Data augmentations

Data augmentation procedures are commonly used to improve the

generalization and robustness of models that operate on images or

audio. The idea is to generate artificial, but plausible, new training

examples by applying transformations to a set of “true” examples. For

example, if one is interested in recognizing a piece of music, one could

generate new versions of a given recording by generating versions

played at slightly different tempos. For contact prediction, we used

three procedures inspired by techniques used in image analysis:

2.3.1 | Loop sampling

Loop regions in many proteins are capable of tolerating insertions and

deletions without significantly affecting the overall contact pattern.

Therefore, synthetic training examples can be generated by simply

masking or deleting rows and columns in the input tensors

corresponding to residues in loops, and by masking or deleting the

corresponding sections in the contact maps as well (Figure 2A).

Loop residues are determined according to the DSSP16,17 assign-

ment for each protein in the training set. Features for residues given

either no assignment or an assignment of ‘S’ corresponding to bends

are considered for removal with a probability of 0.3. The corresponding

rows and columns in the true contact map for the training example are

also removed, and the channel encoding sequence separation

(Supplementary Table S1) is also recomposed to reflect the modified

sequence length. The overall procedure is applied with a probability of

0.5 and only on proteins, which have 40% or fewer of their residues

classified as loop according to the above definition.

2.3.2 | Feature interpolation

Accurate prediction of contacts is challenging when one is faced with

low-quality or shallow alignments, because one obtains sparse and/or

inaccurate estimates of substitution statistics. To make our method

robust to alignments of lower quality, we train our models on two ver-

sions of sequence alignments: those obtained using HHblits and the

pre-clustered uniprot20_2016_02 database (pre-CASP12), and those

obtained using PSI-BLAST searches on the Swiss-Prot sequence data-

base. In general, the Swiss-Prot alignments tend to be of significantly

lower quality as compared to the uniprot20 alignments. As illustrated

in Figure 2B, the augmentation procedure constructs synthetic train-

ing examples by linearly interpolating between two input tensors:

X0 =m �X1 + 1–mð Þ �X2 ð1Þ

where X0 is the synthetic training example, X1 and X2 are the original

training examples, and m is a scalar chosen uniformly at random in the

F IGURE 1 Architecture of the DeepMetaPSICOV residual neural
network model. On the left, the overall organization of the model is
shown, beginning with the inputs, and ending in the final sigmoid
output layer. The numbers in parentheses represent the
dimensionality of the output from each layer in the format (number of
feature channels, width, height). The network takes in input features
for a protein of length L and produces correspondingly sized output.
Most of the model is comprised of 18 residual blocks (denoted
ResBlock; only a few are shown), and the structure of each block is
shown on the right. The convolutional layers (Conv2D) in a residual
block have 5 × 5 filters with a dilation rate d. The values of d for each
residual block in the model are given in Supplementary Table S2
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range [0, 1]. In our case, X1 and X2 correspond to the input feature

tensors generated using uniprot20 and Swiss-Prot alignments, respec-

tively, for a given protein in the training set. Using this procedure, we

can simulate input feature tensors obtained from alignments of

continuously varying quality, thus improving the model's robustness

to low-quality alignments.

The above procedure is similar to those used in the Synthetic

Minority Over-sampling Technique18 and the mixup method.19 The

key differences relative to SMOTE and mixup are that (a) the interpo-

lation in our method is not designed to over-sample any particular

type of training example, and (b) interpolation is performed only on

the input features; once a synthetic training example is created, it is

mapped to the same (true) contact map as the original training

examples.

2.3.3 | Flipped input feature tensors and
contact maps

In image recognition, a rotated image and the original obviously con-

tain the same information. Although contact maps cannot be arbi-

trarily rotated, a rotation of 180� is permitted, as this corresponds to a

reversal of the protein chain direction (N and C termini are exchanged;

Figure 2C). Although the resulting sequence and contact map may

well not correspond to a stable, folded, and functional protein, it

nonetheless describes a valid chain conformation. By reversing both

the input tensors and the target contact maps in this way, the addi-

tional input/target pairs help regularize the network during training.

This procedure is applied with a probability of 0.5. When applied, the

flipped inputs and outputs are appended to their regular versions in a

batch.

2.4 | Training

Network weights were trained using batches of eight training exam-

ples. The data augmentation procedures were applied on-the-fly as

each batch was prepared. The implementation in PyTorch allows the

training loop to accumulate weight gradients based on forward passes

of individual examples. Following this, the network parameters can be

updated using the gradients accumulated over each batch. With such

a setup, training examples are passed through the network one at a

time, removing the need for zero padding to have training examples

of differing sizes in a batch.

