

NSF CSSI PI Meeting, Seattle, WA – February 2020

Lidar Radar Open Software Environment (LROSE) Award # 1550597

Michael M. Bell¹, Michael Dixon², Wen-Chau Lee²

dixon@ucar.edu wenchau@ucar.edu

Brenda Javornik², Ya-Chien Feng¹, Ting-Yu Cha¹, Jennifer DeHart¹ Colorado State University¹ and National Center for Atmospheric Research²

Overall Goals

- take 25 years of good quality legacy software
- plus current development work
- modernize it and upgrade it
- test it as much as practical
- make it easy to build and install
- make it readily available to the user community via GitHub or a similar site
- document so it is easy to use
- provide training opportunities to the users

Important Lessons

- carefully limit the scope
- concentrate on fewer apps, but the important ones
- streamline the build and distribution process
- work diligently to support multiple platforms
- Docker is useful, but not a complete solution
- refactor for long-term stability
- build documentation into the source \bullet
- fund graduate students to help with testing and documentation

Introduction

mmbell@colostate.edu

Release schedule – by year

Radars and lidars are critical for protecting society from high impact weather and the atmosphere understanding and biosphere, but they are complex instruments that produce copious quantities of data that pose many challenges for students, researchers, and instrument developers.

LROSE is an NSF-funded project developing open source tools to meet these challenges and help with the 'big data' problem faced by users in the lidar and radar communities.

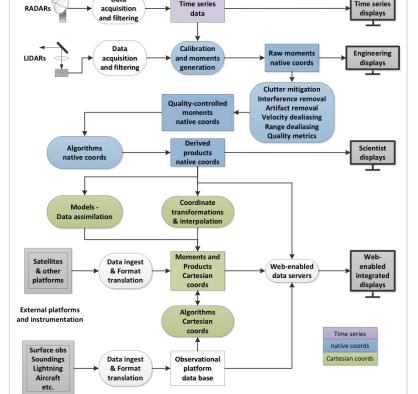
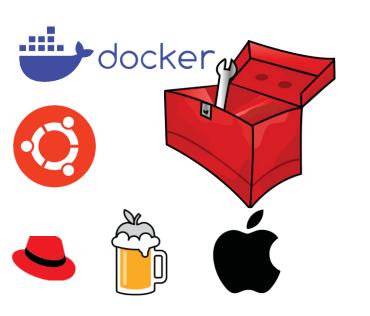
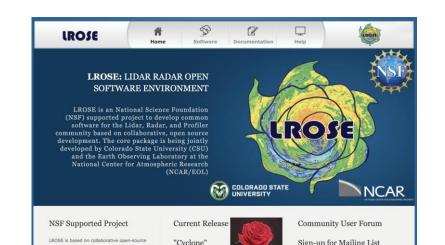


Figure 1: High-level data flow for modern end-to-end analysis of radar and lidar data


LROSE Virtual Toolbox and multi-platform support


LROSE can be installed from the 'Virtual Toolbox'. a light-weight Docker container that holds pre-built LROSE distribution with no compilation required. LROSE can also be installed from binary packages on Linux, Homebrew on Mac, or compiled in C++ on Linux or Mac. 'Irose' wrapper manages Docker options, images, disk mapping, and command execution

\$ docker pull nsflrose/lrose-cyclone \$ Irose -- RadxConvert -f <file_list> \$ Irose -- HawkEye -f output/

A website is available with expanded documentation through a community powered Wiki, and community forum for posting and discussion

Elle 2020

Blaze 2018 Cyclone 2019

Jade 2021

Principal applications

LROSE comprises over 300 applications, many of which are specialized and not often used. The following are the most commonly used.

