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Abstract—The increasing deployments of 5G mobile commu-
nication system is expected to bring more processing power and
storage supplements to Internet of Things (IoT) and mobile
devices. It is foreseeable the billions of devices will be connected
and it is extremely likely that these devices receive compute
supplements from Clouds and upload data to the back-end
datacentres for execution. Increasing number of workloads at
the Cloud datacentres demand better and efficient strategies of
resource management in such a way to boost the socio-economic
benefits of the service providers. To this end, this paper proposes
an intelligent prediction framework named IGRU-SD (Improved
Gated Recurrent Unit with Stragglers Detection) based on state-
of-art data analytics and Artificial Intelligence (AI) techniques,
aimed at predicting the anticipated level of resource requests
over a period of time into the future. Our proposed prediction
framework exploits an improved GRU neural network integrated
with a resource straggler detection module to classify tasks based
on their resource intensity, and further predicts the expected level
of resource requests. Performance evaluations conducted on real-
world Cloud trace logs demonstrate that the proposed IGRU-SD
prediction framework outperforms the existing predicting models
based on ARIMA, RNN and LSTM in terms of the achieved
prediction accuracy.

Index Terms—5G, Internet of Things, Resource Management,
Cloud Computing

I. INTRODUCTION

INTERENTof Things(IoT) is undergoing rapid development
in the recent years, and the emergence of 4G networks

has led to the invention of Internet of Everything (IoE). The
increasing number of mobile devices being connected to the
4G network naturally causes technical bottleneck issues, which
in fact limits the efficiencies of 4G. Given the recent emer-
gence of 5G networks, the way of using mobile phones will
undergo a blowout transformation. Recent mobile systems are
characterising reasonable compute provisioning, high speed,
ultra-reliability and low-latency [1]. Major countries in the
worlds are already in the process of deploying, promoting and
commercialising 5G networks. IoT applications will face a
surge with the deployments of 5G network, benefitting smart
home, smart vehicles, smart cities, and thousands of handheld
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devices [2], as shown in Fig. 1 According to the Gartner, up to
20.4 billion IoT devices will be connected through machine-
to-machine communication networks [3].

But the increasing trend in the number of IoT devices is
always a source of causing network issues such as bottle-
neck, congestion, and contention etc. Cisco reports that the
mobile data traffic will increase by 53% annually up until
2020 [4]. Such an overwhelming mobile traffic data requires
efficient strategies of data management. The paradigms of
edge computing and fog computing provides supplements for
efficient scheduling and management of data, in particular
facilitates local processing of the IoT data, through exploit-
ing resources in the edge networks. Although edge devices
facilitates such local processing of data, the involvement of
back-end datacentres cannot be eliminated, due to the intense
processing requirements of heavy-weight IoT applications.
Moreover, resource constraint edge devices may not provide
adequate computational and caching services due to their
limited hardware resources. The devices in fog layers usually
comprise the storage and computing resources deployed in a
macro base station [5]. In this sense, the resources in the fog
layer usually characterise resources better than those of stand
along mobile devices, but fewer than the back-end datacentre
resources in the Cloud. Although fog computing infrastructure
can provide considerable caching and computational services,
it still suffers from limited storage and computing resources
whilst processing complex tasks [6]. Thus, edge and fog com-
puting cannot be regarded as a substitute for Cloud computing,
but can be used in conjunction with Cloud in order to enhance
the functional efficiency of the entire network, as shown in Fig.
1. Resource management in the Cloud is an ongoing problem,
with the extension of fog and edge computing, this issue is
increasing complexity

One of the prevailing issues of Cloud Computing is the
energy consuming nature of its resources such as massive
servers, cooling supplements, lighting etc., all require enor-
mous input energy and also datacentres are regarded as a major
source environmental pollution [7]. Cloud service providers
are expected to provide high-quality services and to meet
negotiated SLA (Service Level Agreement) with the clients.
One of the primary reasons for the increasing operational costs
of Cloud providers is their strategy of over-provisioning the re-
source requirements of the workloads. Such over-provisioning
level of resources such as CPU, memory, bandwidth etc.,
usually far exceed the actual requirements of the workloads.



JOURNAL OF IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 2

On the other hand, reducing the level of resource provision
might risk workload failures and termination under certain
scenarios such as resource scarcity, overwhelming level of
workloads etc., this causes the Cloud service providers to
breach the agreed SLA [8]. Herein, achieving an optimised
balance in the provisioned level of resources during workload
execution is a long-standing objective of the service providers,
in such a way to achieve energy conservation without causing
workload failures. Cloud workloads are viewed in the form
of jobs, every jobs may encompasses one to several number
of integral tasks. Such tasks within jobs require similar or
distinct server resources such as CPU cores, memory capacity,
and so on. Tasks may be assigned to same or different servers
for independent execution. Some of these tasks can act as
potential stragglers, such that the straggling tasks runs longer
and/or consume more resources than majority of the other co-
located tasks within a given job. Understanding the resource
requirements of the internal tasks of jobs is important, as such
insights might help managing the tasks in an energy efficient
way. Cloud provides usually record the usage profiles of the
workload, analysing such usage profiles can provide with such
understanding of the task behaviours.

In this context, forecasting the future behaviours of the tasks
are one of the possible ways of achieving energy efficient
workload execution in Cloud datacentres without affecting
the execution performance. Developing a prediction model
naturally requires characterisation of the Cloud workloads
through descriptive analytics of the jobs and tasks. But such
analytics of Cloud workloads can often be complex due to the
heterogeneous and dynamic nature of the Cloud workloads,
since the workloads processed in a single datacentre arrive
from various business context. Despite the existing works
of workload characterisation and prediction modelling [9],
[10], Cloud Computing still requires an effective analytics
of workloads to sufficiently exploit the features and rela-
tionships between Cloud users and workloads to develop a
reliable prediction model. To this end, this paper proposes an
intelligent prediction framework based on big data analysis
and artificial intelligence, aimed at predicting the resource
requests of Cloud worloads over a defined period of time
in the future. Our proposed prediction framework exploits
an improved GRU neural network integrated with a novel
resource stragglers detection technique and achieves a reliable
level of accuracy whilst predicting the resource requests.
Important contributions of this paper include the following:

1) Analysis and extraction of predictive characteristics of
Cloud workloads to build the predictability profiles of task
resource requests. The periodicity characteristics of Cloud
workloads that can aid prediction are exhibited.

