NSCI SI2-SSE: Multiscale Software for Quantum Simulations of Nanostructured Materials and Devices

J. Bernholc, E. L. Briggs, W. Lu, C. T. Kelley North Carolina State University, Raleigh

Award Number: OAC-1740309

- * "Real" materials structures are often complex and cannot be reduced to a few hundreds of atoms
 - Process simulation requires large systems
- Materials Genome White House initiative to "deploy advanced materials twice as fast, at a fraction of the cost"
- National Strategic Computing Initiative (NSCI)
- National Quantum Initiative multi-agency program in QIS: NSF, DOE
- Real-space multigrid (RMG) open-source software www.rmgdft.org
 - Can simulate quantum materials and devices on the latest preexascale and exascale multi-core/multi-GPU supercomputers, e.g., the IBM-NVIDIA Summit. Scales from desktops to supercomputers.

Reproducibility of DFT calculations for solids

New features:

NC STATE UNIVERSITY

- Hybrid functionals
- Non-collinear spin
- Spin-orbit coupling

1.8	22																	
Li -		RMG vs Win2K											B 	C 0.047	N 4.558	0 	F 	Ne
Na -		Accurate and reliable												Si 0.407	P 0.502	s 	Cl 0.259	Ar
К 0.0		Ca 0.105	Sc 0.260	Ti 0.107	V 0.582	Cr 1.749	Mn 2.146	Fe 2.203	Co 0.173	Ni 0.378	Cu 0.927	Zn 0.031	Ga 0.214	Ge 0.577	As 1.656	Se 0.055	Br 0.886	Kr
Rł 0.1		Sr 0.184	Y 0.177	Zr 0.081	Nb 1.108	Mo 1.025	Tc 0.731	Ru 1.417	Rh 1.689	Pd 1.638	Ag 0.675	Cd 0.818	ln 0.290	Sn 0.417	Sb 	Te 0.406	l 0.096	Xe
C <u>s</u> 0.0		Ba 0.353	Lu 	Hf 1.408	Ta 0.735	W 0.489	Re 0.618	Os 1.439	lr 0.713	Pt 0.905	Au 1.559	Hg 0.056	Tl 0.037	Pb 1.010	Bi 	Po	At 	Rn

He