

Collaborative Research: SI2-SSI: EVOLVE: Enhancing the Open MPI Software for Next Generation Architectures and Applications

Pls: Edgar Gabriel ¹, George Bosilca ² Co-Pls: Thomas Herault ², Aurelien Bouteiller ²

¹ University of Houston, ² The University of Tennessee, Knoxville

Open MPI

- ➤ Widely used implementation of the Message Passing Interface Specification
- > Jointly maintained by a consortium of academia, industry and national laboratories
- > Over 60,000 downloads per year
- ➤ World-wide user community

Goals of the EVOLVE project

- Extend Open MPI to support new features of the MPI specification
 - Hybrid programing models
 - > Fault tolerance
- Support new architectures
- Improve scalability
- ➤ Enhance Parallel I/O performance and functionality

Open MPI Download statistics

Number of visits to the download page of Open MPI for the v3.0, v3.1, and v4.0 releases in the from 05/14/2018 until 05/14/2019.

OMPIO

- Parallel I/O components of Open MPI
 - Separates I/O functionality into frameworks
 - Dynamic runtime selection of components
- > Integrated with Open MPI derived data type engine
- ➤ Integrated with Open MPI progress engine for asynchronous I/O operations

Overlapping multiple cycles in collective I/O

- Performance improvement for collective I/O through internal pipelining
- Multiple algorithms evaluated based on different overlap strategies
- Multiple data transfer primitives (two-sided, one-sided) explored

Average performance improvement of collective write operations for various overlap algorithms

Compression in Parallel I/O

- Extend collective I/O to support reading and writing compressed data files
- Prototype implementations developed for Snappy compression algorithm

Speedup of a parallel compression tool using collective I/O over a sequential compression tool

Contact: Edgar Gabriel egabriel@uh.edu

[1] M. Chaarawi, E. Gabriel, R. Keller, R. Graham, G. Bosilca and J. Dongarra, 'OMPIO: A Modular Software Architecture for MPI I/O, EuroMPI 2011.

[2] Shweta Jha and Edgar Gabriel, 'Performance Models for Communication in Collective I/O Operations', CCGRID Workshops 2017.