2) A straggler detection technique has been proposed for
task-level resource requests, which exploits anallytics of both
the historical task resource usage data and task event data.

3) An improved GRU network model based on RNN has
been used to handle time series workload data. This model can
not only capture the relationships between data on long term
time sequential sequences, but can also effectively disregard
irrelevant information of workload data.

4) An efficiently integrated prediction framework named

IGRU-SD consisting of NS-2R and S-2R prediction models
has been developed to predict the task resource requests based
on the periodicity characteristics of Cloud workloads, namely
the hour-of-day and day-of-week patterns. The proposed NS-
2R and S-2R prediction models are used to forecast and
classify the non-straggler tasks and straggler tasks among the
workload data.

The rest of the paper is organised as follows: Section II
reviews the related works. Section III presents the required
background on Cloud workloads. Section IV describes the pro-
posed prediction IGRU-SD framework including the improved
GRU prediction model and the detection method of resource
requests stragglers. Section V introduces the experimental
data sets, parameter set and evaluation index. In Section
VI, the performance of our proposed prediction framework
is discussed by comparing with other chosen state-of-the-art
prediction models. Section VII concludes the paper, along with
outlining our future research directions.
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Fig. 1. Hybrid Intelligent Network Architecture

II. RELATED WORK

Resource management in cloud datacentres such as resource
prediction, resource scheduling, task allocation, etc. is being
widely researched in the recent years. The literature [11]uses
a variety of realistic policies and realistic test scenarios to
analyse the impact of virtual machine allocation on resource
consumption. This work have claimed that the total resource
and energy usage can be reduced through the deployment of
special allocation policies within various virtual machines. .
A resource management scheme named PLAN [12] has been
proposed, which is a policy-aware and network-aware VM
(Virtual Machine) management scheme aimed at reducing the
communication costs incurred during VM migration in Cloud
data centres whilst meeting network policy requirements. This
issue has been modelled as an NP-hard problem, PLAN
deployed an effective algorithm to reduce the communication
cost while satisfying the policy constraints.
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The predictability of resource-intensive computing work-
loads in large-scale computing data centres has been analysed
in the literature [13], which firstly introduced the problem
statement of resource interference in Cloud data centres,
especially that the resource-intensive computation may need
more CPU resources, such as big data analysis processing.
According to their problem statement, a predictability model
has been proposed with calculation parameters and the en-
vironmental parameters that are identified to be obviously
affecting the execution behaviours.

In order to address the challenging issues of resource
optimisation in Cloud data centres, [14] proposed a Cloud
resource scheme integrated with a novel resource prediction
model based on GA (Genetic Algorithm) and a VM placement
algorithm for improving the proportion of resource utilisation
and reducing energy consumption. This work modelled the
VM provisioning as a MOO (Multi Objects Optimisation)
problem and addressed it with a GA approach. This applied
GA prediction model has obtained an optimal solution through
its crossover operation, and prevents the model from falling
to a regional optimal solution through a mutation operation.

Cloud workloads are becoming more heterogeneous. This
inherent task heterogeneity increases the complexity of re-
source management for Cloud providers. There is a phe-
nomenon in Cloud data centres, where a large number of
resource-intensive tasks is concentrated within a certain period
of time. In order to meet the resource requirements of such
tasks, Cloud service providers have to provide a mass of
resources for a prolonged time period. This usually results
in the resource idleness issue, where by the majority of the
allocated mass resources are not even utilised during the actual
execution of tasks. To this end, a novel analytics model [15]
has been proposed, which integrates provisions to estimate the
resource requirements of tasks before scheduling, to classify
stragglers and non-stragglers, and attempts to optimise the
resource provisioning in such a way that the resource idleness
are reduced.

In the recent years, with the breakthrough and develop-
ment of AI (Artificial Intelligence) technology, the ways of
achieving smart resource management are shifting directions.
Researchers are attempting to exploit AI to optimise resource
management in data centres [11] [16]–[18]. A LSTM neural
network model has been used to predict the arrival number of
jobs to schedule computational jobs in the works of [16]and
[17].An improved N-LSTM [18] has been proposed to predict
the anticipated amounts of workloads at the VM-level within
a short-term. A latency-based prediction approach has been
proposed, which integrates the K-means clustering algorithm
with an improved BP neural network [11] with the intention
of forecasting the task-level CPU and memory consumption
levels. Compared with the traditional statistical methods, AI
models are more adept at capturing the internal characteristics
of Cloud workload data. In many cases, AI-related prediction
models exhibit higher efficiency than the statistical models.
Therefore, this paper consideres the use of AI technology
to manage resources in Cloud datacentres as the future way
forward in the context of smart resource and workload man-
agement.

