
Supporting information

Nanostructured Carbon Florets As Scavenger Of As³⁺, Cr⁶⁺, Cd²⁺ And Hg²⁺ For Water Remediation

Maku Moronshing, [†]Ananya Sah, [†]Vishwanath Kalyani, [†] and Chandramouli Subramaniam.* [†] [†]Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai – 400076, India. * csubbu@chem.iitb.ac.in

Name	Description	Page			
Figure S1	Gas flow and temperature profile used for deposition of carbon on DFNS through atmospheric pressure chemical vapour deposition	S 3			
Figure S2	SEM image of NCF showing interconnected core	S3			
Figure S3	Adsorption kinetic of Cr^{6+} (in the form of $HCrO_4^-$ and CrO_4^{2-}) at neutral pH towards NCF				
Figure S4	Adsorption capacity of NCF towards various heavy metal ions				
Figure S5	EDS analysis of NCF-Cr showing the adsorbed Cr ³⁺ ions.	S 5			
Figure S6	EDS analysis of NCF after adsorption of various heavy metal ions				
Figure S7	TEM and SAED analysis of NCF before and after adsorption of various heavy metal ions.				
Figure S8	Absorbance spectra of eluate of CrCl ₃ solution after passing through NCF				
Figure S9	Water contact angle measurement of NCF with time.	S9			
Figure S10	Variation in relative concentrations of Cd^{2+} and Hg^{2+} with Sulphate (SO_4^{2-}) as counter ion.	S10			
Figure S11	Variation in relative concentrations of As^{3+} and Cr^{3+} with Chloride (Cl ⁻) as counter ion.	S10			
Figure S12	O1s spectra of NCF before and after adsorption of various heavy metal ions.	S11			
Figure S13	C1s spectra of NCF before and after adsorption of various heavy metal ions.	S11			
Figure S14	Characteristic XPS peaks of various heavy metal ions adsorbed on NCF.	S12			
Figure S15	N ₂ adsorption isotherm of NCF and regenerated NCF and pore diameter distribution of regenerated NCF.	S13			
Table S1	Table for calculation of relative diffusion flux of different counter ions	S13			
Table S2	Calculation of AE for various heavy metal ions	S14			

Figure S1. Gas flow and temperature profile used for deposition of carbon on DFNS through atmospheric pressure chemical vapour deposition

Time (min)

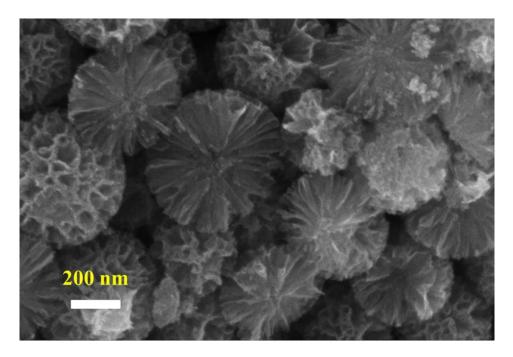
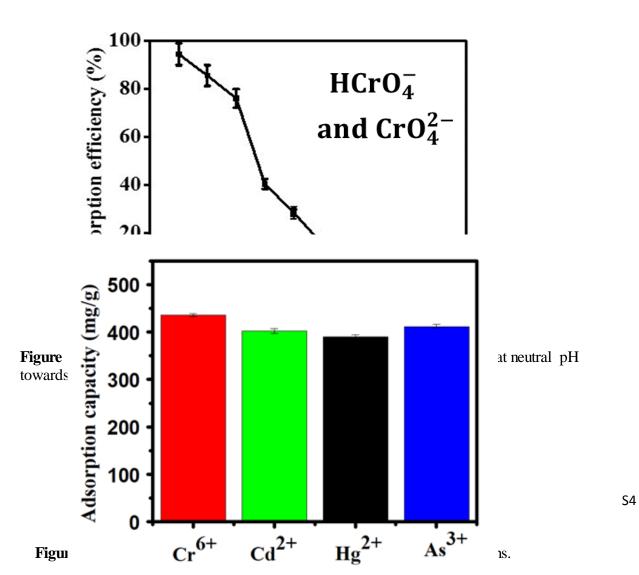



Figure S2. SEM image of NCF showing the interconnected core.

