
Elements: Transformation-Based High-Performance Computing
in Dynamic Languages
Andreas Klöckner <andreask@illinois.edu>

Department of Computer Science · University of Illinois at Urbana-Champaign · Urbana, IL OAC-1931577

Comp. Science on Today’s Hardware

Computational science software must run at
an appreciable fraction of peak performance
on many different machines:

Nvidia GPUs
Intel/AMD wide-vector CPUs
(AVX-256, AVX-512)
Intel/AMD GPUs
. . .

Programming Challenges

Array/vector architectures
High memory latency
Limited on-chip memory

Simplification: Use CL/CUDA abstract
machine model for all of them
Still: Machine-specific trade-offs/capacities
Therefore: Machine-specific code needed
And: Many dialects (OpenCL, CUDA, ISPC,
OpenMP+Pragma SIMD, . . .)

Competing Approaches

C++ Metaprogramming
Libraries

PyOpenCL/PyCUDA: HPC in Python

Compute result

Organize computation

Write/Generate code

Describe computation

Loopy

Loopy is a code generator for computation
with arrays.
Performance: human ‘in the loop’ for the
foreseeable future.

Capture math at a high level; target
number crunching
Progressively ‘lower’ through manual
transformations
Observe and control optimization steps
‘Help me write the CUDA C/ISPC/. . . I
would write’

Loopy: Program Representation

Polyhedron

i

j

{[i,j]:
0<=i<n and
0<=j<n and
...}

Statement(s)
b[i] = sum(j,

A[i,j] * x[j])

Summary
Tree of Polyhedra
+ Statements
+ Dependencies
= Semantics

Vector Shuffles via Array Access

Vector shuffles complement shared memory as
an efficient means of communication.

less synchronization
less energy expense
harder to program

Idea: Represent them in Loopy’s
intermediate representation, make them
reachable by transforms (e.g. for SoA/AoS
transpose)

Transformation, Efficieny for Scan

Scan/prefix sums are a core parallel primitive
[Blelloch ‘93], with uses in, e.g.:

threads with variable-size output
sorting
filtering

⊕ ⊕ ⊕

Idea: Allow Loopy to represent and
transform scans

Transform Addressing

Core difficulty in program transformation:
Transform addressing, i.e. specifying
where a transform should apply.
Notation must be:

compact
specific
human-readable

Idea: A query language acting on the
program representation

A Transform-Capable Array Package

numpy code is widespread, e.g.:
neural nets
computational science
image processing

numpy code could use GPUs well, but not
robustly high performance without help.
r e s u l t [1 : −1] = v [2 :] − v [: −2]
r e s u l t [0] = v [1] − v [0]
r e s u l t [−1] = v [−1] − v [−2]

Many realizations of “lazy numpy”
For automatic differentiation, performance

Ideas:
a reusable lazy array package
connect it to Loopy codegen
allow user intervention for performance
replace PyOpenCL/PyCUDA array objects

Graphical Transform User Interface

Kernel

out[i, j] = sum(k, in[i, k])

Instructions

{ [i, j, k]: 0<=i,j<n and 0<=k<4 }

Domain

ARGUMENTS:

in Global float32 (n,4)

out Global float32 (n,4)

n ValueArg int32

DOMAINS:

[n]-> {[i,j,k]: 0<=i<n and 0<=i<n and 0<=k<4}

INDEX IMPLEMENTATION TAGS:

i: lid(0),

j: none

k: unroll,

INSTRUCTIONS:

0[i,j] out[i,j] <- reduce(sum, [k], in[i,k]) #insn

Output

Transformation Tree

0 1

k: unr

OpenCL

Add tag…
Add tag…
Add tag…

2

i: l.0

3

j: l.0

4

i: g.0

GB/s

3.45 3.65

8.65 18.6

9.88

Variant Time GB/s GFLOP/s

2 0.0023 9.88 1.976

Space Dtype Shape

Improves Transform Discoverability
Eases Experimentation
Supports Performance Modeling

(Ask for a demo!)

Loopy Usage Example

import l o opy as l p
k = l p . make_kerne l (

" { [i]:0<= i<n}" ,
" out [i]=2∗a [i] ")

k = l p . s p l i t_ i n ame (k , " i " , 128)
k = l p . tag_inames (k , " i_ou t e r : g . 0 ")
k = l p . tag_inames (k , " i _ i n n e r : l . 0 ")

Loopy: Summary

Github:
https://github.com/inducer/loopy

One intermediate representation from
math to low-level machine code

Shared medium between human and
machine

Transformations to cover the difference
Make near-peak performance accessible by
manual transformation
Allow autotuning/automated search to be
implemented “on top”

A user quote about Loopy’s IR:
We believe that loopy’s level of ab-
straction hits this sweet spot needed
for a high performance code generation
workflow. [Kempf et al. ‘18]

Known Science Users

Firedrake finite element framework:
https://arxiv.org/abs/1903.08243
Dune PDElab finite element framework:
http://arxiv.org/abs/1812.08075
Pystella stencil-based cosmology solver:
https://arxiv.org/abs/1909.12843,
https://arxiv.org/abs/1909.12842
Computational neuroscience: https://
doi.org/10.3389/fninf.2018.00068
SIMD/SIMT for chemical kinetics:
https://doi.org/10.1016/j.
combustflame.2018.09.008

https://github.com/inducer/loopy
https://arxiv.org/abs/1903.08243
http://arxiv.org/abs/1812.08075
https://arxiv.org/abs/1909.12843
https://arxiv.org/abs/1909.12842
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1016/j.combustflame.2018.09.008
https://doi.org/10.1016/j.combustflame.2018.09.008