III. BACKGROUND

A. Cloud Users

We are witnessing an ever increasing trend of both the Cloud
users and service providers. Although users and providers
belong to various business context, the ways of processing
and managing their workloads in the datacentres are often very
similar. Users are usually required to complete a registration
process before using the Cloud services, and will go through
an authentication process every time they access the Cloud
resources. Once this process is completed successfully, users
can submit their workload requests to the datacentres, such
requests are usually received and processed by a broker or a
scheduler. In Cloud datacentres, job submissions are typically
characterised by associated user IDs, assigned logical names,
and corresponding resource requirements [7]. User IDs are
uniquely assigned to individual users and are not duplicated.
But it might be possible for a single user to sign up for differ-
ent user IDs. Jobs originating from a single user but in different
user ID, might characterise some level of similarity in terms of
the configuration, resource requirements, latency requirements
etc. It is a common belief that user behaviours or requirements
might not characterise a higher degree of deviation among
their submitted jobs. From a wider perspective, Cloud jobs
submitted by similar user groups are often similar, users in
such groups may engage in similar work life interests, and the
Cloud jobs are usually the digital response of corresponding
business behaviours in Cloud datacentres. In addition, the
behavioural characteristics of Cloud users might be different at
different time periods within a day. In other words, Cloud jobs
are often associated with their operating business hours, thus
exhibit weekly/week-end trends [19]. Thus, characterising user
behaviours over time might provide us with useful inferences
in terms of their arrival frequency, computational intensity,
workload volume etc.

B. Cloud Workloads

Cloud workloads often appear in Cloud datacentres in
the form of jobs or tasks characterised by various inherent
attributes. The duration of job execution and the number of
tasks in a job are two important indicators that define workload
characteristics. The job execution duration [19], [20]is usually
bimodal, so that tasks contained within a given job are either
shorter and/or longer in terms of their execution time. Long-
running tasks can be further classified as interactive and com-
putationally intensive workloads. While the former requires
frequent interaction with users to during execution, the latter
usually refers to the processing of weblogs. Tasks with shorter
execution times can be further classified into shorter CPU
intensive tasks and shorter memory intensive tasks. Through
the analysis of a large amount of historical workload data,
Cloud jobs have been identified as completing their execution
within 15 minutes, with the execution duration of a very
insignificant proportions of jobs exceeding 300 minutes [21].
Task duration depends largely on job characteristics driven
by the behavioural characteristics of corresponding users. In
general, a single job may contain both short-cycle and long-
cycle tasks. Long-cycle tasks typically hog server resources
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for a long time, which means that such tasks consume more
energy. It is worth noting that some short-cycle tasks may
also consume a lot of energy within a shorter period of
time, because they occupy a lot of resources. Most of the
jobs arriving at a typical Cloud datacentre characterise dozens
to hundreds of tasks, while a very few proportions of jobs
processed in a datacentre characterise just a single task. It
is worth noting that a few jobs have been identified to
characterise more than 2,000 tasks [7]. The completion time
of the entire job is determined by the completion time of all
of its integral tasks. For Cloud tasks executed in parallel, the
time of job completion is determined by the task with the
longest execution time. For sequential tasks, the completion
of the last task in the sequence is usually regarded as the
completion of the corresponding job. In either case, the size,
volume and duration of each individual task plays a vital role
in the completion of the entire job.

C. Profiles of Cloud Users, Jobs and Tasks
1) User Profile: Jobs arriving at the datacentres accompany

specific information to describe their job profile, which is a
composite consisting of submission time ts , user name nu , and
the logical job name nj , as shown in Equation 1. The specific
information describing a task are stored in the task profile,
which is a composite consisting of submission time ts , user
name nu and the corresponding resource request for CPU cores
rc and resource request for memory rm, as shown in Equation
2.

J = {ts, nu, nj} (1)

T = {ts, nu, rc, rm} (2)

Job and task profiles typically contain submission times
and user names, which are used to build the user profiles.
Therefore, Cloud user profile can be defined as composite U,
comprising job submission time ts , user name nu , job name
nj , and their related resource requirements in terms of CPU
rc and memory rm, as shown in Equation 3.

U = {ts, nu, nj, rc, rm} (3)

2) Job Event Profile: The job event profile can be defined
as a composite Ej , consisting of the timestamp of submission
ts , a job ID Ji , a job name Jn, the number of encompassed
tasks nt , resource levels c(c,m)and job scheduling class Jsh , as
shown in Equation 4.

Ej = {ts j, Ji, Jn, nt, c(c,m), Jsh} (4)

3) Task Event Profile: Since tasks within jobs are processed
individually, execution profiles of the tasks encompassed
within jobs can be defined as a composite Et [19], consisting
of the timestamp of submission tst , task index within a given
job Ti , job ID Ji to which the task belongs, resource request
for CPU cores rc and resource request for memory rm of the
ith task within the job Ji and the task priority Tp , as shown
in Equation 5, where, the tasks with larger priorities generally
have preference for resources over tasks with low priorities.

Et = {tst,Ti, Ji, rci, rmi,Tp} (5)

4) Task Resource Usage Profile: Tasks are usually executed
in execution instances such as VMs or containers, and the
resources allocated to individual instances might be isolated
from each other. When a task is executed, related execution
information is collected to form a resource usage file. A
task resource usage profile can be described as a composite
consisting of a start time tsh , a job ID Ji to which the task
belongs, task index ti , CPU usage rci , memory usage rmi , as
shown Equation 6.

E ′t = {tsh, Ji, ti, rci, rmi} (6)

According to the task priority, resource requirements of CPU
and memory, the task execution time tj can be calculated in
an execution instance (e.g. a Linux container) using the task
completion time t f and the time of task scheduling tsh , as
shown in Equation 7.

lj = t f − tsh (7)

The datasets used in this paper mainly are captured from
Google Cloud computing datacentres. In Google’s resource
usage profiles, the typical sample measurement cycle is 5
minutes (300s) [20]. Since the completion time of each task is
different and may span across several sampling cycles, further
calculations are required to finally determine the execution
time and resource consumption of each task. The total amount
of resources consumed by a single task and its execution
duration are given by the sum of all measurement samples
for the corresponding task, as shown Equation 8 and 9,

RT =
∑n

i=1 ri (8)

LT =
∑n

i=1 li (9)

where RT and LT are the total amount of resources con-
sumed and task length for task T respectively, n is the total
number of measurement samples, ri and li are the resource
consumption and the duration of the corresponding task exe-
cution during the ith sample period of task T. It is obvious that
a given task T would require a minimal level of RT resources
and can be expected to run for a minimum duration of LT

when provisioned with RT .

