## Genomic characterization of a novel gut symbiont from the hadal snailfish

Chun-Ang Lian,<sup>1,2</sup> Guo-Yong Yan,<sup>1,2</sup> Jiao-Mei Huang,<sup>1,2</sup> Antoine Danchin,<sup>3</sup> Yong Wang,<sup>1,\*</sup> and Li-Sheng He<sup>1,\*</sup>

<sup>1</sup> Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China

<sup>2</sup> University of Chinese Academy of Sciences, Beijing, China

<sup>3</sup> Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France

\* Correspondence:

Li-Sheng He

he-lisheng@idsse.ac.cn

Tel.: +86-898-8838-0060

Fax: +86-898-8822-2506

and

Yong Wang

wangy@idsse.ac.cn

**Keywords:** hadal symbiosis; Tenericutes; CRISPR; snailfish; metagenome **Running title**: Symbiotic *Mycoplasma* in hadal snailfish gut



Figure S1. Sampling locations of hadal snailfishes

Hadal snailfishes were collected from the Mariana and Yap Trench. The sampling locations are marked with blue dots.



Figure S2. Phylogenetic relationships of 16S rRNA genes between different individual snailfish

The maximum-likelihood tree was constructed based on the nearly full-length 16S rRNA sequences (~1,500 bp). The bootstrap values were based on 1,000 permutations, and the 16S rRNA from *Mycoplasma penetrans* was used as the root.





Fgut, Mgut and Hgut represent the front, middle, and hind segments of the gut, respectively. The 16S rRNA from the Fgut, Mgut and Hgut of the snailfish were amplified and cloned into T-vectors. A total of 180 positive clones were randomly collected and sequenced. The Silva database was used for classification with default settings. The classified sequences were checked again using the NCBI database.



Figure S4. Binning of draft genomes

The genomic DNA from the hadal snailfish Hgut was extracted and then sequenced. The sequencing reads were assembled into contigs. The coverage levels of the contigs in terms of the metagenome were calculated, and the draft genomes were binned out.



Figure S5. Phylogenomic tree constructed using conserved genes

A phylogenetic analysis using 53 additional genomes belonging to different taxonomic groups was conducted. A total of 20 CSCGs were extracted from all the genomes and individually aligned using MUSCLE3.5. Aligned files were concatenated to construct a maximum-likelihood tree.



Figure S6. Phylogeny of riboflavin synthase and synteny of genes involved in riboflavin biosynthesis

The genes involved in the biosynthesis of riboflavin are shown above and labeled with the corresponding name. If the gene interval was 10 kb or more, it is indicated by a broken line (A). Riboflavin synthase from 16 genomes was collected to reconstruct a maximum-likelihood tree with 1,000 replicates. Nodes with bootstrap values >50% are marked with solid dots (B).



Figure S7. Alignment of riboflavin synthase sequences

The riboflavin synthase sequence from "*Ca*. Mycoplasma liparidae" was aligned with those of three homologues from *Alicyclobacillus pomorum*, *Escherichia coli* and *Schizosaccharomyces pombe*. The proposed binding site of the substrate is marked by a solid triangle.

| conserved single-copy genes (CSCGs) | pfam or TIGRFAM |
|-------------------------------------|-----------------|
| dnaG                                | TIGR01391       |
| frr                                 | TIGR00496       |
| nusA                                | TIGR01953       |
| rplA                                | TIGR01169       |
| rplB                                | TIGR01171       |
| rplD                                | TIGR03953       |
| rplE                                | TIGR01021       |
| rplF                                | pfam00347       |
| rplK                                | pfam00411       |
| rplL                                | TIGR00855       |
| rplM                                | TIGR01066       |
| rplN                                | TIGR01066       |
| rplP                                | TIGR01164       |
| rpsB                                | TIGR01011       |
| rpsC                                | TIGR01009       |
| rpsE                                | TIGR01164       |
| rpsI                                | pfam00380       |
| rpsM                                | pfam00416       |
| tsf                                 | TIGR00116       |
| smpB                                | TIGR00086       |

