CSSI Frameworks: Re-engineering Galaxy for Performance, Scalability and Energy Efficiency
 PI: Mahmut Taylan Kandemir ${ }^{*}$, Co-PIs: Chita R. Das ${ }^{*}$, Anton Nekrutenko ${ }^{\Psi}$, Paul Medvedev*

* Dept. of Computer Science and Engineering, Ψ Dept. of Biochemistry and Molecular Biology Institution: The Pennsylvania State University, University Park

Motivation

- Galaxy currently runs on a large variety of high-performance computing (HPC) platforms including super computers.

Bio-Toolchain execution in Galaxy take in order of days, thus hindering the pace of scientific discovery.

G GPUs and FPGAs have superior performance compared to CPU with up to 800x improvement in performance.
\square Galaxy does not have support to use GPUs and accelerators like FPGAs.

Our Proposal

- Modernize the Galaxy framework to utilize modern compute platforms such as GPUs and FPGAs.
- Rewrite existing tools to support GPU and FPGA acceleration.
- Accelerator-Aware Computation Mapping and Orchestration.
- Dynamic Resource Scheduling Based On Real-Time Feedback.
- Redesigning Storage for Galaxy.

Completed Tasks

- Identified existing GPU based tools.
- Integrated RACON GPU based tool to Galaxy.
- Deployed Galaxy on Kubernetes.

Planned Tasks

- Develop GPU based implementation for existing ML tools for RNN sequencing.
- Expose GPU metrics to Kubernetes for developing resource utilization-aware scheduling policies.
- Develop a Reinforcement-based Machine Learning scheduling framework.

Example Galaxy Bio-Toolchain