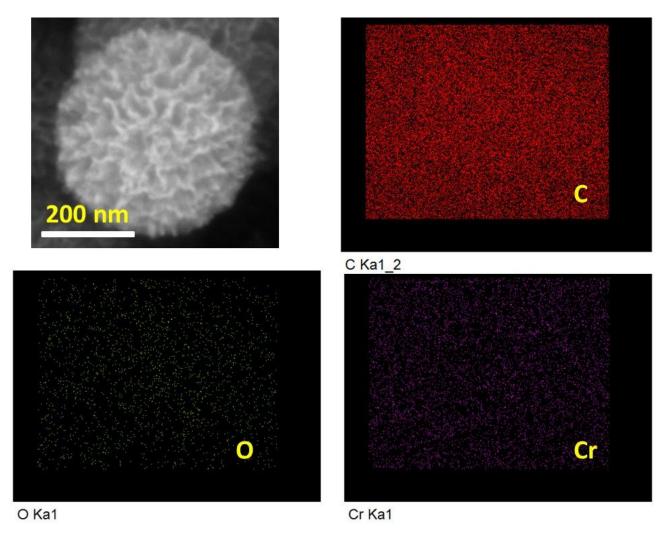
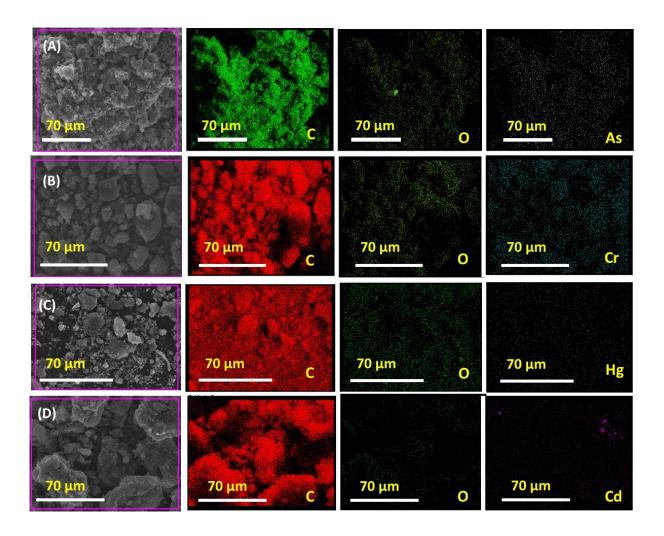
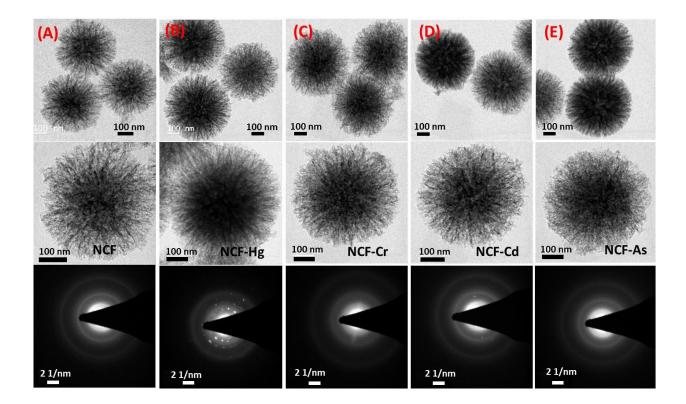




Figure S5. EDS analysis of NCF-Cr showing the adsorbed Cr^{3+} ions in NCF.

Figure S6. EDS analysis of NCF after adsorption of heavy metal ions (A) As^{3+} , (B) Cr^{3+} , (C) Hg^{2+} and (D) Cd^{2+}

Figure S7. TEM and SAED analysis of (A) NCF and NCF after adsorption of (B) Hg^{2+} , (C) Cr^{3+} , (D) Cd^{2+} and (E) As^{3+} .

