
CSSI Framework: An open source software
ecosystem for plasma physics

N. A. Murphy1 (PI), D. Stańczak,2 (Collaborator), E. T.
Everson3 (Project Personnel), S. T. Vincena3 (Co-I), D.
Schaffner4 (Co-I), T. N. Parashar5,6 (Co-I emeritus), B.

Maruca5 (Co-I elect), A. J. Leonard7 (Collaborator), & T.
Carter3 (Collaborator) on behalf of the PlasmaPy Community

1Center for Astrophysics | Harvard & Smithsonian, 2University of Warsaw,
3UCLA, 4Bryn Mawr College, 5University of Delaware, 6University of Wellington,

7Aperio Software

2020 NSF CSSI Principal Investigator Meeting

http://www.plasmapy.org/
https://creativecommons.org/licenses/by/4.0/


Introduction

I In recent years, researchers in several different subfields of
physics and astronomy have collaboratively developed core
Python packages such as Astropy1 and SunPy2

I These packages provide core functionality and common
frameworks for data analysis and visualization

I A similar open source package would greatly benefit plasma
science

I We are developing PlasmaPy: a community-developed
and community-driven open source core Python package
for plasma physics

1Astropy Collaboration (2018)
2SunPy Community (2015)

http://www.astropy.org/
http://sunpy.org/
http://www.plasmapy.org/
https://arxiv.org/abs/1801.02634
https://doi.org/10.1088/1749-4699/8/1/014009


The goal of PlasmaPy is to facilitate a fully open source
software ecosystem for plasma physics

 https://github.com/PlasmaPy/plasmapy 
 https://github.com/PlasmaPy/plasmapy 


Plasma physics has a “roll your own” culture for code
development

I Scientists tend to be self-taught as programmers

I Time pressure prevents us from improving programming skills

I Software is often written “in-house” as needed

I Code is often written in a rush to get a paper out

I Code is often written for a specific purpose, which makes it
hard to generalize

I Documentation is often insufficient

I Codes often lack a testing framework

I Frequent duplication of functionality between groups

I Packages lack interoperability



Consequences of “roll your own” culture

I Beginning research is difficult due to software overhead

I Collaboration is difficult due to lack of interoperability

I Plasma research is much less reproducible

I Research can be frustrating

Plasma science can learn from what other fields
are doing to change “roll your own” culture.



PlasmaPy uses Astropy’s open development model

I Release code under an open source license

I Develop openly on GitHub

I Anyone may contribute

I New contributors are actively welcomed

I Adopt a code of conduct



Planned subpackages for PlasmaPy version 0.4.0

I particles allows access to basic atomic and particle data

I formulary contains plasma parameters, transport
coefficients, and mathematical functions

I plasma will contain base classes for plasma configurations

I simulation contains a particle pusher and will contain
broader simulation capabilities

I diagnostics will provide tools to access experimental data

I analysis will contain tools to analyze simulations and
experimental data

I utils provides utilities used throughout the package

I tests will include test helper functionality

I addons will allow user extensions to PlasmaPy



PlasmaPy uses the astropy.units package for units

This package creates Quantity objects with attached units.

>>> from astropy import units

>>> distance = 44 * units.imperial.mile

>>> time = 30 * units.minute

>>> distance / time

<Quantity 88.0 mi / h>

>>> (1.21 * units.GW).cgs

<Quantity 1.21e+16 erg / s>

>>> 2 * units.m + 4 * units.m / units.s

UnitConversionError: Can only apply 'add' function

to quantities with compatible dimensions

http://docs.astropy.org/en/stable/units/


PlasmaPy’s particles subpackage provides functional
and object-oriented interfaces to particle data

Instances of the Particle class may be used to represent
individual atoms, ions, or elementary particles.

>>> from plasmapy.atomic import Particle

>>> alpha = Particle("He-4++")

>>> alpha.mass

<Quantity 6.64465709e-27 kg>

>>> electron = Particle("e-")

>>> electron.charge

<Quantity -1.60217662e-19 C>

>>> electron.is_category(require={"lepton", "fermion"})

True

>>> ~electron # find antiparticle with invert operator

Particle("e+")



plasmapy.simulation contains a particle pusher3

3More examples: http://docs.plasmapy.org/en/latest/auto examples

 http://docs.plasmapy.org/en/latest/auto_examples 
 http://docs.plasmapy.org/en/latest/auto_examples 


Code development priorities for 2020

I Refactor existing code and tests
I Strengthen foundation for future development

I Interfaces for plasma simulations
I Classes to represent problem setup independent of numerics
I Metadata schemas (akin to openPMD)
I Interchangeable simulation modules

I Plasma diagnostic analysis tools
I Create diagnostic classes to be instantiated for specific probes
I Provide tools for the broader plasma community to develop

analysis packages for different experiments

I Educational Jupyter notebooks
I Use PlasmaPy to introduce fundamental plasma concepts



Organizational infrastructure is needed for long-term
software sustainability

I The Coordinating Committee oversees the PlasmaPy
project and code base
I Ideally have representation across plasma subdisciplines
I Currently strong representation by heliophysicists

I In practice, most coordination is done informally
I GitHub issues and pull requests
I Matrix/Gitter channel for text-based chat
I Weekly community meetings

I PlasmaPy Enhancement Proposals (PLEPs) allow the
community to influence the direction of PlasmaPy

I The PlasmaPy Community on Zenodo4 contains
presentations, PLEPs, white papers, and proposals

4https://zenodo.org/communities/plasmapy

 https://zenodo.org/communities/plasmapy 


PlasmaPy has documentation!5

I Each function and class has a docstring

I Subpackages have narrative documentation

I Docstrings and narrative documentation are transformed into
online documentation

I Test builds of documentation are run for every pull request

I Code examples are tested to make sure output is correct

5https://docs.plasmapy.org



PlasmaPy has tests!

I All pull requests undergo continuous integration testing
I We know right away when we break something
I Useful error messages help narrow down causes

I Automated test coverage checks show which lines of code
are not covered by tests
I We know what tests we still need to write
I We can find and delete unused portions of code

I Helpful practices
I Write tests before production code
I Turn bugs into tests cases



Anticipated benefits of PlasmaPy

I More reproducible, open, and efficient research

I Reduce duplication of functionality

I Reduce barriers to entry for plasma research

I Let students hit the ground running on first research projects
I Help us learn collaborative code development practices

I Helpful for students entering industry upon graduation

I Provide well-documented and well-tested software

I Improve interoperability between different packages

I Enable cross-disciplinary and cross-device studies

I Reduce software development overhead costs for experiments

I Create tools for plasma pedagogy



Summary

I We are developing PlasmaPy to contain core functionality for
an open source software ecosystem for plasma science
I Version 0.4.0 is expected to be released this summer

I PlasmaPy is building bridges among laboratory, heliospheric,
and astrophysical plasma physicists
I Active in Python in Heliophysics Community
I Participating in community planning process for fusion energy

sciences

I If there is functionality that you would like in PlasmaPy,
please raise an issue in our GitHub repository!

https://github.com/PlasmaPy/PlasmaPy/issues/new

