Supplementary Information

CaO promoted Graphene-Supported Palladium Nanocrystals as a Universal Electrocatalyst for Direct Liquid Fuel Cells

Umair Shamraiz ${ }^{1}$, Zeeshan Ahmad ${ }^{1}$, Bareera Raza ${ }^{2}$, Amin Badshah ${ }^{1 *}$, Sajid Ullah ${ }^{1}$, Muhammad Arif Nadeem ${ }^{1}$
${ }^{1}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
${ }^{2}$ School of Chemistry and Chemical Engineering, Shanghai Jiatong University, Shanghai, 200240, China

Corresponding author: aminbadshah@yahoo.com

Figure S1. EDX mapping of $\mathrm{PdCa} / \mathrm{rGO}$ at $0.5 \mu \mathrm{~m}$.

Figure S2. EDX spectrum of $\mathrm{PdCa} / \mathrm{rGO}$

Figure S3. HRTEM of $\mathrm{Pd} / \mathrm{rGO}$

Figure S4. Cyclic voltammetry of $\mathrm{PdCa} / \mathrm{rGO}$ in 0.5 M KOH at $20 \mathrm{mV} / \mathrm{s}$ for 10 Cycles.

Figure S5. Cyclic voltammetry of $\mathrm{PdCa} / \mathrm{rGO}$ in $0.5 \mathrm{M} \mathrm{HClO}_{4}$ at $20 \mathrm{mV} / \mathrm{s}$ for 10 Cycles.

Figure S6. Cyclic voltammograms for 50 cycles obtained for $\mathrm{Pd} / \mathrm{rGO}$ and $\mathrm{PdCa} / \mathrm{rGO} 0.5 \mathrm{M}$ KOH solution and 0.5 M methanol solution.

Figure S7. Cyclic voltammograms (mass specific activity) obtained for $\mathrm{Pd} / \mathrm{rGO}$ and $\mathrm{PdCa} / \mathrm{rGO}$
0.5 M KOH solution and 0.5 M methanol solution.

Figure S8. Cyclic voltammograms (mass specific activity) obtained for $\mathrm{Pd} / \mathrm{rGO}$ and $\mathrm{PdCa} / \mathrm{rGO}$
0.5 M KOH solution and 0.5 M ethanol solution.

Figure S9. Cyclic voltammograms for 100 cycles obtained for $\mathrm{Pd} / \mathrm{rGO}$ and $\mathrm{PdCa} / \mathrm{rGO} 0.5 \mathrm{M}$ KOH solution and 0.5 M ethanol solution.

Figure S10. Cyclic voltammograms (mass specific activity) obtained for $\mathrm{Pd} / \mathrm{rGO}$ and $\mathrm{PdCa} / \mathrm{rGO}$ $0.5 \mathrm{M} \mathrm{KClO}_{4}$ solution and 0.5 M formic acid solution.

Table S1. Elemental Composition of $\mathrm{PdCa} / \mathrm{rGO}$ from EDX

Element	Line Type	Apparent Concentration	k Ratio	Wt\%
C	K	17.38	0.17384	50.02
	series			
O	K	6.27	0.02108	24.14
	series			
Ca	K	2.35	0.02099	5.48
	series			
Pd	L series	7.26	0.07257	20.35
Total:				100.00

Table S2: ICP-MS analysis Data

Element	Wavelength	$\mathbf{W t \%}$
Ca	317.933	6.42
Pd	340.458	20.6

Table S3: Surface Area Analysis

Material	BET Surface ${\text { Area } \mathbf{~ m}^{2} / \mathbf{g}}$	Langmuir Surface ${\text { Area } \mathbf{~ m}^{2} / \mathbf{g}}$	BJH Pore Volume $\left(\mathbf{c m}^{\mathbf{3} / \mathbf{g})}\right.$	BET Pore Size (£)
$\mathrm{Ca} / \mathrm{rGO}$	10.84	34.99	0.042	54.12
$\mathrm{PdCa} / \mathrm{rGO}$	40.62	272.90	0.16	88.33