Table S1 CSCGs were used to construct a phylogenomic tree

Table S2 Primers used for PCR amplification

| Gene | Primer sequences (5'-3')     | fragment (bp) | Annealing temperature (°C) |  |
|------|------------------------------|---------------|----------------------------|--|
| atpA | forw.: GTTATTTCTTTAGGTGATGGT | 027           | 45                         |  |
|      | rev.: ATAACTGACCATCTGTAATTG  | 937           |                            |  |
| recA | forw.: AACAAAATTAATGTTGATGC  | 057           | 42                         |  |
|      | rev.: TAAACGTAATGTTTCTTC     | 937           |                            |  |
| gyrB | forw.: GATTAATGATAAAAAAGATG  | 1067          | 42                         |  |
|      | rev.: CATTCTTAGCAATAAATTCTT  | 1907          |                            |  |

| Spacing norma                                          | ANI    |  |
|--------------------------------------------------------|--------|--|
|                                                        | values |  |
| Mycoplasma iowae 695                                   | 65.49  |  |
| Ureaplasma urealyticum serovar 10 ATCC 33699           | 65.34  |  |
| Mycoplasma penetrans HF-2                              | 65.24  |  |
| Ureaplasma diversum ATCC49782                          | 65.05  |  |
| Ureaplasma parvum serovar 3 ATCC 700970                | 65.05  |  |
| Mycoplasma gallisepticum R                             | 64.66  |  |
| Candidatus Mycoplasma haemominutum                     | 64.54  |  |
| Mycoplasma suis KI3806                                 | 64.43  |  |
| Mycoplasma haemofelis str.Langford 1                   | 64.3   |  |
| Mycoplasma parvum str.Indiana                          | 64.22  |  |
| Mycoplasma ovis str.Michigan                           | 63.98  |  |
| Spiroplasma diminutum CUAS 1                           | 63.97  |  |
| Mycoplasma wenyonii str.Massachusetts                  | 63.91  |  |
| Candidatus Hepatoplasma crinochetorum                  | 63.88  |  |
| Candidatus Mycoplasma haemolamae str.Purdue            | 63.85  |  |
| Mycoplasma haemocanis str.Illinois                     | 63.82  |  |
| Mycoplasma genitalium G37                              | 63.67  |  |
| Mycoplasma synoviae 53                                 | 63.64  |  |
| Mycoplasma pulmonis                                    | 63.64  |  |
| Mycoplasma bovis PG45                                  | 63.41  |  |
| Mycoplasma hyorhinis str.HUB-1                         | 63.31  |  |
| Acholeplasma laidlawii                                 | 63.29  |  |
| mycoplasma BG1                                         | 63.2   |  |
| Strawberry lethal yellows phytoplasma (CPA) str.NZSb11 | 62.96  |  |
| Candidatus Phytoplasma australiense                    | 62.95  |  |
| Onion yellows phytoplasma                              | 62.24  |  |
| Acholeplasma brassicae                                 | 61.76  |  |
| Mycoplasma pneumoniae M129                             | 61.58  |  |
| Candidatus Phytoplasma solani 284/09                   | 60.98  |  |

## Table S3 Tenericutes species used in the ANI survey

All the species have complete genome sequences in the NCBI database.

| virulence factors       | CML | UU | UD | MG | MP |
|-------------------------|-----|----|----|----|----|
| Multiple Banded Antigen | Ν   | Y  | Ν  | N  | Ν  |
| IgA protease            | Ν   | Y  | Ν  | Ν  | Ν  |
| Urease                  | Ν   | Y  | Y  | Ν  | Ν  |
| phospholipases A and C  | Ν   | Y  | Ν  | Ν  | Ν  |
| GapA                    | Ν   | Ν  | Ν  | Y  | Ν  |
| CrmA                    | Ν   | Ν  | Ν  | Y  | Ν  |
| MslA                    | Ν   | Ν  | Ν  | Y  | Ν  |
| ADP-ribosylating        | Ν   | Ν  | Ν  | Ν  | Y  |

Table S4 Comparison of "Ca. Mycoplasma liparidae" with other pathogens

Y indicates present; N indicates absent. CML: "*Ca.* Mycoplasma liparidae" (BioProject accession number PRJNA497967); UU: *U. urealyticum* (NC\_011374); UD: *U. diversum* (CP009770); MG: *M. gallisepticum* (NC\_004829); MP: *M. pneumoniae* (NC\_000912).

| number of spacers | percentage (%) | matched viruses/phages             | identity (%) |
|-------------------|----------------|------------------------------------|--------------|
| 1                 | 0.85           | Acanthamoeba castellanii mimivirus | 100          |
| 1                 | 0.85           | Chrysochromulina ericina virus     | 93           |
| 1                 | 0.85           | Megavirus                          | 100          |
| 3                 | 2.54           | Lactococcus phage                  | 92           |
| 5                 | 4.23           | Bacillus phage                     | 92           |
| 3                 | 2.54           | Vibrio phage                       | 95           |
| 1                 | 0.85           | Hydrogenobaculum phage             | 92           |

Table S5 Spacers matched viruses or phages