
NIMBLE:	A	language	for	algorithms	for	graphical	models	embedded	in	R

Problem-specific	hierarchical	statistical	models	(graphical	
models)	are	used	by	domain	experts	in	many	scientific	fields:
• State-space	or	hidden	Markov	models	for	time-series	data
• Random	field	models	for	spatial	data
• Generalized	linear	mixed	models	for	complex	designed	studies
• Capture-recapture	models
• Non-parametric	regression	and	distribution	models
• Combinations	of	these		and	many	more	ideas

There	are	many	unmet	statistical	challenges	for	hierarchical	
models:
• Efficient	Markov	chain	Monte	Carlo	(MCMC)	for	parameter	estimation
• Maximum	likelihood	(or	empirical	Bayes)	estimation	when	the	likelihood	
requires	integration.

• Approximation	of	normalizing	constants	(likelihood	or	marginal	likelihood)	
for	model	comparisons.

• Tools	for	model	selection,	an	unresolved	area	of	Bayesian	methodology.
• Tools	for	model	averaging.
• Tools	for	assessing/validating	model	fit	or	assumptions.

Perry	de	Valpine1,	Christopher	J.	Paciorek1,	Daniel	Turek2,	Nick	Michaud1,	&	Duncan	Temple	Lang3
1University	of	California,	Berkeley.		2Williams	College.		3University	of	California,	Davis.

Previous	software	typically	follows	one	of	two	basic	designs:
1. Define	a	single	model	or	family	of	models	and	provide	specific	methods	for	

them.
• Typical	of	R	packages.
• E.g.	Generalized	linear	mixed	models	(GLMMS;	lme4,	MCMCglmm).	
• E.g.	Generalized	additive	mixed	models	(mgcv).		
• E.g.	Spatial	models	(spBayes,	INLA).
• E.g.	Dirichlet process	type	models	(dpPackage)
• User	cannot	extend	the	model.

2. Provide	a	domain-specific	language	for	writing	general	models	and	one	or	a	
few	black-box	algorithms.
• E.g.	MCMC		is	provided	by	BUGS	(WinBUGS,	OpenBUGS,	JAGS),	Stan,	
PyMC and	others.

• E.g.	particle	filtering	is	provided	by	BiiPS,	LibBI,	pomp,	and	others.
• User	cannot	write	new	algorithms	for	the	models.

New	computational	
statistics	methods	for	

general	models

Software	for	
statistically	savvy	
domain	scientists

Statisticians	and	computer	scientists	publish	many	new	methods	
that	are	not	accessible	via	software	to	domain	scientists.
• Model-specific	methods	can	be	distributed	as	R	packages.
• Model-generic	methods	are	hard	to	code	because	the	model	must	be	
abstracted.		There	has	been	no	general	system	for	model-generic	
programming.

Model	flexibility

Al
go
rit
hm

	fl
ex
ib
ili
ty

BUGS/JAGS
PyMC
ADMB
Stan

Typical	R
packages

NIMBLE	=	
BUGS	language	+

Algorithm	programming

1. Domain-specific	language	(DSL)	for	statistical	models
• We	adopt	and	extend	the	widely-used	BUGS	language

2. Domain-specific	language	embedded	within	R	for	model-generic	
algorithms

3. Code-generator	(compiler)	that	generates	C++	from	the	model	and	
algorithms	DSLs.
• C++	objects	are	managed	from	R	by	dynamically-generated	interface	

classes
4. Algorithm	library	(MCMC,	SMC,	etc.)

metropolis_hastings_sampler <- nimbleFunction(
contains = sampler_BASE,

setup = function(model, mvSaved, targetNode, scale) {
calcNodes <- model$getDependencies(targetNode)

},

run = function() {
model_lp_current <- model$getLogProb(calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale)
model[[targetNode]] <<- proposal
model_lp_prop <- model$calculate(calcNodes)
log_MH_ratio <- model_lp_prop - model_lp_initial

if(decide(log_MH_ratio)) jump <- TRUE
else jump <- FALSE

if(jump) copy(from = model, to = mvSaved, row = 1,
nodes = calcNodes, logProb = TRUE)

else copy(from = mvSaved, to = model, row = 1,
nodes = calcNodes, logProb = TRUE)

})

The	gap	between	methods	and	software

Limitations	of	previous	software	designs

NIMBLE	enables	algorithm	programming	for	general	
graphical	models	

Four	components	of	NIMBLE

Numerical
Inference for statistical
Models using
Bayesian and
Likelihood
Estimation

Existing	and	future	(in	colors)	NIMBLE	processing	flows

Why	R?

Benefits	of	embedding	NIMBLE	in	R:
• R	is	widely	used	in	applied	statistics.
• The	BUGS	language	uses	extremely	R-like	syntax	that	can	be	natively	
parsed	in	R.

• R	handles	code	as	an	object.
• NIMBLE	constructs	and	evaluates	code	for	class	definitions.
• NIMBLE	processes	code	for	both	BUGS	and	the	algorithm	DSL.

• NIMBLE’s	algorithm	DSL	uses	two-stage	evaluation,	with	the	first	stage	in	
R	and	the	second	stage	either	in	R	(uncompiled)	or	C++	(compiled).