The weights in the network were initialized using Xavier initializa-

tion20 with weights drawn from the uniform distribution. Network

weights were optimized using the Adam method21 with an initial

learning rate of 0.001. The binary cross-entropy between the

predicted and true contacts was used as the loss function during train-

ing, with the loss calculated on residue pairs with sequence separation

greater than 4. Training progress was monitored using the Matthews

correlation coefficient (MCC) of the predictions on a separate valida-

tion set of proteins (see below). Once again, residue pairs fewer than

five residues apart in sequence were excluded from the MCC calcula-

tion. Training was stopped when the MCC on the validation set did

not improve for a number of consecutive epochs.

F IGURE 2 The data augmentation procedures used during the
training of DeepMetaPSICOV. (A) Deletions in loops can be simulated
by probabilistically removing rows and columns in the input tensors

and contact maps corresponding to residues classified as loops by
DSSP. The DSSP assignment for an example protein is shown above
its contact map, with blue rectangles representing alpha helices, and
line segments representing loops. (B) Input tensors generated using
different alignments can be linearly interpolated to produce new
training examples, simulating inputs generated from alignments of
varying quality. Inputs thus generated for a given protein are mapped
to the same contact maps. (C) New examples are generated by
flipping the input feature tensors and contact maps by 180�,
corresponding to a reversal of the chain direction
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2.5 | Data sets for training and testing

DMP was trained using the same set of 6729 proteins and alignments

used to train DeepCov.6 The proteins in the training set were selected

such that any two chains are <25% sequence-identical, and any single

chain has fewer than 500 residues. Chains with missing residues were

also excluded. The training set includes both single- and multi-domain

proteins and has no overlap with the CASP12 free-modeling domains,

which was used as a test set during development. Overlap between the

training and test sets was assessed using ECOD database classification,

rather than sequence identity, as the former is amuchmore rigorous pro-

cedure for exclusion of topologically similar proteins. Proteins were

removed from the training set, if they were in the same ECOD T-group

as a test example. The validation set comprised the first 200 chains in the

alphabetically ordered list of PDB and chain identifiers for the training

set. During development, the effectiveness of the model was assessed

on a variety of data sets including the CASP11 and CASP12 free-

modeling (FM) domains, the PSICOV150 set,8 and membrane proteins

fromNugent and Jones22 andHayat et al.23

2.6 | Multiple sequence alignment (MSA) generation

Having a deep, diverse multiple sequence alignment for a protein of

interest is essential for successful contact prediction. It has been

established that metagenomic sequence collections are a rich source

of sequence data that can be used for this purpose.24 Therefore, in

CASP13, we improved upon our previous approach for generating

deeper MSAs5,25 by including both UniRef100 and metagenomic

sequences in the search. Additionally, we used profile HMMs rather

than single sequences to build the target-specific HHblits database.

The procedure is described in detail below.

Each target sequencewas used as a query for an initial HHblits26 sea-

rch against the UniClust30 database provided by the Söding group. If at

least 10L raw sequences were found (where L is the length of the target

sequence), the alignment was used as-is. For targets for which fewer

than 10L sequences were obtained, the query sequence was scanned

against a custom sequence database using jackHMMER.27,28 This cus-

tom database is the set union of UniRef100 and the EBI MGnify29 pro-

tein sequences at a sequence identity threshold of 100%. Significant hits

obtained from this search were then clustered using kClust,30 and the

clusters were aligned using MAFFT.31 These alignments and the align-

ment from the initial HHblits search were then used to build a HHblits

database specific to the target sequence. A final HHblits search was run

against this target-specific HHblits database to derive the finalMSA.

2.7 | Calculation of effective sequence count (Meff)

Sequences in the MSA for each target were clustered using CD-

HIT32,33 at a sequence identity threshold of 62% and a word size of

4. The number of clusters returned by CD-HIT was taken as the Meff.

Unless otherwise mentioned, Meff values are calculated on the align-

ment obtained by the MSA generation procedure described above for

the full-length target sequence.

2.8 | Automatic domain parsing

We attempted to automatically parse domains in each target

sequence using the same approach we used in CASP12. Briefly, each

target sequence was first run through the alignment generation and

contact prediction steps to generate an initial contact list. Using

HHblits, the target sequence was scanned against the PDB70 data-

base provided by the Söding group. Regions of the sequence that did

not match a PDB template and that were at least 30 residues long

were extracted, and the alignment generation and contact prediction

steps were re-run on the putative domain sequence. The contact

scores predicted for such domains were then copied back into the rel-

evant region(s) of the initial contact list to yield the final prediction.

