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Grand Challenges

* |ncomplete data is pandemic in broad science
and engineering
Theory of missing data curing (called
“imputation”) is limited to small-sized data
Naive imputation may substantially hamper the
accurate machine learning (ML) and statistical
learning (SL)-based predictions
Lack of theory and the absence of software for
large/big incomplete data curing
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Proposed Methods

Hybrid Parallelisms & Sure Independence Screening
for P-FHDI’s Core Steps

[Step 0] Sure Independence Screening (SIS)
Selectively Done for big-p (high-dimensional) Data

[Step 1] Parallel Imputation Cell Construction
Continuous — Discrete; Categorical = Unchanged

[Step 2] Imputation Cell’s Joint Probability

Parallelized Modified EM Algorithm

[Step 3] Fractional Hot Deck Imputation
Parallelized Donor Selection and Imputation

[Step 4] Variance Estimation

Parallelized Jackknife Method

Future Research Topics
* New Theory for Concurrently big-n & big-p data

 Deployment of the P-FHDI on NSF XSEDE
* Theory of P-FHDI on ML with big incomplete data
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Large, complex incomplete dataset __ Assumption-Free Parallel Data Curing Service

Portable Parallel Programs
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NSF CSSI Pl Meeting, Seattle, WA, Feb. 13-14, 2020

CSS| Elements: Development of Assumption-Free Parallel Data Curing

Service for Robust Machine Learning and Statistical Predictions
Pl: In-Ho Cho, Co-Pl: Jae-Kwang Kim

Research Objective

* Develop a new community-level data curing
service running on NSF Cyberinfrastructure (e.g.
XSEDE)

No restriction of data size, type, high-
dimensionality; No distributional assumptions or
expert knowledge on data science

Pursue a purely data-driven imputation by
developing the parallel fractional hot deck
imputation (P-FHDI)

» Assumption-Free, General Parallel Data
Curing; Only Observed Data are Leveraged

for Imputation (thus, “Hot-deck”)

» Pursue Generality, Accuracy and
Scalability in the Context of ML and SL

» Offer Information about ML/SL
Predictions Using the Cured Data

Data: U(size, variables, missing rate)
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__Fig. Clear Scalability of P-FHDI for big-n data
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Fig. Promising Scalability of P-FHDI for big-p (high-dimensional) data

for ML and SL
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Fig. Impact of SIS on the P-FHDI’s Mean and Variance estimator

Ratios of Jackknife variance
estimators

Conclusions

 For improving prediction accuracy of machine learning and
statistical learning with large/big incomplete data, P-FHDI
has been successfully developed
Hybrid parallelisms and the sure independence screening
(SIS) are key enabler of P-FHDI
Current version P-FHDI can tackle big-n OR big-p data with
the promising scalability and accuracy
Developed P-FHDI program is available upon request to Pls
(Note: serial version R Package FHDI readily available on
CRAN)
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