• R’s	packaging	system	(CRAN)	allows	users	to	share	their	own	packages	
that	use	NIMBLE.

Challenges	of	embedding	NIMBLE	in	R:
• R	is	inefficient	in	computation	and	memory	use.
• NIMBLE	needs	some	important	semantic	differences	from	R:

• R	types	are	dynamic,	but	NIMBLE	types	are	static.	
• R	passes	arguments	by	copy,	but	compiled	NIMBLE	passes	them	by	

pointer	or	reference.
• NIMBLE’s	algorithm	DSL	can	generally	mimic	familiar	R	behavior,	but	in	
some	cases	subtle	differences	are	needed	to	facilitate	C++	code-
generation.

Publications

Example	of	programming	in	NIMBLE

pump_model_code <- nimbleCode(
{
for(i in 1:N) {

theta[i] ~ dgamma(alpha,
beta)

lambda[i] <- theta[i] * tt[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(1.0)
beta ~ dgamma(2, 2)

}
)

1.	Write	model	in	BUGS	code

x[i]	=	observed	number	of	pump	failures

theta[i]	=	random	effect	for	pump	i

tt[i]	=	observation	duration	for	pump	i

The	classic	“pump”	example	from	WinBUGS.

Prior	distributions	for	random	effects	
parameters

2.	Create	and	compile	model	object	in	R

setup of constants (N) and data (tt and x) not shown.
pump_model <- nimbleModel(pump_model_code, constants, data)
c_pump_model <- compileNimble(pump_model)
Generates and compiles C++. Instantiates objects as needed.

• pump_model and	c_pump_model can	be	used	programmatically	from	R:
• Access	to	variables
• Access	to	graph	structure
• Control	over	simulations	or	calculations	of	any	part	of	the	model

• NIMBLE	makes	BUGS	extensible	by	allowing	new	functions	and	distributions	written	in	the	
algorithm	language.	

• These	are	radical	departures	from	previous	implementations	of	BUGS.

3.	Write	model-generic	algorithms	using	nimbleFunctions
First-stage	evaluation	
queries	the	model	to	
determine	the	
Markov	blanket	of	
the	targetNode and	
specializes	an	
instance	of	the	
function	for	this	case.		
This	part	runs	in	R.

Second-stage	
evaluation	
proposes	a	new	
value	for	
targetNode and	
accepts	or	rejects	it	
according	to	the	
Metropolis-
Hastings	
acceptance	rate.		
This	part	gets	
compiled	via	C++.	

• This	nimbleFunction illustrates	writing	a	new	MCMC	sampler	for	a	single	node	(vertex)	of	a	model.
• Insertion	of	this	nimbleFunction into	a	NIMBLE	MCMC	configuration	with	other	samplers	is	not	shown.
• NIMBLE	comes	with	an	adaptive	Metropolis-Hastings	random	walk	sampler.		The	code	shown	here	is	a	

simplified	version	without	adaptation.
• This	nimbleFunction is	model-generic.		Instances	of	this	nimbleFunction can	be	specialized	to	any	node	

in	any	model.		Queries	about	the	structure	of	a	particular	model	are	done	once when	the	setup	code	is	
evaluated	and	then	re-used	in	the	run	code.

4	.	Specialize	algorithms	to	a	model,	compile	and	run

NIMBLE’s	current	algorithm	library

Future	extensions

Introduction

MCMC
• NIMBLE	provides	the	most	programmable,	extensible	MCMC	system	of	
which	we	are	aware.

• MCMC	configuration	of	arbitrary	samplers	can	be	programmatically	
created	in	R	before	specializing	and	compiling	the	nimbleFunctions.

• A	variety	of	samplers	and	a	default	configuration	system	are	provided.
• (beta)	Samplers	for	Dirichlet process	type	nonparametric	models
• Users	can	write	new	samplers	and	combine	them	with	NIMBLE’s	samplers.
Particle	Filters
• Bootstrap	filter	(Gordon	et	al.	1993.	IEE-Proceedings	F	140:107-113.)
• Auxiliary	particle	filter	(Pitt	and	Shephard.	1999.	JASA	94:	590-599).
• Liu-West	filter	(Liu	and	West.	2001.	Sequential	Monte	Carlo	methods	in	
practice:	197–223.	Springer.)

• Ensemble	Kalman Filter	
• Particle	MCMC		(Andrieu et	al.	2010.	JRSS-B	72:	269-342.)
Monte	Carlo	Expectation	Maximization	(MCEM)
• Ascent-based	MCEM	(Caffo et	al.	2005.	JRSS-B	67:	235-251)
Other
• Novel	computational	determination	of	efficient	blocking	schemes	(Turek et	
al.	2016.	See	below.)

• (beta)	Calibrated	posterior	predictive	p-values	for	model	assessment.

?