3 | RESULTS

3.1 | Performance in CASP13

Our move to a deep residual neural network model for generating

contact predictions proved to be quite successful. In an early test on

the CASP12 FM domains, we observed that DMP was substantially

more precise than MetaPSICOV2 and DeepCov on the same input

alignments. Addition of the data augmentation procedures led to small

improvements in mean precision on these targets (See Supplementary

information). Further improvements were seen when averaging pre-

dictions over five versions of the trained model.

Table 1 shows the precision obtained by DMP on the domains

classified as FM or FM/TBM by the CASP13 assessors. Over these

targets, DMP obtained a mean precision of 66.18% when considering

the top-L/5 long-range contacts. Our predictions were more than

90% precise for 16 domains, and a top-L/5 precision of 100% was

achieved on seven of these domains. Notably, some very precise pre-

dictions were obtained even though the MSA for the target had a low

effective sequence count; considering the 16 domains in Table 1 for

which our alignments had an Meff ≤ 50, DMP obtained a mean long-

range precision of 44.48% for the top-L/2 contacts, and 57.88% on

the top-L/5 contacts. The corresponding mean precision values con-

sidering both medium and long-range contacts are 61.11% and

76.33%. This represents a strong improvement in our ability to accu-

rately predict contacts for relatively shallow MSAs, especially when

one considers (for example) that PSICOV requires many hundreds of

effective sequences in the MSA to achieve similar precision.8

3.2 | Successes and failures in MSA generation

The addition of metagenomic sequences to our MSA generation step

proved beneficial in an initial test on a subset of the CASP12 FM

domains, where we found that we were able to obtain as many as

double the number of sequences as compared to using UniRef100

alone. In CASP13, we saw an improvement in alignment depth over

using HHblits alone (Figure 3A) for all but three targets, which had

fewer than 10L raw sequences in the initial HHblits MSA. The new

procedure for MSA generation guarantees that the MSA derived by
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searching the custom database of UniRef100 + EBI MGnify sequences

will have an equal or greater number of (raw) sequences as compared

to the initial HHblits MSA, and thus all points in Figure 3A are on or

above the dashed line. The increase in alignment depth translated into

more precise contact predictions overall (Figure 3B). Strong improve-

ments in precision were seen when using the deeper MSAs on domains

T0958-D1, T1010-D1, and T0957 s2-D1, among several others.

In Figure 3B, there are a few cases in which deeper alignments led

to significantly reduced contact precision. Reduced performance with

deeper alignments could indicate (among other factors) misalignment,

“blurring” or loss of structural signal in MSAs with very distant

sequence relatives, or that the MSA contains sequences incorrectly

matched due to profile drift. We found evidence of the latter on tar-

get T1015s1-D1, for which we obtained a top-L/5 long-range preci-

sion of 27.78%. The full MSA (Meff = 580) for this target shows very

highly conserved CXC and CXXC motifs, corresponding to a metal

binding site in the tertiary structure. Despite these patterns of con-

servation, many of the sequences in the alignment appear to be

artefactual hits brought in by profile drift. Indeed, when predicting

contacts using just the initial HHblits MSA (Meff = 79), the top-L/5

long-range precision jumps to 55.56%. These observations highlight

challenges encountered when using a one-size-fits-all approach to

MSA generation, and this is an area that we plan to develop further.

3.3 | Domain parsing

Our automatic domain parsing procedure detected domains on a total

of 20 out of the 90 regular targets during the prediction season. Of

the contact prediction targets, our domain parsing procedure detected

domains for five targets corresponding to six domains (Table 2). Of

these, only T0981-D3 benefitted clearly from the automated domain

parsing, gaining between 35 (top-L) and 12.2 (top-L/5) percentage

points in precision. T0981-D2 showed a mixed result, gaining signifi-

cantly in terms of top-L/10 precision, but showing no difference or

worse precision on longer contact lists. No change in precision is

obtained on T0949, reflecting the fact that the alignment for the full-

length sequence was already very deep (Table 1). In summary, from a

contact prediction perspective, automatic domain parsing results in lit-

tle or no benefit in terms of contact precision when domains are

detected. These findings are in general agreement with our findings in

CASP12,5 where we observed only minor improvements in top-L/5

contact precision on a few targets after parsing domains.