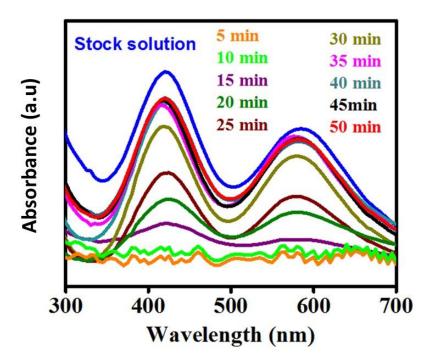
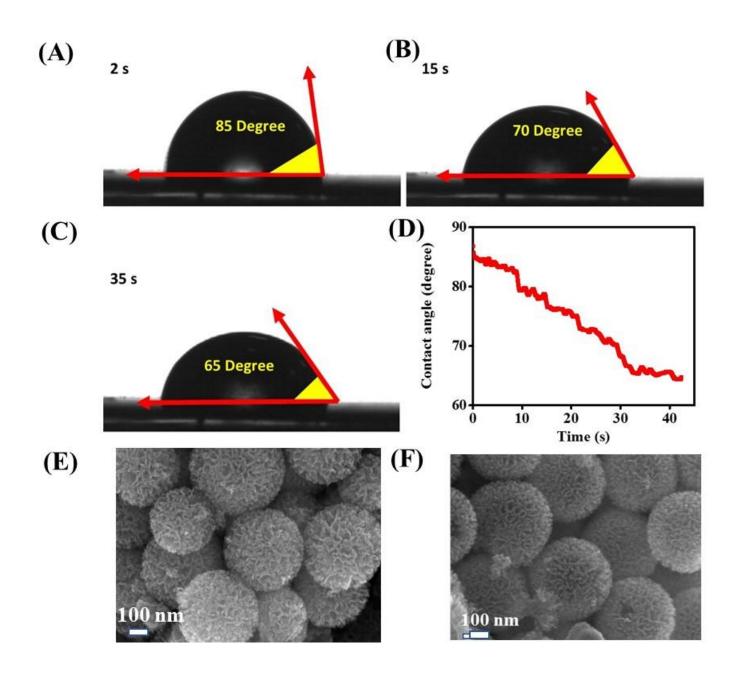
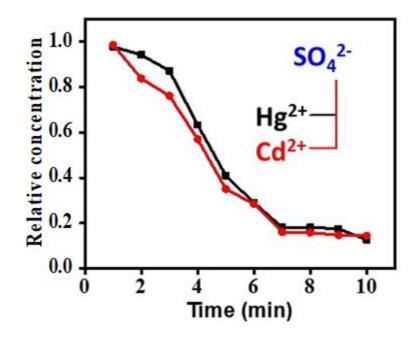
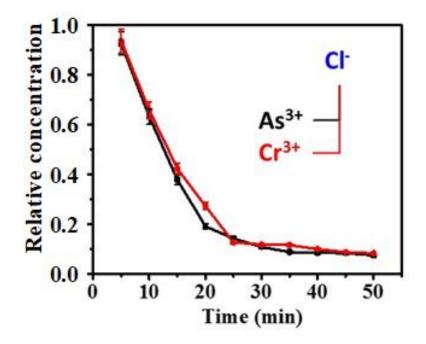
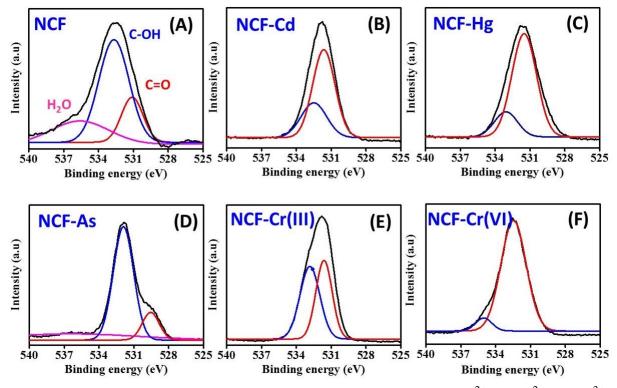
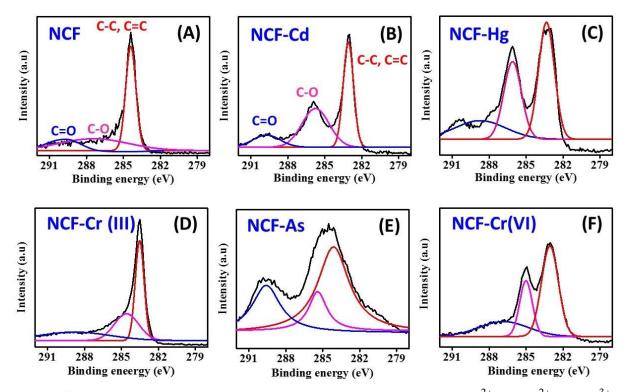




Figure S8. Absorbance spectra of eluate of $CrCl_3$ solution after passing through NCF in adsorption set up.

Figure S9. Water contact angle measurement of NCF etched with NaOH at time of (A) 2s, (B) 15s and (C) 35 s after placement of water drop. (D) the evolution of contact angle with time for NCF, shown in (A) to (C). SEM images of (E) NCF prepared by etching DFNS with NaOH and (F) NCF prepared by etching DFNS with HF, showing their morphological similarity.

Figure S10. Variation in relative concentrations of Cd^{2+} and Hg^{2+} with Sulphate (SO₄²⁻) as counter ion.