Features	of	the	NIMBLE	language

Compilable NIMBLE	code	is	a	narrow,	enhanced	subset	of	R	designed	for	math	
and	manipulation	of	models:
• R-style	linear	algebra	(generated	code	for	C++	uses	the	Eigen	library)
• R-style	math	and	distribution	functions
• R-style	flow	control	
• Simple	class	hierarchies
• modelValues data	structure	to	manage	many	sets	of	model	variables

• e.g.,	MCMC	output
• Several	ways	to	access	model	variables	
• Control	over	model	operations:	

• calculate,	simulate,	getLogProb,	calculateDiff,	getParam.
• Copying	of	arbitrary	groups	of	nodes	between	model	and/or	modelValues
objects.

• Call	out	to	external	C++	or	R	code
• (beta)	Derivatives	of	model	log-density	or	general	math	(via	CppAD)
• Nesting	of	nimbleFunctions

• one	nimbleFunction can	specialize	others	in	its	setup	code.

• P.	de	Valpine,	D.	Turek,	C.J.	Paciorek,	C.	Anderson-Bergman,	D.	Temple	Lang,	
and	R.	Bodik.	2017.	Programming	with	models:	writing	statistical	
algorithms	for	general	model	structures	with	NIMBLE. Journal	of	
Computational	and	Graphical	Statistics.	DOI	
10.1080/10618600.2016.1172487.

• D.	Turek,	P.	de	Valpine,	and	C.J.	Paciorek.	2016.	Efficient	Markov	Chain	
Monte	Carlo	Sampling	for	Hierarchical	Hidden	Markov	Models.	
Environmental	and	Ecological	Statistics	23:	549.	doi:10.1007/s10651-016-
0353-z.

• D.	Turek,	P.	de	Valpine,	C.J.	Paciorek,	and	C.	Anderson-Bergman.	2016.
Automated	Parameter	Blocking	for	Efficient	Markov	Chain	Monte	Carlo	
Sampling.	Bayesian	Analysis.	doi:	10.1214/16-BA1008.	

r-nimble.org

We	plan	to	extend	NIMBLE	for:
• Parallelization,	by	generating	code	for	protocols/languages	starting	with	
OpenMP/TBB	and	also	considering	Tensorflow,	MPI,	or	CUDA.

• Greater	scalability	of	models	and	algorithms.
• More	compact	and	re-usable	model	declarations	in	BUGS	code.
• Interfaces	to	use	compiled	NIMBLE	models	and	algorithms	from	other	
languages.

• More	linear	algebra.
• More	extensive	Bayesian	nonparametrics (joint	work	with	Abel	Rodriguez	
and	Claudia	Wehrhahn at	UC	Santa	Cruz)

Implementation	highlights

NIMBLE’s	implementation	in	R	includes	the	following	features:
• NIMBLE	includes	an	R	class	library	for	representing,	annotating	and	
transforming	abstract	syntax	trees	and	syntax	tables	of	nimbleFunction
classes	and	methods.

• NIMBLE	includes	an	R	class	library	for	representing	C++	code	constructions	as	
parse	trees	and	symbol	tables	until	the	final	step	of	code	generation.		This	
system	could	be	harnessed	for	other	uses.

• The	nimbleFunction compilation	process	includes	a	modular	system	for	
processing	keywords	that	invoke	partial	evaluations.		For	example,	partial	
evaluation	is	used	to	resolve	vectors	of	nodes	in	models	at	compile	time,	
simplifying	the	complexity	and	computation	time	of	C++	code.

• NIMBLE	generates	code	for	the	Eigen	linear	algebra	library	in	C++.
• (in	testing)	NIMBLE	generates	code	for	the	CppAD auto-diff	library	in	C++.

Acknowledgements

• NSF	Advances	in	Biological	Informatics	(DBI-1147230)
• NSF	Software	Infrastructure	for	Sustained	Innovation	(ACI-155048)
• NSF	DMS	Collaborative	Research	grant	(DMS-1622444)

Recent	progress

• Stochastic	indexing	for	various	forms	of	mixture	models
• Enhanced	NIMBLE	DSL	with	various	R-style	functions
• Conditional	autoregressive	(CAR)	spatial	models	(e.g.,	for	disease	

mapping)
• Various	improvements	(speedups)	to	model	and	algorithm	processing	

and	C++	run	time
• Model	selection	and	assessment	algorithms	(WAIC,	calibrated	posterior	

predictive	p-values	[beta],	cross-validation)
• Calling	externally	compiled	code	and	arbitrary	R	code	from	models	or	

nimbleFunctions.
• (in	testing)	automatic	differentiation	for	model	calculations	and	

nimbleFunctions via	CppAD;	Langevin and	HMC	samplers
• (beta)	Dirichlet process	type	models	and	specialized	MCMC	samplers
• (beta)	More	compact	and	re-usable	model	declarations	in	BUGS	code.
• Various	improvements	to	testing	system

mcmcConfig <- configureMCMC(pump_model)
mcmcConfig$removeSampler(‘beta’)
mcmcConfig$addSampler(‘beta’, ‘slice’)
mcmc <- buildMCMC(mcmcConfig)
C_mcmc <- compileNimble(mcmc, project =
pump_model)
runMCMC(c_mcmc, niter = 10000)

customize	algorithm

specialize	MCMC	to	model

execute	specialized	code