Nondetection of domains proved to be a significant issue for some

targets. A clear example of this was T1021s3, for which our pipeline

did not detect any domains. The MSA for this target had 3112 raw

sequences (Meff = 979). Figure 4 shows the gap fraction in each col-

umn of the MSA generated for this target, along with the official

domain boundaries. The region of this MSA corresponding to the sec-

ond domain is almost entirely covered by gaps, meaning there is little

information to use. Consequently, the contact precision in this domain

is very low (15%). In contrast, contacts in the first domain are very

precise owing to much better coverage in this region and the high

TABLE 1 Performance of DMP in CASP13. Top-L/5 long-range
precision is shown for 43 FMand FM/TBMdomains. Targets are ordered
by domain classification, followed by domain identifier.Meff values (see
Section 2.7) are calculated on theMSA for the full-length target sequence,
and so different domains of the same target have the sameMeff

Domain Classification Length Precision (%) Meff

T0950-D1 FM 342 94.20 111

T0953s2-D2 FM 111 100.00 180

T0953s2-D3 FM 93 93.75 180

T0957s1-D1 FM 108 36.36 43

T0957s2-D1 FM 155 87.10 37

T0960-D2 FM 84 17.65 70

T0963-D2 FM 82 11.76 58

T0968s1-D1 FM 119 54.17 116

T0968s2-D1 FM 116 39.13 229

T0969-D1 FM 354 98.59 645

T0975-D1 FM 293 80.70 4918

T0980s1-D1 FM 105 100.00 50

T0981-D2 FM 80 31.25 6

T0986s2-D1 FM 155 80.65 56

T0987-D1 FM 185 100.00 23

T0987-D2 FM 207 92.50 23

T0989-D1 FM 134 55.56 65

T0989-D2 FM 112 43.48 65

T0990-D1 FM 76 37.50 31

T0990-D2 FM 231 36.17 31

T0990-D3 FM 213 55.81 31

T0991-D1 FM 111 0.00 1

T0998-D1 FM 166 44.12 8

T1000-D2 FM 431 95.95 873

T1001-D1 FM 139 10.71 11

T1010-D1 FM 210 88.10 89

T1015s1-D1 FM 88 27.78 580

T1017s2-D1 FM 128 72.00 87

T1021s3-D1 FM 178 94.12 979

T1021s3-D2 FM 101 15.00 979

T1022s1-D1 FM 156 90.62 1393

T0949-D1 FM/TBM 139 100.00 6067

T0953s2-D1 FM/TBM 44 66.67 180

T0958-D1 FM/TBM 77 100.00 22

T0970-D1 FM/TBM 97 88.24 43

T0978-D1 FM/TBM 413 87.80 1602

T0981-D3 FM/TBM 203 100.00 6

T0986s1-D1 FM/TBM 92 73.68 187

T0992-D1 FM/TBM 107 100.00 436

T0997-D1 FM/TBM 185 94.59 963

T1005-D1 FM/TBM 326 93.94 872

T1008-D1 FM/TBM 77 6.25 5

T1019s1-D1 FM/TBM 58 50.00 267
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effective sequence count of the alignment. Re-running T1021s3-D2

using the official domain boundaries gave an MSA with 107 raw

sequences and an Meff of 25, and the precision of the contact predic-

tions for this domain increases to 30%. In the case of T1021s3, the

gap fraction in the full-length MSA would have alerted us to the exis-

tence of the second domain, however gap content on its own is very

unlikely to be a general solution to the problem.

3.4 | Incorrect calculation of mutual information

After the prediction season, we noticed that our calculation of mutual

information (MI) values during inference was incorrect due to a bug in

an in-house program. This bug affected all our predictions during the

CASP13 prediction season, although we verified that it did not affect

training of the DMP models. After correcting the bug, we determined

its impact on performance by repeating our predictions on the

43 domains in Table 1. As with our “official” predictions, contacts

were predicted for full-chain sequences, and precision was assessed

on the official domains for these targets.

F IGURE 3 (A) Comparison of effective sequence count (Meff) between alignments generated using only HHblits, or HHblits and jackHMMER.
In the latter case, the jackHMMER search makes use of UniRef100 and EBI MGnify metagenomic protein sequences. (B) Plot of top-L/5 long-
range precision values obtained using the deeper alignments vs those obtained using HHblits only. Using the deeper alignments was beneficial
overall, although there are a few domains for which just the HHblits alignment would have provided much higher precision; these are marked

TABLE 2 Change in precision after automatic domain parsing.
Values are expressed as percentage point differences relative to
predictions made without domain parsing

ΔPrecision after domain parsing (percentage points)