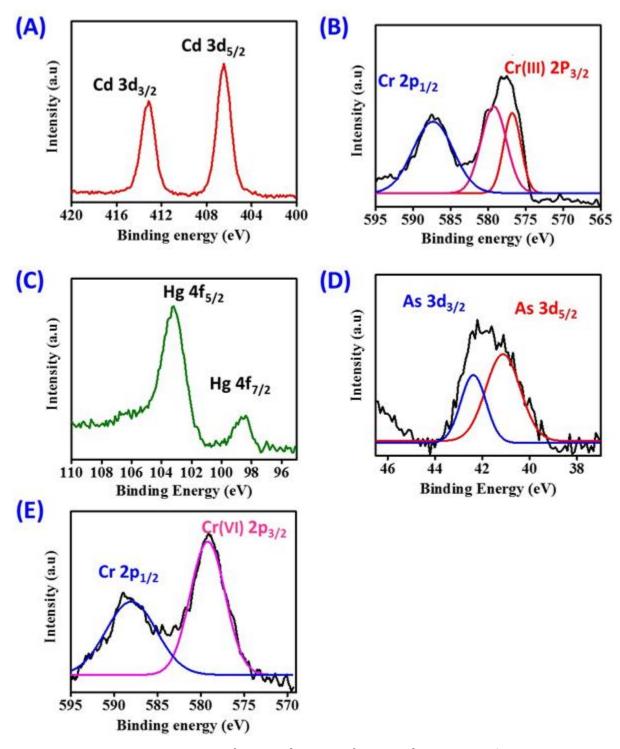

Figure S11. Variation in relative concentrations of As^{3+} and Cr^{3+} with $C\Gamma$ as counter ions.

Figure S12. O1s spectra of (A) NCF and NCF after adsorption of (B) $Cd^{2+}(C) Hg^{2+}(D) As^{3+}(E) Cr^{3+} and (F) Cr^{6+}$.

Figure S13. C1s spectra of (A) NCF and NCF after adsorption of (B) $Cd^{2+}(C) Hg^{2+}(D) Cr^{3+}(E) As^{3+} and (F) Cr^{6+}$.

Figure S14. XPS peaks of (A) $Cd^{2+}(B) Cr^{3+}$, (C) $Hg^{2+}(D) As^{3+}$ and (E) Cr^{6+} showing the characteristic peaks associated with them after adsorption on NCF.

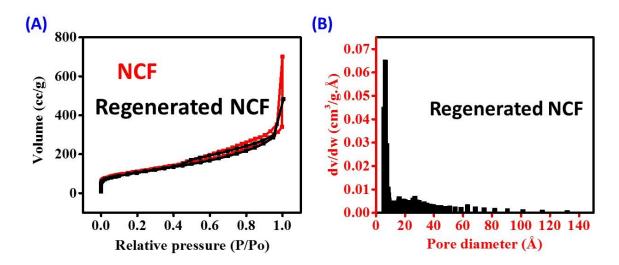


Figure S15. (A) N_2 adsorption isotherm of NCF and regenerated NCF and (B) pore diameter distribution of regenerated NCF.

Ions	Ionic radii (pm)	R _H (nm)	Diffusion coefficient (D) (* 10 ⁻⁵) (m ² /s)	# of ions (N)	Diffusion flux (mol $m^{-2} s^{-1}$)	Diffusion flux ratio (D')	$\frac{D_2'}{D_1'} = \frac{D_2^2}{D_1^2}$
<i>Hg</i> ²⁺	102	0.422	0.913	х	0.23*10-7	1	
Cd^{2+}	95	0.426	0.719	х	0.143*10-7	0.62	w.r.t. Hg^{2+}
As ³⁺	58	0.385	0.905	2/3 x	0.151*10-7	0.655	w.1.t. <i>ny</i>
Cr ³⁺	62	0.461	0.595	2/3 x	0.065*10-7	0.283	
Cl-	184	0.332	2.032	2x	2.278*10-7	1	
CH ₃ COO-	162	0.375	1.089	2x	0.654*10-7	0.287	w.r.t.Cl ⁻
<i>SO</i> ₄ ²⁻	258	0.379	1.06	Х	0.31*10-7	0.136	

Table S1. Calculation of relative diffusion flux of different counter ions.¹⁻²

Table S2. Calculation of AE for various heavy metal ions

Heavy metal ion	Initial feedstock concentration (ppm)	Final filtrate concentration (ppm)	Adsorption efficiency (AE, %)
Hg^{2+}	200	14.6	92.7
Cd ²⁺	200	28	86
<i>As</i> ³⁺	200	14	93
Cr ³⁺	200	16	92

References

1. Jenkins, H. D. B.; Thakur, K. P., Reappraisal of thermochemical radii for complex ions. *Journal of Chemical Education* **1979**, *56* (9), 576.

2. Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A* **1976**, *32* (5), 751-767.