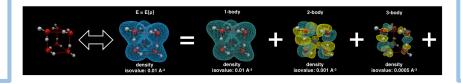


SI2-SSE: Enabling Chemical Accuracy in Computer Simulations: An Integrated Software Platform for Many-Body Molecular Dynamics

PI: Francesco Paesani, Co-PIs: Andreas W. Götz, Andrea Zonca

Institutions: University of California, San Diego

Many-body molecular dynamics


- No recourse to empirical parameters
- Potential energy functions entirely derived from correlated electronic structure data
- Enables predictive molecular simulations across different phases

Broader Impacts

- Training of postdocs, graduate and undergraduate students, high school interns in computational research and software engineering
- Software tools to empower new applications ranging from chemistry to material discovery

Goal

Make MB-MD methodology widely available to a broad scientific community via user-friendly and efficient software tools

MB-fit

- Workflow system for machine learning of many-body potential energy functions
- Python based with Jupyter notebooks for user documentation
- Centralized PostgreSQL data storage

MBX

- C++ library for MB-MD simulations
- Periodic boundary conditions with PME for electrostatics and dispersion
- OpenMP parallel
- User-friendly API for integration with simulation codes
- Interface to i-PI and PLUMED