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Constrained Low Rank Approximation for 
modeling key data analytics problems of 
scientific unmixing and inverse problems

Problem focus: 
• Nonnegative Matrix Factorization (NMF)
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• Nonnegative Tensor Factorization (NTF)
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• Variants: Symmetric NMF, Hierarchical NMF, 
NMF with regularization

Software goals:
• Utilize advances in numerical linear algebra 

algorithms and software 

• Allow for algorithmic flexibility

• Facilitate design of MPI-based parallelization    
for scalable solutions

Alternating-Updating NMF Algorithms(AU-NMF)
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Block Principal
Pivoting (BPP)
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Hierarchical Alternating 
Least Squares (HALS)
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Multiplicative 
Update (MU)

Alternating-Updating Algorithms
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(a) Sparse Synthetic
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(b) Dense Synthetic
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(c) Sparse Real World (webbase-1M)
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(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [43]. The
former dataset has about 1 million nodes and 3 million edges,
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Fig. 6: Per-iteration times with p=864, varying low rank k.

whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of 16
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Fig. 7: Tuning processor grid for ABPP on Sparse Synthetic data
set with p=1536 and k=50.

cores) of Rhea has 128 GB of memory, multiple nodes are required
to store the input and output matrices with room for other interme-
diate values. As mentioned in Section 5.2.3, MPI-FAUN requires
considerably more temporary memory than necessary when the
output matrices require more memory than the input matrix. While
we were not limited by this property for the other sparse matrices,
the webbase-2001 matrix dimensions are so large that we need the
memories of tens of nodes to run the algorithm. Thus, we report re-
sults only for the largest number of processors in our experiments:
1536 processors (96 nodes). The extra temporary memory used by
MPI-FAUN is a latency-minimizing optimization; the algorithm
can be updated to avoid this extra memory cost using a blocked
matrix multiplication algorithm. The extra memory can be reduced
to a negligible amount at the expense of more messages between
processors and synchronizations across the parallel machine.

We present results for webbase-2001 in Figure 8. The average
per-iteration timing results are consistent with the observations
from other synthetic and real world sparse datasets as discussed
in Section 6.3.2, though the raw times are about 2 orders of
magnitude larger, as expected. In the case of the error plot, as ob-
served in other experiments, ABPP achieves smaller error (by 1%)
than other algorithms after converging; however MU and HALS

initially outperform ABPP. We also see that MU outperforms
HALS in the first 30 iterations. At the 30th iteration, the error
for HALS is still improving at the third decimal, whereas MU’s
is improving at the fourth decimal. We suspect that over a greater
number of iterations the error of HALS could become smaller than
that of MU, which would be more consistent with other datasets.

6.4 Interpretation of Results

We present results from two of the real world datasets in the
Supplemental Material. The first example shows background
separation of the video data, and the second example shows topic
modeling output on the stack exchange text dataset. The details of
these datasets are presented in Section 6.1.1.

While the literature covers more detail about fine tuning
NMF and di↵erent NMF variants for higher quality results on
these two tasks, our main focus is to show how quickly we can
produce baseline NMF solutions. In Figure 1 of the Supplemental
Material, we can see the background is removed and the moving
objects (e.g., cars) are visible. Similarly, Table 1 of Supplemental
Material shows that the NMF solution discriminates among topics
and and finds coherent keywords for each topic.

• Parallelization strategy is independent of 
algorithm for enforcing nonnegativity

• Communication only of factor matrices

• Dense and sparse data yield different 
communication patterns
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Results for Stack Exchange bag-of-words data 
630K words x 12M docs with 365M nonzeroes
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button click event form add user email usernam login log
creat bean add databas except data json store read databas
string static final catch url page load content url link
width height color left display privat static final import float
app applic servic thread work row column date cell valu

ipsum lorem dolor sit amet line import command print recent
node list root err element var map marker match url
0x00 0x↵ byte 0x01 0xc0 server connect client messag request
file directori read open upload number byte size print input

function call event work variabl object properti json instanc list
int char const static doubl array element valu key index

public overrid virtual static extend main thread program frame cout
return param result def boolean type field properti argument resolv
info thread start map servic select item queri join list
error syntax found symbol fail sourc target except java fail
set properti virtual default updat instal version packag err default

case break switch default cout code work problem chang write
method call except static todo void overrid protect catch extend

href nofollow src link work true requir boolean option valid
end def dim begin properti find project import warn referenc

debug request filter match found view control item overrid posit
fals boolean fix bool autoincr null default key int(11 primari

TABLE 1
Top 5 words of 50 topics from Stack Exchange data set.
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Figure 5: Flickr dataset Time Breakdown for k=48 on Rhea

matrix at hand is quite dense, point-to-point communication sig-
ni�cantly improves the scalability by reducing the communication
volume. With optimized implementations, we achieved scalabil-
ity up to 32K nodes on a BG/Q supercomputer using partitioning
schemes that are cheap to compute. To the best of our knowledge,
ourwork is the�rst high performance implementation of distributed
NMF that takes the sparsity of the input matrix into consideration
in communication to reduce the communication cost, and employs
e�ective partitionings to further enhance parallel scalability. Our