D. Patterns of Cloud Resource Requests

Previously researches [22], [23]have empirically exhibited
the trends of job arrival frequency and user activities, proving
such trend to be driven by business behaviours. This is to say
that the resource consumption trends characterise periodicities,
such as hour-of-day pattern and day-of-week pattern etc.
The extraction of these features can help predicting the user
intentions and resource consumption levels within a specific
period of time, which can aid Cloud managers with better
management of resources in order to save their operating
costs. However, resource consumption of Cloud workloads
changes dynamically over time, implying it is difficult to
accurately capture such highly varying dynamic characteristics
using traditional prediction models. If resources are allocated
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solely based on the projected resource consumption levels,
even minor prediction errors can cause irreparable disasters
in a large-scale Cloud datacentres. Moreover, incorporating
the task volume in the task profile and configuration file can
provide inferring the task behaviours better, even before the
start of the execution.

Fig. 2 and Fig. 3 exhibit the periodicity trends in terms of
the resource requests, starting from D1 which is a Monday.
Fig. 2 shows the total number of CPU resource requests
received by the studied datacentre each day over a three-week
period. It can be seen from Fig. 2 that the total number of
resource requests received is higher during the weekdays and
significantly reducing over the weekends. This also conforms
to the behaviour characteristics of users in real life discussed
above. In addition, corresponding days of the week over the
observational period are exhibiting nearly similar level of
received resource requests.

Fig. 3 illustrates the hour-of-the-day pattern of CPU re-
source requests. In Fig. 3, CPU resource requests are aggre-
gated in hours, where a total of 504 hours of resource requests
are analysed across a period of 21 days. It is obvious from Fig.
3 that the total amount of resource requests shows a gradual
increasing as the day progresses, and deceasing towards the
close of the business hours. Moreover, this pattern is observed
to be cyclical over the observed period of 21.
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Fig. 3. CPU Resource Requests of Hours

IV. THE PROPOSED PREDICTION FRAMEWORK
This section describes our proposed prediction framework

focused on predicting the workload resource requests at Cloud

datacentres.

A. Model Architecture

The proposed prediction framework is illustrated in Fig.
4, which encompasses various components for functionalities
such as workload data input, stragglers detection, resource
requests prediction, and prediction results output. The primary
purposes of the encompassed functionalities are detailed as
follows.

Workload data input: The primary objective of this module
is to input the resource consumption data set of tasks extracted
from task resource usage trace logs. The resource consumption
levels including CPU and memory of the tasks under every
sample period is recorded in the task resource usage file.

Stragglers Detection: Based on the recorded resource con-
sumption levels of tasks, every task within a given job will be
subjected to a straggler classification module. The methodol-
ogy used in this straggler classification module is detailed in
section 4.c.

NS-2R model: Based on the stragglers detection outcome,
this NS-2R model will forecast the future resource requests
of tasks detected as non-stragglers for a defined time period
based on the RNN-GRU model.

S-2R model: This is a prediction model designed for
forecasting task-level resource request for tasks detected as
stragglers. Based on the outcome of the straggler detection
module, tasks labelled as resource consumption stragglers
are filtered out from the task resource usage files. The task
index parameter in the resource usage files can acts as an
indicator of straggler tasks, which usually characterise higher
CPU or memory requirements compared to the remaining non-
straggler tasks within the same job. Based on this straggler
detection module, this S-2R model will forecast the future
resource requests of straggler tasks for a defined time period
based on the RNN-GRU model.

B. Recurrent Neural Network

The emergence of RNN [24](Recurrent Neural Network)
is to compensate for the shortcomings of feedforward neural
networks. It is unique in such a way that RNN can use
historical time-series data to guide current decisions. The data
points within a given time-series are not independent, and are
related to the corresponding data points in the historical time
period. Failure to capture these inherent time characteristics
would considerably affect the model accuracy and reliability.
Cloud workload dataset characterise obvious time character-
istics, which is evident from the periodicity characteristics
discusses earlier. During the prediction process, it is not
only important to capture the periodicity characteristics of the
workloads but also the model should extract and exploit the
way that the data points are associated with time. A prediction
model with such a capability would deliver reliable forecast
of the resource requirements of Cloud workloads. Traditional
NN (Neural Networks) models can only reflect the mapping
relationship between data points, but they cannot extract and
utilise the time relationship between data points, which limits
their applicability for accurately predicting Cloud workload
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Fig. 4. The Model Architecture of the Proposed Prediction Framework

datasets. Therefore, in this paper, the resource requirements
of future workloads are predicted based on RNN which often
exhibit good processing capability for time-series datasets.

The basic idea principle ofbehind RNN is to use the self-
feedback neuron to memorisze historical information and
apply historical information to compute the data point values
in the calculation of the next instance moment. The detailed
calculation process will be explained in Figs. 5 and Fig. 6
presents a detailed overview of the computation process of
RNN. Fig. 5 depicts a typical three-layer RNN model structure
which is composed of anthe input layer, athe hidden layer
and thean output layer. Each layer contains a number of
neurons and full a complete connection between each layer
is established throughand the neurons, . There are different
connection based on various degrees of connection weights
between the layers. Where In Fig. 5 and Fig. 6, WU represents
a connection weight matrix between the input layer and the
hidden layer, and WV represents a connection weight matrix
between the hidden layer and the output layer, this structure
resembles a traditional neural network. It is worth noting
that RNN has a special structure to that of the traditional
neural network, by including a self-loop structure in the hidden
layer. WH represents the connection weight matrix of the
hidden layer, flowing from the previous hidden layer to the
current hidden layer in time. Because of the fact the weights
of neurons are shared at each moment in time period, the
expanded RNN can be regarded as a multi-layer feedforward
neural network shared by the involved parameters. This feature
of RNN plays a very important role in processing time-series
data. Firstly, the parameter sharing mechanism enables RNN
to data mine key information in the time-series without being
affected by the information position. Secondly, the parameter

sharing mechanism enables RNN to process data sequences of
different lengths.
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Fig. 5. The Structure of RNN
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Fig. 6. The Basic Recurrent Unit

