
Dyninst: Binary Analysis and Instrumentation Tool
Suite

Component libraries for binary structure and code analysis, dynamic
instrumentation, and static binary rewriting:

HPCToolkit: Performance Measurement, Attribution,
and Analysis Tool Suite

SI2-SSI: Collaborative Research: A Sustainable Infrastructure for 
Performance, Security, and Correctness Tools
PI: John Mellor-Crummey, Co-Pi: Barton P. Miller
Institutions: Rice University and University of Wisconsin - Madison

Awards: 1450273, 1449918
NSF CSSI PI Meeting, Seattle, WA, Feb. 13-14, 2020

source
code

optimized
binary

compile & link call path 
profile

profile 
execution
[hpcrun]

binary 
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-

mpi]
database

presentation
[hpcviewer/

hpctraceviewer]

program 
structure

Measure, analyze, and attribute performance to dynamically
linked executables with no advance preparation

Process

Analyze Large Scale Binaries
• Added multi-threading to Dyninst’s ParseAPI and SymtabAPI [1]
• HPCToolkit’s hpcstruct uses Dyninst’s ParseAPI to analyze loop nesting, source line mapping, and function inlining
• A trace view of hpcstruct analyzing a 8.2GB shared library from TensorFlow

Data Race Detection for OpenMP Programs
• Instrument memory reads and writes using Dyninst to track happens-before relation
• Reduce state information maintained by leveraging OpenMP semantics

[1] Parallelizing Binary Code Analysis, Xiaozhu Meng, Jonathon M. Anderson, John Mellor-Crummey, Mark W. Krentel, Barton P. Miller, Srđan Milaković, https://arxiv.org/abs/2001.10621

32 threads

Parallel DWAR Parsing Parallel CFG Construction Parallel Program Structure Queries

#pragma omp parallel for
for (int i = 0; i < 4; ++i) { // I1 – I4

if (i < 3) {
int local = shared;
// Processing local

} else {
#pragma omp task // E1
{

int local = shared;
#pragma omp task // E2
{

shared *= 2;
}
#pragma omp taskwait

}
}

}

I1

I2

I3

I4

I4’

E1

E1’

E2

S1

S2

S3

Use static binary analysis to reduce instrumentation:
• Avoid instrumentation for accesses to the same variable by the same task in the same

synchronization interval
• Avoid instrumentation for accesses to read-only memory locations

Available at hpctoolkit.org Available at github.com/dyninst/dyninst

Binary

SymtabAPI:
ELF and DWARF

parsing

Instruction
API:

Machine instruction
decoding

ParseAPI:
CFG construction

Dataflow
API:

A suite of data flow
analyses

Proc
Control API:
Process and thread

control

PatchAPI:
Binary Modification

Stack
Walker API:

Stack unwinding

Binary

2.5 mins total analysis
time, 9.5X speed up

Covert to
OpenMP
task graph

Basic algorithm execution trace
1. I1, I2, and I3 perform concurrent read
-> Record access history: I1, I2, and I3 read
shared
2. E1 and E2 perform concurrent read
-> Record access history: E1 and E2 read
shared
3. E2 performs a concurrent write
-> Data race
Five task IDs are recorded for shared

New algorithm execution trace
1. I1, I2, and I3 perform concurrent read
-> Record access history: I1 and I2 read
shared; no need to record I3
2. E1 and E2 perform concurrent read
-> no need to record E1 or E2
3. E2 performs concurrent write
-> Data race
Two task IDs are recorded for shared


