
DEEPFORGE: A MACHINE LEARNING GATEWAY FOR
SCIENTIFIC WORKFLOW DESIGN

PROJECT GOALS CORE CONCEPTS SUMMARY

ONGOING RESEARCH

Akos Ledeczi (PI) · Umesh Timalsina · Peter Volgyesi · Tamas Budavari

https://deepforge.org

Brian Broll (Co-PI)

BACKGROUND

PLATFORM
TensorFlow
● Open source machine learning

framework in Python

● Supports many different
deployment platforms from
clusters to mobile devices

Model-Integrated Computing
● The process of using domain

specific visual abstractions for
developing systems or
applications

● The domain specific model
(DSM) is at the center of the
workflow

● Developed to aid in the design
and implementation of complex
systems

WebGME
● An MIC framework for

creating domain specific
development environments

● Cloud-based infrastructure

● Provides a number of useful
features including version
control and collaborative
editing

Productivity and Accessibility

● Visual editors for architectures
and pipelines; textual editors for
operation implementations

● Design-time error detection and
dimensionality information for
neural network architectures

● Execution on connected
computational resources

● Collaborative editing support

● Executing a training/testing
pipeline caches intermediate
data allowing individual jobs to
be re-run without
recomputation

General

● Developed using WebGME

● Domain Specific Modeling
Language (DSML) formalized
from the Core Concepts (Figure
4)

● Supports extension with other
deep learning libraries (or
domain models)

Reproducibility

● Automatic version control for
data, code and parameters
guarantees that every state is
reproducible

● Automatically tag branches

when executing training or

testing pipeline

● Data provenance for data and

trained models

Extensibility and Infrastructure
Integration

● Supports computational
resource integration via
compute adapters

● Storage resource integration is
supported through storage
adapters

● Existing integrations include
SciServer, S3, and individual
compute workers

Figure 5: Editing
a neural network
architecture
using the visual
editor.

Figure 6:
Integrated version
control makes any
historical state
reproducible and
facilitates
collaboration

● Core Concepts are the components

of the DSML

● Operation - an atomic function with

variable number of inputs and

outputs as well as external

parameters and references to other

artifacts.

● Job - a running Operation with

execution information

● Pipeline - Directed Acyclic Graph

(DAG) of Operations representing an

experiment

● Execution - A running Pipeline with

execution information

● Supports extension for additional

domains

Figure 2: Viewing a training job with
real-time plotting feedback

Figure 3: (a) Editing a training and testing
pipeline on CIFAR 10. (b) Monitoring the
execution of the pipeline in (a)

(a) (b)

Figure 4: Formal specification of the
language used in the DSM based on the
provided core concepts

This material is based in part upon work

supported by the National Science

Foundation under Grant Number SI2-SSE

#1740151

The goal of this research is to
develop a Software as a Service
platform for applying deep learning
within diverse scientific domains
that integrates with existing
cyberinfrastructure.

This platform is also designed to
promote simplicity, collaboration,
and reproducibility. These design
goals are supported through:
● Data provenance (including

trained model artifacts)
● Integration with existing

cyberinfrastructure
○ Computational resources

such as Slurm and PBS
○ Data resources such as

Globus Connect
● Real-time collaborative editing

and integrated version control
● Extensible APIs

DeepForge is an open source
platform for deep learning
designed for promoting
reproducibility, simplicity and
rapid development within diverse
scientific domains. This includes:

● Leveraging strengths of

Model-Integrated Computing to

design a gateway for deep

learning

● Collaborative editing

capabilities

● Integrated version control of

code and data

● Distributing jobs over

connected computational

resources and integration with

existing infrastructure

Current research consists of
extending infrastructure
integration capabilities, improving
extensibility and scriptability via
APIs, and community
development. This includes:
● Additional compute

infrastructure integration
○ Slurm
○ CWL

● Additional storage
infrastructure integration such
as Globus

● Development of rich Python
and JavaScript APIs

○ Pipeline creation and
execution

○ Execution monitoring
○ Artifact creation and

retrieval
● Maintaining a public

deployment and developing
community through
hackathons and collaboration