The working mechanism of RNN is described as follows.
The input sequence of RNN is represented by an x sequence
of length t, so that X = {X1, X2, ..., Xt, Xt+1, ..., XT }, where
Xt = (x1, x2, ..., xn) ) indicating that X has n number of input
values at time t. This is to say the dimension of X is n at
time t. For the same reason, the value of the hidden layer can
be expressed as Ht = (h1, h2, . . . , hm), where m is the number
of neurons in the hidden layer. The output of RNN can be
represented with a composition Yt = (y1, y2, . . . , yp), where
p is the number of outputs at the time t. According to this
definition, Ht can be further computed using the following
equations.

Zt = Wu ∗ Xt +WH ∗ Ht−1 + a (10)

Ht = f (Zt ) (11)

where, Zt is the input value of the neurons in the hidden
layer, a is an offset vector of the hidden layer, f () is an
activation function of the hidden layer. From this, the value of
Y at time t can be calculated using the following equation.

Yt = g(Wv ∗ Ht + b) (12)

where, g() is the activation function of the neurons in the
output layer, b is the offset vector of the output layer.
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The ultimate goal of RNN is to minimise the objective func-
tion. In this process, RNN uses the BPTT (Backpropagation
Through Time) algorithm to compute the gradients, as follows.

J =
∑T

t=1 Jt (13)

Jt = −Yt logYt (14)

J = −
∑T

t=1 Yt logYt (15)

(1) The process of computing the gradient of J respect to
WV is listed as belows:

∂J
∂WV

=
∂
∑T

t=1 Jt
∂WV

=
∑T

t=1
∂Jt
∂WV

(16)

Yt = g(Qt ) (17)

Qt = WvHt + b (18)

∂Jt
∂WV

=
∂Jt
∂Yt

∂Yt
∂WV

=
∂Jt
∂Yt

∂Yt
∂Qt

∂Qt

∂WV
(19)

(2) The process of computing the gradient of J respect to
WH is listed as belows:

∂J
∂WH

=
∂
∑T

t=1
∂Jt
∂WH

∂WH
=

∑T
t=1

∂Ht

∂WH

∂Jt
∂Ht

(20)

where, Ht is a function of WH and Ht−1, and Ht−1 is a
function of WH and Ht−2. Using the chain rule, the following
equations are obtained:

∂J
∂WH

=
∑T

t=1
∑t

k=1
∂Hk

∂WH

∂Ht

∂Hk

∂Yt
∂Ht

∂Jt
∂Yt

(21)

Ht = f (WHHt−1 +WU Xt + a) (22)

(3) The process of computing the gradient of J respect to
WU is listed as belows:

∂J
∂WU

=
∂
∑T

t=1 Jt
∂WU

=
∑T

t=1
∂Jt
∂WU

=
∑T

t=1
∂Ht

∂WU

∂Jt
∂Ht

(23)

Using the chain rule, the following equation is obtained:

∂J
∂WU

=
∑T

t=1
∑t

k=1
∂Hk

∂WU

∂Ht

∂Hk

∂Yt
∂Ht

∂Jt
∂Yt

(24)

where,

∂Ht

∂Hk
=

t∏
i=k+1

∂Hi

∂Hi−1
=

t∏
i=k+1

WT
Hdiag[ f ′(t − 1)] (25)

The gradient of WU is:

∂J
∂WU

=
∑T

t=1
∑t

k=1
∂Hk

∂WU
(
∏t

i=k+1 WT
Hdiag[ f ′(t − 1)]) ∂Yt∂Ht

∂Jt
∂Yt

(26)
If we define γ =

WT
Hdiag[ f ′(t − 1)])

, the expression in
parentheses above can be expressed as γt−k . if γ > 1, while

t−k →∞, then γt−k →∞. In this case, the gradient explosion
phenomenon will occur in the RNN model. If γ < 1, while
t − k →∞, γt−k → 0. In this case, the gradient disappearance
phenomenon will occur in the RNN model.

C. Improved GRU Based on RNN

The RNN model described above is a neural network model
specifically designed to process time-series datasets, which can
better fit the nonlinear relationship between the data points in
a time coordinate. However, RNN has an obvious shortcoming
that its gradient can disappear or explode easily, especially for
long time-series datasets, during the process of model training.
The objective of the proposed GRU (Gate Recurrent Unit) is
to alleviate the phenomenon of gradient disappearance that is
widespread in RNN. GRU is a logic gate control unit, and its
structure is shown in Fig. 7 [25]. In order to solve the gradient
disappearance problem prevailing in the RNN model, GRU is
used to replace the hidden layer loop structure in the classical
RNN model.

Ht-1 Ht

Ht-1 Xt Xt

tanh

Yt

σσ

× 

×

+

×

1-

Rt
Zt

Ĥt

Fig. 7. The Structure of GRU

The input and output structure of GRU shown in Fig.7 is
exactly the same as the RNN model , where Xt is the input,
and Ht−1 is the hidden state obtained from the previous node.
This hidden state contains information of the previous node.
GRU is regarded superior to RNN such that the former can
control the states of information flow in the neural network
at different time steps. Having Computing Xt and Ht−1, the
output value Yt of the current node and the hidden state ht
are passed to the next node. GRU model has two unique gate
control units, namely the update gate unit Zt and the reset gate
unit Rt . The update gate is used to obtain a balance between
the historical memory information and the current time step
input information. With smaller values of update gate, the
model can precisely focus on the information of the previous
hidden layer state; otherwise, the model is more focused on the
current information. The function of the reset gate is to forget
parts of the hidden layer information at the previous moment,
and the amount of information to be forgotten is determined
by the value of the reset gate. A smaller value in the reset gate
depicts more information to be forgotten, so that less historical
information are introduced, and vice versa. The values of the
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two gates are all determined by the previous hidden layer state
Ht and the input of current time step Xt , as Equations 27 and
28.