Convert

• *RadxPrint* - Query files to determine

properties and support by the Radx engine

• RadxConvert - Convert 24 different lidar and radar

formats to CfRadial NetCDF format

RadxBufr - convert Bufr format to CfRadial

Display

• HawkEye - Real-time and research display for both scanning and vertically pointing radars. New editing features have been added to Cyclone, and more in progress (including boundary editor)

Grid

• *Radx2Grid* - 3-D Cartesian gridding (x, y, z), Cartesian PPIs (x, y, elevation), Regular polar grid (range, azimuth, elevation)

Echo – dual polarization applications

- **RadxKdp** KDP and Attenuation calculations
- RadxPid NCAR Particle Identification algorithm
- **RadxRate** Polarimetric rain rate calculations
- **RadxQpe** Accumulated quantitative precipitation estimation
- RadxBeamBlock Beam blockage estimation

Wind – single and dual Doppler applications

Format	I/O Capability	Format	I/O Capability
CfRadial-1	Read-write	HRD (Hurricane Research Division)	Read-only
CfRadial-2 (WMO)	Read-write (in development)	Leosphere (LIDAR)	Read-only
BUFR	Read-only (in development)	NEXRAD Level 2	Read-write
CFARR	Read-only	NEXRAD Level 1,3	Read-only
D3R	Read-only	NOXP	Read-only
DOE	Read-only	NSSL-MRD	Read-only
DORADE	Read-write	ODIM-H5	Read-write (in development)
EEC-Edge	Read-only (work in progress)	RAPIC	Read-only
FORAY	Read-write	SIGMET Raw (Vaisala)	Read-only
Gamic	Read-only	TDWR	Read-only
Gematronik Rainbow	Read-only (writeable with python script)	TWOLF	Read-only
HSRL (LIDAR)	Read-only	UF	Read-write

Table 1: Supported file formats by the Radx engine and I/O capabilities

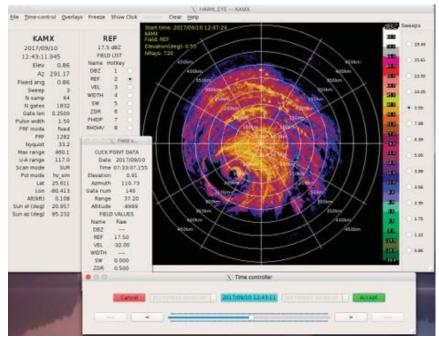


Figure 3: Example of HawkEye display showing NEXRAD data from Hurricane Irma (2017)

		(2	017)					
e e e e e e e e e e e e e e e e e e e			X VORTRAC					
$\square \square \square X$								
MICHAEL_KEVX								
Current Time UTC	Pressure Deficit From 67 nm (mb):	43	Current Pressure (mb):	970	Current RMW (nm):	0	Current Wind Speed (kt): (90% reduction)	131
19, 09		10		0.0		•	(90% reduction)	

- http://lrose.net/
- http://wiki.lrose.net/index.php/Main_Page
- <u>http://forum.lrose.net/</u>

Join the LROSE Community

- Visit LROSE.net, install the latest release, and register to receive updates
- Post in our User Forum, post issues at Github, or email Irose-help
- Cite LROSE in your research: DOI 10.5281/zenodo.3361130

development, supported by a 4-year SI2-SSI	"Cyclone"	Sign-up for Mailing List
grant #1550597 from NSF to CSU and NCAR/EOL.	Latest 2019-09-12	 GitHub

Figure 2: Screenshot of Irose.net home page

• RadxEvad - Extended Velocity Azimuth Display

single-Doppler retrieval

•FRACTL - Fast Reorder and CEDRIC Technique in LROSE traditional multi-Doppler retrieval

SAMURAI - Variational multi-Doppler retrieval

and analysis package

• VORTRAC - Vortex Objective Radar Trackingand

Circulation single-Doppler retrieval

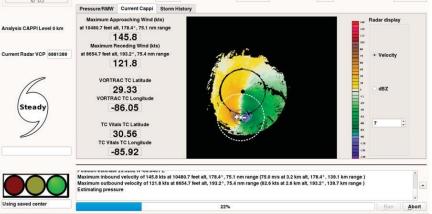


Figure 4: Example of VORTRAC display showing NEXRAD data from Hurricane Michael (2018)

NCAR is funded by the National Science Foundation