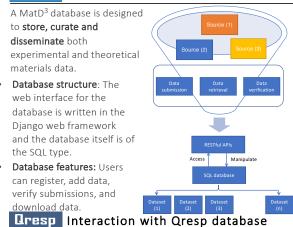
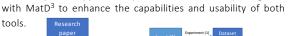
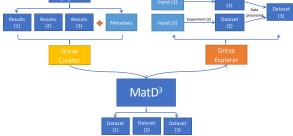


DMREF: Collaborative Research: HybriD³: Discovery, Design, Dissemination of Organic-Inorganic Hybrid Semiconductor Materials for Optoelectronic Applications PIs: Volker Blum¹, Kenan Gundogdu², Yosuke Kanai³, David B. Mitzi¹, Franky So², Wei You³ Coauthors: Raul Laasner¹, Xiaochen Du¹, Aditya Tanikanti⁴, Marco Govoni⁴, Giulia Galli⁴, Sampreeti Bhattacharya³, Connor Clayton⁵, Jun Hu³, Manoj K. Jana¹, Svenja Janke¹, Chi Liu¹, Juliana Mendes², Matti Ropo⁶, Dovletgeldi Seyitleyev², Ruyi Song¹


na-Chapel Hill,4University of Chicago, 5Carnegie Mellon University, 6University of Turku

Introduction

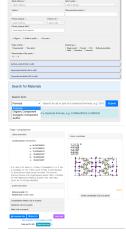

This project, called "HybriD³", aims to accelerate the "Design, Discovery, and Dissemination" (D³) of new crystalline organicinorganic hybrid semiconductors. This poster will focus on the software and data related aspects of the project. We describe a web facing data base infrastructure "MatD3" (https://github.com/HybriD3-database/MatD3


and https://joss.theoj.org/papers/10.21105/joss.01945), a database and online presentation package for research data supporting materials discovery, design, and dissemination, developed as a generic package allowing individual research groups or projects to share materials data of any kind in a reproducible, easily accessible way. The package can be connected to the "Qresp" ("Curation and Exploration of Scientific software Reproducible Papers") (http://www.qresp.org/), which facilitates the organization, annotation and exploration of data presented in scientific papers. We finally describe the use of this infrastructure and our broader scientific activities as reflected in the open, hybrid organic-inorganic materials database "HybriD3" (https://materials.hybrid3.duke.edu/).

MatD³ Infrastructure A MatD3

The Qresp web application (Govoni et al., 2019¹³) integrates

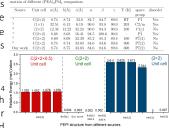
- Qresp consists of two parts:
- · Curator: guides users in the creation of metadata for the data that accompanies a publishable scientific work.
- Explorer: a GUI for accessing datasets, exploring workflows, and downloading curated data, published in scientific papers.


References

Kagan, C. R. rey, W., Z. K

HybriD³ HybriD³ Database

The HybriD³ database is a concrete usage of MatD³ infrastructure, predominantly for organic-inorganic hybrid perovskites. Database features:


- Add data: Users can add experimental, computational data, synthesis method, and define and add new properties into the database
- Curate data: The data uploaded can be verified by other users
- Access data: All curated data sets are organized according to hybrid perovskite compound and can be searched by organic and inorganic compound name, formula, and authors, and can be downloaded from GUI and by RESTful API

Functionality Demonstration

Curation data of the (PEA)₂Pbl₄ structure

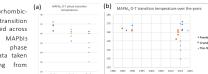
Several (PEA)₂PI₄ structures with different unit cell size and phase structure are reported in literatures, as shown in Table 1.

The most stable (PEA)₂PI₄ structure is identified with lowest energy after structure relaxation and

Figure 1. Relative total energy comparison between uploaded as curated PEPI different structures with the total energy of structure from Ke-Zhao et al [1] as the reference point.

Comprehensive data of 2D oligoacene compounds

Comprehensive and trustworthy Table 2 Collection of aligneese compounds (AMA, PEA, PMA, NEA, NMA, TMA), PNX, for X = CI, Br or 1. Compounds available on the database are shown with their data set ID and data help researchers map across compounds from the same family or compare the relative progress in different perovskite families to identify any knowledge gaps in particular compounds, or any unique challenges researchers face in studying such compounds.


X=C1

	AP	BS	Abs	PL
AMA*	Exp: ID 220 ⁶	Comp: ID 3347		
PEA^b	Exp: ID 216 ⁸		Exp: PU ¹	Exp: ID 11/3771
PMA*	Exp: ID 229*	Comp: ID 3387	Exp: PU ¹	Exp: ID 8/3851
NEA ^d				
NMA*	Exp: ID 230 ²⁰	Comex ID 3397	Exp: PU ¹	Exp: ID 13/3861
TMA				
	X=Br			
	AP	BS	Abs	PL
AMA	Comp: ID 2427	Comp: ID 346 ⁷		
PEA	Exp: ID 227 ¹¹		Exp: PU ¹	Exp: ID 10/3831
PMA .	Exp: ID 2241	Comp: ID 336 ²	Exp: PU ¹	Exp: ID 7/3801
NEA	Exp: ID 226 ¹		Exp: PU ¹	Exp: ID 15/3821
NMA	Exp: ID 223 ¹	Comp: ID 3357	Exp: PU ¹	Exp: ID 12/3793
TMA	Comp: ID 2457	Comp: ID 3497		
	X-I			
	AP	BS	Abs	PL
AMA	Comp: ID 2437	Comp: ID 347 ⁷		
PEA	Exp: ID 225 ¹		Exp: PU ¹	Exp: ID 9/381 ¹
PMA	Exp: ID 228 ¹²	Comp: ID 3377	Exp: PU ¹	Exp: ID 6/3841
NEA	Exp: ID 222 ¹		Exp: PU ¹	Exp: ID 14/378
NMA	Comp: ID 2447	Come: ID 3487		
TMA	Comp: ID 2467	Compx ID 350 ⁷		
2-anthry	Imethylammoniun	a) * phenylethylan	monium " p	henylmethylammo
1-(2-m	phthyl)ethylamm	nium * 1-(2-naph	thyl)methyli	unmonium ^f TBD

Metadata of phase transition temperature of MAPbl₃ The metadata for the orthorhombic-tetragonal (O-T) phase transition across powder, crystal, and thin-film samples using a myriad of measurement techniques illustrates the dependence of a phase transition temperature on sample

type and research interest evolution over time.

Figure 2: (a) MAPbI3 orthorhombic- (a) transition tetragonal nhase temperature data compared across MAPbi3 sample types. (b) orthorhombic-tetragonal phase transition temperature data taken from literature spanning from 1980s to 2010s

Acknowledgment

This work was financially supported by the NSF under Award Nos. DMR-1729297, DMR-1728921, DMR-1729383 and by a dedicated supplement, Award No. DMR-1841206. G.G., M.G. and A.T. acknowledge support by MICCOM, as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.