Rt = σ(Wr ⊗ [Ht−1, Xt ]) (27)

Zt = σ(Wz ⊗ [Ht−1, Xt ]) (28)

where, Wr and Wz are the weights of the reset gate and
update gate respectively, σ is an activation function. The
symbol ⊗ denotes the matrix multiplication.

By resetting the gate Rt , the candidate vector Ht that needs
to be added to the hidden state of the current time step is
calculated, which is shown in Equation 5, where, the symbol
* expresses multiplication of the corresponding elements in
the two vectors. Tanh() is an activation function which can
scale data to a range of -1 to 1. Ĥtmainly contains the current
input data of Xt . Ht is added to the current hidden state in a
targeted manner, which is equivalent to "memorising the state
of the current moment."

Ĥt = tanh(W • [Rt ∗ Ht−1, Xt ]) (29)

The next stage is to update the memory, which is also the
most critical step. This stage involves two different compu-
tation process, such as “remembering” and “forgetting”. The
value of the update gate Zt and Ĥt will be used in this stage.
Now an update function is obtained as shown in Equation 30.

Ht = (1 − Zt ) ∗ Ht−1 + Zt ∗ Ĥt (30)

In this equation, (1 − Zt ) ∗ Ht−1 indicates the selective
"forgetting" nature of the original hidden state. (1 − Zt ) here
can be imagined as a forget gate, which is used to forget some
unimportant information in the dimension of Ht−1. Zt ∗ Ĥt

indicates the selective "remembering" nature of Ĥt , which
contains the current node information. Similar to the above
process, Zt ∗ Ĥt also forgets some unimportant information in
Ĥt dimension. This process can also be described as the way of
choosing the most relevant information in the Ĥt dimension.
It is worth noting that the gating signal Zt ranges from 0
to 1. When the value of Zt is close to 1, less information
will be remembered; when it is close to 0, less information
will be forgotten. During this process, all the parameters and
the weights of the gate control unit are trained by the back
propagation algorithm.

D. Stragglers Auto-Detection Module

1) Resource Hunger stragglers: Definition (Resource
Hunger Stragglers):For a job J = {t1, t2, t3...tn}, where n is
the total number of tasks contained in the job J, the average
CPU usage rate of these tasks is µ, and the average task
length is ω, then tasks which exhibit both higher CPU usage
rate thanµ and a runtime duration longer thanω are termed as
resource hunger stragglers in the job J.

A Cloud job usually contains a certain number of tasks,
and the number of tasks may vary from job to job. The
level of resource and execution time consumed by different

tasks within a job may also vary. Some of these tasks have a
significantly higher CPU usage rate and execution time than
others within the same job. Therefore, if the CPU usage rate
and execution time of a task are higher than the average CPU
usage rate and execution time of all tasks within this job, such
task is generally recognised as a resource hunger or energy-
aware straggler, as shown in Equation 31.

St [i] = (UC[i] > µ) ∩ (LT [i]) > ω) (31)

where, St presents energy-aware stragglers, UC is the CPU
usage rate of task i, LT is the length of the ith task, and µ
is the average tasks’ CPU usage rate and ω is the average
duration of the tasks contained in the respective job.

The number of resource hunger stragglers varies from job
to job. Although it is ideal to use a fixed linear expression to
describe the proportional relationship between the number of
resource hunger stragglers and the total number of tasks in a
job, this relationship is often non-linear. In our former work
[19], 5 jobs with different number of tasks have been randomly
selected to analyse the proportional presence of stragglers, the
results of this study are presented in Fig. 8. The number of
tasks contained in the selected jobs are 50, 100, 200, 488
and 1050 for job1, job2, job3, job4 and job5 respectively.
From Fig. 8, job1 contains 8% of resource hunger stragglers.
Job5 contains a very small proportion of resource hunger
stragglers, just around at 2%. The proportions of resource
hunger stragglers within job2 and job4 are about 27% and
36%, respectively. In addition, more than 40% of the tasks in
job 4 have been identified as resource hunger stragglers, which
is a relatively large proportion among these studied jobs. Such
results have empirically proved the non-linear relationship
existing between the number of energy-aware stragglers and
the total number of tasks within a given job.

Task-level resource hunger stragglers are usually difficult
to be identified, since their actual causes are often implicit.
Due to the dynamicity of Cloud jobs in terms of resource
requirements, tasks that represent higher CPU or memory re-
quirements can be potential resource hunger stragglers during
runtime compared with the remaining tasks within the same
job. It is worth noting that in some cases task-level resource
stragglers are inevitably driven by the actual task requirements.
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Fig. 8. Straggler Proportions in Selected Jobs
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2) Long Tail stragglers: Definition (long tail stragglers):
For a job J = {t1, t2, t3...tn}, where n is the total number
of tasks contained in the job J, the tasks which exhibit a
runtime duration as an increased multiple of a majority of the
remaining tasks within the same job are termed as long-tail
stragglers [19]in the job J.

Long-tail stragglers are often only witnessed in a small part
of the total tasks in a given job, but they will occupy server
resources for a long time, which means such tasks need to
consume more resources than the other tasks under same CPU
frequency. There are two ways to run tasks, which are serial
computing and parallel computing. Long-tail tasks in the serial
mode have less impact on the overall completion time of a job,
but long-tail tasks in the parallel operation play a key role in
the final completion of a job. Most of the existing literature
uses a threshold of 50% [26] to identify long tails, whereby a
task exhibiting a runtime duration 50% more than the average
runtime duration of all tasks within the same job is classified
as a long-tail straggler, as shown in Equation 32.

d[i] > davg ∗ 1.5 (32)

where, d[i] is the runtime duration of task i contained in
a job, davg is the average runtime duration of all the tasks
within the same job.