P2
PH
P

P2
PR
P

FA
UN

FA
UN

RP
0

20

40

Ti
m
e
(s
ec
on

ds
)

(a) Rhea p=16 for k =48

P2
PH
P

P2
PR
P

FA
UN

FA
UN

RP
0

2

4

6

8 Comm
Gram
LUC
MM

(b) Rhea p=3072 for k =48

Figure 6: Delicious dataset Time Breakdown for k = 48 on
Rhea
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Figure 7: Time Breakdown of Flickr and Delicious for k = 48
on Bluegene/Q. �e le� two bars are for the Flickr matrix,
and the right two bars are for the Deliciousmatrix

immediate next steps for extending our work involve adding shared
memory parallelism to obtain further speedup.
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Figure 2: Communication and computation costs of di�er-
ent partitioning strategies on Kronecker graphs on 4096
processors Rhea for k=48

We report the time breakdown for Flickr andDelicious datasets in
Fig. 5, Fig. 6 for Rhea and Fig. 7 for BlueGene/Q. For each cluster and
data set, we show the timings for the smallest and the largest number
of processors used. Our objective in this experiment is to be�er
analyze the speedup results and by comparing the computational
and communication costs of di�erent communication schemes and
partitionings.

Flickr on Rhea: We observe in Fig. 5 that in one node con�gu-
ration with p = 16, the FAUN and FAUNRP performs similar to
P2PRP and P2PHP in terms of computation, and the communica-
tion time takes a small portion of the execution in all instances. As
the number of processes increases to 3072, the communication time
of P2PRP and P2PHP stays reasonably low, whereas in the case
of FAUN and FAUNRP, we clearly observe that the communica-
tion cost dominates the execution time using both low rank values
k=48. Randomization o�ers load balance to FAUNRPwhich gives
it a slight edge over FAUN, yet both instances su�er from the high
communication cost associated with the all-to-all communication
strategy, which explains the drop in the scalability results.

Delicious on Rhea: In Fig. 6, we see that P2PRP and P2PHP per-
form be�er than FAUN even in single node con�guration. Fig. 6
shows that FAUN takes twice more than P2PRP and P2PHP in the
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Figure 3: Strong scaling on Flickr dataset

sparse matrix multiplication step, highlighting the skewed distribu-
tion of the matrix nonzeros, which is alleviated to a certain extend
by randomly permuting thematrix. Similar to Flickr data, using 3072
processors, P2PRP and P2PHP perform signi�cantly be�er than
FAUN and FAUNRP, whose iteration times are dominated by the
communication.

Flickr and Delicious on BlueGene/Q:. In Fig. 7 we give the timings
for computation and communication steps using our methods with
two di�erent partitionings of matrices on BlueGene/Q.We observe
that using 512 processors, communication cost is negligible, and
P2PRP beatsP2PHP thanks to be�er load balance. Using 16384 pro-
cessors, however, on Flickr matrix P2PHP gets faster than P2PRP
due to signi�cant reduction in the communication volume. On De-
licious matrix, P2PHP similarly be�er reduces the communication,
yet this is outweighed by the load imbalance in matrix multiplica-
tions.

6 CONCLUSION
In this paper, we compared various partitioning and communication
strategies used in the literature in the context of non-negativematrix
factorization. We showed that an important di�erence in the parallel
NMFalgorithms is balancingmatrix rowsamongprocessors, and this
constraint renders state-of-the-art hypergraphpartitioningmethods
less e�ective. Weemployedvariationsof theMPI-FAUN implementa-
tion with point-to-point communication, and concluded that unless
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Figure 3. Illustration of 2nd inner iteration of Par-NNCP algorithm for 3-way tensor on a 3⇥3⇥3 processor grid, showing data distribution, communication,
and computation across steps. Highlighted areas correspond to processor (1, 3, 1) and its processor slice with which it communicates. The column
normalization and computation of G(2), which involve communication across all processors, is not shown here.

Algorithm 2 JH(1)
, . . . ,H

(N)K = Par-NNCP(A, R)

Require: A is an I1 ⇥ · · · ⇥ IN tensor distributed across
a P1 ⇥ · · · ⇥ PN grid of P processors, so that Ap is
(I1/P1) ⇥ · · · ⇥ (IN/PN ) and is owned by processor
p = (p1, . . . , pN ), R is rank of approximation

1: for n = 2 to N do
2: Initialize H

(n)
p

of dimensions (In/P )⇥R

3: G = Local-SYRK(H(n)
p

)

4: G
(n) = All-Reduce(G, ALL-PROCS)

5: H
(n)
pn

= All-Gather(H(n)
p

, PROC-SLICE(n, pn))
6: end for
7: % Compute NNCP approximation
8: while not converged do
9: % Perform outer iteration of BCD

10: for n = 1 to N do
11: % Compute new factor matrix in nth mode
12: M = Local-MTTKRP(Ap1···pN , {H(i)

pi
}, n)