Domain Top-L Top-L/2 Top-L/5 Top-L/10

T0949-D1 0.00 0.00 0.00 0.00

T0960-D2 0.00 4.76 0.00 0.00

T0978-D1 4.60 3.38 3.61 −4.76

T0981-D2 −6.25 −12.50 0.00 37.50

T0981-D3 34.98 26.47 12.20 0.00

T1000-D2 0.54 1.09 0.00 0.00

F IGURE 4 Gap fraction per column in the MSA generated for
target T1021s3 (3112 raw sequences, Meff = 979). Official domain
boundaries are shaded in light blue and brown, and the precision
obtained by DMP on these domains (long-range, top-L/5) is shown.
The region of the MSA covering the C-terminal domain D2 is
comprised mostly of gaps and thus has little to no information
content. Consequently, the obtained contact precision on this domain
is much lower than that obtained for D1
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Incorrect MI calculations led to a loss of roughly 2% to 4% mean

long-range precision on this set of domains, depending on the

length of the contact list considered (Table 3). The worst-affected

cases were domains T0998-D1, T0990-D2, and T1001-D1, for

which using the correct version results in gains of 20.59, 21.28, and

39.29 percentage points in top-L/5 precision, respectively, relative

to the incorrect version. Interestingly, incorrect MI values tend to

have a greater impact on contact precision for targets with an Meff

of around 100 or lower (Figure 5). This observation suggests that

MI features may have a greater influence on the predictions made

by the DMP neural network model when other features are sparse

and appear to be an important contributor to performance on MSAs

with low Meff.

4 | DISCUSSION

It is evident from our results in CASP13 (and those of other

groups) that methods based on deep learning now represent the

state of the art in interresidue contact prediction. DMP is our

most effective contact prediction method to date. Nevertheless,

results from this CASP indicate that there is considerable room for

improvement.

The addition of metagenomic sequences during MSA genera-

tion was beneficial overall, and we plan to integrate additional

sources of sequence data in the future. However, in some cases,

the deeper alignments did not yield benefits in contact precision,

and thus care must be taken that sensitive, iterated sequence

homology searching procedures do not pull in unrelated sequences

due to profile drift. Nevertheless, there are early indications that

careful application of remote homology searching can yield even

greater benefits than we were able to realize in CASP13. Towards

the end of the prediction season, we experimented with an iter-

ated version of our MSA generation procedure (Section 2.6), which

uses hmmbuild and hmmsearch instead of jackHMMER to search

the custom sequence database. The advantage of this setup is that

it allows the entire process of searching the custom database to

be iterated using the MSA generated at the end of each round. Ini-

tial testing indicated that the procedure was prone to profile drift,

and we deemed it too unstable to use as our default MSA genera-

tion strategy. However, in at least one case (T1010-D1), this pro-

cedure provided a much deeper alignment after three iterations

(Meff increased from 89 to 200), concomitant with an increase in

top-L/2 medium + long range precision from 79.05% to 91.43%.

Despite these encouraging results, it is not yet clear if such proce-

dures can be reliably used in a fully automated manner, although

this is something that we are keen to explore.

Further improvements in predictive accuracy may be possible by

testing different architectures for the DMP neural network. Early

results indicate that moving to an even deeper network architecture is

beneficial, albeit with diminishing returns as network depth increases.

More broadly, from the perspective of 3D structure determination, it

is becoming clear that deep learning models like ours can also be used

to extract much richer forms of structural information such as inter-

atomic distances.34-36 Our tertiary structure prediction effort in

CASP13 did not make use of the contacts predicted by DMP. Instead,

we developed a tertiary structure prediction method that uses dis-

tances predicted from the same input features used by DMP,34 in

common with the approach taken by other groups in CASP13. Initial

results were encouraging, and we are continuing to develop the

method.

ACKNOWLEDGMENTS

We are grateful to members of the group for helpful comments and

discussions. We are grateful to the Söding group for quickly cor-

recting problems with the PDB70 database during the prediction

season.

ORCID

Shaun M. Kandathil https://orcid.org/0000-0002-2671-2140

TABLE 3 Mean precision values obtained for 43 CASP13
domains using correct or incorrect MI values in the input to the DMP
neural network model. The “Incorrect MI” results were obtained
during the CASP13 prediction season due to a bug in our MI
calculations, whereas the “Correct MI” data were obtained post-hoc
using corrected MI values and operating on the same inputs

Mean long-range precision (%)

Top-L Top-L/2 Top-L/5 Top-L/10

Correct MI 43.87 56.94 69.54 75.84

Incorrect MI 41.93 53.49 66.27 71.25

F IGURE 5 Impact of incorrect mutual information
(MI) calculations on top-L/5 long-range contact precision. Values are
expressed as percentage point differences, with positive values
indicating a gain in precision upon using the correct MI calculation
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