V. EXPERIMENT TESTS

A. Dataset

The dataset used in this paper was released by Google,
which is a large-scale trace logs collected from Google Cloud
Data Centre, which includes 5320 users, 12500 operating
servers, 650892 Cloud job submissions and 46093201 task
submissions, spanning across 29 days [27]. It is worth noting
that the sampling period of the data is 300s, which means
the resource monitor performs a sampling operation on the
running server every 300 seconds. Multiple trace logs will be
recorded for each sample. The specific statistical information
about the dataset is presented in Table 1. However, only the
first 21 days of data from day 1 to day 21 are used in our
experiments due to data ambiguity and missing information
in the remaining 7 days. Moreover, the dataset is split into
weeks, in order to analyse and exploit the day-of-the-week
pattern existing in the workloads. Due to the heterogeneous
distribution of the resource request dataset, all the sample
data is normalised with the following equation before training
the dataset in our proposed RNN-GRU model. Further, a
reverse normalisation operation is performed before the output
phase, so that the output result can be mapped to the original
data range. The purpose of this is to achieve a similar data
distribution among the input sample, so that the model can fit
the target better and converge faster.

x ′t =
xt − xmin

xmax − xmin
(33)

TABLE I
OVERVIEW OF THE GOOGLE DATASET

Size of the Dataset 41G
Timespan 29 days

Number of Users 5320
Number of Operating Servers 12500
Number of Job Submissions 650892
Number of Task Submissions 46093201

B. Experimental Parameters Setting

The hardware environment used in the experiments includ-
ing the following: CPU: Intel Core i5-8500 @3.00 Hz, 8G
Memory. The simulation processes are mainly performed on
MATLAB R2018a.

The RNN-GRU model uses a three-layer network structure,
and the input-output sequence operates on a multiple input
to single output mode. The number of hidden layer neurons
is set to 8, the initial learning rate is set to 0.0001, the
batch dimension is 1, and each test is repeated 10 times in
order to reduce random errors. Other parameter settings of the
experiments are introduced in the following sections, where
appropriate.

C. Evaluation Metric

For demonstrating the prediction efficiency, the effective-
ness and reliability of the prediction models need to be
systematically evaluated through scientific evaluation methods.
Based on the characteristics of our proposed model and the
experiment dataset, the following evaluation metric is used in
our performance evaluation.

MAPE (Mean Absolute Percentage Error): It is the mean
percentage error between the predicted value and the real
value. MAPE is commonly used in regression problems and
model evaluation. Meanwhile, MAPE is an intuitive method
to present relative errors, evaluating the accuracy based on
Equation 34.

M APE =
100%

n

n∑
t=1

���� yt − y′t
yt

���� (34)

where, yt is the predicted value of user resource requests, y′t is
the real value of user resource requests, n is the total amount
of data involved in the calculation.

VI. EXPERIMENTS PERFORMANCE EVALUATION

A. Prediction Performance for Hour-of-Day Pattern

According to our previous analysis presented in Section 3.4,
we found that the number of requests from Cloud users for
CPU resources has obvious periodicity characteristics, along
with the existence of internal correlations between successive
resource requests from users. Thus, an evaluation experiment
has been conducted to explore the effects of user’s resource
requests based on the hour-of-the-day pattern. Fig. 9 presents
the prediction results of our proposed framework, in estimating
the user request trend. In this experiment, we accumulate the
CPU resource requests received over the period of first 21 days
in the dataset in chronological order by hour. This resulted in
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504 sample hours, the corresponding value plotted in each time
point expresses the total amount of resource requests received
during that period. The first 336 hours of data are used as
training samples in our proposed prediction framework, and
the remaining 168 hours of data are used as test samples.
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Fig. 9. Hour-Wise Resource Request Trend

Fig. 9 shows the predicted amount of resource requests
against the actual resource requests trend based on our pro-
posed method. On a coarse grain, our proposed prediction
model effectively captures the trend of changes witnessed in
the received CPU requests, where the peaks and valleys of
CPU resource request trends are closely captured. In particular,
most of the peak demands of CPU resource requests are
effectively predicted, which is mainly due to the presence of
the S-2R prediction module in our proposed model. We believe
that most of the resource stragglers are predicted through the
S-2R module, so that the final predicted output is closer to
the actual value, which holds true even under situation of
sudden increase in the amount of resource requests. Thus, our
prediction model can maintain a high level of predictability
with reliable level of accuracy. Failure the capture sudden
peaks in the resource request trend might not provide sufficient
insights to the providers, to help them to scale up the available
level of running resources, which can significantly affect the
level of QoS offered to the clients. At the same time, providing
insights into the off-peak or reducing level of resource request
trends helps the providers to conserve server resources through
scaling down the number of operating resources. From Fig.
9, at the 85th hour, the predicted value is much higher than
the actually arrived requests, this would insists the providers
to scale more resources than the actual level of requirement.
The reason for this anomalous point may be due to the
superposition of extra resource stragglers. In simple terms,
a few proportions of the non-straggler tasks are classified as
straggler tasks by our model. Fortunately, such a situation is
rare, so the overall impact is negligible.