13: M
(n)
p

= Reduce-Scatter(M, PROC-SLICE(n, pn))

14: S
(n) = G

(1) ⇤ · · ·⇤G(n�1) ⇤G(n+1) ⇤ · · ·⇤G(N)

15: H
(n)
p

= Local-NLS-Update(S(n)
,M

(n)
p

)
16: % Organize data for later modes
17: G = H

(n)
p

T
H

(n)
p

18: G
(n) = All-Reduce(G, ALL-PROCS)

19: H
(n)
pn

= All-Gather(H(n)
p

, PROC-SLICE(n, pn))
20: end for
21: end while
Ensure: A ⇡ JH(1)

, . . . ,H
(N)K

Ensure: Local matrices: H(n)
p

is (In/P )⇥R and owned by
processor p = (p1, . . . , pN ), for 1 6 n 6 N , � stored
redundantly on every processor

of the same scene acquired at about 1-hour intervals. In
each scene, hyperspectral images were acquired at about
1-hour intervals. Each Nogueiró scene HSI image has the
same properties as the Souto wood pile data set, so the
corresponding tensor has dimensions 1024⇥ 1344⇥ 33⇥ 9.

5.1.2. Dynamic Functional Connectivity (dFC). We also
consider dynamic functional connectivity datasets that are
generated from fMRI images of human brains. Given a
4D fMRI data set of voxel measurements across multiple
timesteps, voxels containing brain data are partitioned into
a set of regions of interest (specified using domain-specific
knowledge), and a single time-series signal is aggregated for
each region of interest. Then, an instantaneous correlation is
computed for each time point and pair of regions, and this
process is repeated for a number of subjects. Computing a
CP decomposition of this data helps to discover patterns of
brain connectivity among different regions and also differen-
tiate among individuals. For our representative dFC data set,
we consider 246 brain regions, which yields 30,012 unique
pairs of regions, 1200 times steps, and 500 subjects, or a
tensor of dimension 30,012⇥ 1200⇥ 500 [3], [34].

5.1.3. Synthetic. Our synthetic data sets are constructed
from a CP model with an exact low rank with no added
noise. In this case we can confirm that the residual error
of our algorithm with a random start converges to zero.
For the purposes of benchmarking, we run a fixed number
of iterations of the BCD algorithm rather than using a
convergence check.

5.2. Machine Details

The entire experimentation was performed on Eos, a
supercomputer at the Oak Ridge Leadership Computing
Facility. Eos is a 736-node Cray XC30 cluster of Intel Xeon
E5-2670 processors with a total of 47.104TB of memory. Its
compute nodes are organized in blades where each blade
contains 4 nodes, and every node has 2 sockets with 8
physical cores and 64GB memory. The machine support
Intel’s hyper-threading (HT), but we restricted it because
HT offers minimal improvement for BLAS and LAPACK

Time breakdown for 
synthetic tensor of size 
512 ×512 ×512 ×512

on Titan
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5 SOFTWARE

TensorNCPFactors NTFMPICommunicator

DistAUNTF

DistNTFAOADMM DistNTFNES DistNTFMU DistNTFHALS

DistNTFTime

DistNTFABPP DistNTFCPALS

NumPyArray DistNTFIO

Fig. 6. PLANC class diagram. Utility classes are at the top of the diagram, and the algorithm classes at the bo�om of the diagram
all derive from the abstract class DistAUNTF in orange. The blue arrows denote an “is-a” relationship and the red diamond arrows
denote a “has-a” relationship.

The entire PLANC package has the following modules – shared memory NMF, shared memory NTF, distributed
memory NMF and distributed memory NTF. In this section, we give a brief overview of the software package structure
for NTF and ways to extend it.

5.1 Class Organization

We brie�y describe the overall class hierarchy of the PLANC package as illustrated in Figure 6. PLANC o�ers both
shared and distributed memory implementations of NTF and the classes used in each type are distinguished by the
pre�x Dist in their names (eg. DistAUNTF versus AUNTF). We shall cover the distributed implementation of NTF in this
section. Most of the descriptions can be directly applied to the shared memory case as well.

There are broadly 2 types of classes present. Utility classes are primarily for managing data, setting up the processor
grid, and interacting with the user. Algorithm classes perform all the computations needed for NTF and implement the
di�erent NNLS solvers.

5.1.1 Utility Classes.

Data. The Tensor and NCPFactors classes contain the input tensor X and the factor matrices JH(1), . . . ,H(N )K. The
Tensor class stores the input tensor as a standard data array. The tensor X is stored as its mode-1 unfolding X(1) in
column major order. Each processor contains its local part of the tensor (see § 4.1.2). The NCPFactors class contains all
the factor matrices. Each factor matrix is an Armadillo matrix [47]. The matrices are usually column normalized and
the column norms are stored in the vector � which is present as a member of this class (see Algorithm 4). The vector �
is replicated in all processors whereas the rows of the factor matrices are distributed across the processor grid (see
§ 4.1.2). There is no global view of the entire input tensor or factor matrices and care must be taken to communicate
parts of either among the processor grid.
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