Fig. 10 illustrates the prediction errors witnessed for various
hour points. From Fig. 10, most of the prediction errors are
less than 15%, which means that in most cases, our prediction
model has a fairly high prediction accuracy, which stays
consistent for a pro-longed period of time. This is because of
the fact that our proposed prediction framework based on the
RNN-GRU integrated with the stragglers detection module,
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Fig. 10. Prediction Errors of Hour-Wise Resource Requests

not only captures the periodicity characteristics inherent in
the time-series data, but also greatly reduces the impact of
resource stragglers on prediction accuracy. In addition, only a
small number of prediction errors are greater than 15%, but
remain within an acceptable range of no higher than 20%. It
can be concluded that our proposed NS-2R and S-2R dual
prediction modules have played a significantly positive role in
detecting resource stragglers and in improving the prediction
accuracy of the final resource requirements.
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Fig. 11 presents the average prediction error rate of our
proposed model against other classical or popular prediction
models such as ARIMA, RNN, and LSTM. ARIMA is a
statistical model widely used for the periodic prediction of
stationary stochastic processes [28]. RNN is a neural network
dedicated to process time-series data. Due to its special
internal structure, this model can effectively capture the re-
lationship between the successive data points on a time-series.
LSTM is a variant of the RNN model used to overcome
the gradient disappearance and gradient explosion of RNN
[17]. This evaluation is intended to demonstrate the efficiency
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of our proposed resource requests framework based on the
RNN-GRU model integrated with our novel resource stragglers
detection module. From Fig. 11 it can be observed that our
proposed prediction framework outperforms the other three
models by exhibiting an average prediction error rate of 7.32%
against ARIMA, RNN, and LSTM models, whose prediction
error rate corresponds to 19.56%, 15.73% and 13.24%, respec-
tively. By delivering a reliable level of prediction accuracy
for hour-of-the-day resource requests, Cloud service providers
can deploy server resources ahead of time on the basis of our
proposed prediction framework.

B. Prediction Performance for Day-of-Week Pattern
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Fig. 12. Day-Wise Resource Request Trend

Fig. 12 presents the predicted and actual CPU requests of
the 3rd week (day 15 to day 21). In order to evaluate the
efficiency of our proposed prediction framework on estimating
resource requests on a day-of-the-week pattern, the first two
weeks (day 1 to day 14) of historical data are used as the
training sample and the rest data are used as the test sample.
In essence, the first two weeks data are used and trained in the
model to predict the resource requests anticipated in the third
week. On a coarse grain, the weekday increase and weekend
decrease pattern in the received resource requests is evident
from Fig. 12. As discussed earlier, this trend is postulated due
to the operating business hours. It can be seen from Fig. 12 that
our proposed prediction model effectively captures the day-of-
the-week trend among user resource requests, and delivers a
prediction on the expected amounts of resource requests on
each day of the week with reliable level of accuracy.

Fig. 13 illustrates the prediction errors of our proposed
prediction framework for each day of the week, exhibiting
prediction error rates at 9.20%, 8.13%, 10.44%, 10.43%,
10.68%, 8.18%, and 10.40% for Monday through to Sunday
respectively. Due to the heterogeneity of tasks with respective
jobs, accurately predicting the resource requirements for each
day is a huge challenge, especially during sudden increase in
the resource requests. Our proposed prediction model based
on RNN-GRU integrated with the stragglers detection module
can control the prediction error within an acceptable range
for a long term. It can be observed from Fig. 14 that all
the prediction error values are below 0.11, meaning that the
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deviation between the predicted amount of CPU resource
demands per day and the true demands is less than 11%.
This is still of great significance to Cloud service providers.
Cloud resource managers can develop long-term deployment
strategies exploiting such resource prediction results, through
shutting down redundant servers to save more resources,
reducing energy consumption, and in turn reducing operating
costs etc.

Fig. 15 illustrates the average prediction error rate of our
proposed model for the day-of-the-week resource requests
against other classical or popular prediction models such as
ARIMA, RNN, and LSTM. From Fig. 16 it can be observed
that our proposed prediction framework outperforms the other
three models by exhibiting an average prediction error rate
of 9.64% against ARIMA, RNN, and LSTM models whose
error rate are witnessed at 22.81%, 18.43% and 16.68%, re-
spectively. Due to their prolonged prediction interval, the error
rates of all the compared models are high. As the time interval
expands, association between the data points in the time-series
becomes weaker, thus are more difficult to capture. However,
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our proposed prediction model still maintains a relatively low
prediction error (less than 10%), which is attributed to the
employment of the NS-2R and S-2R dual prediction models,
so that our proposed model can still capture the inherent
features of long-term time-series data, and decrease the impact
of resource stragglers on the overall prediction accuracy. For
large-scale Cloud service providers, even a small percentage
of energy reduction can provide notable economic benefits.
Besides, sufficient supply of resources is necessary to achieve
a smoother execution of users’ jobs. Our, proposed model
can help the service providers to achieve their socio-economic
objectives by delivering a reliable prediction of future resource
request demands.

VII. CONCLUSION

The emergence of 5G networks are naturally expected
to increase the number of IoT and mobile devices being
connected to Cloud datacentres. A large number of IoT devices
may require powerful compute supplements which are usually
provisioned through Cloud datacentres. Therefore, resource
management in large Cloud datacentres is becoming more
important in the 5G era. This paper has demonstrated the
benefits of prediction analytics in achieving efficient resource
management in Cloud datacentres, aiding the service providers
to achieve energy conservation, server management, workload
execution, QoS maintenance etc., where the reliability of the
prediction results plays a crucial role. This paper proposed a
novel resource requests prediction framework, named IGRU-
SD, based on an improved GRU neural network model and
resource request stragglers detection. Experiments conducted
based on real-world Cloud trace logs demonstrate that the
proposed IGRU-SD framework achieves better prediction ac-
curacy than the ARIMA, RNN and LSTM prediction models
respectively. Classifying the tasks based on our proposed
straggler detection module has a significantly positive effect
on the prediction process. Our proposed prediction framework
exhibits better prediction accuracy by predicting the resource
requests of straggler tasks and non-straggler tasks over a
period of time, respectively. As a future work, developing
efficient resource allocation strategies for executing workloads

in an energy and cost efficient way in Cloud datacentres, based
on our proposed prediction framework will be explored.
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